archive ouverte UNIGE

Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons

CDF Collaboration
CLARK, Allan Geoffrey (Collab.), et al.

Abstract

We report measurements of direct CP—violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to $1 \mathrm{fb}-1$ of integrated luminosity, we obtain the first measurements of direct $C P$ violation in bottom strange mesons, $\mathrm{ACP}(\mathrm{BOs} \rightarrow \mathrm{K}-\pi+)=+0.39 \pm 0.15$ (stat) ± 0.08 (syst), and bottom baryons, $\mathrm{ACP}(\wedge 0 \mathrm{~b} \rightarrow \mathrm{p} \pi-)=+0.03 \pm 0.17$ (stat) ± 0.05 (syst) and $\mathrm{ACP}(\wedge 0 \mathrm{~b} \rightarrow \mathrm{pK}-)=+0.37 \pm 0.17$ (stat) ± 0.03 (syst). In addition, we measure CP violation in $B 0 \rightarrow K+\pi-$ decays with 3.5σ significance, $A C P(B 0 \rightarrow K+\pi-)=-0.086 \pm 0.023$ (stat) ± 0.009 (syst), in agreement with the current world average. Measurements of branching fractions of $\mathrm{BO} s \rightarrow \mathrm{~K}+\mathrm{K}-$ and $\mathrm{B} 0 \rightarrow \pi+\pi-$ decays are also updated.

Reference
CDF Collaboration, CLARK, Allan Geoffrey (Collab.), et al. Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons. Physical Review Letters, 2011, vol. 106, no. 18, p. 181802

DOI : 10.1103/PhysRevLett.106.181802

Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons

T. Aaltonen,,${ }^{21}$ B. Álvarez González,,${ }^{9, w}$ S. Amerio, ${ }^{41 a}$ D. Amidei, ${ }^{32}$ A. Anastassov, ${ }^{36}$ A. Annovi, ${ }^{17}$ J. Antos, ${ }^{12}$ G. Apollinari, ${ }^{15}$ J. A. Appel, ${ }^{15}$ A. Apresyan, ${ }^{46}$ T. Arisawa, ${ }^{56}$ A. Artikov, ${ }^{13}$ J. Asaadi, ${ }^{51}$ W. Ashmanskas, ${ }^{15}$ B. Auerbach, ${ }^{59}$ A. Aurisano, ${ }^{51}$ F. Azfar, ${ }^{40}$ W. Badgett, ${ }^{15}$ A. Barbaro-Galtieri, ${ }^{26}$ V. E. Barnes, ${ }^{46}$ B. A. Barnett, ${ }^{23}$ P. Barria, ${ }^{44 \mathrm{c}, 44 \mathrm{a}}$ P. Bartos, ${ }^{12}$ M. Bauce, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}} \mathrm{G}$. Bauer, ${ }^{30}$ F. Bedeschi, ${ }^{44 \mathrm{a}}$ D. Beecher, ${ }^{28}$ S. Behari, ${ }^{23}$ G. Bellettini, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ J. Bellinger, ${ }^{58}$ D. Benjamin, ${ }^{14}$ A. Beretvas, ${ }^{15}$ A. Bhatti, ${ }^{48}$ M. Binkley, ${ }^{15, a}$ D. Bisello, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ I. Bizjak, ${ }^{28, \mathrm{aa}}$ K. R. Bland, ${ }^{5}$ B. Blumenfeld, ${ }^{23}$ A. Bocci, ${ }^{14}$ A. Bodek, ${ }^{47}$ D. Bortoletto, ${ }^{46}$ J. Boudreau, ${ }^{45}$ A. Boveia, ${ }^{11}$ B. Brau, ${ }^{15, b}$ L. Brigliadori, ${ }^{6 b, 6 a}$ A. Brisuda, ${ }^{12}$ C. Bromberg, ${ }^{33}$

A. Buzatu, ${ }^{31}$ C. Calancha, ${ }^{29}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{33}$ M. Campbell,,${ }^{32}$ F. Canelli, ${ }^{12,15}$ A. Canepa, ${ }^{43}$ B. Carls, ${ }^{22}$ D. Carlsmith, ${ }^{58}$ R. Carosi, ${ }^{44 \mathrm{a}}$ S. Carrillo, ${ }^{16,1}$ S. Carron, ${ }^{15}$ B. Casal, ${ }^{9}$ M. Casarsa, ${ }^{15}$ A. Castro, ${ }^{6 b, 6 \mathrm{a}}$ P. Catastini, ${ }^{15}$ D. Cauz, ${ }^{52 \mathrm{a}}$ V. Cavaliere, ${ }^{44 \mathrm{c}, 44 \mathrm{a}}$ M. Cavalli-Sforza, ${ }^{4}$ A. Cerri, ${ }^{26, g}$ L. Cerrito, ${ }^{28, r}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{44 \mathrm{a}}$ G. Chlachidze, ${ }^{15}$ F. Chlebana, ${ }^{15}$ K. Cho, ${ }^{25}$ D. Chokheli, ${ }^{13}$ J. P. Chou, ${ }^{20}$ W. H. Chung, ${ }^{58}$ Y. S. Chung, ${ }^{47}$ C. I. Ciobanu, ${ }^{42}$ M. A. Ciocci, ${ }^{44 \mathrm{c}, 44 \mathrm{a}}$ A. Clark, ${ }^{18}$ G. Compostella, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ M. E. Convery, ${ }^{15}$ J. Conway, ${ }^{7}$ M. Corbo, ${ }^{42}$ M. Cordelli, ${ }^{17}$ C. A. Cox, ${ }^{7}$ D. J. Cox, ${ }^{7}$ F. Crescioli, ${ }^{44 b, 44 \mathrm{a}}$ C. Cuenca Almenar, ${ }^{59}$ J. Cuevas, ${ }^{9, w}$ R. Culbertson, ${ }^{15}$ D. Dagenhart, ${ }^{15}$ N. d'Ascenzo, ${ }^{42, u}$ M. Datta, ${ }^{15}$ P. de Barbaro, ${ }^{47}$ S. De Cecco, ${ }^{49 \mathrm{a}}$ G. De Lorenzo, ${ }^{4}$ M. Dell'Orso, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ C. Deluca, ${ }^{4}$ L. Demortier, ${ }^{48}$ J. Deng, ${ }^{14, d}$ M. Deninno, ${ }^{6 a}$ F. Devoto, ${ }^{21}$ M. d'Errico, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ A. Di Canto, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ B. Di Ruzza, ${ }^{44 \mathrm{a}}$ J. R. Dittmann, ${ }^{5}$ M. D'Onofrio, ${ }^{27}$ S. Donati, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ P. Dong, ${ }^{15}$ M. Dorigo, ${ }^{52 \mathrm{a}}$ T. Dorigo, ${ }^{41 \mathrm{a}}$ K. Ebina, ${ }^{56}$ A. Elagin, ${ }^{51}$ A. Eppig, ${ }^{32}$ R. Erbacher, ${ }^{7}$ D. Errede, ${ }^{22}$ S. Errede, ${ }^{22}$ N. Ershaidat, ${ }^{42, z}$ R. Eusebi, ${ }^{51}$ H. C. Fang, ${ }^{26}$ S. Farrington, ${ }^{40}$ M. Feindt, ${ }^{24}$ J. P. Fernandez, ${ }^{29}$ C. Ferrazza, ${ }^{44 \mathrm{~d}, 44 \mathrm{a}}$ R. Field, ${ }^{16}$ G. Flanagan, ${ }^{46, s}$ R. Forrest, ${ }^{7}$ M. J. Frank, ${ }^{5}$ M. Franklin, ${ }^{20}$ J. C. Freeman, ${ }^{15}$ Y. Funakoshi, ${ }^{56}$ I. Furic,,${ }^{16}$ M. Gallinaro, ${ }^{48}$ J. Galyardt, ${ }^{10}$ J. E. Garcia, ${ }^{18}$ A. F. Garfinkel, ${ }^{46}$ P. Garosi, ${ }^{44 \mathrm{c}, 44 \mathrm{a}}$ H. Gerberich, ${ }^{22}$ E. Gerchtein, ${ }^{15}$ S. Giagu, ${ }^{49 b, 49 a}$ V. Giakoumopoulou, ${ }^{3}$ P. Giannetti, ${ }^{44 \mathrm{a}}$ K. Gibson, ${ }^{45}$ C. M. Ginsburg, ${ }^{15}$ N. Giokaris, ${ }^{3}$ P. Giromini, ${ }^{17}$ M. Giunta, ${ }^{44 \mathrm{a}}$ G. Giurgiu, ${ }^{23}$ V. Glagolev, ${ }^{13}$ D. Glenzinski, ${ }^{15}$ M. Gold, ${ }^{35}$ D. Goldin, ${ }^{51}$ N. Goldschmidt, ${ }^{16}$ A. Golossanov, ${ }^{15}$ G. Gomez, ${ }^{9}$ G. Gomez-Ceballos, ${ }^{30}$ M. Goncharov, ${ }^{30}$ O. González, ${ }^{29}$ I. Gorelov, ${ }^{35}$ A. T. Goshaw, ${ }^{14}$ K. Goulianos, ${ }^{48}$ A. Gresele, ${ }^{41 \mathrm{a}}$ S. Grinstein, ${ }^{4}$ C. Grosso-Pilcher, ${ }^{11}$ R. C. Group, ${ }^{55}$ J. Guimaraes da Costa, ${ }^{20}$ Z. Gunay-Unalan, ${ }^{33}$ C. Haber, ${ }^{26}$ S. R. Hahn, ${ }^{15}$ E. Halkiadakis, ${ }^{50}$ A. Hamaguchi, ${ }^{39}$ J. Y. Han, ${ }^{47}$ F. Happacher, ${ }^{17}$ K. Hara, ${ }^{53}$ D. Hare, ${ }^{50}$ M. Hare, ${ }^{54}$ R. F. Harr, ${ }^{57}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{40}$ M. Heck, ${ }^{24}$ J. Heinrich, ${ }^{43}$ M. Herndon, ${ }^{58}$ S. Hewamanage, ${ }^{5}$ D. Hidas, ${ }^{50}$ A. Hocker, ${ }^{15}$ W. Hopkins, ${ }^{15, h}$ D. Horn, ${ }^{24}$ S. Hou, ${ }^{1}$ R. E. Hughes, ${ }^{37}$ M. Hurwitz, ${ }^{11}$ U. Husemann, ${ }^{59}$ N. Hussain, ${ }^{31}$ M. Hussein, ${ }^{33}$ J. Huston, ${ }^{33}$ G. Introzzi, ${ }^{44 a}$ M. Iori, ${ }^{49 b, 49 a}$ A. Ivanov, ${ }^{7, p}$ E. James, ${ }^{15}$ D. Jang, ${ }^{10}$ B. Jayatilaka, ${ }^{14}$ E. J. Jeon, ${ }^{25}$ M. K. Jha, ${ }^{\text {Ga }}$ S. Jindariani, ${ }^{15}$ W. Johnson, ${ }^{7}$ M. Jones, ${ }^{46}$ K. K. Joo, ${ }^{25}$ S. Y. Jun, ${ }^{10}$ T. R. Junk, ${ }^{15}$ T. Kamon, ${ }^{51}$ P. E. Karchin, ${ }^{57}$ Y. Kato, ${ }^{39,0}$ W. Ketchum, ${ }^{11}$ J. Keung, ${ }^{43}$ V. Khotilovich, ${ }^{51}$ B. Kilminster, ${ }^{15}$ D. H. Kim, ${ }^{25}$ H. S. Kim, ${ }^{25}$ H. W. Kim, ${ }^{25}$ J.E. Kim,,${ }^{25}$ M. J. Kim,,${ }^{17}$ S. B. Kim, ${ }^{25}$ S. H. Kim, ${ }^{53}$ Y. K. Kim, ${ }^{11}$ N. Kimura, ${ }^{56}$ M. Kirby, ${ }^{15}$ S. Klimenko, ${ }^{16}$ K. Kondo, ${ }^{56}$ D. J. Kong, ${ }^{25}$ J. Konigsberg, ${ }^{16}$ A. V. Kotwal, ${ }^{14}$ M. Kreps, ${ }^{24}$ J. Kroll, ${ }^{43}$ D. Krop, ${ }^{11}$ N. Krumnack, ${ }^{5, m}$ M. Kruse, ${ }^{14}$ V. Krutelyov, ${ }^{51, \mathrm{e}}$ T. Kuhr, ${ }^{24}$ M. Kurata, ${ }^{53}$ S. Kwang, ${ }^{11}$ A. T. Laasanen, ${ }^{46}$ S. Lami, ${ }^{44 \mathrm{a}}$ S. Lammel, ${ }^{15}$ M. Lancaster, ${ }^{28}$ R. L. Lander, ${ }^{7}$ K. Lannon, ${ }^{37, v}$ A. Lath, ${ }^{50}$ G. Latino, ${ }^{44 \mathrm{c}, 44 \mathrm{a}}$ I. Lazzizzera, ${ }^{41 \mathrm{a}}$ T. LeCompte, ${ }^{2}$ E. Lee, ${ }^{51}$ H. S. Lee, ${ }^{11}$ J. S. Lee, ${ }^{25}$ S. W. Lee, ${ }^{51, x}$ S. Leo, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ S. Leone, ${ }^{44 \mathrm{a}}$ J. D. Lewis, ${ }^{15}$ C.-J. Lin, ${ }^{26}$ J. Linacre, ${ }^{40}$ M. Lindgren, ${ }^{15}$ E. Lipeles, ${ }^{43}$ A. Lister, ${ }^{18}$ D. O. Litvintsev, ${ }^{15}$ C. Liu, ${ }^{45}$ Q. Liu, ${ }^{46}$ T. Liu, ${ }^{15}$ S. Lockwitz, ${ }^{59}$ N. S. Lockyer, ${ }^{43}$ A. Loginov, ${ }^{59}$ D. Lucchesi, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ J. Lueck, ${ }^{24}$ P. Lujan, ${ }^{26}$ P. Lukens, ${ }^{15}$ G. Lungu, ${ }^{48}$ J. Lys, ${ }^{26}$ R. Lysak, ${ }^{12}$ R. Madrak, ${ }^{15}$ K. Maeshima, ${ }^{15}$ K. Makhoul, ${ }^{30}$ P. Maksimovic, ${ }^{23}$ S. Malik, ${ }^{48}$ G. Manca, ${ }^{27, c}$ A. Manousakis-Katsikakis, ${ }^{3}$ F. Margaroli, ${ }^{46}$ C. Marino, ${ }^{24}$ M. Martínez, ${ }^{4}$ R. Martínez-Ballarín,,${ }^{29}$ P. Mastrandrea, ${ }^{49 \mathrm{a}}$ M. Mathis, ${ }^{23}$ M. E. Mattson, ${ }^{57}$ P. Mazzanti, ${ }^{6 a}$ K. S. McFarland, ${ }^{47}$ P. McIntyre, ${ }^{51}$ R. McNulty, ${ }^{27, j}$ A. Mehta, ${ }^{27}$ P. Mehtala, ${ }^{21}$ A. Menzione, ${ }^{44 a}$ C. Mesropian, ${ }^{48}$ T. Miao, ${ }^{15}$ D. Mietlicki, ${ }^{32}$ A. Mitra, ${ }^{1}$ H. Miyake, ${ }^{53}$ S. Moed, ${ }^{20}$ N. Moggi, ${ }^{6 a}$ M. N. Mondragon, ${ }^{15,1}$ C. S. Moon, ${ }^{25}$ R. Moore, ${ }^{15}$ M. J. Morello, ${ }^{15}$ J. Morlock, ${ }^{24}$ P. Movilla Fernandez, ${ }^{15}$ A. Mukherjee, ${ }^{15}$ Th. Muller, ${ }^{24}$ P. Murat, ${ }^{15}$ M. Mussini, ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$ J. Nachtman, ${ }^{15, \mathrm{n}}$ Y. Nagai, ${ }^{53}$ J. Naganoma, ${ }^{56}$ I. Nakano, ${ }^{38}$ A. Napier, ${ }^{54}$ J. Nett, ${ }^{51}$ C. Neu, ${ }^{55}$ M. S. Neubauer, ${ }^{22}$ J. Nielsen, ${ }^{26, f}$ L. Nodulman, ${ }^{2}$ O. Norniella, ${ }^{22}$ E. Nurse, ${ }^{28}$ L. Oakes, ${ }^{40}$ S. H. Oh, ${ }^{14}$ Y. D. Oh, ${ }^{25}$ I. Oksuzian, ${ }^{55}$ T. Okusawa,,${ }^{39}$ R. Orava, ${ }^{21}$ L. Ortolan, ${ }^{4}$ S. Pagan Griso, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ C. Pagliarone, ${ }^{52 \mathrm{a}}$ E. Palencia, ${ }^{9, g}$ V. Papadimitriou, ${ }^{15}$ A. A. Paramonov, ${ }^{2}$ J. Patrick, ${ }^{15}$ G. Pauletta, ${ }^{52 \mathrm{~b}, 52 \mathrm{a}}$ M. Paulini, ${ }^{10}$ C. Paus, ${ }^{30}$ D. E. Pellett, ${ }^{7}$ A. Penzo, ${ }^{52 \mathrm{a}}$ T. J. Phillips, ${ }^{14}$ G. Piacentino, ${ }^{44 \mathrm{a}}$ E. Pianori, ${ }^{43}$ J. Pilot,,37 K. Pitts, ${ }^{22}$ C. Plager, ${ }^{8}$ L. Pondrom, ${ }^{58}$ K. Potamianos, ${ }^{46}$ O. Poukhov, ${ }^{13, a}$ F. Prokoshin, ${ }^{13, y}$ A. Pronko, ${ }^{15}$ F. Ptohos, ${ }^{17, i}$ E. Pueschel, ${ }^{10}$ G. Punzi, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ J. Pursley, ${ }^{58}$ A. Rahaman, ${ }^{45}$ V. Ramakrishnan, ${ }^{58}$ N. Ranjan, ${ }^{46}$ I. Redondo, ${ }^{29}$
P. Renton, ${ }^{40}$ M. Rescigno, ${ }^{49 \mathrm{a}}$ F. Rimondi, ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$ L. Ristori, ${ }^{45,15}$ A. Robson, ${ }^{19}$ T. Rodrigo, ${ }^{9}$ T. Rodriguez, ${ }^{43}$ E. Rogers, ${ }^{22}$ S. Rolli, ${ }^{54}$ R. Roser, ${ }^{52 \mathrm{a}}$ M. Rossi,${ }^{52 \mathrm{a}}$ F. Rubbo, ${ }^{15}$ F. Ruffini, ${ }^{44 \mathrm{c}, 44 \mathrm{a}}$ A. Ruiz, ${ }^{9}$ J. Russ, ${ }^{10}$ V. Rusu, ${ }^{15}$ A. Safonov, ${ }^{51}$ W. K. Sakumoto, ${ }^{47}$ Y. Sakurai, ${ }^{56}$ L. Santi, ${ }^{52 b, 52 a}$ L. Sartori, ${ }^{44 a}$ K. Sato, ${ }^{53}$ V. Saveliev, ${ }^{42, u}$ A. Savoy-Navarro, ${ }^{42}$ P. Schlabach,,${ }^{15}$ A. Schmidt, ${ }^{24}$ E. E. Schmidt, ${ }^{15}$ M. P. Schmidt, ${ }^{59, a}$ M. Schmitt, ${ }^{39}$ T. Schwarz, ${ }^{7}$ L. Scodellaro, ${ }^{9}$ A. Scribano, ${ }^{44 \mathrm{c}, 44 \mathrm{a}}$ F. Scuri, ${ }^{44 \mathrm{a}}$ A. Sedov, ${ }^{46}$ S. Seidel, ${ }^{35}$ Y. Seiya, ${ }^{39}$ A. Semenov, ${ }^{13}$ F. Sforza, ${ }^{44 \mathrm{~b}, 44 \mathrm{a}}$ A. Sfyrla, ${ }^{22}$ S. Z. Shalhout, ${ }^{7}$ T. Shears, ${ }^{27}$ P. F. Shepard,,${ }^{45}$ M. Shimojima, ${ }^{53, t}$ S. Shiraishi, ${ }^{11}$ M. Shochet, ${ }^{11}$ I. Shreyber, ${ }^{34}$ A. Simonenko, ${ }^{13}$ P. Sinervo, ${ }^{13}$ A. Sissakian, ${ }^{13, a}$ K. Sliwa, ${ }^{54}$ J. R. Smith, ${ }^{7}$ F. D. Snider, ${ }^{15}$ A. Soha, ${ }^{15}$ S. Somalwar, ${ }^{50}$ V. Sorin, ${ }^{4}$ P. Squillacioti, ${ }^{15}$ M. Stancari, ${ }^{15}$ M. Stanitzki, ${ }^{59}$ R. St. Denis, ${ }^{19}$ B. Stelzer, ${ }^{31}$ O. Stelzer-Chilton, ${ }^{31}$ D. Stentz, ${ }^{36}$ J. Strologas, ${ }^{35}$ G. L. Strycker, ${ }^{32}$ Y. Sudo, ${ }^{53}$ A. Sukhanov, ${ }^{16}$ I. Suslov, ${ }^{13}$ K. Takemasa, ${ }^{53}$ Y. Takeuchi, ${ }^{53}$ J. Tang, ${ }^{11}$ M. Tecchio, ${ }^{32}$ P. K. Teng, ${ }^{1}$ J. Thom, ${ }^{15, h}$ J. Thome, ${ }^{10}$ G. A. Thompson, ${ }^{22}$ E. Thomson, ${ }^{43}$ P. Ttito-Guzmán, ${ }^{29}$ S. Tkaczyk, ${ }^{15}$ D. Toback, ${ }^{51}$ S. Tokar, ${ }^{12}$ K. Tollefson, ${ }^{33}$ T. Tomura, ${ }^{53}$ D. Tonelli, ${ }^{15}$ S. Torre, ${ }^{17}$ D. Torretta, ${ }^{15}$ P. Totaro, ${ }^{52 \mathrm{~b}, 52 \mathrm{a}}$ M. Trovato, ${ }^{44 \mathrm{~d}, 44 \mathrm{a}} \mathrm{Y} . \mathrm{Tu},{ }^{43}$ F. Ukegawa, ${ }^{53}$ S. Uozumi, ${ }^{25}$ A. Varganov, ${ }^{32}$ F. Vázquez, ${ }^{16,1}$ G. Velev, ${ }^{15}$ C. Vellidis, ${ }^{3}$ M. Vidal, ${ }^{29}$ I. Vila, ${ }^{9}$ R. Vilar, ${ }^{9}$ J. Vizán, ${ }^{9}$ M. Vogel, ${ }^{35}$ G. Volpi, ${ }^{44 b, 44 a}$ P. Wagner, ${ }^{43}$ R. L. Wagner, ${ }^{15}$ T. Wakisaka, ${ }^{39}$ R. Wallny, ${ }^{8}$ S. M. Wang, ${ }^{1}$ A. Warburton, ${ }^{31}$ D. Waters, ${ }^{28}$ M. Weinberger, ${ }^{51}$ W. C. Wester III, ${ }^{15}$ B. Whitehouse, ${ }^{54}$ D. Whiteson, ${ }^{43, \mathrm{~d}}$ A. B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{15}$ S. Wilbur, ${ }^{11}$ F. Wick, ${ }^{24}$ H. H. Williams, ${ }^{43}$ J. S. Wilson, ${ }^{37}$ P. Wilson, ${ }^{15}$ B. L. Winer, ${ }^{37}$ P. Wittich, ${ }^{15, h}$ S. Wolbers, ${ }^{15}$ H. Wolfe, ${ }^{37}$ T. Wright, ${ }^{32} \mathrm{X}$. Wu, ${ }^{18} \mathrm{Z}$. Wu, ${ }^{5} \mathrm{~K}$. Yamamoto, ${ }^{39}$ J. Yamaoka, ${ }^{14}$ T. Yang, ${ }^{15}$ U. K. Yang, ${ }^{11, q}$ Y. C. Yang, ${ }^{25}$ W.-M. Yao, ${ }^{26}$ G. P. Yeh, ${ }^{15} \mathrm{~K} . \mathrm{Yi}^{15, \mathrm{n}} \mathrm{J}$. Yoh, ${ }^{15} \mathrm{~K}$. Yorita, ${ }^{56}$ T. Yoshida, ${ }^{39, \mathrm{k}} \mathrm{G} . \mathrm{B} . \mathrm{Yu},{ }^{14} \mathrm{I} . \mathrm{Yu},{ }^{25}$ S. S. Yu, ${ }^{15}$ J. C. Yun, ${ }^{15}$ A. Zanetti, ${ }^{52 \mathrm{a}}$ Y. Zeng, ${ }^{14}$ and S. Zucchelli ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$
(CDF Collaboration)

${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 15771 Athens, Greece
${ }^{4}$ Institut de Fisica d'Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
${ }^{6 \mathrm{~b}}$ University of Bologna, I-40127 Bologna, Italy
${ }^{7}$ University of California, Davis, Davis, California 95616, USA
${ }^{8}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{9}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{10}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{11}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{12}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
${ }^{13}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{14}$ Duke University, Durham, North Carolina 27708, USA
${ }^{15}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{16}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{17}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{18}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{19}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{20}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{21}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
${ }^{22}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{23}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{24}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{25}$ Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
${ }^{26}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{27}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{28}$ University College London, London WC1E 6BT, United Kingdom
${ }^{29}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
${ }^{30}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

${ }^{31}$ Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
${ }^{32}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{33}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{34}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{35}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{36}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{37}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{38}$ Okayama University, Okayama 700-8530, Japan
${ }^{39}$ Osaka City University, Osaka 588, Japan
${ }^{40}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{41 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy;
${ }^{41 \mathrm{~b}}$ University of Padova, I-35131 Padova, Italy
${ }^{42}$ LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
${ }^{43}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{44 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
${ }^{44 \mathrm{~b}}$ University of Pisa, I-56127 Pisa, Italy
${ }^{44 \mathrm{c}}$ University of Siena, I-56127 Pisa, Italy
${ }^{44 \mathrm{~d}}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{45}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{46}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{47}$ University of Rochester, Rochester, New York 14627, USA
${ }^{48}$ The Rockefeller University, New York, New York 10065, USA
${ }^{49}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy
${ }^{49 \mathrm{~b}}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{50}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{51}$ Texas A\&M University, College Station, Texas 77843, USA
${ }^{52 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, I-33100 Udine, Italy
${ }_{52 \mathrm{~b}}^{50}$ University of Trieste/Udine, I-33100 Udine, Italy
${ }^{53}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{54}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{55}$ University of Virginia, Charlottesville, Virginia 22906, USA
${ }^{56}$ Waseda University, Tokyo 169, Japan
${ }^{57}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{58}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{59}$ Yale University, New Haven, Connecticut 06520, USA (Received 8 February 2011; published 6 May 2011)
We report measurements of direct $C P$-violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to $1 \mathrm{fb}^{-1}$ of integrated luminosity, we obtain the first measurements of direct $C P$ violation in bottom strange mesons, $A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=+0.39 \pm 0.15$ (stat) ± 0.08 (syst), and bottom baryons, $A_{C P}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-}\right)=+0.03 \pm 0.17$ (stat) ± 0.05 (syst) and $A_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-}\right)=+0.37 \pm$ 0.17 (stat) ± 0.03 (syst). In addition, we measure $C P$ violation in $B^{0} \rightarrow K^{+} \pi^{-}$decays with 3.5σ significance, $A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.086 \pm 0.023$ (stat) ± 0.009 (syst), in agreement with the current world average. Measurements of branching fractions of $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B^{0} \rightarrow \pi^{+} \pi^{-}$decays are also updated.

DOI: 10.1103/PhysRevLett.106.181802
PACS numbers: $13.25 . \mathrm{Hw}, 11.30 . \mathrm{Er}, 14.20 . \mathrm{Mr}, 14.40 . \mathrm{Nd}$

Noninvariance of the fundamental interactions under the combined symmetry transformation of charge conjugation and parity inversion ($C P$ violation) is an established experimental fact. The vast majority of experimental data are well described by the standard model (SM), and have supported the success of the Cabibbo-KobayashiMaskawa (CKM) [1] theory of quark-flavor dynamics. However, additional sources of $C P$ violation are required to explain the matter-antimatter asymmetry of the

Universe in standard big bang cosmology. This would have profound consequences on our understanding of fundamental interactions.

Violation of $C P$ is direct if the partial decay-width (Γ) of a particle into a final state differs from the width of the corresponding antiparticle into the $C P$-conjugate final state. In recent times, the pattern of direct $C P$ violation in charmless mesonic decays of B mesons has shown some unanticipated discrepancies from expectations. Under
standard assumptions of isospin symmetry and smallness of contributions from higher-order processes, similar $C P$ asymmetries are predicted for $B^{0} \rightarrow K^{+} \pi^{-}$and $B^{+} \rightarrow$ $K^{+} \pi^{0}$ decays [2,3]. However, experimental data show a significant discrepancy [4], which has prompted intense experimental and theoretical activity. Several simple extensions of the standard model could accommodate the discrepancy [5], but uncertainty on the contribution of higher-order SM amplitudes has prevented a firm conclusion [6]. The violation of $C P$ symmetry in charmless modes remains, therefore, a very interesting subject of study. Rich samples of bottom-flavored hadrons of all types from the Tevatron offer the opportunity to explore new territory in the field of B_{s}^{0} mesons and b-flavored baryons. Additional information coming from different decays yields further constraints on the possible explanations of previous findings, and may possibly reveal new deviations from expectations.

Specifically, measurements of direct $C P$ violation in $B_{s}^{0} \rightarrow K^{-} \pi^{+}$decays have been proposed as a nearly model-independent test for the presence of non-SM physics $[7,8]$. The relationships between charged-current quark couplings in the SM predict a well-defined hierarchy between direct $C P$ violation in $B^{0} \rightarrow K^{+} \pi^{-}$and $B_{s}^{0} \rightarrow$ $K^{-} \pi^{+}$decays, yielding a significant asymmetry for the latter, of about 40%. This large effect allows easier experimental investigation and any discrepancy may indicate contributions from non-SM amplitudes.

Supplementary information could come from $C P$ violation in bottom baryons, an effect which has not been measured so far. Interest in charmless b-baryon decays is prompted by branching fractions recently observed being larger than expected [9-11]. Asymmetries up to about 10% are predicted for $\Lambda_{b}^{0} \rightarrow p K^{-}$and $\Lambda_{b}^{0} \rightarrow p \pi^{-}$ decays in the SM [10,12], and are accessible with current CDF event samples.

In this Letter we report the first measurement of direct $C P$ violation in decays of bottom strange mesons and bottom baryons. We use $1 \mathrm{fb}^{-1}$ of $\bar{p} p$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$, collected by the upgraded Collider Detector (CDF II) at the Tevatron. The $C P$-violating asymmetries are measured in the recently established [11] $B_{s}^{0} \rightarrow K^{-} \pi^{+}, \Lambda_{b}^{0} \rightarrow p \pi^{-}$and $\Lambda_{b}^{0} \rightarrow p K^{-}$decays [13]. We also update our previous measurements [14] of asymmetry in the $B^{0} \rightarrow K^{+} \pi^{-}$decay, and branching fractions of $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays.

The CDF II detector is described in detail in Ref. [15] with the detector subsystems relevant for this analysis discussed in Ref. [14]. The data are collected by a threelevel trigger system. At level 1, tracks are reconstructed in the transverse plane. Two opposite-charge particles are required, with reconstructed transverse momenta $p_{T 1}$, $p_{T 2}>2 \mathrm{GeV} / c$, the scalar sum $p_{T 1}+p_{T 2}>5.5 \mathrm{GeV} / c$, and an azimuthal opening angle $\Delta \phi<135^{\circ}$ [16]. At level 2 , tracks are combined with silicon hits and their impact
parameter d (transverse distance of closest approach to the beam line) is determined with $45 \mu \mathrm{~m}$ resolution (including the beam spread) and required to be $0.1<d<$ 1.0 mm . A tighter opening-angle requirement, $20^{\circ}<$ $\Delta \phi<135^{\circ}$, is also applied. Each track pair is then used to form a B candidate, which is required to have an impact parameter $d_{B}<140 \mu \mathrm{~m}$ and to have travelled a distance $L_{T}>200 \mu \mathrm{~m}$ in the transverse plane. At level 3, a cluster of computers confirms the selection with a full event reconstruction.

The offline selection is based on a more accurate determination of the same quantities used in the trigger, with the addition of requirements on two other observables: the isolation (I_{B}) of the B candidate [17], and the quality of the three-dimensional fit (χ^{2} with 1 d.o.f.) of the decay vertex of the B candidate [11]. Asymmetries in the rarer $B_{s}^{0} \rightarrow K^{-} \pi^{+}$and Λ_{b}^{0} decays are measured using the selection in Ref. [11]. For the measurement of the $B^{0} \rightarrow K^{+} \pi^{-}$ asymmetry, instead, the selection is optimized by minimizing the expected variance of the measurement, evaluated by performing the full analysis on a set of simulated samples obtained with varied selection criteria [18]. This procedure yields the final selection: $I_{B}>0.5$, $\chi^{2}<7, d>100 \mu \mathrm{~m}, d_{B}<80 \mu \mathrm{~m}$, and $L_{T}>300 \mu \mathrm{~m}$. Only one B candidate per event is found after this selection, and a mass $\left(m_{\pi \pi}\right)$ is assigned to each, using a nominal charged-pion mass assignment for both decay products. The resulting mass distribution is shown in Fig. 1. A large peak is visible, dominated by the overlapping contributions of the $B^{0} \rightarrow K^{+} \pi^{-}, B^{0} \rightarrow \pi^{+} \pi^{-}$, and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays [14]. Signals for $B_{s}^{0} \rightarrow K^{-} \pi^{+}, \Lambda_{b}^{0} \rightarrow p \pi^{-}$, and $\Lambda_{b}^{0} \rightarrow p K^{-}$modes populate masses higher than the main peak (5.33-5.55 GeV/c c^{2}) [11]. Backgrounds include misreconstructed multibody b-hadron decays (physics

FIG. 1 (color online). Mass distribution of the 13502 reconstructed candidates. The charged-pion mass is assigned to both tracks. The total projection and projections of each signal and background component of the likelihood fit are overlaid on the data distribution. Signals and multibody B backgrounds are shown stacked on the combinatorial background component.
background) and random pairs of particles (combinatorial background).

We incorporate kinematic and particle identification information in an unbinned likelihood fit $[11,14]$ to determine the fraction of each mode and the charge asymmetries, uncorrected for instrumental effects, $\tilde{A}_{C P}=$ [$\left.N_{b \rightarrow f}-N_{\bar{b} \rightarrow \bar{f}}\right] /\left[N_{b \rightarrow f}+N_{\bar{b} \rightarrow \bar{f}}\right]$ of the flavor-specific decays $B^{0} \rightarrow K^{+} \pi^{-}, B_{s}^{0} \rightarrow K^{-} \pi^{+}$, and $\Lambda_{b}^{0} \rightarrow p \pi^{-}, p K^{-}$. For each channel, $N_{b \rightarrow f}\left(N_{\bar{b} \rightarrow \bar{f}}\right)$ is the reconstructed number of decays of hadrons containing the $b(\bar{b})$ quark into the final state $f(\bar{f})$. The decay flavor is inferred from the charges of final state particles assuming equal numbers of b and \bar{b} quarks at production (dominated by the strong interaction). Any effect from $C P$ violation in b-meson flavor mixing is assumed negligible [19].

The whole kinematic information is summarized by three loosely correlated observables [11]: the mass $m_{\pi \pi}$; the signed momentum imbalance $\alpha=\left(1-p_{1} / p_{2}\right) \times q_{1}$, where $p_{1}\left(p_{2}\right)$ is the lower (higher) of the particle momenta, and q_{1} is the sign of the charge of the particle of momentum p_{1}; and the scalar sum of particle momenta $p_{\text {tot }}=p_{1}+p_{2}$. Particle identification relies on measurement of the specific ionization $(d E / d x)$ in the drift chamber. For charged kaons and pions the $d E / d x$ response was calibrated with a sample of $1.5 \times 10^{6} D^{*+} \rightarrow D^{0} \pi^{+}$decays, using the charge of the pion from D^{*+} decay to identify the products of the Cabibbo-favored D^{0} decay. For protons we used $124000 \Lambda \rightarrow p \pi^{-}$decays, where the kinematics and the momentum threshold of the trigger allow unambiguous identification of the decay products [18,20]. Identification information for each particle is summarized by a single observable in our fit ("kaonness"), defined as $\kappa=\left(d E / d x-d E / d x_{\pi}\right) /\left(d E / d x_{K}-\right.$ $d E / d x_{\pi}$), where $d E / d x$ is the observed response, and $d E / d x_{\pi(K)}$ is the average responses expected for pions (kaons). The separation between $K^{+} \pi^{-}$or $p \pi^{-}$final states and their charge-conjugates is in excess of 2.1σ (Fig. 2). Although a lower $d E / d x$ separation is available between $p K^{-}$and $\bar{p} K^{+}$, due to similar ionization rates of protons and kaons, sufficient discrimination is achieved from their greater kinematics differences. The background model allows for independent contributions of positively and

FIG. 2. Joint kaonness distribution for the positive (abscissa) and negative (ordinate) final state particles in $B^{0} \rightarrow K^{+} \pi^{-}$ decays as determined from the calibration data of charm decays (top left). Dipion mass as a function of α for simulated $\Lambda_{b}^{0} \rightarrow p K^{-}$decays (top right). Mass of $D^{0} \rightarrow h^{+} h^{\prime-}$ candidates with pion assignment to both final state particles (bottom left). Same quantity as a function of α for simulated $D^{0} \rightarrow h^{+} h^{\prime-}$ decays (bottom right).
negatively charged pions, kaons, protons, and electrons, whose fractions are determined by the fit. Muons are indistinguishable from pions with the available 10% fractional $d E / d x$ resolution and are therefore incorporated into the pion component.

The signal yields from the fit (Table I) are corrected for different detection efficiencies to determine the physical asymmetries, $A_{C P}(b \rightarrow f)$, defined as

$$
\begin{equation*}
\frac{\mathcal{B}(b \rightarrow f)-\mathcal{B}(\bar{b} \rightarrow \bar{f})}{\mathcal{B}(b \rightarrow f)+\mathcal{B}(\bar{b} \rightarrow \bar{f})}=\frac{N_{b \rightarrow f}-c_{f} N_{\bar{b} \rightarrow \bar{f}}}{N_{b \rightarrow f}+c_{f} N_{\bar{b} \rightarrow \bar{f}}} \tag{1}
\end{equation*}
$$

where $c_{f}=\varepsilon(f) / \varepsilon(\bar{f})$ is the ratio between the efficiencies for triggering and reconstructing the final state f with respect to the state \bar{f}. The c_{f} factors correct for

TABLE I. Raw signal yields determined by the fit and final results. The first uncertainty is statistical, the second is systematic. Absolute branching fractions are derived by normalizing to the known value $\mathcal{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(19.4 \pm 0.6) \times 10^{-6}$, and assuming the average value at high energy for the production fraction $f_{s} / f_{d}=0.282 \pm 0.038$ [19].

Mode	$N_{b \rightarrow f}$	$N_{\bar{b} \rightarrow \bar{f}}$	$A_{C P}(b \rightarrow f)(\%)$	Relative \mathcal{B}	Absolute $\mathcal{B}\left(10^{-6}\right)$
$B^{0} \rightarrow K^{+} \pi^{-}$	1836 ± 61	2209 ± 64	$-8.6 \pm 2.3 \pm 0.9$	\ldots	\ldots
$B_{s}^{0} \rightarrow K^{-} \pi^{+}$	160 ± 26	70 ± 22	$+39 \pm 15 \pm 8$	\ldots	\ldots
$\Lambda_{b}^{0} \rightarrow p K^{-}$	80 ± 14	36 ± 11	$+37 \pm 17 \pm 3$	\ldots	\ldots
$\Lambda_{b}^{0} \rightarrow p \pi^{-}$	40 ± 10	38 ± 9	$+3 \pm 17 \pm 5$	\ldots	$\frac{\mathcal{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}$
$B^{0} \rightarrow \pi^{+} \pi^{-}$	1121 ± 63	\ldots	$\frac{f_{s}}{f_{d}\left(B_{s}^{0} \rightarrow K^{+}+B^{-}\right)}$		
$B_{s}^{0} \rightarrow K^{+} K^{-}$	1307 ± 64	$\cdots K^{+} \pi^{-)}$	$=0.259 \pm 0.017 \pm 0.016$	$5.02 \pm 0.33 \pm 0.35$	

detector-induced charge asymmetries, and are extracted from control samples in data. Simulation is only used to account for small differences between the kinematics of $B \rightarrow h^{+} h^{\prime-}$ decays and control signals. The corrections for $f=K^{+} \pi^{-}$are extracted from a sample of about 700000 $D^{0} \rightarrow K^{-} \pi^{+}$decays, reconstructed in the same data set. By imposing the same offline selection to the D^{0} decays we obtain $K^{\mp} \pi^{ \pm}$final states in a similar kinematic region as our signals (see Fig. 2). We assume that $K^{+} \pi^{-}$and $K^{-} \pi^{+}$ final states from charm decays are produced in equal numbers at the Tevatron, because production is dominated by the strong interaction and, compared to the detector effects to be corrected, the possible $C P$-violating asymmetry in $D^{0} \rightarrow K^{-} \pi^{+}$decays is tiny $\left(<10^{-3}\right)$ as predicted by the SM [21] and confirmed by current experimental determinations [22]. We also checked that possible asymmetries in D^{0} meson yields induced by $C P$ violation in $B \rightarrow D X$ decays are small and can be neglected [18]. Therefore, any asymmetry between observed numbers of reconstructed $K^{-} \pi^{+}$and $K^{+} \pi^{-}$charm decays can be ascribed to detector-induced effects and used to extract the desired correction factors. The ratio $N_{\bar{D}^{0} \rightarrow K^{+}} \pi^{-} /$ $N_{D^{0} \rightarrow K^{-} \pi^{+}}$is measured with the same fit used for the signal. The $d E / d x$ information is not used because kinematics alone is sufficient to provide an excellent separation in charm decays, as shown in Fig. 2. We checked separately that $d E / d x$ information does not introduce additional charge asymmetries [18]. We find $c_{K^{-} \pi^{+}}=0.9871 \pm$ 0.0027 , which is consistent and more precise than a previous estimate based on simulation [23]. For the $\Lambda_{b}^{0} \rightarrow$ $p \pi^{-}$asymmetry, the factor $c_{p \pi^{-}}=1.0145 \pm 0.0075$ is extracted using a similar strategy applied to a control sample of $\Lambda \rightarrow p \pi^{-}$decays [20]. This factor is dominated by the different interaction probability of protons and antiprotons with detector material. In the measurement of $C P$ violation in $\Lambda_{b}^{0} \rightarrow p K^{-}$decays, instrumental chargeasymmetries induced in both kaons and protons are relevant. The $c_{p K^{-}}$factor is extracted by combining the previous ones and assuming the trigger and reconstruction efficiency for two particles factorizes as the product of the single-particle efficiencies. Corrections are also applied for the branching ratio measurements. These corrections do not exceed 7% and account for differences in trigger and reconstruction efficiency between channels due to different lifetimes and kinematics (from simulation), and isolation properties (from control samples of fully reconstructed $B^{0} \rightarrow J / \psi K^{*}(892)^{0}$ and $B_{s}^{0} \rightarrow J / \psi \phi$ decays $)$.

The dominant contributions to the systematic uncertainties on the asymmetry measurements come from the uncertainty on the $d E / d x$ calibration and parameterization, the uncertainty on the combinatorial background model, and the uncertainty on b-hadron masses. Smaller contributions are assigned for the uncertainty on the global mass scale and the c_{f} corrections. The uncertainty on the $d E / d x$ model dominates also the systematic uncertainty for the
branching ratio measurements, for which the mass scale (in the $B^{0} \rightarrow \pi^{+} \pi^{-}$case) and the uncertainty on the difference in isolation efficiency between B^{0} and B_{s}^{0} mesons $\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)$also play a role. The results are reported in Table I. We report 3.5σ evidence of $C P$ violation in $B^{0} \rightarrow K^{+} \pi^{-}$decays. The observed asymmetry is consistent, and of comparable accuracy, with current results from asymmetric $e^{+} e^{-}$colliders [4]. It is also consistent with the result in Ref. [4] and supersedes it. The $B_{s}^{0} \rightarrow K^{-} \pi^{+}$ result is the first measurement of direct $C P$ violation in bottom strange mesons. It differs by 2.3σ from zero and it is consistent with recent theoretical predictions [3,24]. It allows the first experimental verification of the modelindependent test proposed in Ref. [8]. Under the assumption of equal B^{0} and B_{s}^{0} lifetimes, using the measurement of the $B_{s}^{0} \rightarrow K^{-} \pi^{+}$branching ratio [19] and known values for the branching ratio and $C P$-violating asymmetry in $B^{0} \rightarrow K^{+} \pi^{-}$decays, and the $b-$ quark fragmentation probabilities [19], we obtain $R=\left[\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)-\right.$ $\left.\Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)\right] /\left[\Gamma\left(\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)-\Gamma\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)\right]=$ 0.85 ± 0.42 (stat) ± 0.13 (syst), which is consistent with the standard prediction, $R^{\mathrm{SM}}=1$ [8]. The first measurement of $C P$ violation in bottom baryons is also reported. The observed asymmetry in the $\Lambda_{b}^{0} \rightarrow p K^{-}$decay is 2.1σ from zero. The $\Lambda_{b}^{0} \rightarrow p \pi^{-}$result is consistent with zero. However, the limited experimental precision does not allow a conclusive discrimination between the standard model prediction (8\%) and much suppressed values ($\approx 0.3 \%$) expected in R-parity violating supersymmetric scenarios [12].

Table I includes also improved measurements of $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B^{0} \rightarrow \pi^{+} \pi^{-} C P$-averaged branching fractions, using the $B^{0} \rightarrow K^{+} \pi^{-}$channel as a reference. Results are consistent with previous CDF measurements [14] and supersede them. The $B_{s}^{0} \rightarrow K^{+} K^{-}$result is the most precise to date and consistent with recent theoretical predictions [3,24-26]. Theory uncertainties, which are significantly larger than the experimental ones, prevent sensible discrimination between models. The present measurement of $\mathcal{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)$agrees with measurements at $e^{+} e^{-}$colliders [27] with comparable accuracy. The dominant systematic uncertainties are limited by the finite size of control samples and should decrease in future extensions of the measurements.

In conclusion, we have measured $C P$-violating asymmetries in charmless B^{0}, B_{s}^{0}, and Λ_{b}^{0} decays into pairs of charged hadrons reconstructed in CDF data. We report the first measurement of direct $C P$ violation in bottom strange mesons, the first measurement of $C P$ violation in bottom baryons, evidence for $C P$ violation in $B^{0} \rightarrow K^{+} \pi^{-}$decays, and updated measurements of the $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B^{0} \rightarrow \pi^{+} \pi^{-}$branching fractions.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of

Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R\&D Agency; and the Academy of Finland.
${ }^{a}$ Deceased.
${ }^{\mathrm{b}}$ With visitors from University of MA Amherst, Amherst, MA 01003, USA.
${ }^{\mathrm{c}}$ With visitors from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
${ }^{\mathrm{d}}$ With visitors from University of CA Irvine, Irvine, CA 92697, USA.
${ }^{e}$ With visitors from University of CA Santa Barbara, Santa Barbara, CA 93106, USA.
${ }^{\text {f }}$ With visitors from University of CA Santa Cruz, Santa Cruz, CA 95064, USA.
${ }^{g}$ With visitors from CERN,CH- 1211 Geneva, Switzerland.
${ }^{\mathrm{h}}$ With visitors from Cornell University, Ithaca, NY 14853, USA.
${ }^{\text {i }}$ With visitors from University of Cyprus, Nicosia CY1678, Cyprus.
${ }^{j}$ With visitors from University College Dublin, Dublin 4, Ireland.
${ }^{k}$ With visitors from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
${ }^{1}$ With visitors from Universidad Iberoamericana, Mexico D.F., Mexico.
${ }^{\mathrm{m}}$ With visitors from Iowa State University, Ames, IA 50011, USA.
${ }^{n}$ With visitors from University of Iowa, Iowa City,IA 5224, USA.
${ }^{\circ}$ With visitors from Kinki University, Higashi-Osaka City, Japan 577-8502.
${ }^{\mathrm{p}}$ With visitors from Kansas State University, Manhattan, KS 66506, USA.
${ }^{q}$ With visitors from University of Manchester, Manchester M13 9PL, United Kingdom.
${ }^{\text {r }}$ With visitors from Queen Mary, University of London, London, E1 4NS, United Kingdom.
${ }^{5}$ With visitors from Muons, Inc., Batavia, IL 60510, USA.
${ }^{t}$ With visitors from Nagasaki Institute of Applied Science, Nagasaki, Japan.
${ }^{u}$ With visitors from National Research Nuclear University, Moscow, Russia.
${ }^{\mathrm{v}}$ With visitors from University of Notre Dame, Notre Dame, IN 46556, USA.
${ }^{w}$ With visitors from Universidad de Oviedo, E-33007 Oviedo, Spain.
${ }^{\text {x }}$ With visitors from Texas Tech University, Lubbock, TX 79609, USA.
${ }^{y}$ With visitors from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
${ }^{\mathrm{z}}$ With visitors from Yarmouk University, Irbid 211-63, Jordan.
${ }^{a}$ an leave from J. Stefan Institute, Ljubljana, Slovenia.
[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] Y. Y. Keum and A.I. Sanda, Phys. Rev. D 67, 054009 (2003).
[3] M. Beneke and M. Neubert, Nucl. Phys. B675, 333 (2003).
[4] S.-W. Lin et al. (Belle Collaboration), Nature (London) 452, 332 (2008); B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 021603 (2007); B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 091102 (2007).
[5] See, for instance, W.-S. Hou, M. Nagashima, and A. Soddu, Phys. Rev. Lett. 95, 141601 (2005); S. Baek et al., Phys. Rev. D 71, 057502 (2005).
[6] H.-N. Li, S. Mishima, and A.I. Sanda, Phys. Rev. D 72, 114005 (2005).
[7] M. Gronau and J. L. Rosner, Phys. Lett. B 482, 71 (2000).
[8] H. J. Lipkin, Phys. Lett. B 621, 126 (2005).
[9] R. Mohanta, A. K. Giri, and M. P. Khanna, Phys. Rev. D 63, 074001 (2001).
[10] C.-D. Lu et al., Phys. Rev. D 80, 034011 (2009).
[11] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 031801 (2009).
[12] R. Mohanta, Phys. Rev. D 63, 056006 (2001).
[13] Throughout this Letter, C-conjugate modes are implied and branching fractions indicate $C P$ averages.
[14] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 211802 (2006).
[15] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); A. Sill (CDF Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 447, 1 (2000); A. Affolder et al., Nucl. Instrum. Methods Phys. Res., Sect. A 453, 84 (2000); T. Affolder et al., Nucl. Instrum. Methods Phys. Res., Sect. A 526, 249 (2004).
[16] CDF II uses a cylindrical coordinate system in which ϕ is the azimuthal angle, r is the radius from the nominal beam line, and z points in the proton beam direction, with the origin at the center of the detector. The transverse plane is the plane perpendicular to the z axis.
[17] Isolation is defined as $I_{B}=p_{T}(B) /\left(p_{T}(B)+\sum_{i} p_{T i}\right)$, where $p_{T}(B)$ is the transverse momentum of the B candidate, and the sum runs over all other tracks within a cone of radius 1 , in $\eta-\phi$ space around the B flight-direction.
[18] M. J. Morello, Ph.D. thesis, Scuola Normale Superiore, Pisa, [Fermilab Report No. FERMILAB-THESIS-2007-57 2007].
[19] K. Nakamura et al., J. Phys. G 37, 075021 (2010).
[20] G. Volpi, Ph.D. thesis, University of Siena, [Fermilab Report No. FERMILAB-THESIS-2008-56 2008].
[21] S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, Riv. Nuovo Cimento Soc. Ital. Fis. 26N7, 1 (2003).
[22] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 100, 061803 (2008); M. Starič et al. (Belle Collaboration), Phys. Lett. B 670, 190 (2008).
[23] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 122001 (2005).
[24] A. Ali et al., Phys. Rev. D 76, 074018 (2007); A. R. Williamson and J. Zupan, Phys. Rev. D 74, 014003 (2006); 74, 039991(E) (2006).
[25] J.-F. Sun, G.-H. Zhu, and D.-S. Du, Phys. Rev. D 68, 054003 (2003); H. Y. Cheng and C.-K. Chua, Phys. Rev. D 80, 114026 (2009).
[26] A. J. Buras, R. Fleischer, S. Recksiegel, and F. Schwab, Nucl. Phys. B697, 133 (2004).
[27] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 75, 012008 (2007); S.-W. Lin et al. (Belle Collaboration), Phys. Rev. Lett. 99, 121601 (2007).

