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Abstract

We examine spherical p-branes in AdSm × Sn, that wrap an Sp in either AdSm (p = m − 2) or Sn

(p = n − 2). We first construct a two-spin giant solution expanding in Sn and has spins both in AdSm

and Sn. For (m,n) = {(5, 5), (4, 7), (7, 4)}, it is 1/2 supersymmetric, and it reduces to the single-spin

giant graviton when the AdS spin vanishes. We study some of its basic properties such as instantons,

non-commutativity, zero-modes, and the perturbative spectrum. All vibration modes have real and positive

frequencies determined uniquely by the spacetime curvature, and evenly spaced. We next consider the

(0 + 1)-dimensional sigma-models obtained by keeping generally time-dependent transverse coordinates,

describing warped product of a breathing-mode and a point-particle on Sn or AdSm×S1. The BPS bounds

show that the only spherical supersymmetric solutions are the single and the two-spin giants. Moreover, we

integrate the sigma-model and separate the canonical variables. We quantize exactly the point-particle part

of the motion, which in local coordinates gives Pöschl-Teller type potentials, and calculate its contribution

to the anomalous dimension.
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1. INTRODUCTION

Giant gravitons were first proposed in [1] in order to explain the stringy exclusion principle [2]

where the bound on the R-charge of CFT operators was related to the bound on the angular mo-

mentum in the supergravity picture. They are probe brane solutions in an AdSm×Sn background

with fluxes, obtained by wrapping an (n− 2)-brane on an Sn−2 sphere rotating inside Sn. Later it

was shown that [3, 4] an (m−2)-brane wrapped on Sm−2 at constant radius in AdSm and rotating

inside Sn carries the same quantum numbers. Together with the Kaluza-Klein point-like excita-

tion, they constitute three different states representing the same graviton. However, the states are
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expected to be mixed with each other in quantum theory due to the existence of instantons that

would allow semi-classical tunneling [3–5] which may resolve this puzzle.

The giant graviton is an example of how semi-classically stable string/brane solutions may be

helpful in understanding different aspects of the AdS/CFT correspondence. Basically, this is due

to the fact that large charges suppress quantum fluctuations and thus connect regimes where both

the bulk theory and the CFT have meaningful perturbative expansions. From the bulk point of

view, the main idea is to zoom in on a sub-sector of states carrying large charges scaling like the

tension of a p-brane, and consider various semi-classical expansion schemes of the probe brane

quantum field theory based on the identification of some small parameters. Typically, one would

expect small parameters to measure the deviation from being BPS, though interestingly enough

there also exist meaningful expansions in regimes far from being BPS.

This strategy has been successfully utilized in the BMN limit [6] where the relevant states are

near BPS and represented as small closed strings in AdS5×S5 with center of mass rotating around

a large circle of S5 with large angular momentum J . One then considers J ≫ 1 with λ/J2 held

fixed, where λ is the ’t Hooft coupling. The limit J → ∞, removes higher order corrections to

the sigma-model leaving the pp-wave geometry, while the SYM side narrows down to the tower of

“doped” operators built on top of the 1/2 BPS single-trace ground state.

Another interesting sector of states that have been studied along similar lines, have large spin S

in AdS [7]. These arise as long rotating strings, corresponding to towers of single-trace operators

doped by derivatives. The rotation induces a strongly coupled world-sheet sigma model. If S is

the only semi-classically large parameter, the normal-coordinate expansion gives 1/
√
λ-corrections

to the AdS energy, that are difficult to match directly with the weakly coupled CFT, though other

qualitative features do match. However, it was discovered that if one considers states which carry

an additional large S5 spin J , then the classical AdS energy has a regular expansion in λ/J2. This

prompted the proposal that the AdS/CFT duality can be tested in a non-BPS sector by comparing

the λ/J2 expansion of the AdS energy obtained from the classical string sigma-model, with the

corresponding quantum anomalous dimensions in perturbative SYM theory. This has indeed been

supported by recent results in a series of papers (see for example [8]-[18])

Quite generally, brane physics exhibits UV/IR mixing in the sense that energetic branes tend

to grow large transverse directions probing more and more of the background curvature. In the

context of AdS/CFT correspondence, this means that already the leading order of the probe sigma-

model expansion share some qualitative features with the corresponding subset of CFT operators,

most notably the leading linear relation between AdS energy E and other charges. The existence of

semi-classically stable large strings, or other p-branes, therefore points to a sub-sector of (non-BPS)

operators with parametrically large bare dimensions and suppressed anomalous dimensions.

Returning back to giants, they are stabilized by balancing the tension against electric or mag-

netic fluxes (the cosmological constants in AdSm×Sn), leaving a finite net tension independent of

the AdS scale. Moreover, the string tension runs in AdS. Hence, in the IR limit of the AdSm the

usual flat space hierarchy is reversed, such that the excitations of the (m − 2)-brane field theory

become much lighter than the massive stringy, or M-theoretic, excitations of the brane.

In the case of the Type IIB theory on AdS5 × S5 the following picture emerges (see figure 1):

as the energy E of string states increases, the flat space Regge trajectories, where E scales like
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FIG. 1: Different descriptions of the states in AdS5 × S5.

square-roots of charge, start bending into linear trajectories as E ∼ gsN . Roughly speaking, the

energy and some charge of the string concentrate along nearly light-like portions of the world-sheet,

while the transverse directions can extend resulting for example in the strings on the pp-wave or the

long strings discussed above. At higher energies, which scale faster with N than the string tension,

the semi-classical string description becomes strongly coupled. Awaiting some exact world-sheet

formulation, the natural semi-classical probe is instead the D3-brane whose tension scales like N .

In fact, the tension is of order 1 in units of the ten-dimensional Planck length, which means that

the giant D3 is the last description prior to complete breakdown of the geometrical picture in the

IIB theory.

The giant picture arises also in M theory on AdS4/7 × S7/4, where M2 and M5 branes can be

dynamically stabilized against collapse. The semi-classical limits are essentially the same as for the

D3-brane, since the tension is given by the eleven-dimensional Planck length (though here there

is no clear analog on the CFT side of the stringy exclusion principle). Hence giants appear to

capture universal features of the holography, valid both in string and M-theory and relying only

on the notion of expansion in 1/N , the bulk Planck’s constant.

The above discussion suggests that the appropriate semi-classical treatment of p-brane giants

is to expand in η = (E − J)/J in the regime E ∼ J ∼ N ≫ 1, E − J ≪ N . The quantity

E − J is the total energy of the open plus closed string excitations above the giant ground state,

therefore small η is the same as considering a few massless quanta on the giant, described by the

p-brane field theory. One may also consider finite values of η, as long as one stays safely away

from the Planck regime where η ≫ 1. As in the case of the string sigma-model, the problem of

analyzing the normal-coordinate expansion simplifies further in the double-scaling limit N → ∞,

with η fixed, where the p-brane field theory reduces to the ground state described by the classical

solution plus the quadratic fluctuations on top of it. The spectrum of normal frequencies for these

vibrations for 1/2 supersymmetric single-spin giant gravitons was calculated in [19], and found to

be independent of the size of the brane, and thus the angular momentum. This implies that in the

large N limit of the dual theory, the corresponding R-charged chiral operator, which is realized

as a sub-determinant [20–24], has associated with it a sector of mainly non-BPS operators with

level spacings independent of the ground state R-charge. In [24] this sector was constructed as
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impurities inserted into the ground state sub-determinant mixed with separate single-traces, shown

to produce the structure of a Fock space of mixed open plus closed string excitations.

In this work, motivated by the fact that semi-classical string solutions with large AdS spin and

its multi-spin generalizations successfully mimic the BMN strategy, we aim to show that similar

ideas can be extended to giant p-branes. The plan of our paper is as follows.

In section 2, we construct a 1/2 supersymmetric1, spherically symmetric giant (n − 2)-brane

solution in AdSm × Sn that spins both in AdSm and Sn. These two rotations are rigid and the

field equations fix the angular velocities in terms of the curvature scales, while the spins are fixed

by the radii of the circles of rotation. By adjusting the former radius, we can take the AdS spin

to be small or large. We show the saturation of a BPS bound, where the energy is equal to the

sum of the two angular momenta. There is also a point particle limit with non-vanishing conserved

quantities, connected to the giant by an instanton (with finite action). In [25], it was suggested

that imposing supersymmetry causes non-commutativity in the phase space. We indeed observe

this to happen also in the two-spin case, with additional Dirac brackets between the radial AdS

coordinate and the two cyclic coordinates in AdSm and Sn used for the rotations.

In Section 3, we examine various aspects of the vibration spectrum of the single and the two-

spin BPS giants. The bosonic fluctuations of the two-spin BPS giant (we are only considering the

scalar fluctuations and leave vector and tensor fluctuations on D3 and M5 branes for future work)

has two interesting features. Firstly, the frequencies depend only on the curvature scales of AdSm

and Sn, despite the fact that there are three more length scales, namely the radius of the rotation

in AdSm, the tension and the size of the brane. As a consequence, the vibration spectrum is evenly

spaced, which is in agreement with the large-N Fock space picture of [24]. Secondly, for generic

m and n, the vibration spectrum of the corresponding single-spin giant graviton is contained as

a subset in the spectrum of two-spin giant. In fact, when (m,n) = {(5, 5), (4, 7), (7, 4)}, the two

spectra become identical but with different degeneracy. We also work out the fermionic vibration

modes for single and two-spin BPS giant M2 in AdS7 × S4 background.

In Section 4 we construct more general spherical giants where all available coordinates are

assumed to depend on time after identifying the brane directions in space-time. They can support

maximum possible number of independent spins both for the branes expanding in AdS and on the

sphere. We find that the truncated p-brane equations can be integrated, and the canonical variables

become separated, leading to an interesting set of potentials both for the “breathing mode” and the

remaining “point-particle” motion. In fact, the latter we find to be governed by trigonometric and

hyperbolic generalizations of the Calogero model, known as Pöschl-Teller Type I and II potentials,

which are exactly solvable quantum mechanics models (see [26] and [27] for review). Alternatively,

the point-particle sector can be quantized using global coordinates on embedding space leading

to ordinary spherical harmonics. We also derive BPS bounds on the energy, and show that they

can be saturated only by the single-spin and the two-spin solutions found in this paper, which are

hence the only BPS spherical giants. Finally, we quantize the (0 + 1)-dimensional sigma-model,

treating the point-particle motion exactly while borrowing the results from [28] for the breathing

1 The supersymmetry of the solution can be established only when there exist a suitable κ-symmetric brane action
coupled to a supergravity background. The main examples are (m,n) = {(5, 5), (4, 7), (7, 4)}.
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mode obtained using the Bohr-Sommerfeld recipe [29]. Interestingly enough, the exact energy

spectrum from the (in general non-supersymmetric) point-particle motion is evenly spaced, while

the breathing gives complicated corrections to the energy. This leads to a prediction for anomalous

dimensions, however it is difficult to pinpoint the operators precisely.

In Section 5 we conclude and discuss several open problems. The Appendices contain details

of the methods used to quantize the point-particle sector of the 0+1 dimensional sigma model,

namely the global coordinates formulation, the eigenvalue spectra of Pöschl-Teller Type I and II

potentials, and a comparison of the exact results with the Bohr-Sommerfeld method.

Note Added: In an earlier version of this paper, solutions of (2.24) which enhance 1/4 supersym-

metry to 1/2 were overlooked and the two-spin giant solution presented in section 2 was erroneously

claimed to be 1/4 supersymmetric. This mistake was corrected after the appearance of [30] where

it was shown that the two-spin solution is related to the single-spin solution by an AdS isometry

and thus has 1/2 supersymmetry.

2. 1/2 SUPERSYMMETRIC TWO-SPIN GIANTS

In this section we construct a 1/2 supersymmetric two-spin giant graviton wrapped on Sn−2

inside Sn of AdSm×Sn and rotating simultaneously on Sn and AdSm. The bosonic p-brane action

can be written as

S = −Tp
∫
dp+1σ

√−γ
[
1 +

1

(p+ 1)!
ǫα0...αp∂α0

XM0 ..∂αpX
MpAM0..Mp

]
(2.1)

where γαβ is the pull-back of the space-time metric to the world-volume. In some cases like M5

or D3-branes, there are additional world-volume fields which can be consistently set to zero. The

field equations of the above action are

1√−γ ∂α
[√−γγαβ∂βXNgMN

]
− 1

2
γαβ∂αX

N∂βX
P∂MgNP =

1

(p + 1)!
ǫα0...αp ∂α0

XM0 ...∂αpX
MpHMM0...Mp, (2.2)

where H is the field strength of the (p+1)-form potential, i.e. H = dA. The metric of AdSm×Sn

is:

ds2 = −fdt2 + f−1 dr2 + r2dΩ2
m−2 + L2dΩ2

n (2.3)

where f = 1 + r2/L̃2 and

dΩ2
n = dθ2 + cos2θdφ2 + sin2θ

[
dχ2

1 + sin2χ1(... + sin2χn−3dχ
2
n−2)

]
, (2.4)

dΩ2
m−2 = dα2

1 + sin2α1

[
dα2

2 + sin2α2(... + sin2αm−3dα
2
m−2)

]
. (2.5)

Here L and L̃ are the radius of curvatures which are related as (m − 1)L = (n − 1)L̃. When

appropriate form fields are turned on which have non-zero fluxes on AdS or on the sphere, these

geometries compromise maximally supersymmetric backgrounds of the corresponding supergravi-

ties for certain values ofm and n. In this section we are interested in the magnetic backgrounds and
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thus should turn on the flux on the sphere. In the above coordinates the appropriate (n− 1)-form

potential supporting this flux becomes Aφχ1..χn−2
= Ln−1(sin θ)n−1√gχ, where (gχ)ij is the metric

on the unit Sn−2 in (2.4) parametrized by χ coordinates. 2

It is easy to verify that the following configuration solves the field equations (2.2):

t = τ, χi = σi,

φ = τ/L, α ≡ αm−2 = τ/L̃, (2.6)

θ = θ0, r = r0, α1 = .. = αm−3 = π/2

The brane wraps an (n − 2)-sphere in Sn and rotates both on Sn and in AdSm with constant

angular velocities which are fixed by the corresponding curvature scales.

2.1. BPS Bound

From the action (2.1), the Lagrangian with α = α(τ) and φ = φ(τ) can be obtained as

L =
N

L

[
−(sin θ)n−2∆+ L(sin θ)n−1φ̇

]
, (2.7)

where ∆2 = f − r2α̇2 − L2(cos θ)2φ̇2. Here we have used the flux quantization TpAp = N/Lp+1

where Ap is the area of the unit p-sphere. The conserved angular momenta become

Pφ =
NL(sin θ)n−2(cos θ)2φ̇

∆
+N(sin θ)n−1, (2.8)

Pα =
Nr2(sin θ)n−2α̇

L∆
, (2.9)

and the Hamiltonian can be written as

H = Pφφ̇+ Pαα̇− L =
N(sin θ)n−2f

L∆
. (2.10)

The gauge condition t = τ implies H = −Pt = E, where E is the conserved AdS energy. From

(2.8) and (2.9) it is possible to express ∆ in terms of Pφ and Pα which gives the Hamiltonian as

H =
√
f

[
P 2
α

r2
+
P 2
φ

L2
+
N2

L2
tan2 θ(

Pφ

N
− sinn−3 θ)2

]1/2
(2.11)

We see from (2.11) that the Hamiltonian obeys

H ≥
√
f

√
P 2
α

r2
+
P 2
φ

L2
=

√[
Pφ

L
+
Pα

L̃

]2
+

[
Pφr

LL̃
− Pα

r

]2
, (2.12)

which implies the BPS bound

H ≥ Pφ

L
+
Pα

L̃
. (2.13)

2 In some cases, such as D3, the n-form flux is self-dual and the potential has also an electric part. However, this
does not affect the field equations for our ansatz. This remark is valid for all solutions found in this paper.
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For fixed angular momenta, the extremum of the Hamiltonian can be found from ∂rH = 0 and

∂θH = 0. In the equilibrium r is uniquely determined by r20 = PαLL̃/Pφ. On the other hand, the

roots of θ turn out to be equal to the ones found in [3], which are at θ = 0 and (sin θ)n−3 = Pφ/N .

For the solution (2.6), the conserved quantities are

Pφ = N(sin θ0)
n−3, (2.14)

Pα =
Nr20
LL̃

(sin θ0)
n−3, (2.15)

H =
Pφ

L
+
Pα

L̃
. (2.16)

As for ordinary giants, Pφ depends only on the size of the brane. On the other hand, Pα is fixed

both by the size of the brane and the radius of the rotation in AdS space. Note that Pφ ≤ N but

Pα is unbounded. Also, as r0 → 0, we have Pα → 0 and the single spin solution is recovered.

2.2. Supersymmetry

Eq. (2.16) shows that the energy saturates the BPS bound (2.13) and thus one expects this

configuration to be supersymmetric. We will demonstrate this explicitly for a giant M2 brane in

AdS7 × S4. For other cases when (m,n) = {(5, 5), (4, 7)} the calculation is similar. As discussed

in [31], this solution will have residual supersymmetry if the following constraint is satisfied

Γǫ = ǫ, (2.17)

where

Γ = − 1

3!
ǫα0α1α2∂α0

XM∂α1
XN∂α2

XPΓMNP , (2.18)

ǫ = ǫ(X)|M2 and ǫ(X) is the Killing spinor in AdS7 × S4 which can be found explicitly as (see,

e.g., [3])3

ǫ(X) = e
1

2
θγΓθ

e
1

2
φγΓφ

e−
1

2
χ1Γχ1θ

e−
1

2
χ2Γχ2χ1

e
1

2
uΓrγe−

t
2L̃

Γtγe−
1

2
α1Γα1re−

1

2
α2Γα2α1 ... e−

1

2
α5Γα5α4 ǫ0, (2.19)

where

sinhu = r/L̃, γ = Γθφχ1χ2 , (2.20)

ǫ0 is a constant spinor and the indices on the gamma matrices refer to the tangent space. For this

background we have L̃ = 2L. For the solution (2.6), eq. (2.17) can be written as (after multiplying

by Γφχ1χ2 from the left)

[
Γtφ coshu− Γα5φ sinhu− γΓθ sin θ + cos θ

]
ǫ = 0. (2.21)

3 Note the sign differences with [3] in some exponentials.
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The last two terms can be grouped as exp[−θγΓθ]. Using this and commuting other factors with

the first line of (2.19) we find that (2.21) is equivalent to
[
Γtφ cosh u− Γα5φ sinhu+ I

]
e

1

2
uΓrγe−

τ
2L̃

Γtγe−
1

2
α1Γα1r

e−
1

2
α2Γα2α1

... e−
τ
2L̃

Γα5α4

ǫ0 = 0. (2.22)

Multiplying from the left by exp[12uΓ
rγ] one obtains

[
Γtφ coshu− Γα5φ sinhu+ coshu+ Γrγ sinhu

]
e−

1

2
α1Γα1r

e−
1

2
α2Γα2α1

... e−
τ
2L̃

(Γα5α4+Γtγ)ǫ0 = 0,

where we have also carried exp[− τ
2L̃

Γtγ] to the right. To take care of the angular dependencies in the

middle, we first multiply the above expression from the left by exp[12α1Γ
α1r] which commutes with

the first three terms and anti-commutes with the fourth one. This last term gives the combination

(sinhu)Γr γ e−α1Γα1r
= −(sinhu)Γr γ Γα1r = (sinhu) γ Γα1 (2.23)

where we have used the fact that α1 = π/2. Carrying out the same calculation for α2, α3 and α4

we finally get
[
Γtφ cosh u− Γα5φ sinhu+ cosh u+ Γα4γ sinhu

]
e−

τ
2L̃

(Γα5α4+Γtγ)ǫ0 = 0. (2.24)

For this equation to hold, ǫ0 should obey
[
I + Γtφ − tanhuΓα5φ(I + Γα5α4γΓφ)

]
ǫ0 = 0, (2.25)

[
I + Γtφ + tanhuΓα5φ(I + Γα5α4γΓφ)

] [
I − Γα5α4tγ

]
ǫ0 = 0, (2.26)

where the first and the second conditions are implied by the even and the odd powers of τ in (2.24),

respectively. Decomposing ǫ0 as

ǫ0 = ǫ++ + ǫ+− + ǫ−+ + ǫ−−, (2.27)

where

Γtφ ǫs1s2 = s1 ǫ
s1s2 , Γα5α4γΓφ ǫs1s2 = s2 ǫ

s1s2 , s1,2 = ±, (2.28)

one finds that (2.25) gives

ǫ++ = 0, ǫ+− = tanhuΓα5φǫ−+, (2.29)

and (2.26) is satisfied identically. Thus the two-spin giant configuration preserves 1/2 of the

supersymmetries of eleven dimensional supergravity. The single-spin solution can be recovered by

letting u → 0 (i.e. r → 0) so that the motion in α5 disappears. In that case, the Killing spinor

condition (2.25) becomes

(I + Γtφ)ǫ0 = 0, (2.30)

which is the projection found in [3, 4]. Indeed, even for non-zero u it is possible to obtain (2.30)

from (2.25) by a similarity transformation

ǫ0 → S
−1 ǫ0 ΓA → S

−1 ΓA
S (2.31)

where

S = exp(−1

2
uΓtα5) exp(±1

2
δ Γφα1α2α3α5r) , cos δ = 1/ cosh u , (2.32)

and the sign in S is correlated with Γtrα1..α5γ = ±I.
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2.3. Instantons

From the experience with the single spin giants, it is plausible to expect a point particle limit.

Indeed, taking sin θ = ǫ, L2φ̇2 = (1 − ǫ2n−4)/(1 − ǫ2) and letting ǫ → 0, we get finite Pφ and

Pα. Quantum mechanically, there may exist tunneling between the expanded and the point-like

configurations. Following [3], to construct the relevant instanton solution we first assume θ = θ(τ)

and let τ → iz. Using the corresponding conserved Euclidean energy we get a first order equation

Pφ L
dθ

dz
= tan θ[Pφ −N(sin θ)n−3] , (2.33)

which is exactly the same one obtained in [3]. The solution is

(sin θ)n−3 =
Pφ e

(n−3)z/L

1 + N e(n−3)z/L
(2.34)

which interpolates between the extrema of θ as z → ±∞. The total Euclidean action for this

instanton is finite and thus one would expect mixing between the expanded and zero-size branes

by tunneling. Note that unlike the ordinary giants, here there is no dual 1/2 BPS spherical

configuration corresponding to a brane expanding in AdS. Because of this, no puzzle arises in

solving the stringy exclusion principle.

2.4. Non-commutativity

In [25], a relation between supersymmetry and non-commutativity in the phase space was

proposed, i.e. the BPS condition gives constraints and Dirac type canonical quantization leads to

non-commutativity. One may wonder the consequences of having spin in AdS, as in our solution,

for this analysis. For that purpose we relax the conditions on r and θ coordinates in (2.6) and let

them to be dynamical. This modifies the Hamiltonian (2.11) so that there are additional fP 2
r and

P 2
θ /L

2 terms inside the square-root. For our 1/2 supersymmetric two-spin configuration we now

have two primary constraints

ψ1 ≡ Pθ = 0, ψ2 ≡ Pr = 0. (2.35)

The Poisson brackets of these with the Hamiltonian give two secondary constraints which are

ψ3 =
dV

dθ
, ψ4 =

r4

L̃2

[
V (θ) +

P 2
φ

L2

]
− P 2

α, (2.36)

where V (θ) = N2 tan2 θ(Pφ/N − sinn−3 θ)2/L2. There are no further constraints since the Poisson

brackets become {H,ψ3} ∼ Pθ and {H,ψ4} ∼ Pr. The constraints are second class with the algebra

{ψ1, ψ3} = −d
2V

dθ2
, {ψ2, ψ4} = −4P 2

α

r
. (2.37)

We also have {ψ1, ψ4} ∼ ψ3 which vanishes on the restricted surface. The canonical structure

on this constrained phase space can now be described by defining a Dirac bracket as follows:
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{f, g}DB ≡ {f, g} − {f, ψi}(C−1)ij{g, ψj} where Cij ≡ {ψi, ψj}. This gives

{θ, φ}DB =
1

N(n− 3)(sin θ)n−4 cos θ
,

{r, α}DB =
LL̃

2Nr(sin θ)n−3
, (2.38)

{r, φ}DB =
rL2L̃2

2N(sin θ)n−3
.

As in [25], non-commutativity is proportional to 1/N . Note that it occurs not only between the

sphere coordinates θ and φ but also between AdS coordinates r and α and between r and φ.

For the single spin case, Pα = 0 is an extra primary constraint due to which {ψ2, ψ4} = 0 and

non-commutativity exists only between θ and φ [25].

2.5. Validity of the Solution

One can trust the solution only when the corrections to the space-time geometry and the Born-

Infeld action can be ignored. In string theory the former requires gs ≪ 1 and gsN ≫ 1. On the

other hand, the corrections to the Born-Infeld action are suppressed if the induced curvature scale

on the world-volume is much larger than the string scale which gives L sin θ0 ≫
√
α′. For AdS5×S5,

L4 = 4πgsNα
′2 and thus we have (Ngs)

1/4 sin θ0 ≫ 1. This implies from (2.14) Pφ ≫
√
N/gs.

In M-theory, we still need N ≫ 1 to rely on background geometry. To remove higher derivative

corrections to M2 and M5 brane actions it is necessary to have L sin θ0 ≫ lp. For M2 L ∼ lpN
1/6

and for M5 L ∼ lpN
1/3 which yields Pφ ≫ N2/3 and Pφ ≫ N1/3 respectively. Therefore, the giant

graviton picture is reliable only when Pφ is large.

2.6. The Algebra of Unbroken Symmetries

The bosonic field theory defined by the action (2.1) in AdSm × Sn background carries a rep-

resentation of the isometry group SO(2,m − 1) × SO(n + 1), generated by the Killing vectors,

δXM = KM(XN ). The Noether charges are denoted by

(M̂ab, P̂a) , a, b = (t, r, α, αm−3, αs) , s = 1, ..,m − 4 , (2.39)

(M̂IJ , P̂I) , I, J = (θ, φ, χi) , i = 1, . . . , n− 2 , (2.40)

where the indices are flat. The generators are anti-hermitian which are normalized such that

[M̂ab,M̂cd] = 4δ
[c
[aM̂b]

d] , [M̂IJ ,M̂KL] = 4δ
[K
[I M̂J ]

L] ,

[M̂ab, P̂c] = 2δc[aP̂b] , [M̂IJ , P̂K ] = 2δK[I P̂J ] , (2.41)

[P̂a, P̂b] = −M̂ab/L̃
2 , [P̂I , P̂J ] = M̂IJ .

In determining the supersymmetry algebra in the background specified by a solution, the anti-

commutator of two unbroken supersymmetries closes on unbroken bosonic symmetries. For both
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single and two-spin solutions these symmetries are

U(1)H′ × SO(m− 1)× SO(n− 1)χ , (2.42)

where H ′ is the generator of τ -translations and SO(n− 1)χ are rotations of the Sp (p = n− 2) in

the p-brane worldvolume, i.e.

H ′ =




E − J/L− S/L̃ two-spin

E − J/L single-spin
(2.43)

SO(n− 1)χ : (M̂θi,M̂ij) , i = 1, . . . , n− 1 , (2.44)

where

E ≡ −iP̂t , S ≡ iM̂ααm−3
, J ≡ iP̂φ . (2.45)

The form of H ′ follows from that t = τ = φ/L = α/L̃ in the case of the two-spin solution, and

t = τ = φ/L in the case of the single-spin solution. In the linearized theory, H ′ becomes the

fluctuation Hamiltonian. The unbroken SO(m−1) is an internal symmetry from the point of view

of the p-brane worldvolume theory. In the case of single-spin all SO(m− 1) rotations are manifest,

and its generators are

SO(m− 1) : MI′J ′ = (Mrαr ,Mαrαs) , I ′ = 1, ...,m − 1 , r = 1, . . . ,m− 2 , (2.46)

In the case of two-spin an SO(m − 3) ⊂ SO(m − 1) subgroup is manifest, and generated by the

rotations preserving the equator of Sm−2 ⊂ Sm, i.e.

SO(m− 3) : (M̂rαr ,M̂αrαs) , r = 1, . . . ,m− 4 . (2.47)

In addition to the unbroken symmetries, the linearized p-brane action is invariant under separate

shifts in the cyclic t, α and φ coordinates generated by E, S and J defined in (2.45). Of these isome-

tries only the combined shift generated by H ′ given in (2.43) is an unbroken isometry. However, the

cyclic coordinates are axionic fields on the p-brane and hence E, S and J remain conserved in the

linearized theory. These charges generate outer automorphisms of the the supersymmetry algebra

in the background of the solution. We determine the U(1)-charges of the unbroken supersymmetry

charges and fluctuation fields in Section 3.6 in the case of the single-spin solution.

As an example, which will be used in Section 3.6, let us determine the unbroken superalgebra in

presence of a single-spin giant M2-brane in AdS7 × S4. The supersymmetry algebra of M-theory

expanded around a solution with non-trivial four-form fluxes is given in [32] and on AdS7 × S4 it

becomes (L̃ = 2L)

{Q̂, ̂̄Q} = −2Γa P̂a +
1

L̃
Γab γ M̂ab −

2

L
ΓI P̂I −

1

L
ΓIJ γ M̂IJ ,

[P̂a,
̂̄Q] =

1

2L̃
̂̄QΓaγ, [M̂ab,

̂̄Q] =
1

2
̂̄QΓab, (2.48)

[P̂I ,
̂̄Q] = −1

2
̂̄QΓIγ, [M̂IJ ,

̂̄Q] =
1

2
̂̄QΓIJ .
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The full M2 brane supersymmetry generators are given by

̂̄Qǫ0 =
∫
d2σ

√−γ γ0i ǭ(1− Γ)ΓiΘ , (2.49)

where ǫ = g(X)ǫ0 is the Killing spinor (2.19).

From (2.30), the unbroken supersymmetry charges for the single-spin solution are given by

Q = P+Q̂ , P+ =
1

2
(1 + Γtφ). (2.50)

These obey

{Q, Q̄} = 2P+

(
iΓtH ′ +

1

2L̃
ΓI′J ′

γMI′J ′ − 1

2L
Γi′j′γMi′j′

)
, (2.51)

and [L̃E, Q̄] = [J, Q̄] = − i
2Q̄Γtγ. Next, we define

Q± = Π±Q , Π± =
1

2
(1± iΓtγ) , (2.52)

which commute with P+ and the unbroken bosonic symmetries. Hence

[H ′, Q±] = ∓ 1

4L
Q± , [J,Q±] = ±1

2
, (2.53)

and Q+ and Q− transform as (4, 2) and (4̄, 2) under SO(6)×SO(3)χ which we denote them by QA
α

and Q̄α
A, respectively, with

4 α = 1, ..., 4 and A = 1, 2. We use the SO(6) ∼ SU(4) chiral notation,

in which chiral and anti-chiral spinors always have upper and lower indices, respectively. No raising

and lowering of chiral indices can be done, while the doublet indices can of course be raised and

lowered as usual. Under hermitian conjugation, (QA
α )

† = Q̄αA. Multiplying (2.51) by iΓt from the

right and projecting by Π+ we find that the non-vanishing commutators are

{QA
α , Q̄

β
B} = 2δβαδ

A
BH

′ +
2

L
δABJα

β − i

L
δβαL

A
B ,

[H ′, QαA] = − 1

4L
QαA , [H ′, Q̄α

A] =
1

4L
Q̄α

A ,

[Jα
β, QγA] = δβγ QαA − 1

4
δβαQγA , [LAB , QγC ] = −2iǫC(AQγB) , (2.54)

[Jα
β, Qγ

A] = δγαQ
β
A − 1

4
δβαQ

γ
A , [LAB , Q

γ
C ] = −2iǫC(AQ

γ
B) ,

[Ja
β, Jγ

δ] = δδα Jγ
β − δγ

β Jδ
α ,

[LAB, LCD] = −2iǫC(ALB)D + (C ↔ D) ,

where LAB are the SO(3)χ generators and we have defined the SO(6) generators Jα
β ≡

−1
4M

I′J ′
(ΓI′J ′)α

β. The non-trivial Jacobi identity {QαA, {QβB , Q
γ
C}}+ cyclic = 0 is indeed satis-

fied, and the fact that H ′ does not commute with the supercharges is essential for this to happen.

Despite this non-commutativity the ground state energy may still vanish [33].

For the two-spin solution, the superalgebra can be obtained using the similarity transformation

(2.31), noting that S†Γt = Γt
S
−1.

4 We use the following conventions: hermitian generators Li of SO(3) and Pauli matrices obey [Li, Lj ] = iǫijkLk

and σiσj = iǫijkσk + δij . Doublet indices are contracted using ǫAB = (ǫAB)†, ǫABǫCD = 2δCD
AB . The symmetric

Pauli matrices (σi)AB ≡ (σiǫ)AB obey (σi)AB(σj)CD = −iǫijkǫAC(σ
k)BD − 2

3
δijǫACǫBD, where symmetrizations

on AB and CD are suppressed. The corresponding anti-hermitian generators M̂ij and Dirac-matrices Γij are

related by ΓijM̂ij = −iLAB , where LAB ≡ 2i(σi)ABLi = (LAB)†.
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3. VIBRATION SPECTRUM

In this section we examine the spectrum of small fluctuations around the 1/2 BPS single and

two-spin solutions, including fermions for the M2 in AdS7 × S4. For single-spin giants the scalar

fluctuations were analyzed in [25] (the vibration spectrum for giants in the PP-wave background

was studied in [34–36]). There are several motivations for this. Firstly, the solution defines the

ground state for a subsector of the p-brane field theory, based on normal coordinate expansion,

which is stable only if all fluctuation-modes have real and positive frequencies. There is also the

issue of singling out zero-modes describing continuous shifts in the semi-classical parameters.

Secondly, the full normal-coordinate expansion, including loops, becomes a 1/N -expansion after

absorbing a power of
√
N into the fluctuation fields (the ℓ-loop contributions to the n-point dia-

grams scale like N1−n/2−ℓ), which reduces to the free quadratic Lagrangian in the limit N → ∞.

Hence, from the point of view of the dual CFT, the frequencies have a direct interpretation in

terms of the large N limit of the scaling dimensions of a subset of operators forming a “tower”

on top of a specific operator corresponding to the ground state of the expansion on the p-brane

[6, 23, 24]. Another basic idea is that the tower has the structure of a Fock space in the large N

limit. Indeed, as in the case of the original giant gravitons [25], the vibration modes of the two-spin

giants have evenly spaced frequencies fixed by the radii of curvature.

For the calculations in this section, we find it convenient to use the following parametrization

of the sphere Sm−2 in (2.3):

dΩ2
m−2 = (1 − y2)dα2 + (δmn +

ymyn
1− y2

)dymdyn. (3.1)

In these coordinates the Sm−2 part of the solution (2.6) is given by

α = τ/L̃, ym = 0. (3.2)

3.1. Bosonic Oscillations

In the physical gauge that we employed, the coordinates can be perturbed as

φ = τ/L+ δφ, α = τ/L̃+ δα,

θ = θ0 + δθ, r = r0 + δr, ym = δym, (3.3)

where the fluctuations depend on all of the world-volume coordinates. Expanding the action (2.1)

to the linear order in perturbations we find that the variation vanishes since the background obeys

the field equations. On the other hand, to the second order, the action becomes

S2 =

∫
dn−1σ

√
−γ(0) L2 (3.4)

where

2L2 = δym
[
✷− 1

L̃2 sin2 θ0

]
δym + δr

[
✷

f0

]
δr + δα

[
(1 +

r20
L̃2 sin2 θ0

)r20✷

]
δα

13



+δφ
[
L2 cot2 θ0✷

]
δφ+ δθ

[
L2

✷

]
δθ +

4r0

L̃ sin2 θ0
δr ∂τ δα (3.5)

+
2(n− 3)L cos θ0

sin3 θ0
δθ ∂τ δφ+

2(n− 3)r20 cos θ0

L̃ sin3 θ0
δθ ∂τ δα+ δα

[
2r20L

L̃
cot2 θ0✷

]
δφ,

✷ is the D’Alembertian for the background world-volume metric γ
(0)
αβ which is given by

γ
(0)
αβ =


 − sin2 θ0 0

0 L2 sin2 θ0 (g
χ)ij


 (3.6)

and f0 = 1 + r20/L̃
2. In writing the above Lagrangian some terms are integrated by parts; there is

no surface contribution coming from the spatial part of the world-volume since it is a closed surface

and the variations are assumed to vanish at τ = ±∞. We expand a generic perturbation as

δX =
∑

l

δX0 e
iωlτ Yl (3.7)

where Yl are spherical harmonics on the unit (n− 2)-sphere obeying

(gχ)ij∂i∂j Yl = −Ql Yl, (3.8)

with Ql = l(l + n− 3). Then, ✷ acting on the l’th mode becomes

✷ → 1

sin2 θ0
(ω2

l −
Ql

L2
) ≡ Dl. (3.9)

From the above quadratic Lagrangian, we see that δym perturbations decouple and have the normal

frequencies

ω2
l =

1

L̃2
+
Ql

L2
. (3.10)

On the other hand, δr, δα, δφ and δθ modes are coupled. The resulting frequencies are determined

from the following equation




Dl
f0

2iωlr0
L̃ sin2 θ0

0 0

− 2iωlr0
L̃ sin2 θ0

(1 +
r2
0

L̃2 sin2 θ0
)r20Dl

r2
0
L

L̃
cot2 θ0Dl − iωl(n−3)r2

0
cos θ0

L̃ sin3 θ0

0
r2
0
L

L̃
cot2 θ0Dl L2 cot2 θ0Dl − iωl(n−3)L cos θ0

sin3 θ0

0
iωl(n−3)r20 cos θ0

L̃ sin3 θ0

iωl(n−3)L cos θ0
sin3 θ0

L2Dl







δr

δα

δφ

δθ



= 0. (3.11)

Calculating the determinant, we see that (for non-zero r0, cos θ0 and sin θ0) it factorizes into two

quadratic equations for ω2
l from which the following normal frequencies can be obtained

ω2
l± =

1

L2

[
Ql +

(n− 3)2

2
± (n− 3)

√
Ql +

(n− 3)2

4

]
(3.12)

ω2
l± =

1

L̃2


 L̃

2

L2
Ql + 2± 2

√
L̃2

L2
Ql + 1


 . (3.13)
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There is no unstable mode in the system since all ω2
l are real and non-negative. Using the fact

Ql = l(l + n− 3), (3.12) simplifies to ωl+ = (l + n− 3)/L and ωl− = l/L.

Frequencies (3.10) and (3.12) constitute the vibration spectrum of the single-spin giant wrapped

in Sn [19]. Therefore, the modes (3.13) can be thought to arise due to the spin in AdS. The rotation

disappears when r0 → 0 and the single spin solution is recovered. In this limit (r, α, ym) coordinate

system is not well defined. To read the eigenfrequencies one should either introduce flat coordinates

or just treat (r0δα) as the true perturbation. In the later case, it is easy to see that δr and r0δα

perturbations decouple from δφ and δθ modes and (3.13) should be replaced with (3.10) 5.

It is remarkable that for (m,n) = {(5, 5), (4, 7), (7, 4)}, L = (n − 3)L̃/2 and (3.12) becomes

equal to (3.13). In this case, the eigenfrequencies are given by

ωl =
l + (n− 3)/2

L
, ωl+ =

(l + n− 3)

L
, ωl− =

l

L
, (3.14)

where the first ωl is for δy
m with degeneracy (m− 3) and the others are for the mixing of δr, δα,

δφ, δθ, each frequency occurring with degeneracy 2. The eigenfrequencies for the single spin giant

is given by (3.14) but the degeneracies are (m− 1), 1, 1, respectively.

3.2. Bosonic Zero Modes and Spectrum

As discussed in [19], some of the above excitations (zero modes) correspond to the collective

motion of the brane since there are continuous families of equilibrium configurations. These modes

will change the quantum numbers (i.e. the conserved quantities like Pφ and Pα) and should be

removed from the spectrum since they can no longer be viewed to belong to the giant we started

with. To linear order, there can be no change in the conserved quantities due to l 6= 0 modes,

since these are calculated at a fixed world-volume time as integrations over the sphere and we have∫
Yl = 0 when l 6= 0. Note that Y0 is the constant harmonic and we have Q0 = 0.

For l = 0, we see from (3.10) that the frequencies for δym perturbations become ω0 = 1/L̃.

These modes correspond to the shifts in the great circle in Sm−2. To see this, following [19], one

can embed Sm−2 in (m−1)-dimensional flat space with coordinates x1, x2, y
m. The unit sphere can

be defined as x21+x
2
2+y

mym = 1. The coordinate system (3.1) corresponds to the parametrization

x1 = cos β cosα, x2 = cos β sinα, ymym = sin2 β (3.15)

The brane is circling in (x1-x2) plane at β = 0 (and thus x1 = cosα, x2 = sinα and ym = 0). One

can now rotate this plane by an angle δ:

x′1 = x1 cos δ − y1 sin δ, y′1 = x1 sin δ + y1 cos δ. (3.16)

Recalling that x1 = cosα and ym = 0, for small δ one has

x′1 = x1, y′1 = δ cos(τ/L̃) (3.17)

5 Another limit that one may wish to consider is when the rotation in φ disappears, i.e. θ0 → π/2. In this case,
Pφ does not vanish, on the contrary it reaches its maximum (2.14). This is the maximal giant and the angular
momentum arises due to the coupling of the background flux to the brane. The spectrum does not change. On
the other hand in θ0 → 0 limit the brane collapses to a point and fluctuation analysis becomes ill defined. Indeed,
before reaching this value, the world-volume becomes highly curved and the probe brane approximation fails.
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This change in y1 is precisely equal to the perturbation with l = 0. Thus these modes represent

shifts in the direction of Pα without changing its magnitude, and l = 0 frequencies in (3.10) should

be removed from the spectrum.

From (3.12) and (3.13), there are four more frequencies with l = 0. These are ω
(1)
0 = ω

(2)
0 = 0,

ω
(3)
0 = (n− 3)/L and ω

(4)
0 = 2/L̃. The modes corresponding to ω

(1)
0 and ω

(2)
0 represent shifts in the

values of r0 and θ0. From (2.14) and (2.15), a change in r0 modifies Pα and a change in θ0 alters

both Pφ and Pα. Therefore, these modes should not be in the spectrum.

On the other hand, the perturbations corresponding to ω
(3)
0 and ω

(4)
0 respectively obey

δr = δα = 0, δφ = i(tan θ0) δθ, (3.18)

δr =
iL(L̃2 + r20)

L̃r0
δφ, δα = −LL̃

r20
δφ, δθ = 0. (3.19)

It is now straightforward to verify that the change in Pφ and Pα is zero under these perturbations.

For example, from (2.8) the variation of Pφ under (3.18) becomes

δPφ =
∂Pφ

∂θ
δθ +

∂Pφ

∂φ̇
δφ̇. (3.20)

Using δφ̇ = iω
(3)
0 δφ and (3.18) one finds δPφ = 0. Therefore, the zero modes corresponding to ω

(3)
0

and ω
(4)
0 should be kept in the spectrum.

After the elimination of these zero modes, we end up with the following spectrum of small

scalar field fluctuations for (m,n) = {(5, 5), (4, 7), (7, 4)} given in units of 1/L (note that l is

shifted compared to (3.14)):

Bosonic ωl (l ≥ 0) l + (n − 1)/2 l + n− 3 l + 1

Multiplicity (two-spin) (m− 3)l+1 (2)l (2)l+1

Multiplicity (single-spin) (m− 1)l+1 (1)l (1)l+1

where the suffix indicates the leading SO(n− 1)χ highest weight label.

3.3. Fermionic Oscillations of M2-Brane (Two-spin)

We calculate the spectrum of the fermionic oscillations for an M2 brane in AdS7 × S4. For the

membrane, the quadratic action for the fermion fluctuations in a general bosonic background of

D = 11 supergravity was derived in [37] which can be written as

LΘ = i
√−γ γαβ ∂αXM EA

M Θ̄ (I − Γ)ΓA ∇̃βΘ (3.21)

where

∇̃α = ∂α + ∂αX
M

[
1

4
ωAB

MΓAB +
1

288
(8δPMΓQRS − ΓM

PQRS)HPQRS

]
, (3.22)
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γαβ is the induced metric and EA
M is an orthonormal basis in the space-time. The non-vanishing

components of the connection one-forms6 that contribute to (3.22) are

ωφ̂
θ̂φ̂ = −tan θ0

L
, ωî

θ̂ĵ = −cot θ0
L

δij, ωî
ĵk̂ =

ω(1)̂i
ĵk̂

L sin θ0
, (3.23)

ωt̂
r̂t̂ =

r0

L̃2
√
f0
, ωα̂

r̂α̂ =

√
f0
r0

,

where a subscript ’(1)’ on a quantity indicates that it is defined on a unit 2-sphere. Using the

solution (2.6) and Hθ̂φ̂1̂2̂ = 3/L we find

∇̃τ = ∂τ +
1

2L̃

[
r0

L̃
Γt +

√
f0Γα

]
Γr − 1

4L

[
r0

L̃
Γα +

√
f0Γt

]
γ

− 1

2L

[
sin θ0 Γ

φ + cos θ0Γ
12
]
Γθ (3.24)

∇̃i = ∇(1)
i − 1

2

[
cos θ0 Γ

θ + sin θ0 γ
]
Γ
(1)
i (3.25)

Γ =
1

sin θ0

[√
f0 Γt12 +

r0

L̃
Γα12 + cos θ0 Γφ12

]
(3.26)

where γ = Γθφ12, indices (1,2) refer to χ1 and χ2 directions and recall that the indices on the

gamma matrices are flat. To fix κ symmetry, we impose ΓΘ = −Θ which also gives Θ̄Γ = −Θ̄.

Using this gauge condition in (3.21) we obtain

LΘ = −iL2 sin2 θ0

√
−γ(1)

[
Θ̄Γ12∇̃τΘ− 1

L
Θ̄Γi

(1)∇̃iΘ

]
. (3.27)

To proceed we use the following representation of the 11-dimensional gamma matrices:

Γt = iσ2 ⊗ γ5 ⊗ σ3 ⊗ σ3, Γr = σ3 ⊗ γ5 ⊗ σ3 ⊗ σ3,

Γα = σ1 ⊗ γ5 ⊗ σ3 ⊗ σ3, Γm = I2 ⊗ γm ⊗ σ3 ⊗ σ3, (3.28)

Γθ = I2 ⊗ I4 ⊗ σ2 ⊗ σ3, Γφ = I2 ⊗ I4 ⊗ σ1 ⊗ σ3,

Γi = I2 ⊗ I4 ⊗ I2 ⊗ σi, C = iσ2 ⊗ c⊗ σ1 ⊗ iσ2,

where i = 1, 2, m = 1, .., 4 and γmc are symmetric. Then (3.26) become

Γ =
i

sin θ0

[
(
r0

L̃
σ1 + i

√
f0 σ2)⊗ γ5 ⊗ σ3 ⊗ I2 + cos θ0 I2 ⊗ I4 ⊗ σ1 ⊗ I2

]
(3.29)

and writing L = 2Θ̄MΘ we find

M = I2 ⊗ I4 ⊗ I2 ⊗
(
σ3∂τ +

i

L
σi∇(1)

i

)
− 1

4L
(
r0

L̃
σ1 + i

√
f0 σ2) ⊗ (I4 + γ5)⊗ I2 ⊗ σ3

+
i sin θ0
2L

I2 ⊗ I4 ⊗ σ3 ⊗ σ3 +
i cos θ0
2L

I2 ⊗ I4 ⊗ σ2 ⊗ σ3. (3.30)

6 Our convention is deA + ωA
B ∧ eB = 0 where we expand ωA

B = ωA
BC eC .

17



We solve the Γ projection condition on Θ as

Θ =
∑

ǫ,ǫ′=±1

(P (1)
ǫ ⊗ P

(2)
ǫ′ ⊗ P

(3)
ǫǫ′ ⊗ I2)Θǫ,ǫ′ , (3.31)

P (1)
ǫ =

1

2
(I2 + ǫ(i

r0

L̃
σ1 −

√
f0σ2)) (3.32)

P
(2)
ǫ′ =

1

2
(I4 + ǫ′γ5) , (3.33)

P
(3)
ǫǫ′ =

1

2
(I2 − ǫǫ′(σ3 + i cos θ0σ

1)/ sin θ0) (3.34)

where Θǫ,ǫ′ are unrestricted. Each term in the sum is a product of three projectors of half maximal

rank, which implies that 28 of the 32 components in each Θǫ,ǫ′ are set to zero, such that Θ has

4× 4 = 16 components. From (3.32) and (3.34) one verifies

(
r0

L̃
σ1 + i

√
f0σ2)P

(1)
ǫ = −iǫP (1)

ǫ , (3.35)

P
(3)
ǫǫ′ (cos θ0σ2 + sin θ0σ3)P

(3)
ǫǫ′ = −ǫǫ′P (3)

ǫǫ′ , (3.36)

which shows that the masses are independent of both r0 and θ0, while of course the direction in

spinor space of the projected Θ depends on r0 and θ0 via (3.32) and (3.34). To extract the normal

frequencies we expand Θǫ,ǫ′ in terms of spherical spinor harmonics on S2 and substitute

∂τ → iωl iσi∇(1)
i → (l + 1/2)σ1, l = 1/2, 3/2, 5/2, ... (3.37)

The resulting characteristic equation has the matrix

M = iP (1)
ǫ ⊗ P

(2)
ǫ′ ⊗ P

(3)
ǫǫ′ ⊗

(
(ωl +

1

4L
ǫ(1− ǫ′))σ3 −

i

L
(l + 1/2)σ1

)
(3.38)

which yields the (positive7) eigenfrequencies (l = 1/2, 3/2, 5/2, . . .)

ωl =
(l + 1/2)

L
{ǫ′ = 1}, ωl =

(l + 1)

L
{ǫ′ = ǫ = −1}, ωl =

l

L
{ǫ′ = −1, ǫ = 1}. (3.39)

The equations of motion (note that the Dirac operator projects by half in the last slot) eliminate

half of the fermionic degrees of freedom, which means that the first ωl occurs with degeneracy

4 and the others with degeneracy 2, giving 8 frequencies for each l, forming four doublets (2ǫǫ′)l

under the SO(3)ǫ′ ⊂ SO(4), where SO(4) is the manifest part of the unbroken SO(6).

3.4. Fermionic Oscillations of M2-Brane (Single-spin)

For the 1/2 supersymmetric single-spin giant gravitons the spectrum of the fermionic oscillations

has not been examined before. In this subsection we fill this gap for a giant M2 in AdS7 × S4.

The calculation is very similar to the two-spin membrane studied above. Mainly one should take

r0 → 0 limit and remember the fact that α is now equal to a constant which makes a difference

7 There are also conjugate modes which have negative frequencies with the same degeneracy
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when pulling back the objects to the world-volume. We find that only the first line of (3.23)

contributes to (3.22). Also, (3.24) becomes

∇̃τ = ∂τ − 1

4L
Γtγ − 1

2L

[
sin θ0 Γ

φ + cos θ0Γ
12
]
Γθ, (3.40)

and (3.25) is not modified. Moreover, in (3.26) one should set r0 = 0 which shows that Γ projection

condition on Θ can be solved as above. However, the mass matrix (3.30) changes to

M = I2 ⊗ I4 ⊗ I2 ⊗
(
σ3∂τ +

i

L
σi∇(1)

i

)
− i

4L
σ2 ⊗ γ5 ⊗ I2 ⊗ σ3

+
i sin θ0
2L

I2 ⊗ I4 ⊗ σ3 ⊗ σ3 +
i cos θ0
2L

I2 ⊗ I4 ⊗ σ2 ⊗ σ3. (3.41)

After expanding Θ in terms of spherical spinor harmonics on S2 we obtain the eigenfrequencies

(l = 1/2, 3/2, . . .)

ωl =
(l + 3/4)

L
{ǫ′ × ǫ = 1}, ωl =

(l + 1/4)

L
{ǫ′ × ǫ = −1}, (3.42)

where each ωl occurs on-shell with degeneracy 4, giving rise to two SO(6) ≃ SU(4) spinors, that

we shall denote by (4̄)l (ǫǫ
′ = 1) and (4)l (ǫǫ

′ = −1).

3.5. Fermionic Zero Modes and Spectrum

As for bosons, some of these fermionic oscillations correspond to the collective motion of the

giant graviton (in spinor space) and should be removed from the spectrum. These are precisely

the modes generated by the broken supersymmetries, i.e. Θ = (1 − Γ)ǫ where ǫ is the space-time

Killing spinor ǫ(X) in (2.19) evaluated on the membrane. Let us emphasize that such a mode does

not necessarily obey the equations of motion (the spinor ǫ satisfies ∇̃βǫ = 0, however one may have

[Γβ∇̃β,Γ] 6= 0), so one should directly examine the field equations to extract zero modes.

In our case, there is a short way to proceed; for a maximal giant (θ0 = π/2) we have [M,Γ] = 0

where M is the operator given in (3.41) and (3.30). Therefore M(1−Γ)ǫ = (1− Γ)Mǫ = 0, so the

zero modes are given by the spinors ǫ obeying (1 + Γ)ǫ = 0.

For the single-spin maximal giant, it is easy to show that (1±Γ)ǫ = 0 for (1∓Γtφ)ǫ0 = 0 where

ǫ0 is the constant spinor in (2.19). So, all 16 modes generated by the broken supersymmetries

Γtφǫ0 = ǫ0 are zero modes. Half of them obeying γΓφǫ0 = ǫ0 have the frequency 3/(4L) and other

half have −3/(4L). Comparing with (3.42), one finds that the l = 1/2 modes with ǫ′ǫ = −1 should

be eliminated.

For the two-spin maximal giant, the projection (1 + Γ)ǫ = 0 can be solved as in subsection 2.2.

With the notation used in that subsection, one finds that the zero modes are generated by the

spinors ǫ+− and ǫ++ (here ± assignments on ǫ0 are different than ǫ and ǫ′ values). Decomposing

further, the fermions generated by γΓφ ǫ+− = ± ǫ+− give the zero modes with the frequencies

ω = ±1/(2L). On the other hand, the fermions generated by Γα4α5 ǫ++ = ± ǫ++ give the zero

modes with ω = ±1/L. From (3.39), we see that the l = 1/2 modes with ǫ = 1, ǫ′ = −1 and
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the modes with ǫ = −1,ǫ′ = 1 should be removed from the spectrum.8 Summarizing, we have the

following eigenfrequencies after the elimination of the zero modes (in units of 1/L and where the

suffices indicate SO(3)χ spin and (ǫ, ǫ′) assignments):

Fermionic ωl (l ≥ 1/2) l + 1 + η/4 l + 1/2 + η/4 l + 3/2

Multiplicity (two-spin) η = 0 (2+−)l+1 + (2−−)l (2++)l (2−+)l+1

Multiplicity (single-spin) η = 1 (4)l+1 (4̄)l

3.6. Comments on the Supermultiplet Structure

The vibration spectra of single and two-spin 1/2 BPS membranes in AdS7×S4 can be arranged

into multiplets of the unbroken supersymmetry algebras found in subsection 2.6. Here, we would

like to comment on some salient features of this computation and give the multiplet for the single-

spin solution.

Let us start with the bosonic fluctuations. For the two-spin solution, (δr, δα, δθ, δφ)-sector of

the bosonic quadratic Lagrangian can be diagonalized by introducing two complex fields δz(τ, σi)

and δw(τ, σi). These fields must be complex due to the first order time-derivatives, and can be

chosen as

δz = L(δθ + iδφ/ cos θ0) +O(cos θ0) , δw = δr + iL̃δα+O(cos θ0) . (3.43)

Since the frequencies are independent of θ0, it suffices to consider the limit sin θ0 → 1 (keeping δz

fixed). Performing the expansion using the harmonics Yl on S
2 gives the frequencies as:

zl(τ) = eiω
+

l τa†l + e−iω−
l τ bl , (3.44)

wl(τ) = eiω
+

l τc†l + e−iω−
l τdl , (3.45)

where ω−
l = l/L and ω+

l = (l + 1)/L. Note the shift in the negative frequency relative to the

positive frequency. The conjugate oscillators are contained in (δz(τ, σi))† and (δw(τ, σ))† , which

have the frequency parts

z̄l(τ) = eiω
−
l τ b†l + e−iω+

l τal , (3.46)

w̄l(τ) = eiω
−
l τd†l + e−iω+

l τcl . (3.47)

There is no corresponding shift in the real δym-fields, which transform as a 4-plet under SO(4).

For the single-spin solution, δr and δα perturbations combine with δym-fields to form a 6-plet

under SO(6). Here, there is no need to introduce the complex scalar δω and the expansion of δz

is identical to (3.44).

In the fermionic sector, firstly eq. (2.49) implies that U(1)S×SO(4)×U(1)J×SO(3)χ (two-spin)

or SO(6)× U(1)J × SO(3)χ (single-spin) rotations of the unbroken supercharges Q are related by

8 As shown above, for the single-spin solution the zero modes have the chiralities ǫǫ′ = −1. As r0 → 0 the two-spin
solution reduces to the single-spin one and thus its zero modes should have the same chiralities ǫǫ′ = −1.
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conjugation by g(X0) to rotations of Θ. The former representation is generated by the set of Dirac

matrices found in the anti-commutator (see e.g. (2.51)), while the latter representation is diagonal

with respect to the decomposition defined by P
(1)
ǫ ⊗ P

(2)
ǫ′ ⊗ P

(3)
ǫǫ′ ⊗ I2 introduced in Section 3.3

(such that U(1)S acts in the first slot or SO(6) acts in the first two slots and so on in the indicated

order). Hence, for the two-spin solution using SO(4) = SO(3)+ × SO(3)− and the notation where

(α, ȧ) are the doublet indices of SO(3)+ × SO(3)χ, the fermionic (2±+)l states are contained in

the mode-expansion of a complex fermion Θα(τ, σ
i) and its hermitian conjugate Θ̄α(τ, σ

i), while

the (2±−)l states are contained in Θα̇(τ, σ
i) and Θ̄α̇(τ, σ

i). Similarly, for the single-spin solution

(4)l+1 states are contained in the mode expansion of a complex SU(4) 4-plet Θα and (4̄)l states

are contained in 4̄-plet Θ̄α.

Next, we turn to the identification of the S and J charges. From the geometric sigma-model

picture, it follows that a full U(1)J -transformation generated by J = J(0) + J(1) + J(2) + · · ·,
decomposes into a constant shift of φ followed by a rotation (by the same angle) in the tangent

space spanned by (δθ, δφ). In the linearized theory the shift is generated by the zero-mode in J(0)
while the tangent space rotation is generated by J(2). Similarly, S(1) shifts α, and S(2) rotates

(δr, δα). Hence J(2) and S(2) generate symmetries of the quadratic action. Clearly, these charges

can be computed from the normal coordinate expansion, though this is an unnecessarily tedious

procedure, given the fact that the charges of all fluctuations are fixed (up to an overall sign) by

supersymmetry.

Let us illustrate this for the single-spin solution. Recall that the spectrum now consists of

a real SO(6)-vector δyI
′
(I ′ = 1, . . . , 6), a complex scalar δz (J = 1), a 4-plet Θα (J = −1/2)

and a 4̄-plet Θ̄α (J = 1/2). As we will show, the supersymmetry is consistent with the charge

assignments. Note that the positive frequencies in δz and δz̄ are given by ω+
l = (l + 1)/L and

ω−
l = l/L, respectively, and that the negative ones are shifted. In (2.53) we found unbroken

supercharges QA
α ((E, J) = (− 1

4L ,
1
2)) and Q̄

α
A ((E, J) = ( 1

4L ,−1
2)) transforming as (4, 2) and (4̄, 2)

under SO(6)×SO(3)χ. The spectrum of non-zero modes now fits into a single tower (l = 0, 1, 2, . . .):

(11; (l + 1)l) −→Q†

(4̄1/2; (l + 5/4)l+1/2) −→Q†

(60; (1 + 3/2)l+1)

−→Q†

(4−1/2; (l + 7/4)l+3/2) −→Q†

(1−1; (1 + 2)l+2), (3.48)

where the quantum numbers are listed as (RJ ; (Lω)l), where R is SO(6) irreps.

There remains the following zero-mode oscillators:

b†(ω = 0) , y†I′(ω = 1/2) , Θ†α
A (ω = 3/4) , b†AB(ω = 1) . (3.49)

Since b† has vanishing frequency and SO(6)× SO(3)χ charges, it is a supersymmetry singlet. The

remaining states form a multiplet (with 9 bosons and 8 fermions) with supercharge and bosonic

generators given by

QαA =
1√
L

(
2b†A

BΘαC + (γI
′

)αβyI′Θ̄
†β
A

)
,

H ′ =
1

L

(
b†ABbAB +

3

4
Θ̄†α

A ΘA
α +

1

2
y†I′yI′

)
, (3.50)

M̂I′J ′ = −
(
2y†[I′yJ ′] +

1

2
Θ̄†α

A (γI′J ′)α
βΘA

β

)
,

LAB = 2i
(
2b†(A

CbB)C + Θ̄†α
(AΘB)α

)
.
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For the two-spin solution a similar analysis can be repeated, and it would be interesting to examine

how the similarity transformation (2.31) connects the two multiplet structures.

4. GENERAL SPHERICAL GIANTS

In this section we examine the most general ansatz for a spherical giant configuration. After

identifying the brane directions in space-time, the spherical symmetry implies that all coordinate

fields depend only on time. Hence, while their shape is fixed, these branes can “breathe” and

perform point-like motion in the remaining directions. As we shall see, the whole system consists

of a warped product of a breathing mode and a relativistic point particle on Sn (for the branes

expanding in AdS) or in AdSm × S1 (for the branes expanding in the sphere) with an additional

velocity dependent potential on S1. The warping means that the point particle motion decouples

from the breathing in a suitable world-volume time. We show that the equations of motion are

integrable. This can easily be verified using flat embedding coordinates where the solution takes a

simple form. In terms of the usual spherical or AdS coordinates, one obtains first order equations

that are nested such that they can be integrated further one by one. Moreover, switching to

canonical fields leads to complete separation of variables, with the emergence of relatively simple

potentials, known as Pöschl-Teller Type I and II, for all point-particle coordinates, while the

breathing mode is governed by a seemingly more complicated potential.

We also derive BPS bounds for the energy as a function of the constants of motion, and show

that these are saturated only by the 1/2 supersymmetric single-spin and the two-spin giants found

in section 2. The quantization of these objects and some comparisons with the CFT side are

discussed in subsections 4.3 and 4.4.

To facilitate the analysis we use the AdS metric

ds2 = L̃2
(
− cosh2 r dt2 + dr2 + sinh2 r dΩ2

m−2

)
+ L2dΩ2

n , (4.1)

where the line-elements on the unit spheres are specified in more detail below. The t coordinate is

now dimensionless, which brings an extra L̃ factor in time-derivatives when compared to some of

our previous results.

4.1. Branes Expanding in AdS (Electric)

In this case the background supports an m-form field strength which is given in the tangent

space basis by Hr̂t̂α̂1..α̂m−2
= (m − 1)/L̃ (see also footnote 2). We choose the static gauge and

identify the (m− 2)-brane world-volume coordinates σi with the coordinates of Sm−2 in (4.1):

t = σ0 = τ, α1 = σ1, ... , αm−2 = σm−2 . (4.2)

We write the metric on the unit n sphere in (4.1) as

dΩ2
n = Gab dφ

a dφb, a, b = 1, .., n, (4.3)
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and assume a solution of the form:

r = r(τ), φa = φa(τ). (4.4)

This is a generalization of the dual giant configurations found in [3, 4]. The pull-back of the

spacetime metric to the world-volume is given by:

γαβ = ∂αX
M∂βX

NgMN =


 −∆2 0

0 L̃2 sinh2r (gα)mn


 (4.5)

where (gα)mn is the metric on the unit (m− 2)-sphere and

∆2 = L̃2 (cosh2r − ṙ2)− L2Gabφ̇
aφ̇b. (4.6)

In this section, dot always denotes derivative with respect to τ . In (2.2) for M = αm the equations

are obeyed trivially and for M = t one gets

∆ =
L̃ (sinh r)m−2 cosh2 r

(sinh r)m−1 + k
, (4.7)

where k is an integration constant.

Using (2.1), the remaining field equations can be consistently derived from a truncated action

S = −Ñ
L̃

∫
dτ
[
(sinh r)m−2∆− L̃ (sinh r)m−1

]
, (4.8)

which gives

∂τ

[
L̃ (sinh r)m−2 ṙ

∆

]
= cosh r (sinh r)m−3

[
(m− 1)sinh r − (m− 2)∆

L̃
− L̃ (sinh r)2

∆

]
(4.9)

∂τ

[
(sinh r)m−2 Gab φ̇

b

∆

]
=

(sinh r)m−2

2∆
∂aGbc φ̇

b φ̇c . (4.10)

In (4.8), we introduced Ñ so that TpAp = Ñ/L̃m−1. In particular, for (m,n) = {(5, 5), (4, 7), (7, 4)}
we have Ñ = N , Ñ =

√
N/2 and Ñ = 2N2, respectively. Using (4.7) in (4.28), one finds

E = Ñk. (4.11)

As expected, k is related to AdS energy since it arises from fixing the time-reparametrization by

the static gauge choice t = τ .

To integrate the equations, we introduce flat (n + 1)-dimensional coordinates xA with the

constraint xAxA = 1. Then the truncated action (4.8) can be rewritten using a Lagrange multiplier

S = −Ñ
L̃

∫
dτ
[
(sinh r)m−2∆− L̃ (sinh r)m−1 + L2Λ(xAxA − 1)

]
, (4.12)

where now ∆2 = L̃2 (cosh2r − ṙ2)− L2ẋAẋA. The field equations for xA are

∂τ

[
(sinh r)m−2ẋA

∆

]
= −2ΛxA, xA xA = 1 . (4.13)
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By contracting (4.13) with xA, it is easy to see that (sinh r)m−2Λ/∆ = Λ0, where Λ0 > 0 is a

constant. The sphere part can be decoupled from the breathing mode r by introducing a new time

coordinate

dτ̃ =
∆

(sinh r)m−2
dτ. (4.14)

In terms of τ̃ , (4.10) is equivalent to a point particle moving on Sn. Then, eq. (4.13) becomes

d2xA

dτ̃2
= −2Λ0 x

A, (4.15)

which can be solved as

xA = xA1 cos(
√

2Λ0τ̃) + xA2 sin(
√

2Λ0τ̃), (4.16)

where xA1 and xA2 are constants. Imposing xAxA = 1 yields xA1 x
A
1 = xA2 x

A
2 = 1 and xA1 x

A
2 = 0.

With these constraints the total number of integration constants (xA1 , x
A
2 ,Λ0) is 2n. To determine

the moduli space of the solutions, note that xA1 defines an n-sphere. Being perpendicular to xA1 and

having unit length, xA2 defines an (n− 1)-sphere for each xA1 . So, the moduli space of the solutions

is R+ (corresponding to Λ0) times an Sn−1 bundle over Sn.

The conserved Noether charges for the SO(n + 1) invariance of the action can easily be deter-

mined from (4.12) to be

JAB =
2Λ0ÑL

2

L̃

[
xA1 x

B
2 − xB1 x

A
2

]
. (4.17)

Therefore, together with all [(n+1)/2] Cartan generators, the non-commuting components of JAB

can also be activated.

Now let us study the integrability of equations using an explicit metric on Sn. One preferable

choice is

dΩ2
n = dφ21 + cos2 φ1 dφ

2
2 + sin2 φ1

[
dφ23 + cos2 φ23dφ

2
4 + sin2 φ3

(
...+ sin2 φn−1dφ

2
n

)]
, (4.18)

so that all Cartan generators of SO(n+ 1) are manifestly realized as translations along the cyclic

coordinates φ2, φ4,..,φn. Here, the non-cyclic coordinates are defined in the interval [0, π/2]. One

may also consider

dΩ2
n = dφ21 + sin2 φ1

[
dφ22 + sin2 φ2(...+ sin2 φn−1dφ

2
n)
]
, (4.19)

where Sn is parametrized as nested lower dimensional spheres. Here, only φn is cyclic and others

are defined in [0, π]. It is also possible to take combinations of (4.18) and (4.19). Now, (4.10) can

be integrated one by one in the order (φn, φn−1, .., φ1) which yields

φ̇2a =
∆2

L2(sinh r)2m−4G2
aa

×





q2a if φa is cyclic

q2a −
q2a+1

cos2φa
− q2a+2

sin2φa
if φa ∈ [0, π/2],

q2a −
q2a+1

sin2 φa
if φa ∈ [0, π],

(4.20)
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(no summation is implied in Gaa) where qa’s are dimensionless integration constants with qn+1 = 0.

The motion along the cyclic coordinates is monotonic. A non-cyclic coordinate has two turning

points where the time derivatives vanish which are fixed by the constants qa. The positivity of the

velocity-squares imply

qa ≥ qa+1 + qa+2, (φa ∈ [0, π/2]) or qa ≥ qa+1 (φa ∈ [0, π]). (4.21)

Above we assumed that all φa depend non-trivially on τ . Otherwise, one has to analyze the field

equations to find out the implications (see below for details). The metrics (4.18) or (4.19) have

coordinate singularities and they are not globally well-defined on Sn. Thus (4.20) does not cover the

whole solution space and qa’s are not globally well-defined moduli coordinates unlike the constants

xA1 and xA2 .

In order to exhibit the integrable structure more clearly, one can express the field equations

using the canonical momenta derived from the action (4.8), which gives

P 2
a =

(
ÑL

L̃

)2

×





q2a if φa is cyclic,

q2a −
q2a+1

cos2φa
− q2a+2

sin2φa
if φa ∈ [0, π/2],

q2a −
q2a+1

sin2 φa
if φa ∈ [0, π].

(4.22)

These equations define a canonical transformation (φa, Pa) → (φa, qa), such that in the new vari-

ables the equations of motion are q̇a = 0 and φ̇a is given by (4.20). Clearly, qa’s corresponding to

cyclic coordinates are related to Cartan symmetry generators of SO(n+1). Other qa’s are “hidden”

charges from the point of view of the sigma model written with the metric (4.18) or (4.19) (for

example by evaluating ∆, one can see that q21 = 2L2Λ0).

The potential that appears in (4.22) is of Pöschl-Teller Type I (for a review see, e.g., [27]).

These belong to a large class, known as shape invariant potentials [26], which arises naturally

in supersymmetric quantum mechanics and can be solved exactly, i.e. the energy eigenvalues,

eigenfunctions as well as the scattering matrix can be given explicitly. We shall come back to this

later in subsection 4.3.

Let us now return to the radial equation which can be fixed using (4.6), (4.7) and (4.20) as

1

2
ṙ2 + V (r) = 0, (4.23)

where

V (r) =
cosh2 r

2[(sinh r)m−1 + k]2
[
(q21 − k2) cosh2 r + (k − sinhm−3 r)2 sinh2 r

]
. (4.24)

Eq. (4.23) is equivalent to one dimensional motion of a particle in the effective potential V (r) with

zero total energy. In terms of canonical momenta one has

1

2
P 2
r +

Ñ2

2 cosh2 r

[
(q21 − k2) cosh2 r + (k − sinhm−3 r)2 sinh2 r

]
= 0. (4.25)

Unlike the angular part, the potential in (4.25) is rather complicated.

The motion is allowed in the region V ≤ 0 which implies

k ≥ q1. (4.26)
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FIG. 2: The potential V (r) in (4.24) for k > q1 (on the left) and for k = q1 (on the right).

For k > q1, V = 0 has a single root at some r = r0 (fixed by k, q1 and m) and V > 0 for r > r0 and

V < 0 for r < r0 (see figure 2). When the brane is given a small kick at r < r0 (a kick is necessary

since the total energy in this motion is zero), it either climbs the hill and reaches to r = r0 and

rolls back to hit r = 0 or directly moves through r = 0. In either case the brane totally collapses

in finite amount of time and re-expands again. When k = q1, the brane should be placed at a

constant radial distance either at r = 0 or at (sinh r)m−3 = k where V = 0 (see figure 2).

As mentioned above, when a coordinate is set to a constant in the solution one should check

the field equations for its consequences. These can be summarized as

(1) r = r0: From (4.23) one finds r0 = 0 or (sinh r0)
m−3 = k. There is also a third root in (4.9)

with k = (m− 2)(sinh r0)
m−3 + (m− 3)(sinh r0)

m−1 which is not seen in figure 2. One should also

set q1 = k.

(2) φa = φ0 (non-cyclic): This is only possible when φa = {0, π/2, π}; or when φ̇b = 0, b > a

for φa ∈ [0, π]; or when all non-cyclic φ̇b = 0, b > a and the cyclic motion in b > a is confined

in a single plane defined with φa = φ0 for φa ∈ [0, π/2]. One can still use (4.20) by choosing the

integration constants appropriately (for example if φa ∈ [0, π], then qa sin
2 φa = qa+1.)

(3) φa = φ0 (cyclic): One should set the corresponding integration constant to zero.

With these taken into account, (4.20) and (4.23) constitute our most general configuration.

Now, we would like to indicate some special solutions. One can for example set r = r0, θ = 0,

φa = π/2 (i.e. all qa = 0). Here, one has to take r0 → ∞ and this is the “p-brane at the end of the

universe” [31]. Now if we let φn = φn(τ) then we get the 1/2 supersymmetric dual giant studied

in [3, 4]. in this case, we have q21 = k2 = q2n = (sinh r0)
2m−6 which implies φ̇n = L̃/L. (This

solution was previously obtained for AdS4 × S7 in [38] where S7 is parametrized as a U(1) bundle

over CP 3.) A further modification of this configuration is to let r = r(τ) which was considered in

[28].

Finally, we would like to check whether any of the above solutions preserve some supersymmetry.

For that purpose we derive a BPS bound for energy whose saturation is a necessary condition.

Actually, using the inequalities between the integration constants (4.21), (4.26), and the conserved
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charges (4.11), (4.22), one already finds

H ≥ L̃

L

∑

a

Pa, (4.27)

where the sum is over cyclic coordinates. Another way of deriving the same result is to analyze

the Hamiltonian obtained from (4.8) as

H = Pm′Ẋm′ − L =
ÑL̃(sinh r)m−2 cosh2 r

∆
− Ñ(sinh r)m−1,

= cosh r
[
L̃2P 2 + Ñ2(sinh r)2m−4

]1/2
− Ñ(sinh r)m−1, (4.28)

where P 2 ≡ P 2
r /L̃

2 + GabPaPb/L
2. Eq. (4.28) can be rewritten as

H =
[
(L̃P + Ñ(sinh r)m−1)2 + (L̃P sinh r − Ñ(sinh r)m−2)2

]1/2
− Ñ(sinh r)m−1. (4.29)

This gives H ≥ L̃P and thus

H ≥ L̃

L

∑

a

[GaaPaPa]
1/2 , (4.30)

where the sum is over cyclic directions. Repeatedly using the inequality

[
A2

cos2 θ
+

B2

sin2 θ

]1/2
≥ A+B , (4.31)

one finds (4.27).

To saturate the bound (4.27), all other momenta have to vanish. In this case, a detailed

investigation of the field equations shows that all rotations have the same angular velocity and the

circular motion is actually confined in a single plane. This leads us back to the single spin solution

after a global SO(n+ 1) rotation. Therefore, the only supersymmetric spherical brane expanding

inside AdS is the 1/2 BPS single-spin giant graviton.

4.2. Branes Expanding in Sphere (Magnetic)

In this case the background supports an n-form field strength given by Hθ̂φ̂χ̂1...χ̂n−2
= (n−1)/L

in the orthonormal basis (see footnote 2). We rewrite (4.1) as

ds2 = L̃2Gµνdy
µdyν + L2dΩ2

n, µ, ν = 0, ..,m − 1, (4.32)

where Gµν is the metric on the unit AdSm, y0 = t and the sphere parametrization is given in (2.4)

dΩ2
n = dθ2 + cos2θdφ2 + sin2θ

[
dχ2

1 + sin2χ1(... + sin2χn−3dχ
2
n−2)

]
. (4.33)

We identify the world-volume coordinates with

t = σ0 = τ, χ1 = σ1, ..., χn−2 = σn−2, (4.34)

27



and assume a solution of the form:

φ = φ(τ), θ = θ(τ), yµ = yµ(τ). (4.35)

The induced metric becomes

γαβ = ∂αX
M∂βX

NgMN =


 −∆2 0

0 L2 sin2θ (gχ)mn


 , (4.36)

where (gχ)mn is the metric on the unit (n− 2)-sphere and

∆2 = −L̃2 (Gµν ẏ
µẏν)− L2 (θ̇2 + φ̇2cos2θ). (4.37)

Eq. (2.2) is satisfied trivially for M = χi, and M = t component fixes the on-shell value of ∆ as

∆ = k L̃ (sinθ)n−2 cosh2r, (4.38)

where k is an integration constant.

Using (2.1), the remaining equations can be obtained from the following one dimensional trun-

cated action

S = −N
L

∫
dτ
[
(sin θ)n−2∆− L φ̇ (sin θ)n−1

]
, (4.39)

which gives

∂τ

[
L (sin θ)n−2 cos2 θ φ̇

∆

]
= −∂τ (sin θ)n−1, (4.40)

∂τ

[
L (sin θ)n−2 θ̇

∆

]
= cos θ(sin θ)n−3

[
(n− 1) sin θ φ̇− (n− 2)∆

L
− L sin2 θ

∆
φ̇2
]
, (4.41)

∂τ

[
(sin θ)n−2Gµν ẏ

ν

∆

]
=

(sin θ)n−2

2∆
∂µGνρ ẏ

ν ẏρ. (4.42)

Using the on-shell value of ∆ (4.38) in (4.62) one gets

E =
NL̃

kL
. (4.43)

As before the integration constant k is related to AdS energy.

Similar to the previous subsection, one can introduce a new world-volume time coordinate as

follows:

dτ̃ =
∆

(sin θ)n−2
dτ. (4.44)

In terms of τ̃ , the breathing mode θ and φ coordinate are decoupled from the rest and (4.42)

corresponds to a point particle moving in AdSm. On the other hand, (4.40) and (4.41) give motion

on S2 with an additional velocity dependent potential.

Let us first analyze the AdS part. If YP are (m+ 1)-dimensional embedding coordinates, then

the AdS space is defined by ηPQYPYQ + 1 = 0, where ηPQ = (−1,−1,+1, ..,+1). We take all YP
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to be dynamical (namely, we are not imposing the static gauge). Using a Lagrange multiplier, the

action (4.39) can be rewritten as

S = −N
L

∫
dτ
[
(sin θ)n−2∆− L φ̇ (sin θ)n−1 + L̃2Λ(ηPQPYPYQ + 1)

]
. (4.45)

where now ∆2 = −L̃2 ηPQẎP ẎQ − L2 (θ̇2 + φ̇2cos2θ) and dot again denotes differentiation with

respect to τ . Varying for YP and Λ one obtains

∂τ

[
(sin θ)n−2 Ẏ P

∆

]
= −2ΛY P , ηPQYPYQ = −1. (4.46)

Contracting (4.46) with YP , one finds (sin θ)n−2Λ/∆ = Λ0, where Λ0 is an arbitrary real number.

Then (4.46) becomes

d2Y P

dτ̃2
= −2Λ0 Y

P , (4.47)

which can be integrated in terms of elementary functions. The solution space consists of three

disjoint parts parametrized by Λ0 < 0, Λ0 = 0 and Λ0 > 0. The global SO(2,m) charges can be

calculated as

SPQ =
L̃2N(sin θ)n−2

L∆

(
YP ẎQ − YQẎP

)

=
L̃2N

L
(YP∂τ̃YQ − YQ∂τ̃YP ) , (4.48)

which is clearly conserved by (4.47). Note that the AdS energy obtained in this way will in general

differ from (4.43), since the later was calculated in the static gauge.

It is interesting to analyze the integrability of the equations using local coordinates on AdS

Gµνdy
µdyν = − cosh2 r dt2 + dr2 + sinh2 r Gij dα

idαj , (4.49)

where Gij is the metric on unit Sm−2. One can solve the equations (4.42) starting from the

spherical part which is essentially the same problem worked in the previous subsection. Using the

parametrizations given in (4.19) or (4.18), the result is

α̇2
i =

k2 cosh4r

G2
ii sinh

4 r
×





q2i if αi is cyclic

q2i −
q2i+1

cos2αi
− q2i+2

sin2αi
if αi ∈ [0, π/2]

q2i −
q2i+1

sin2 αi
if αi ∈ [0, π],

(4.50)

(no summation in Gii) and

ṙ2 = cosh4r

[
−q2 − q21 k

2

sinh2r
+

1

cosh2r

]
(4.51)

where q and qi (qm−1 = 0) are dimensionless constants of motion which should obey

1 ≥ q1 k + q,

qi ≥ qi+1 + qi+2, (αi ∈ [0, π/2]) or qi ≥ qi+1 (αi ∈ [0, π]). (4.52)

29



The non-cyclic αi and the coordinate r pulsate between two turning points fixed by q and qi. The

canonical momenta for the angular coordinates αi are given by

P 2
i =

(
NL̃

L

)2

×





q2i if αi is cyclic,

q2i −
q2i+1

cos2αi
− q2i+2

sin2αi
if αi ∈ [0, π/2],

q2i −
q2i+1

sin2 αi
if αi ∈ [0, π],

(4.53)

On the other hand (4.51) become

P 2
r =

(
NL̃

kL

)2 [
−q2 − q21k

2

sinh2 r
+

1

cosh2 r

]
. (4.54)

The potential for Pr in (4.54) is of Pöschl-Teller Type II [26].

Returning to the θ and φ coordinates, we see that (4.40) readily determines φ

φ̇ =
k L̃ cosh2r

L cos2θ
[p− (sinθ)n−1], (4.55)

where p is an integration constant. On the other hand, θ can be fixed from (4.37) and (4.38) which

yields

1

2
θ̇2 + V (θ) = 0, (4.56)

where

V (θ) =
L̃2 cosh4r

2L2

[
k2p2 − q2 +

k2 sin2 θ

cos2 θ
(p− sinn−3 θ)2

]
. (4.57)

This is a one-dimensional motion in the potential V (θ) with zero total energy. The requirement

V (θ) ≤ 0 implies

q ≥ kp. (4.58)

When expressed in terms of momenta, (4.55) and (4.56) become

Pφ = Np, (4.59)

P 2
θ =

N2

k2

[
k2p2 − q2 +

k2 sin2 θ

cos2 θ
(p− sinn−3 θ)2

]
. (4.60)

The separation in canonical variables is manifest in (4.53), (4.54), (4.59) and (4.60). Unlike the

exactly solvable potentials we encountered above, the potential on the right hand side of (4.60) is

more complicated.

Let us now discuss the motion for the breathing coordinate θ in more detail. When q < kp,

V (θ) is nowhere negative or zero. For q = kp, V (θ) = 0 only at θ = 0 and at (sinθ)n−3 = p and

V (θ) > 0 otherwise (see figure 3). This enforces the brane to locate at either root and note that

the second zero exists only for p ≤ 1. When q > kp there are two possibilities. Firstly, if p = 1

V (θ) is always negative and in this case θ reaches 0 or π/2 in a finite amount of time. Secondly, if

p 6= 1 there is a root θ0 so that V (θ) ≤ 0 for θ ≤ θ0 and V (θ) > 0 for θ > θ0 (such a potential is

30



Theta

V

Theta

V

FIG. 3: The potential V (θ) in (4.57) for q < kp (on the left) and for q = kp (on the right).

drawn in figure 3). In this case, the brane either contracts directly to θ = 0 or it expands till θ = θ0

and then collapses to θ = 0 in a finite amount of time. Note that V (θ) is scaled by L̃2 cosh4 r/L2

which does not alter the zeroes but affect the shape of the potential when r is time dependent.

Equations (4.50) and (4.51) hold under the assumption that the coordinates have non-trivial

time dependences. Otherwise the original field equations may impose further restrictions. These

can be summarized as:

(1) φ = φ0: From (4.40) this happens only when θ = θ0 and from (4.41) one has θ0 = 0, π/2.

The constant p should be fixed as p = 1.

(2) θ = θ0: This requires q = kp and from (4.42) one finds (sinθ0)
n−3 = p, θ = 0, or θ = π/2.

There is also a fourth root with p = (n− 2)(sin θ0)
n−3 − (n− 3)(sin θ0)

n−1.

(3) r = r0: From (4.41) and (4.51) we see that q2 = 1/ cosh4 r0 and q1k = sinh2 r0/ cosh
2 r0.

(4) αi = α0: This is exactly the same with the special cases (2) and (3) discussed in the previous

subsection.

Upto these four cases, (4.50), (4.51), (4.55) and (4.56) give the most general configuration. The

1/2 supersymmetric two-spin solution (2.6) is obtained when we have α1 = ... = αm−3 = π/2

and θ = θ0, r = r0. Using the above conditions one finds q1 = ... = qm−2, p = (sin θ)n−3,

q = kp = 1/ cosh2 r and q1k = sinh2 / cosh2 r which imply from (4.55) and (4.50) that φ̇ = L̃/L

and α̇m−2 = 1 (recall that here t is dimensionless). If we further set αm−2 = π/2, then q1 = .. =

qm−2 = 0 which gives r = 0. This is the 1/2 supersymmetric giant graviton solution of [1]. For

this case, θ = θ(τ) is studied in [28]. There is also the trivial solution with r = 0, θ = π/2 and all

other coordinates are set to constants.

Let us conclude this subsection by deriving a BPS bound for the energy given the conserved

charges. This can readily be obtained using the inequalities between the integration constants

(4.52), (4.58), and the expressions for conserved quantities (4.43), (4.53), (4.59) which gives

H ≥ L̃

L
Pφ +

∑

i

Pi, (4.61)
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where the sum is over cyclic coordinates. To obtain the same result in a different way, the Hamil-

tonian can be found from (4.39) as

H = Pm′Ẋm′ − L =
L̃2N(sin θ)n−2 cosh2 r

L∆
,

= L̃ cosh r

[
P 2 +

N2

L2
(sin θ)2n−4

]1/2
, (4.62)

where P 2 ≡ P 2
φ/(L

2 cos2 θ) + GµνPµPν/L
2. The last term in (4.62) can be combined with

P 2
φ/(L

2 cos2 θ) to give P 2
φ/L

2 plus an exact square as in (2.11). Then, by a calculation similar

to the one done in (2.12), and using the inequality (4.31) repeatedly, the Hamiltonian (4.62) can

be shown to subject to (4.61).

This BPS bound can only be realized when all other momenta except Pφ and cyclic Pi vanish

which enforce the corresponding coordinates to be constants. However, as in the previous subsec-

tion, one can see that the circular motion in Sm−2 is along the equator, which is equivalent to the

1/2 supersymmetric two-spin solution. This reduces to the single-spin case when the radius of the

embedded Sm−2 goes to zero.

4.3. Quantization of Spherical Giants

We have examined spherically symmetric p-branes in AdSm ×Sn, which are defined by (4.4) in

the electric case (p = m − 2) and (4.35) in the magnetic case (p = n − 2). At the quantum level,

the spherical truncation is performed by first fixing a physical gauge and expanding in normal

coordinates ξm
′
defined by XM (σµ) =

(
σµ,Xm′

(τ) + ξm
′
(σµ)

)
, where Xm′

(τ) describe the 0+1

dimensional sigma-model. The classical consistency of the truncation implies that the action has

no linear terms in ξm
′
. For large brane tension, the normal coordinates ξm

′
become free, and thus

yield a one-loop determinant contribution to the 0+1 dimensional sigma model for Xm′
. We shall

omit this contribution, based on the fact that the free spectrum for ξm
′
is evenly spaced both for

the single-spin and the two-spin solutions and only depends on the AdS and sphere radii. In this

approximation, the spherical giant is described by a wave-function ψ(Xm′
), where Xm′

are the

transverse coordinates and the canonical momenta are realized by Pm′ = −i∂/∂Xm′
.

In the classical theory, the spherical brane consists of a warped product of a breathing-mode

and a relativistic, massive point-particle. The latter lives on R× Sn in the electric case, where R

is time, and on AdSm × S1 in the magnetic case, where S1 is the cyclic direction in Sn transverse

both to the brane and the breathing direction. We have found that the resulting 0+1 dimensional

sigma model is an integrable system9, and that the breathing mode is governed by a potential that

depends on the total angular momentum of the point-particle.

The quantization can be performed in terms of global embedding coordinates. This is discussed

in Appendix A. In this subsection, we shall instead quantize using local spherical or AdS coordi-

nates, leading to Pöschl-Teller potentials. In doing so, we parametrize the spheres using maximal

9 See [29] in the case of the string in AdS5 × S5. Also, non-relativistic point particles on spheres with potential
appear in a similar context, namely as truncation of the string sigma-model, corresponding to picking a particular
solution to conformal gauge, leading to the soluble N-R model, see e.g. [11], [39] and [40].
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number of cyclic coordinates, i.e. (4.18), and impose (4.22) in the electric case, and (4.53), (4.54),

and (4.59) in the magnetic case. We then proceed with the breathing modes, using the results of

[28].

The classical solutions are parameterized by constants of motion, namely (k, qa) defined in (4.22)

and (4.25) in the electric case, and (k, q, qi) defined in (4.53), (4.54) and (4.60) in the magnetic case,

and one should ask whether they are actually limits of states in the quantum theory. To begin with,

it follows from their definition that their mutual Poisson brackets vanish. The constant k determines

the AdS energy E. The AdS energy, which is identified as the p-brane Hamiltonian, is quantized

since the spatial world-volume is compact, though in the absence of additional symmetries there

is no mechanism preventing non-integer energies. To be more precise, k sets the energy levels of

the potential for the breathing modes given in (4.25) and (4.60), which become discrete in the

quantum theory.

The point-particle motion may therefore be thought of as an internal sector, analogous to

the orbital angular momentum in a central force problem. In this sector the Cartan subalgebra

generators of SO(m − 1) × SO(n + 1) that are not set to zero in the spherical reduction are

determined by some of the qa and (q, qi), namely the momenta of the cyclic transverse spatial

coordinates. These symmetries are realized in the world-volume quantum theory, in the limit where

this theory becomes reliable. Hence, the non-vanishing Cartan subalgebra spins are integers, which

we shall denote by Si = Pi = ni ⊂ SO(m− 1) and Ji = Pi = ni ⊂ SO(n+ 1)

The remaining (qa) and (q, qa) are activated by the oscillatory point-particle motion in AdSm×
Sn, i.e. they set energy-like levels for the Pöschl-Teller potentials, which become quantized with

discrete spectra (there is also a continuum in the Type II potential). This quantization can also

be understood as quantization of the Casimirs of the chains SO(m − 1) ⊃ SO(m − 3) ⊃ · · · ⊃
SO(m− 1− 2[(m− 4)/2]) and SO(n+ 1) ⊃ SO(n− 1) ⊃ · · · ⊃ SO(n+ 1− 2[(m− 2)/2]), arising

in the parametrization of the sphere line elements using maximal number of cyclic coordinates.10

The Pöschl-Teller potentials belong to a large class of exactly solvable quantum mechanical

models, defined by superpotentials with a special property known as shape invariance [26]. There

is a group-theoretic approach to solving the Pöschl-Teller potentials, based on coset representations

of S2 and AdS2 (see, e.g., [27]). In Appendix B, we summarize its energy spectrum.

From the parametrization of the Type I potentials given in (4.22) and (4.53) and using (B4)

one finds (φi oscillatory):

T qi = 1 +

√
1

4
+ (T qi+1)2 +

√
1

4
+ (T qi+2)2 + 2ni , (4.63)

where T = LÑ/L̃ (electric) and T = L̃N/L (magnetic). (To compare with WKB approach see

Appendix C). Note that T qi+1 is a spin, and also T qi+2 is a spin in case i is the last oscillatory

coordinate.

In the electric case we define Q = T q1, and the above formula gives

Q = J1 + · · · Jv + 2(n1 + · · ·+ nn−v) +
(n− 1)

2
+O(1/T ), (4.64)

10 We thank K. Murakami for this observation.
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where Ji denote the spins in the Cartan subalgebra, and v = [(n + 1)/2].

In the magnetic case the remaining point-particle motion in r is governed by the Type II

potential given in (4.54). From (B5), the discrete spectrum is given by

−Q = 1 + Tq1 −E + 2nr +O(1/T ) , 0 ≤ nr ≤ (E − Tq1)/2, (4.65)

where Q = Tq/k, E = NL̃/(kL) (and we have chosen the sign leading to a positive contribution

to E), and

Tq1 = S1 + · · ·+ Sv + 2(n1 + · · ·+ nm−1−v) +
(m− 3)

2
+O(1/T ) , (4.66)

where v = [(m − 1)/2]. As one approaches the continuum of the Type II potential, Q decreases,

which leads to that the breathing mode becomes strongly coupled. This is an interesting region,

as the p-brane starts probing large r, but for simplicity we shall continue under the assumption

nr ≪ (E − Tq1).

The quantization of the breathing modes, i.e. r and θ are governed by (4.25) and (4.60) in

the electric and magnetic cases, respectively, was studied separately in [28], using semi-classical

techniques, and we shall review these results in the present context below

Here the wave-function is approximated by the exponential of the action integral, and the

boundary conditions are approximated by the Bohr-Sommerfeld quantization conditions

Ir =

∮
dr Pr = 2π(nr +

1

2
)

= Ñ

∮
dr

cosh r

[
(k2 − q21) cosh

2 r − (k − sinhm−3 r)2 sinh2 r
]1/2

, (4.67)

Iθ =

∮
dθ Pθ = 2π(nθ +

1

2
)

=
N

k

∮
dθ

[
q2 − k2p2 − k2 sin2 θ

cos2 θ
(p− sinn−3 θ)2

]1/2
. (4.68)

This approximation method is good if 1 ≪ n≪ N , where the upper bound is set such that the total

AdS energy will not become too large, while the lower bound is set so that the WKB approximation

can be trusted. Clearly, only the upper bound is necessary from the spacetime point of view, while

the lower bound is simply an artifact of the particular approximation method used to solve the

Schrödinger problem. The upper bound implies that it makes sense to expand in n/T , where T is

the tension defined under (4.63). Adapting the results of [28] to our cases, the quantization of r in

the electric case with (E − L̃Q/L) ≪ Ñ , Q gives (up to n3r terms)

E − L̃

L
Q =

2L̃

L
(nr +

1

2
)−





6Nn2
r

Q2 , (m,n) = (5, 5), N = Ñ

12Nn2
r

Q3 , (m,n) = (4, 7), N = 2Ñ2

15Nn2
r

2Q3/2 , (m,n) = (7, 4). N =

√
Ñ
2

(4.69)

The θ quantization in the magnetic case with (Q− L̃Pφ/L) ≪ N gives

Q− L̃

L
Pφ = 2(nθ +

1

2
)−





6Nn2
θ

P 2
φ

, (m,n) = (5, 5),

15N1/2n2
θ

2P
3/2
φ

, (m,n) = (4, 7),

6N2n2
θ

P 3
φ
, (m,n) = (7, 4),

(4.70)
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Compared to (4.63), here we have a series expansion in n which makes one wonder whether the

Bohr-Sommerfeld method used in [28] would reproduce the exact result (4.63) for Pöschl-Teller

type potential. As we show in Appendix C, this indeed happens up to fourth order in n but 1/T

corrections that are present in (4.64), (4.65) and (4.66) are not observed.

4.4. Holography

The above results can be summarized by the following expressions for the AdS energy in the

case of electric and magnetic spherical p-branes for (m,n) = {(5, 5), (4, 7), (7, 4)}:

Eel − L̃

L
[J1 + · · ·+ Jv] =

L̃

L

[
2(nr + n1 + · · ·+ nn−v) +

(n+ 1)

2

]

− (n− 1)(n + 1)N

2[(n+3)/4]Q(n−1)/2
n2r +O(n3r) +O(1/Ñ ) , (4.71)

Emag − [S1 + · · ·+ Sv]−
L̃

L
Pφ = 2(nθ + nr + n1 + ..+ nm−1−v)

+
(m+ 1)

2
− (m− 1)(m+ 1)N (m−3)/2

2[(m−1)/2]P
(m−1)/2
φ

n2θ +O(n3θ) +O(1/N), (4.72)

where v = [(n + 1)/2] (electric) and v = [(m − 1)/2] (magnetic). The finite n and m dependent

shifts should cancel in the supersymmetric completions (in order not to violate the unitarity bounds

imposed by the superalgebra). The above expressions for the AdS energy are valid for bosonic p-

branes. They may be altered in the case of supersymmetric p-branes due to contributions from the

fermions, since in the quantum mechanical Hamiltonian the fermions cannot be truncated.

Following the proposal of [20, 21], we assume that a bulkD3-brane wave-function(al) with energy

E, compact SO(4) ⊂ SO(4, 2) spins (S1, S2), and SO(6) Cartan spins (J1, J2, J3), corresponds to

a component of an operator O[R](∆;SLSR;m1m2m3) in the dual SYM theory with scaling dimension

∆ = E, non-compact SL(2, C) (Lorentz) spin (SLSR), and SO(6) highest weights (m1m2m3). Note

that under SO(6) → U(1)3 the operator decomposes into components with Cartan spins (J1, J2, J3)

obeying |J1|+ |J2|+ |J3| = m1. The index [R] refers to a representation of SN , i.e. a Young-tableau

of size k, used to construct the SU(N) invariant [21]. The two extreme cases are single-column

Young-tableaux, i.e. subdeterminants, which correspond to magnetic D3-branes, and single-row

Young-tableaux which correspond to electric D3-branes. In these cases, an operator of size k has

the form

O[±] = O(λ1)...(λk)δ
i1...ik
{j1...jk}±

W (λ1)j1
i1
· · ·W (λk)jk

ik
, (4.73)

where {· · ·}+ and {· · ·}− denote symmetrization and anti-symmetrization, respectively, and W (λ)

denote derivatives of the SU(N) valued SYM superfield XA. The tensor Oλ1...λk
picks out some

irrep and contains an N -dependent normalization of two-point function. Two basic properties of

these type of operators are that 1) they form a diagonal set for large k ∼ N , which is possible

because they contain multi-trace contributions which are not suppressed for large N ; and 2) the

constituents are automatically symmetrized (for both ±). Consider a fixed O0 of size k ∼ N ,

N − k ≫ 1, and the space of excitations built on O0 by inserting impurities while keeping R in
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single column or row form. The above properties imply a Fock space structure [23, 24], which is

isomorphic to the space of multi-particle states (i.e. composites) of the super Maxwell field theory

arising from normal-coordinate expansion around the semi-classical D3-brane giant solution. In

particular, the super Maxwell ground state carries the same charges as O0.

Let us consider the wave function of a spherically symmetric electric D3-brane giant with

quantum numbers (J1, J2, J3;n1, n2;nr). The corresponding operator O(J1,J2,J3;n1,n2;nr) is a Lorentz

scalar with SO(6) Cartan spins (J1, J2, J3). Eq. (4.71) suggests that the bare scaling dimension is

given by

∆bare = J1 + J2 + J3 + 2(n1 + n2 + nr) = Q+ 2nr, (4.74)

which implies that for nr the operator O(J1,J2,J3;n1,n2;0) is protected. Hence, the set of operators

O(J1,J2,J3;n1,n2;0) , J1 + J2 + J3 = J, J + 2(n1 + n2) = Q, (4.75)

may be identified with the components of the protected scalar chiral primary operator O(J ;00;J00):

O(J ;00;J00) = OA1...AJ
δJXA1 · · ·XAJ (4.76)

where A is the SO(6) vector index, XA the SU(N) valued singletons and OA1...AJ
is a constant

traceless SO(6) tensor, and δJ denotes the symmetric SU(N) invariant of size J in (4.73). Under

SO(6) → U(1)3, the singleton superfields decompose as XA → (Z1, Z2, Z3), where Zi = X2i−1 +

iX2i. If one lets

Kα1,α2,α3
= α1|Z1|2 + α2|Z2|2 + α3|Z3|2 , (4.77)

then O(∆;00;J00) decomposes into the set of components

δJZJ1
1 ZJ2

2 ZJ3
3 K l1

2,−1,−1K
l2
−1,2,−1 , J1 + J2 + J3 = J , J + 2(l2 + l2) = Q, (4.78)

where K2,−1,−1 and K−1,2,−1 is a choice of basis for traceless, U(1)3-invariant bilinears. Elementary

counting shows that the two sets of operators (4.75) and (4.78) are isomorphic. The identification

becomes manifest in global coordinates, where the giant wave-function is given by (A6) for p = 0.

From (4.71), we see that starting from the protected operators making up the components of

O(J ;00;J00), and switching on finite breathing number, nr = 1, 2..., adds a bare dimension 2nr

and a negative anomalous dimension, −6Nn2r/J . Finite breathing number implies that the giant

wave-function depends on the AdS radius r. In Poincaré coordinates, ds2 = L2(u2(−dt2 + dx2) +

du2/u2+dΩ2
5), the energy scale combines with S5 into du2/u2+dΩ2

5 = dXAdXA/(L2u2), suggesting

that radial breathing translates to insertions of SO(6)-traces K1,1,1 into the dual operator. We

propose that the operators O(J1,J2,J3;n1,n2;nr) corresponding to the giant wave-functions with fixed

breathing number nr are the components of the operator O(∆;00;J00)(nr) obtained by inserting the

SO(6) trace-part Knr
1,1,1 into (4.76), i.e.

O(∆;00;J00)(p) = OA1...AJ
δJ+2pXA1 · · ·XAJ (XAXA)p , ∆ = J+2p−6Np2/J2, p = 0, 1, . . . (4.79)

when J ∼ N .
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The anomalous dimension is negative11 and independent of the ’t Hooft coupling λ = g2YMN .

However, the results are valid for λ≫ 1 and there may be additional contributions from fermions

as pointed out above. From the bulk point of view, the negative contributions can be interpreted

as the binding energy of the closed strings on the giant. This energy should depend on the bulk

coupling constant, i.e. the bulk Planck’s constant 1/N2, but not the masses of the individual

strings, i.e. the bulk string tension λ/R2. This is in sharp contrast to the anomalous dimensions

of single-trace operators, which are positive and depend on λ, as expected from the bulk picture

where they represent individual closed strings.

Analogous operator constructions are relevant also for CFT duals of electric M2 giants. Here

one starts by building operators in the UV from 8 free SU(N)-valued OSp(8|4) supersingletons,

XA, A = 1, . . . , 8, and let these flow to the IR under deformations of the free singleton theory,

where they should correspond to the giants. Hence, in the IR one should find

O(∆;0;J000)(p) = OA1...AJ
δJ+2pXA1 · · ·XAJ (XAXA)p , ∆ = J + 2p− 12Np2/J3, p = 0, 1, . . .

(4.80)

when J ∼ N1/2.

In the case of magnetic D3 and M2 branes, the energy formula (4.72) suggests that dual

operators are built from subdeterminants involving Pφ scalar fields and S1+ · · ·+Sv +2(nr +nθ +

n1 + · · ·+ nm−1−v) derivatives, such that the operators are protected when nθ = 0.

5. CONCLUSIONS

In this paper we have shown that the (p+1)-dimensional field theory of a p-brane in AdSm×Sn

admits consistent KK sphere reductions on either Sp ⊂ AdSm, m = p+ 2, or Sp ⊂ Sn, n = p + 2.

The resulting (0 + 1)-dimensional models are integrable, the canonical variables separate and the

quantum mechanics consists of a breathing mode with non-trivial potential times a set of oscillators

which describe the overall transverse motion. These models contain the previously known 1/2

supersymmetric single-spin giant gravitons, that have one spin in Sn and expand spherically in Sn

[1] or AdSm [3, 4]. The magnetic model also includes a new 1/2 supersymmetric two-spin giant,

that has one extra spin in AdSm and expands in Sn. The BPS bounds show that these are the

only supersymmetric solutions of these particular spherically symmetric truncation.12

There are several directions in which the (0+ 1)-dimensional sigma models should be explored.

In the cases where the original p-brane is supersymmetric, one should consider supersymmetric

completions by including fermions and possibly extra bosons, and in particular examine their

contributions to the AdS energies. In the case of D3 and M5 branes, in analogy with sphere

reductions of supergravity, we expect the extra bosons to be embedded into the (p+1)-dimensional

vector and tensor fields together with certain low-lying spherical vector and tensor harmonics on S3

11 Negative anomalous dimensions are not unusual. Indeed there are several examples of multi-trace operators with
anomalous dimensions that are negative both perturbatively and in the supergravity limit, where the anomalous
dimension tends to zero from below as N → ∞. We thank M. Bianchi and Y. Stanev for discussions on this point.

12 There are also other supersymmetric giants in the literature, based on wrapping p-branes on supersymmetric cycles
in AdSm × Sn or AdS5 × T 1,1 [41, 42].
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and S5, respectively. It is worth investigating this in detail. Having obtained the supersymmetric

(0 + 1)-dimensional sigma models, it would be interesting to examine to what extent the salient

features of the bosonic quantum mechanics prevails.

An obvious generalization is to consider the effect on the (0+1)-dimensional model from k-fold

wrapping of the p-brane on Sp. This gives rise to k copies of the quantum mechanical system

moded out by cyclic symmetry taking the i’th copy to the (i + 1)’th copy mod k (this is a global

reparametrization). In the point-particle sector, the resulting giant wave-functions in global coor-

dinates are built from a set of copied oscillators XA
i (ξ), ξ = 1, ..., k, obeying commutation rules

[XA
i (ξ),X

B
j (η)] = iδξηη

ABǫij, where η
AB has appropriate signature. The wave-functions now in-

volve Young-tableaux of up to k rows, in rough agreement with the proposals on the field theory

side [21].

Another line of generalization is to include higher modes of the KK spectrum on Sp and obtain

sigma-models in dimensions between (0 + 1) and (p + 1). For example, for the M2 brane, we

can consistently set to zero all harmonics on S2 with non-vanishing Lz eigenvalue, i.e. drop the

dependence on the cyclic coordinate, χ2 say, while keeping the full dependence on the remaining

polar coordinate, χ1 say (0 ≤ χ1 ≤ π). This should lead to a non-trivial (1 + 1)-dimensional

sigma-model with generally (τ, χ1)-dependent fields, and it would be interesting to study whether

the integrability of the (0 + 1)-dimensional model extends to (1 + 1) dimensions. Similarly, the

D3-brane on S3 and the M5 on S5 with trivial dependence on the cyclic coordinates should give

interesting (1 + 1) and (2 + 1)-dimensional sigma models (on S3, χi, i = 2, 3, are cyclic and we

keep Xm′
(σµ) and Ai(σ

µ), σµ = (τ, χ1); and on S5, χi, i = 2, 4, 5, are cyclic, and we keep Xm′
(σµ)

and bij(σ
µ), σµ = (τ, χ1, χ3)).

As discussed in the Introduction, electric p-branes in AdSp+2 have semi-classical scaling behavior

which make them suitable probes for examining holography at high energies. Could they also be

used for actually defining the bulk dynamics in some certain limit? Consider, for example, the

open/closed string quantum theory on a 1/2 BPS electric D3 giant graviton of radius r0. The

running string tension, which sets the scale for massive string excitations on top of the giant

ground state, is given by L2Ts(r0) ∼ L2 cosh2 r0/α
′ ∼ E0

√
gs/N ≫ 1. Hence, between the ground

state and the first massive string states, there is a large number of massless open string excitations

with energy E ∼ E0 ≫ 1, and E − E0 ≪ L2Ts(r0). These are composite operators in the vector

multiplet living on the D3-brane (i.e. they are multi-particle states from the world-volume point

of view), which in the physical gauge describe one-particle states in the bulk. Consider a process

with “in-state” prepared by first letting the breathing mode inhale until r ≫ r0 and then placing

out operators, carrying distinct energy and spins. We may assume the operators to be separated

initially, so that an observer in spacetime would see localized concentrations of energy and spin

densities on the brane. During the subsequent time-evolution, the brane first exhales. For a

spacetime observer this looks like particles falling inward to a scattering region. The brane then

breathes in again and finally reaches large size, at which point the result of the scattering can be

obtained by computing the correlator with an “out-state”.

The question is, how good an approximation it is to describe the whole scattering process using

only the massless field theory on the p-brane. Clearly, the initial excitation energies should not be

too high. However, as discussed in Section 4, the breathing may cause the brane to implode, or at
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least pass through some region of large world-volume curvature. For example, from the D3-brane

field theory point of view, the formation of strings may be thought of as the AdS analog of the

BIon formation on a D3 brane in flat space [43]. It would be interesting to examine to what

extent these stringy excitations of the D3-brane may behave differently in an AdS background as

opposed to flat space. A related question is whether a rotating long string with energy-momentum

propagating along the directions of a giant D3-brane could be realized as a weakly coupled state

on the giant. Similar considerations could be undertaken for membrane-like excitations of electric

M5 branes described by self-dual string solutions [44] and rotating membranes [45–47]

Finally, let us point out the relation with the old ideas of p-branes “at the end of the universe”

[31, 38]. For example, the transition from a strongly coupled string world-sheet to a weakly coupled

D3-brane world-volume at high energies and fixedR2Ts, suggests a similar transition at fixed energy

and small R2Ts, i.e. the tensionless string limit. Indeed, for any finite R2Ts, the running string

tension R2Ts(r0) diverges in the IR. This limit, which is most easily examined by replacing the

spherical physical gauge by another physical gauge given in Poincaré coordinates [48], yields a

superconformal D3-brane “at the end of the universe”. This world-volume theory (which should

not be confused with the dual CFT) is completely decoupled from string excitations, and therefore

remains weakly coupled in the tensionless string limit. Similar limits exist also for theM5 and M2

branes. The perturbations of the conformal M2/D3/M5 branes have loop expansion in inverse

powers of N . This suggests that a natural starting point for describing holography is to start close

to the boundary with operator insertions on conformal p-branes, and then study the deformation

of this system into the bulk by switching on perturbations corresponding to the breathing mode.

The conformal p-branes provide a link between the original supergravity theories in the UV

region of the bulk, and higher spin gauge theories in the IR region of the bulk. Indeed the

(unperturbed) conformal M2 brane world-volume is a free OSp(8|4) supersingleton field theory,

with conserved higher spin currents in the world-volume [49]. The conformal D3 and M5 brane

world-volume theories are PSU(2, 2|4) andOSp(8∗|4) supersingleton field theories with interactions

stemming from the magnetic background fluxes, and it is desirable to study their applications for

the higher spin symmetries. It would also be interesting to examine the conformal limit of the

Sp(2)-covariant quantization of the point-particle sector (see Appendix A), since the Sp(2)-gauged

version of the SO(m − 1, 2)-covariant oscillators play a central role in formulating the massless

higher spin dynamics as formulated in [50].

In summary, giant p-branes in AdS backgrounds deserve further study as they have many

intriguing properties both from the point of view of holography and for the understanding of the

nature of fundamental interactions of M-theory and string theory at high energies.
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APPENDIX A: QUANTIZATION IN GLOBAL COORDINATES

In this appendix, we briefly discuss the canonical quantization of the global xA coordinates

governed by the action (4.12). It is clear that PΛ = 0 is a primary constraint. The Poisson bracket

of PΛ with the Hamiltonian leads to a chain of secondary constraints, which can be summarized

in terms of the Sp(2) generators as

Lij ≡ XA
i XAj =Mij , PΛ = 0 , (A1)

where XA
i = (xA, PA), M11 = 1, M12 = 0, M22 = 2Ñ2L4Λ0/L̃

2. Here, Λ0 is the constant that

appears in (4.15). The four constraints are second class.

In quantum theory, the canonical commutation relations read

[X̂A
i , X̂

B
j ] = iǫijδ

AB . (A2)

The ordering ambiguity in (A1) can be cured by demanding that the operators L̂ij = X̂A
(i X̂j)A

generate the Sp(2) algebra. One can now impose the following Casimir constraint:

(
L̂ijL̂ij −M ijMij

)
|Ψ〉 = 0 , (A3)

together with L11|Ψ〉 = PΛ|Ψ〉 = 0. Using the oscillator algebra we find

1

2
L̂ijL̂ij =

1

2
ĴAB ĴAB +

1

4
(n+ 1)(n − 3) , (A4)

where ĴAB = ǫijX̂[AiX̂B]j are the generators of SO(n+1). Using the expression forMij given below

(A1) and the fact that Ψ has SO(n+ 1) highest weight (J0 . . . 0), we find (note that q21 = 2L2Λ0,

see below (4.22))

1 +
Ñ2L2

L̃2
q21 = (J +

n− 1

2
)2 , (A5)

which is in agreement with (4.63) for large J . The wave-functions are given by the spherical

harmonics

Ψ(J00)p(X
A,Λ) = ΨA1...AJ

XA1 · · ·XAJ , (A6)

where ΨA1···AJ
is traceless and symmetric. It would be interesting to repeat the above analysis

also for the magnetic case leading to Sp(2)× SO(m− 1, 2) covariant oscillators Y P
i .

APPENDIX B: THE ENERGY SPECTRUM OF PÖSCHL-TELLER POTENTIALS

In this appendix, following [26], we summarize the spectrum of Pöschl-Teller potentials. A

superpotential, W (X) say, determines two “partner Hamiltonians”, H+ = A†A and H− = AA†,

where A = d
dX + W (X) and A† = − d

dX + W (X), and the partner potentials are given by the

Riccati equations V± = W 2 ∓W ′. A family of superpotentials W (a;X), where a denotes a set of

parameters, is said to be shape invariant if A(a)A†(a) = A†(f(a))A(f(a)) +R(a), i.e. V−(a;X) =
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V+(f(a);X) + R(a), where f is a fixed function and R(a) is a constant (independent of X). The

eigenvalue problem for H+ then has a generalized oscillator solution (n = 0, 1, 2, . . .):

Ψ+
(n)(X) = A†(a)A†(f(a)) · · ·A†(fn−1(a)) exp

[
−
∫ X

dYW (fn(a);Y )

]
,

E+
(n) =

n−1∑

k=0

R(fk(a)) . (B1)

The Pöschl-Teller Type I and II superpotentials are given by (0 ≤ θ ≤ π/(2α), r > 0)

WI(A,B,α; θ) = A tanαθ −B cotαθ ,A,B > 0 , (B2)

WII(A,B,α; r) = A tanhαr −B cothαr ,A > B > 0, (B3)

and the associated potentials, shape transformations and bound state eigenvalues read

VI± = −(A+B)2 +
A(A∓ α)

cos2 θ
+
B(B ∓ α)

sin2 θ
,

fI(A,B,α) = (A+ α,B + α,α) , RI = (A+B + 2α)2 − (A+B)2 , (B4)

EI+
(n) = (A+B + 2nα)2 − (A+B)2 , n = 0, 1, . . .

VII± = (A−B)2 − A(A± α)

cosh2 αr
+
B(B ∓ α)

sinh2 αr
,

fII(A,B,α) = (A− α,B + α,α) , RII = (B −A)2 − (B −A+ 2α)2 , (B5)

EII+
(n) = (A−B)2 − (A−B − 2nα)2, n = 0, . . . , (A−B)/2.

The wave-functions obey Dirichlet conditions at θ = 0, π/(2α) and r = 0. In the Type II case there

is a finite number of bound states and then a continuum, EII+ ≥ (A−B)2. One can extend Type

I and II to B = 0, provided the Dirichlet condition is dropped in the case of Type II and imposed

at θ = ±π/2 in the case of Type I.

In applying to the motion on a sphere, one has to be careful with the Dirichlet conditions. If

one switches on a spin, generated by a vector field V , by imposing VΨ = inΨ, then Ψ has to

vanish at points where V has zero norm. In the present parametrization, there is a one-to-one

correspondence between the spins in the Cartan subalgebra and the cyclic coordinates. Hence, if

φi is an oscillatory coordinate, then both φi = 0 and φi = π/2 are vanishing points for spins in the

Cartan subalgebra, and hence all the Dirichlet conditions are globally well-defined.

APPENDIX C: COMPARISON WITH BOHR-SOMMERFELD

As we have seen above the quantum mechanical problem involving the Pöschl-Teller potentials

is exactly solvable. Now, we will use Bohr-Sommerfeld approximation for Type I Pöschl-Teller

potential for comparison. The action integral is

Iθ = 2π(nθ +
1

2
) , nθ = 0, 1, 2, . . .

=
LÑ

L̃

∮
dθ

[
q2 − p2

cos2 θ
− u2

sin2 θ

]1/2
. (C1)
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To evaluate the integral perturbatively, we first set x = sin2 θ which yields

Iθ =
LÑ

L̃
q

∫ b2

b1

dx

√
f(x)

x(1− x)
= 2π (nθ +

1

2
), (C2)

where

f(x) = −x2 + [
q2 − p2 + u2

q2
]x− u2

q2
≡ (x− b1)(b2 − x), (C3)

and 0 < b1, b2 < 1. For small oscillations we need (b2 − b1) ∼ 0 and (b1 + b2) ∼ 1, implying p ∼ u

and q ∼ 2u, and we can expand in

η ≡ (q − p− u). (C4)

Defining 2x = (b2 − b1)y + (b2 + b1) and using the approximations

[1− (b2 + b1)]
2 ≃ (p− u)2

(p+ u)2

[
1− 4

p+ u
η

]
(C5)

(b2 − b1)
2

4
≃ 2pu

(p+ u)3

[
η +

u2 − 5pu+ p2

2pu(p + u)
η2 − 3u2 − 10pu+ 3p2

2pu(p+ u)2
η3
]

[
(
b1 + b2

2
)(1− b1 + b2

2
)

]−1

≃ (p+ u)2

pu

[
1− (p− u)2

pu(p+ u)
η +

(p − u)2(2p2 + pu+ 2u2)

2p2u2(p+ u)2
η2
]

the integral (C2) up to fourth order in η reads (the odd powers of y do not contribute)

[
2η − p2 − pu+ u2

pu(p+ u)
η2 +

p4 − p2u2 + u4

p2u2(p+ u)2
η3 + ...

] ∫ 1

−1
dy
√

1− y2
[
1 + h1y

2 + h2y
4 + ...

]
(C6)

where

h1 =
2(p2 − pu+ u2)

pu(p+ u)
η − 3(p4 − p2u2 + u4)

p2u2(p+ u)2
η2 , (C7)

h2 =
4[p4 − p3u+ P 2u2 − pu3 + u4]

p2u2(p+ u)2
η2 . (C8)

Up to this order, the integration gives

2nθ + 1 =
LÑ

L̃
η. (C9)

As in the exact result (4.63) there is no expansion in n. However, 1/T corrections that are present

in (4.64) and (4.66) are not observed.

The above analysis also applies to Type II Pöschl-Teller potential which appeared in (4.54).

One needs to introduce a new variable x = − sinh2 r after which the action integral becomes (C3).
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