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We have searched for evidence of physics beyond the standard model in events that include an energetic

photon and an energeticb-quark jet, produced in 85 pb21 of p̄p collisions at 1.8 TeV at the Tevatron Collider
at Fermilab. This signature, containing at least one gauge boson and a third-generation quark, could arise in the
production and decay of a pair of new particles, such as those predicted by supersymmetry, leading to a
production rate exceeding standard model predictions. We also search these events for anomalous production
of missing transverse energy, additional jets and leptons (e, m and t), and additionalb quarks. We find no
evidence for any anomalous production ofgb or gb1X events. We present limits on two supersymmetric

models: a model where the photon is produced in the decayx̃2
0→gx̃1

0, and a model where the photon is

produced in the neutralino decay into the gravitino LSP,x̃1
0→gG̃. We also present our limits in a model-

independent form and test methods of applying model-independent limits.

DOI: 10.1103/PhysRevD.65.052006 PACS number~s!: 13.85.Rm, 13.85.Qk, 14.80.Ly

I. INTRODUCTION

As the world’s highest-energy accelerator, the Fermilab
Tevatron collider provides a unique opportunity to search for
evidence of physics beyond the standard model. There are
many possible additions to the standard model, such as extra
spatial dimensions, additional quark generations, additional
gauge bosons, quark and lepton substructure, weak-scale
gravitational effects, new strong forces, and/or supersymme-
try, which may be accessible at the TeV mass scale. In addi-
tion, the source of electroweak symmetry breaking, also be-
low this mass scale, could well be more complicated than the
standard model Higgs mechanism.

New physics processes are expected to involve the pro-
duction of heavy particles, which can decay into standard
model constituents~quarks, gluons, and electroweak bosons!
which in turn decay to hadrons and leptons. Because of the
large mass of the new parent particles, the decay products
will be observed with large momentum transverse to the
beam (pt), where the rate for standard model particle pro-
duction is suppressed. In addition, in many models these
hypothetical particles have large branching ratios into pho-
tons, leptons, heavy quarks or neutral non-interacting par-
ticles, which are relatively rare at large values ofpt in ordi-
nary proton-antiproton collisions.

In this paper we present a broad search for phenomena
beyond those expected in the standard model by measuring
the production rate of events containing at least one gauge
boson, in this case the photon, and a third-generation quark,
the b-quark, both with and without additional characteristics
such as missing transverse energy (E” t). Accompanying
searches are made within these samples for anomalous pro-
duction of jets, leptons, and additionalb-quarks, which are
predicted in models of new physics. In addition, the signa-
ture of one gauge boson plus a third-generation quark is rare
in the standard model, and thus provides an excellent chan-
nel in which to search for new production mechanisms.

The initial motivation of this analysis was a search for the
stop squark (t̃ ) stemming from the unusualeeggE” t event

observed at the Collider Detector at Fermilab~CDF! @1#. A
model was proposed@2# that produces the photon from the
radiative decay of thex̃2

0 neutralino, selected to be the pho-

tino, into thex̃1
0, selected to be the orthogonal state of purely

higgsino, and a photon. The production of a chargino-
neutralino pair,x̃ i

1x̃2
0 , could produce thegbE” t final state via

the decay chain

x̃ i
1x̃2

0→~ t̃ b!~gx̃1
0!→~bcx̃1

0!~gx̃1
0!. ~1!

This model, however, represents only a small part of the
available parameter space for models of new physics. Tech-
nicolor models, supersymmetric models in which supersym-
metry is broken by gauge interactions, models of new heavy
quarks, and models of compositness predicting an excitedb
quark which decays togb, for example, would also create
this signature. We have consequently generalized the search,
emphasizing the signature (gb or gbE” t) rather than this spe-
cific model. We present generalized, model-independent lim-
its. Ideally, these generic limits could be applied to actual
models of new physics to provide the information on
whether models are excluded or allowed by the data. Other
procedures for signature-based limits have been presented
recently@1,3,4#.

In Sec. II we begin with a description of the data selection
followed by a description of the calculation of backgrounds
and observations of the data. In Sec. III we present
rigorously–derived limits on both minimal supersymmetric
standard model~MSSM! and gauge-mediated supersymme-
try breaking ~GMSB! models. Sections IV–VI present the
model-independent limits. Finally, in the Appendix we
present tests of the application of model-independent limits
to a variety of models that generate this signature.

A search for the heavy techni-omega,vT , in the final
stateg1b1 jet, derived from the same data sample, has al-
ready been published@5#.

II. DATA SELECTION

The data used here correspond to 85 pb21 of p̄p colli-
sions atAs51.8 TeV. The data sample was collected by trig-
gering on the electromagnetic cluster caused by the photon in
the central calorimeter. We use ‘‘standard’’ photon identifica-
tion cuts developed for previous photon analyses@1#, which
are similar to standard electron requirements except that

*Present address: Northwestern University, Evanston, Illi-
nois 60208.

†Present address: Carnegie Mellon University, Pittsburgh, Penn-
sylvania 15213.
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there is a restriction on any tracks near the cluster. The
events are required to have at least one jet with a secondary
vertex found by the standard silicon detectorb-quark identi-
fication algorithm. Finally, we apply missing transverse en-
ergy requirements and other selections to examine sub-
samples. We discuss the selection in detail below.

A. The CDF detector

We briefly describe the relevant aspects of the CDF de-
tector @6#. A superconducting solenoidal magnet provides a
1.4 T magnetic field in a volume 3 m in diameter and 5 m
long, containing three tracking devices. Closest to the beam-
line is a 4-layer silicon microstrip detector~SVX! @7# used to
identify the secondary vertices fromb-hadron decays. A
track reconstructed in the SVX has an impact parameter
resolution of 19mm at high momentum to approximately
25 mm at 2 GeV/c of track momentum. Outside the SVX, a
time projection chamber~VTX ! locates thez position of the
interaction. In the region with the radius from 30 cm to 132
cm, the central tracking chamber~CTC! measures charged-
particle momenta. Surrounding the magnet coil is the elec-
tromagnetic calorimeter, which is in turn surrounded by the
hadronic calorimeter. These calorimeters are constructed of
towers, subtending 15° inf and 0.1 inh @8#, pointing to the
interaction region. The central preradiator wire chamber
~CPR! is located on the inner face of the calorimeter in the
central region (uhu,1.1). This device is used to determine if
the origin of an electromagnetic shower from a photon was
in the magnet coil. At a depth of six radiation lengths into the
electromagnetic calorimeter~and 184 cm from the beam-
line!, wire chambers with additional cathode strip readout
@central electromagnetic strip chambers~CES!# measure two
orthogonal profiles of showers.

For convenience we report all energies in GeV, all mo-
menta as momentum timesc in GeV, and all masses as mass
timesc2 in GeV. Transverse energy (Et) is the energy depos-
ited in the calorimeter multiplied by sinu.

B. Event selection

Collisions that produce a photon candidate are selected by
at least one of a pair of three-level triggers, each of which
requires a central electromagnetic cluster. The dominant
high-Et photon trigger requires a 23 GeV cluster with less
than approximately 5 GeV additional energy in the region of
the calorimeter surrounding the cluster@9#. A second trigger,
designed to have high efficiency at large values ofEt , re-
quires a 50 GeV cluster, but has no requirement on the iso-
lation energy.

These events are required to have no energy deposited in
the hadronic calorimeter outside of the time window that
corresponds to the beam crossing. This rejects events where
the electromagnetic cluster was caused by a cosmic ray
muon which scatters and emits bremsstrahlung in the calo-
rimeter.

Primary vertices for thep̄p collisions are reconstructed in
the VTX system. A primary vertex is selected as the one with
the largest totaluptu attached to it, followed by adding silicon
tracks for greater precision. This vertex is required to be less

than 60 cm from the center of the detector along the beam-
line, so that the jet is well contained and the projective nature
of the calorimeters is preserved.

C. Photon

To purify the photon sample in the offline analysis, we
select events with an electromagnetic cluster withEt

.25 GeV anduhu,1.0. To provide for a reliable energy
measurement we require the cluster to be away from cracks
in the calorimeter. To remove backgrounds from jets and
electrons, we require the electromagnetic cluster to be iso-
lated. Specifically, we require that the shower shape in the
CES chambers at shower maximum be consistent with that
of a single photon, that there are no other clusters nearby in
the CES, and that there is little energy in the hadronic calo-
rimeter towers associated with~i.e., directly behind! the elec-
tromagnetic towers of the cluster.

We allow no tracks withpt.1 GeV to point at the clus-
ter, and at most one track withpt,1 GeV. We require that
the sum of thept of all tracks within a cone ofDR
5ADh21Df250.4 around the cluster be less than 5 GeV.

If the photon cluster hasEt,50 GeV, we require the en-
ergy in a 333 array of trigger towers~trigger towers are
made of two consecutive physical towers inh) to be less
than 4 GeV. This isolation energy sum excludes the energy in
the electromagnetic calorimeter trigger tower with the largest
energy. This requirement is more restrictive than the hard-
ware trigger isolation requirement, which is approximately 5
GeV on the same quantity. In some cases the photon shower
leaks into adjacent towers and the leaked photon shower en-
ergy is included in the isolation energy sum. This effect leads
to an approximately 20% inefficiency for this trigger. When
the clusterEt is above 50 GeV, a second trigger with no
isolation requirement accepts the event. For these events, we
require the transverse energy found in the calorimeter in a
cone ofR50.4 around the cluster to be less than 10% of the
cluster’s energy.

These requirements yield a data sample of 511 335 events
in an exposure of 85 pb21 of integrated luminosity.

D. b-quark identification

Jets in the events are clustered with a cone of 0.4 inh
2f space using the standard CDF algorithm@10#. One of
the jets withuhu,2 is required to be identified as ab-quark
jet by the displaced-vertex algorithm used in the top-quark
analysis@11#. This algorithm searches for tracks in the SVX
that are associated with the jet but not associated with the
primary vertex, indicating they come from the decay of a
long-lived particle. We require that the track, extrapolated to
the interaction vertex, has a distance of closest approach
greater than 2.5 times its uncertainty and pass loose require-
ments onpt and hit quality. The tracks passing these cuts are
used to search for a vertex with three or more tracks. If no
vertex is found, additional requirements are placed on the
tracks, and this new list is used to search for a two-track
vertex. The transverse decay length,Lxy , is defined in the
transverse plane as the projection of the vector pointing from
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the primary vertex to the secondary vertex on a unit vector
along the jet axis. We requireuLxyu/s.3, wheres is the
uncertainty onLxy . These requirements constitute a ‘‘tag.’’
In the data sample the tag is required to be positive, with
Lxy.0. The photon cluster can have tracks accidentally as-
sociated with it and could possibly be tagged; we remove
these events. This selection reduces the dataset to 1487
events.

The jet energies are corrected for calorimeter gaps and
nonlinear response, energy not contained in the jet cone, and
underlying event energy@10#. For each jet the resulting cor-
rectedEt is the best estimate of the underlying true quark or
gluon transverse energy, and is used for all jet requirements
in this analysis. We require theEt of the tagged jet in the
initial bg event selection to be greater than 30 GeV; this
reduces the data set to 1175 events.

E. Other event selection

While the photon andb-tagged jet constitute the core of
the signature we investigate, supersymmetry and other new
physics could be manifested in any number of different sig-
natures. Because of the strong dependence of signature on
the many parameters in supersymmetry, one signature is~ar-
guably! not obviously more likely than any other. For these
reasons we search for events with unusual properties such as
very large missingEt or additional reconstructed objects.
These objects may be jets, leptons, additional photons orb
tags. This method of sifting events was employed in a pre-
vious analysis@1#. We restrict ourselves to objects with large
Et since this process is serving as a sieve of the events for
obvious anomalies. In addition, in the lowerEt regime the
backgrounds are larger and more difficult to calculate. In this
section we summarize the requirements that define these ob-
jects.

Missing Et (E” t) is the magnitude of the negative two-
dimensional vector sum of the measuredEt in each calorim-
eter tower with energy above a low threshold in the region
uhu,3.6. All jets in the event with uncorrectedEt greater
than 5 GeV anduhu,2 are corrected appropriately for
known systematic detector mismeasurements; these correc-
tions are propagated into the missingEt . MissingEt is also
corrected using the measured momentum of muons, which
do not deposit much of their energy in the calorimeter.

We apply a requirement of 20 GeV on missingEt , and
observe that a common topology of the events is a photon
opposite in azimuth from the missingEt ~see Fig. 2!. We
conclude that a common source of missingEt occurs when
the basic event topology is a photon recoiling against a jet.
This topology is likely to be selected by theE” t cut because
the fluctuations in the measurement of jet energy favor small
jet energy over large. To remove this background, we remove
events in the angular binDf(g2E” t).168° for the sample,
where we have raised the missingEt requirement to 40 GeV.

We defineHt as the scalar sum of theEt in the calorim-
eter added to the missingEt and thept of any muons in the
event. This would serve as a measure of the mass scale of
new objects that might be produced.

To be recognized as an additional jet in the event, a calo-
rimeter cluster must have correctedEt.15 GeV anduhu
,2. To count as an additionalb tag, a jet must be identified
as ab candidate by the same algorithm as the primaryb jet,
and haveEt.30 GeV anduhu,2. To be counted as an ad-
ditional photon, an electromagnetic cluster is required to
haveEt.25 GeV, uhu,1.0, and to pass all the same identi-
fication requirements as the primary photon.

For lepton identification, we use the cuts defined for the
primary leptons in the top quark searches@11,12#. We search
for electrons in the central calorimeter and for muons in the
central muon detectors. Candidates fort leptons are identi-
fied only by their hadronic decays—as a jet with one or three
high-pt charged tracks, isolated from other tracks and with
calorimeter energy cluster shapes consistent with thet hy-
pothesis@12#. Electrons andt ’s must haveEt.25 GeV as
measured in the calorimeter; muons must havept.25 GeV.
Electrons and muons must haveuhu,1.0 while t ’s must
have uhu,1.2. We summarize the kinematic selections in
Table I.

III. BACKGROUND ESTIMATES

The backgrounds to thebg sample are combinations of
the standard model production of photons andb quarks and
also jets misidentified as a photon~‘‘fake’’ photons! or as a
b-quark jet~‘‘fake’’ tags or mistags!. A jet may be misiden-
tified as a photon by fragmenting to a hard leadingp0. Other
jets may fake ab-quark jet through simple mismeasurement
of the tracks leading to a false secondary vertex.

We list these backgrounds and a few other smaller back-
grounds in Table II. The methods referred to in this table are
explained in the following sections.

The following sections begin with a discussion of the
tools used to calculate backgrounds. Section III C explains
why the method presented is necessary. The subsequent sec-
tions provide details of the calculation of each background in
turn.

A. Photon background tools

There are two methods we use to calculate photon back-
grounds, each used in a different energy region. The first
employs the CES detector embedded at shower maximum in
the central electromagnetic calorimeter@13#. This method is
based on the fact that the two adjacent photons from a high-
pt p0 will tend to create a wide CES cluster, with a larger
CES x2, when compared to the single photon expectation.
The method produces an event-by-event weight based on the
x2 of the cluster and the respective probabilities to find this
x2 for a p0 versus for a photon. In the decay of very high
energyp0’s the two photons will overlap, and thep0 will
become indistinguishable from a single photon in the CES by
the shape of the cluster. From studies ofp0’s from r decay
we have found that forEt.35 GeV the two photons coa-
lesce and we must use a second method of discrimination
that relies on the central preradiator system~CPR! @13#. This
background estimator is based on the fact that the two pho-
tons from ap0 have two chances to convert to an electron-
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positron pair at a radius before the CPR system, versus only
one chance for a single photon. The charged particles from
the conversion leave energy in the CPR, while an uncon-
verted photon does not. The implementation of the CPR
method of discriminating photons fromp0’s on a statistical
basis is similar to the CES method, an event-by-event
weight. When the two methods are used together to cover the
entire photonEt range for a sample, we refer to it as the
CES-CPR method.

Both these photon background methods have low dis-
crimination power at high photonEt . This occurs because
the weights for a single photon and a~background! p0 are
not very different. For example, in the CES method, at anEt
of 25 GeV, the probability for a photon to have a largex2 is
on the order of 20% while the background has a probability
of approximately 45%. For the CPR method, typical values
for a 25 GeV photon are 83% conversion probability for
background and 60% for a single photon.

B. b-quark tagging background tools

A control sample of QCD multi-jet events is used to study
the backgrounds to the identification ofb-quark jets@14#. For
each jet in this sample, theEt of the jet, the number of SVX
tracks associated with the jet, and the scalar sum of theEt in

the event are recorded. The probability of tagging the jet is
determined as a function of these variables for both positive
(Lxy.0) and negative tags (Lxy,0).

Negative tags occur due to measurement resolution and
errors in reconstruction. Since these effects produce negative
and positive tags with equal probability, the negative tagging
probability can be used as the probability of finding a posi-
tive tag due to mismeasurement~mistags!.

C. Background method

We construct a total background estimate from summing
the individual sources of backgrounds, each found by differ-
ent methods. In the CDF top analysis@11# one of the tagging
background procedures was to apply the positive tagging
probability to the jets in the untagged sample to arrive at a
total tagging background estimate. A similar procedure could
be considered for our sample.

However, in this analysis, a more complex background
calculation is necessary for two reasons. First, the param-
etrized tagging background described above is derived from
a sample of jets from QCD events@11# which have a differ-
ent fraction ofb-quark jets than do jets in a photon-plus-jets
sample. This effect is caused by the coupling of the photon to
the quark charge. Second,b quarks produceB mesons which
have a large branching ratio to semileptonic states that in-
clude neutrinos, producing real missingEt more often than
generic jets. When aE” t cut is applied, theb fraction tends to
increase. This effect is averaged over in the positive back-
ground parametrization so the background prediction will
tend to be high at smallE” t and low at largeE” t .

For these reasons, the positive tagging rate is correlated to
the existence of a photon and also the missingEt , when that
is required. In contrast, the negative tagging rate is found not
to be significantly correlated with the presence of realb
quarks. This is because the negative tagging rate is due only
to mismeasurement of charged tracks which should not be
sensitive to the flavor of the quarks.

TABLE I. Summary of the kinematic selection criteria for thebg1X sample that contains 1175 events.
Also shown are the kinematic criteria for the identification of other objects, such as missingEt , jets,
additionalb jets, and leptons. The lepton identification criteria are the same as used in the top discovery.

Object Selection

Basic sample requirements
Isolated photon Et.25 GeV, uhu,1.0
b-quark jet~SVX b tag! Et.30 GeV,uhu,2.0

Optional missingEt requirements
E” t .40 GeV
uDf(g2E” t)u ,168°

Optional other objects
Jets Et.15 GeV,uhu,2.0
Additional photons Et.25 GeV,uhu,1.0
Additional b-quark jets Et.30 GeV, SVXb tag
Electrons Et.25 GeV, uhu,1.0
Muons pt.25 GeV, uhu,1.0
Tau leptons Et.25 GeV, uhu,1.2

TABLE II. The summary of the backgrounds to the photon and
tag sample and the methods used to calculate them.

Source Method of calculation

gbb̄ andgcc̄ Monte Carlo

g1 mistag CES-CPR and tagging prediction

fake g andbb̄ or cc̄ CES-CPR

fake g and a mistag CES-CPR
Wg, Zg Monte Carlo, normalized to data
electrons fakingg ’s measured fake rate
cosmic rays cosmic characteristics
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The next sections list the details of the calculations of the
individual sources of the backgrounds. Both photons and
b-tagged jets have significant backgrounds so we consider
sources with real photons andb tags or jets misidentified as
photons orb jets ~‘‘fakes’’ !.

D. Heavy flavor Monte Carlo program

The background consisting of correctly identified photons
andb-quark jets is computed with an absolutely normalized
Monte Carlo program@15#. The calculation is leading order,

based onqq̄ andgg initial states and a finiteb-quark mass.
The Q2 scale is taken to be the square of the photonEt plus

the square of thebb̄ or cc̄ pair mass,Q25Et
21M2. A sys-

tematic uncertainty of 30% is found by scalingQ by a factor
of two and the quark masses by 10%. An additional 20%
uncertainty allows for additional effects which cannot be de-
termined by simply changing the scale dependence@15#.

In addition, we rely on the detector simulation of the
Monte Carlo program to predict the tail of the rapidly falling
E” t spectrum. The Monte Carlo program does not always pre-
dict this tail well. For example, a Monte Carlo program of
Z→e1e2production predicts only half the observed rate for
events passing the missingEt cut used in this analysis. We
thus include an uncertainty of 100% on the rate that events in
thebg sample pass theE” t cut. We combine the Monte Carlo
production andE” t sources of uncertainty in quadrature.

However, when thegbb̄ and gcc̄ backgrounds are totaled,
these common uncertainties are treated as completely corre-
lated.

E. Fake photons

The total of all backgrounds with fake photons can be
measured using the CES and CPR detectors. These back-
grounds, dominated by jets that fragment to an energetic
p0→gg and consequently are misidentified as a single pho-
ton, are measured using the shower shape in the CES system
for photonEt,35 GeV and the probability of a conversion
before the CPR forEt.35 GeV @16#. We find 5561
615% @17# of these photon candidates are actually jets misi-
dentified as photons.

For many of our subsamples we find this method is not
useful due to the large statistical dilution as explained in Sec.
III. This occurs because, for example, the probabilities for
background (p0’s) and for signal (g ’s) to convert before the
CPR are not too different. This results in a weak separation
and a poor statistical uncertainty. We find the method returns
100% statistical uncertainties for samples of less than ap-
proximately 25 photon candidates.

F. Real photon, fake tags

To estimate this background we start with the untagged
sample, and weight it with both the CES-CPR real photon
weight and the negative tagging~background! weight. This
results in the number of true photons with mistags in the final
sample. As discussed above, the negative tagging prediction

does not have the correlation to quark flavor and missingEt

as does the positive tagging prediction.
As a check, we can look at the sample before the tagging

and E” t requirements. In this sample we find 197 negative
tags while the estimate from the negative tagging prediction
is 312. This discrepancy could be due to the topology of the
events—unlike generic jets, the photon provides no tracks to
help define the primary vertex. The primary vertex could be
systematically mismeasured leading to mismeasurement of
the transverse decay lengthLxy for some events. We include
a 50% uncertainty on this background due to this effect.

G. Estimate of remaining backgrounds

There are several additional backgrounds which we have
calculated and found to very small. The production ofWg
and Zg events may provide background events since they
produce real photons andb or c quarks from the boson decay
(W6→cs̄,Z→bb̄). The E” t would have to be fake, due to
mismeasurement in the calorimeter. We findW/Zg events in
the CDF data using the same photon requirements as the
search. TheW/Z is required to decay leptonically for good
identification. We then use a Monte Carlo program to mea-
sure the ratio of the number of these events to the number of
events passing the fullgbE” t search cuts. The product of
these two numbers predicts this background to be less than
0.1 events.

The next small background isW→en plus jets where the
electron track is not reconstructed, due either to bremsstrah-
lung or to pattern-recognition failure. Using
Z→e1e2events, we find this probability is small, about
0.5%. Applying this rate to the number of observed events
with an electron,b tag and missingEt we find the number of
events expected in our sample to be negligible.

The last small background calculation is the rate for cos-
mic ray events. In this case there would have to be a QCD
b-quark event with a cosmic ray bremsstrahlung in time with
the event. The missingEt comes with the unbalanced energy
deposited by the cosmic ray. We use the probability that a
cosmic ray leaves an unattached stub in the muon chambers
to estimate that the number of events in this category is also
negligible.

The total of all background sources is summarized in
Table III. The number of observed events is consistent with
the calculation of the background for both thegb sample and
the subsamples withE” t .

IV. DATA OBSERVATIONS

In this section we report the results of applying the final
event selection to the data. First we compare the total back-
ground estimate with the observed number of events in the
bg sample, which requires only a photon withEt.25 GeV
and ab-tagged jet withEt.30 GeV. Since most models of
supersymmetry predict missingEt , we also tabulate the
backgrounds for that subsample.

Table III summarizes the data samples and the predicted
backgrounds. We find 98 events have missingEt.20 GeV.
Six events have missingEt.40 GeV, and only two of those
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events pass theDf(g2E” t),168° cut.
Figures 1 and 2 display the kinematics of the data with a

background prediction overlayed. Because of the large statis-
tical uncertainty in the fake photon background, the predic-
tion for bins with small statistics have such large uncertain-
ties that they are not useful. In this case we approximate the
fake photon background by applying the fake photon mea-
surement and the positive tagging prediction to the large-
statistics untagged sample. This approximation only assumes

that realb quarks do not produce substantial missingEt .
Each component of the background is normalized to the
number expected as shown in Table III; the total is then
normalized to the data in order to compare distributions. We
observe no significant deviations from the expected back-
ground.

Several events appear on the tails of some of the distribu-
tions. Since new physics, when it first appears, will likely be
at the limit of our kinematic sensitivity, the tail of any kine-
matic distribution is a reasonable place to look for anoma-
lous events. However, a few events at the kinematic limit do

FIG. 2. Comparison of the data to the background prediction
~dashed line!, and the the baseline SUSY model of Sec. V A 2~dot-
ted line!, each normalized to the 98 events of thegb data withE” t

.20 GeV. The distributions are as follows:~a! Ht ~total energy!,
~b! Df between the photon and theE” t , ~c! number of jets with
Et.15 GeV, and~d! Df between the missingEt and the nearest
jet. For display, the SUSY model event yield is scaled up by a factor
of 4.

TABLE III. Summary of the primary background calculation. Thegbb̄ andgcc̄ systematic uncertainties
are considered 100% correlated. The column labeledE” t.40 GeV also includes the requirement that
Df(g2E” t),168°. The entry for fake photons in the column labeledE” t.40 GeV is not measured but is
estimated using the assumption that 50% of photons are fakes. This number is assigned a 100% uncertainty.

Source Events EventsE” t.20 EventsE” t.40, Df

gbb̄ 9965650 961610 0.460.360.4

gcc̄ 16169681 76268 0.060.560.5

g1mistag 12461662 1060.365.2 0.760.0560.5
fake g 648669694 4962267 1.061.060.2
Wg 261 0.460.260.4 0.060.160.1
Zg 664 0.860.660.8 0.0860.0660.08
e→g 0.460.1 0.460.1 0.16.03
cosmics 0616 065 0
total background 10406726172 77623620 2.361.261.1
data 1175 98 2

FIG. 1. Comparison of the data to the background prediction
~dashed line!, and the baseline supersymmetry~SUSY! model of
Sec. V A 2~dotted line!. The data consist of the 98 events of thegb
data withE” t.20 GeV, except in~b! which contains noE” t require-
ment. In each case the predictions have been normalized to the data.
The distributions are as follows:~a! the photonEt , ~b! the missing
Et , ~c! the b-tagged jetEt and ~d! the Et of the second jet with
Et.15 GeV, if there is one. For display, the SUSY model event
yield is scaled up by a factor of 4 for~a!, ~c! and~d! and a factor of
40 for ~b!.
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not warrant much interest unless they have many character-
istics in common or they have additional unusual properties.
We find two events pass the largest missingEt cut of 40
GeV; we examine those events more closely below. We also
observe there are five events with large dijet mass combina-
tions and we also look at those more closely below. In Sec.
IV C we search for other anomalies in our sample.

A. Analysis of events with large missingEt

Six events pass thea priori selection criteria requiring a
photon,b tag, andE” t.40 GeV.~See Table IV.! Two of these
events also pass theDf(g2E” t),168° requirement. We
have examined these two events to see if there are indica-
tions of anything else unusual about them~for example, a
high-pt lepton, or a second jet which forms a large invariant
mass with the firstb jet, to take signals of GMSB and
Higgsino models, respectively!.

The first event~67537/59517! does not have the charac-
teristics of a typicalb tag. It is a two-track tag~which has a
worse signal-to-noise ratio! with the secondary vertex con-
sistent with the beam pipe radius~typical of an interaction in
the beam pipe!. The two tracks have apt of 2 and 60 GeV,

respectively; this highly asymmetric configuration is unlikely
if the source is ab jet. There are several other tracks at the
samef as the jet that are inconsistent with either the primary
or secondary vertex. We conclude theb-tag jet in this event
is most likely to be a fake, coming from an interaction in the
beam pipe.

The second event has a typicalb tag but there are three
jets, and all three straddle cracks in the calorimeter (h
50.97,21.19,20.09), implying theE” t is very likely to be
mismeasured.

In both events we judge by scanning that the primary
vertex is the correct choice so that a mismeasurement of the
E” t due to selecting the wrong vertex is unlikely. While we
have scanned these two events and find they are most likely
not truegbE” t events, we do not exclude them from the event
sample as the background calculations include these sources
of mismeasured events.~See Fig. 3.!

FIG. 3. Comparison of thegb mass in the data to the back-
ground prediction~dashed line!, normalized to the 1175 events of
the gb data.

FIG. 4. The distributions for~a! M (b, j ) and ~b! M (g,b, j ) for
theE” t.20 GeV events as shown in Fig. 5. Only 63 of the 98 events
have a second jet and make it into this plot. The data are compared
to a background prediction~dashed line!, and the baseline SUSY
model of Sec. V A 2~dotted line!, each normalized to the data. The
Monte Carlo prediction is scaled up by a factor of 3.

TABLE IV. Characteristics of the six events withE” t.40 GeV; the two marked with an asterisk also pass theDf(g2E” t),168°
requirement. All units are GeV except forDf which is in degrees. The columns are theEt of the photon in the event, the missingEt , the
mass of theb jet and the second highestEt jet in the event, theEt of the b jet, theEt of the jets other than theb jet, theDf between the
photon and the missingEt , theDf between the the missingEt and the nearest jet, and theHt of the event~scalar sum of theEt , the missing
Et and thept of any muons in the event!.

Run/Event g Et E” t M (b, jet) b Et jets Et Df(g2E” t) Df( j near2E” t) Ht

60951/189718 121 42 57 61 67,26,15 177 11 342
64997/119085 222 44 97 173 47 170 1 495
63684/15166 140 57 63 35 25,20,15 175 6 388
67537/59517* 36 73 399 195 141,113,46,17 124 20 595
69426/104696 33 58 266 143 119 180 3 344
68464/291827* 93 57 467 128 155,69 139 16 405
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B. Analysis of five high-mass events

If the events include production of new, heavy particles,
we might observe peaks, or more likely, distortions in the
distributions of the masses formed from combinations of ob-
jects. To investigate this, we create a scatter plot of the mass
of the b-quark jet and the second highestEt jet versus the
mass of the photon,b-quark jet and second highest jet in
Figs. 4 and 5.

As seen in the figures, the five events at highestM (b, j )
seem to form a cluster on the tail of the distribution. There
are 63 events in the scatter plot which are the subset of the
98 events withE” t.20 GeV which contain a second jet. The
five events include the two~probable background! events
with E” t.40 GeV andDf(g2E” t),168° and three events
with largeHt (.400 GeV). Since these events were selected
for their high mass, we expect they would appear in the tails
of several of the distributions such asHt . Table V shows the
characteristics of these five events.

In order to see if these events are significant, we need to
make an estimate of the expected background. We define the
two regions indicated in Fig. 5. The small box is placed so
that it is close to the five events.1 This is intended to maxi-
mize the significance of the excess. The large box is placed
so that it is as far from the five events as possible without
including any more data events. This will minimize the sig-
nificance. The two boxes can serve as informal upper and
lower bounds on the significance. Since these regions were
chosen based on the data, the excess over background cannot
be used to prove the significance of these events. These es-
timates are intended only to give a guideline for the signifi-
cance.

We cannot estimate the background to these five events
using the CES and CPR methods described in Sec. III A due
to the large inherent statistical uncertainties in these tech-
niques. We instead use the following procedure. The list of
backgrounds in Sec. III defines the number of events from
each source with no restriction onM (b, j ). We normalize
these numbers to the 63 events in the scatter plot. We next
derive the fraction of each of these sources we expect at high
M (b, j ). We multiply the background estimates by the frac-
tions. The result is a background estimate for the high-mass
regions.

To derive the fractions of background sources expected at
high M (b, j ) we look at each background in turn. The fake

photons are QCD events where a jet has fluctuated into
mostly electromagnetic energy. For this source we use the
positiveLxy background prediction@11# to provide the frac-
tion. This prediction is derived from a QCD jet sample by
parametrizing the positive tagging probability as a function
of several jet variables. The probability for each jet is
summed over all jets for the untagged sample to arrive at a
tagging prediction. Since the prediction is derived from QCD
jets we expect it to be reliable for these QCD jets also. Run-
ning this algorithm~called ‘‘Method 1’’ @11#! on the un-
tagged photon andE” t sample yields the fraction of expected
events in each of the two boxes. The fractions are summa-
rized in Table VI.

The second background source considered consists of real
photons with fake tags. We calculate this contribution using
the measured negative tagging rate applied to all jets~i.e.
beforeb tagging! in the sample. Finally, the real photon and
heavy flavor backgrounds are calculated based on the Monte
Carlo calculation. The results from estimating the fractions
are shown in Table VI.

The estimates of the sources of background for the 63
events at allM (b, j ) have statistical uncertainties, as do the

1Note that events cannot be above the diagonal in theM (g,b, j )
2M (b, j ) plane, so the true physical area is triangular.

TABLE V. Characteristics of events withM (b, jet).300 GeV. For a complete description of the quantities, see Table IV.

Run/Event g Et E” t M (b, jet) b Et jet Et’s Df(g2E” t) Df( j near2E” t) Ht

66103/52684 106 24 433 170 135,57 152 29 517
66347/373704 122 32 369 268 125,42 101 14 605
67537/59517 36 73 399 195 141,113,46,17 124 20 595
68333/233128 38 39 395 99 282,212 121 3 600
68464/291827 93 57 467 128 155,69 139 16 405

FIG. 5. M (b, j ) versus M (g,b, j ) for the events withE” t

.20 GeV as shown in Fig. 5. Only 63 of the 98 events have a
second jet and make it into this plot. The small dots are the result of
making the scatter plot for the untagged data~passing all other cuts!
and weighing it with the positive tagging prediction. The estimates
of background expected in the boxes are found by the method de-
scribed in the text.
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fractions in Table VI; we include both in the uncertainty in
the number of events in the high-mass boxes. We propagate
the systematic uncertainties on the backgrounds to the 63
events at allM (b, j ) and include the following systematics
due to the fractions:

~1! 50% of the real photons and mistag background cal-
culations for the possibility that the quark and gluon content,
as well as the heavy flavor fraction, in photon events may
differ from the content in QCD jets.

~2! 50% of the real photons and mistag background cal-
culations for the possibility that using the positive tagging
prediction to correct the Monte Carlo calculation for theE” t
cut may have a bias.

~3! 100% of the real photon and real heavy flavor back-
ground calculations for the possibility that the tails in the
Monte CarloM (b, j ) distribution may not be reliable.

The results of multiplying the backgrounds at allM (b, j )
with the fractions expected at highM (b, j ) are shown in
Table VII.

The result is that we expect 5.561.561.6 events in the
big box, completely consistent with the five observed. We
expect 1.260.3560.38 events in the small box. The prob-
ability of observing five in the small box is 1.6%, a 2.7s
effect,a posteriori.

We next address a method for avoiding the bias in decid-
ing where to place a cut when estimating backgrounds to
events on the tail of a distribution. This method was devel-
oped by the Zeus collaboration for the analysis of the signifi-
cance of the tail of theQ2 distribution @18#. Figure 6 sum-
marizes this method. The Poisson probability that the
background fluctuated to the observed number of events~in-
cluding uncertainties on the background estimate! is plotted
for different cut values. We use the projection of the scatter
plot onto theM (b, j ) axis and make the cut on this variable
since this is where the effect is largest. We find the minimum
probability is 1.431023, which occurs for a cut ofM (b, j )

.400 GeV. We then perform 10 000 ‘‘pseudo-experiments’’
where we draw the data according to the background distri-
bution derived above and find the minimum probability each
time. We find 1.2% of these experiments have a minimum
probability lower than the data, corresponding to a 2.7s fluc-
tuation. Including the effect of the uncertainties in the the
background estimate does not significantly change the an-
swer.

We note that this method is one way of avoiding the bias
from deciding in what region to compare data and back-
grounds after seeing the data distributions. It does not, how-
ever, remove the bias from the fact that we are investigating
this plot, over all others, because it looks potentially incon-
sistent with the background. If we make enough plots one of
them will have a noticeable fluctuation. We conclude that the
five events on the tail represent something less than a 2.7s
effect.

TABLE VII. Summary of the estimates of the background at highM (b, j ) in the boxes in the
M (g,b, j )-M (b, j ) plane defined in Fig. 5.

Source Big box Small box

fake g 3.361.560.5 0.7060.3360.10
g, fake tag 0.9760.0960.69 0.2860.0560.20

gbb̄ 0.7560.2661.18 0.1660.0660.26

gcc̄ 0.4460.2660.79 0.1160.0660.17

total 5.561.561.6 1.2460.3560.38

TABLE VI. The fraction of the 63gb jE” t events for each back-
ground expected to fall into the high-M (b, j ) boxes defined in Fig.
5.

Source Big box Small box

fake g 0.08060.007 0.01760.003
g, fake tag 0.11260.009 0.03260.005

gbb̄ 0.1060.03 0.02260.007

gcc̄ 0.0860.04 0.01860.008

FIG. 6. The upper plot is the number of events passing a cut on
M (b, j ) for the data and the positive tagging prediction. The lower
plot is the probability that the number of events passing a cut on
M (b, j ) is consistent with the positive tagging prediction. The ex-
pected number of experiments with such a low minimum probabil-
ity is derived from 10 000 simulated experiments drawn from the
distribution of the expected background.
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C. Additional objects in the data sample

We have searched thegb data sample for other unusual
characteristics. The creation and decay of heavy squarks, for
example, could produce an excess of events with multiple
jets. In Fig. 7 we histogram the number of events withN or
more jets. Table VIII presents the numbers of events ob-
served and expected. Some backgrounds are negative due to
the large statistical fluctuations of the fake photon back-
ground. When all backgrounds are included the distribution
in the number of jets in the data is consistent with that from
the background.

We have searched in the sample of events with a photon
andb-tagged jet for additional high-Et objects using the re-
quirements defined in Sec. II E. We find no events containing
a second photon. We find no events containing a hadronict
decay or a muon. We find one event with an electron; its

characteristics are listed in Table IX. In scanning this event,
we note nothing else unusual about it.

We find 8 events of the 1175 which have a photon and
b-tagged jet containing a secondb-tagged jet with Et
.30 GeV.~Out of the 1175, only 200 events have a second
jet with Et.30 GeV.! Unfortunately, this is such a small
sample that we cannot use the background calculation to find
the expected number of these events~the photon background
CES-CPR method returns 100% statistical uncertainties!.
One of the events with two tags has 30 GeV of missingEt so
it is in the 98-eventE” t.20 GeV sample.

V. LIMITS ON MODELS OF SUPERSYMMETRY

In the following sections we present limits on three spe-
cific models of supersymmetry@19#. Each of these models
predicts significant numbers of events with a photon, a
b-quark jet and missing transverse energy~i.e. gbE” t).

As is typical for supersymmetry models, each of these
shows the problems in the process of choosing a model and
presenting limits on it. Each of these models is very specific
and thus represents a very small area in a very large param-
eter space. Consequently the odds that any of these is the
correct picture of nature is small. They are current theories
devised to address current concerns and may appear dated in
the future.~This aspect is particularly relevant to the experi-
mentalists, who often publish their data simultaneously with
an analysis depending on a current model.! In addition these
models can show sensistivity to small changes in the param-
eters.

The first model is based on a particular location in MSSM
parameter space which produces the signature ofgbE” t1X.
We consider both direct production of charginos and neu-
tralinos and, as a second model, indirect production of
charginos and neutralinos through squarks and gluinos. The
third model is based on the gauge-mediated concept, dis-
cussed further below.

A. x̃2
0\gx̃1

0 model

This theoretical model was originally proposed in the con-
text of the anomalous CDFeeggE” t event@1,2#. Here, how-
ever, we go beyond the constraints of this single event and
only retain the essential elements of the model, optimized for
CDF detector acceptence and efficiency. This is a MSSM

FIG. 7. The distribution of the number of events withN or more
jets, represented by the solid points. The boxes are centered on the
background prediction and their size reflects plus and minus ones
of combined statistical and systematic uncertainty on the back-
ground prediction. The distributions are~a! all events with a photon
andb-tagged jet,~b! all events with a photon,b-tagged jet andE” t

.20 GeV. Some background predictions are negative due to the
large statistical fluctuations on the fake photon background method.
The results are also tabulated in Table VIII.

TABLE VIII. Numbers of events withN or more jets and the expected Standard Model background. Some background predictions are
negative due to the large statistical fluctuations on the fake photon background method.

Min Njet Observed,E” t.0 GeV Expected,E” t.0 GeV Observed,E” t.20 GeV Expected,E” t.20 GeV

1 1175 10406726172 98 77623620
2 464 394644663 63 39618612
3 144 82624614 25 2861263
4 36 1761163 7 2

5 10 2 3 2

6 5 2 1 2

7 2 2 0 2

8 1 2 0 2
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model without any specific relation to a high-energy theory.
It does not assume high-energy constraints such as the uni-
fication of the sfermion or scalar masses as is assumed in the
models inspired by supergravity~SUGRA! @19#. In this sec-
tion and the following section we develop a baseline model
point in parameter space. The final limits on this model will
be found for this point and for some variations around this
point.

1. Direct gaugino production in thex̃2
0\gx̃1

0 model

The first part of the model@2# is a light stop squark (t̃ ),
the superpartner to the top quark. In this model thex̃ i

6 then

decays tot̃ b and thet̃ decays tox̃1
0c. The second important

feature of the model is the decayx̃2
0→gx̃1

0 which dominates
in a particular region of MSSM parameter space. With these
decays dominating, any event where ax̃ i

6 and ax̃2
0 is pro-

duced, either directly or indirectly through the strong produc-
tion and decays of squarks and gluinos, will contain a pho-
ton, ab-quark jet and missingEt .

The heart of the model@2# is the decayx̃2
0→gx̃1

0 so we
examine in detail the parameter space where this decay
dominates. The branching ratio of this decay is large when
one of the neutralinos is a pure photino and one is pure
Higgsino. To make a pure photino, we setM15M2. The
photino mass is then equal toM2. To make a pure Higgsino
we set tanb'1. To avoid the theoretical bias against a very

small tanb @which makes the top Yukawa coupling go to
infinity before the grand unified theory~GUT! scale# we will
use tanb51.2. In this case, the Higgsino mass is approxi-
mately equal toumu. The above is purely a result of the form
of the neutralino mass matrix. For definitions of these model
parameters and discussions of their roles in SUSY models
please see@19#.

This leaves two free parameters to define the charginos
and neutralinos,M2 and m. Figure 8 shows five regions in
the m-M2 plane; Table X summarizes the regions. First we
note that in region 5 (m.0) we do not observe the decay
x̃2

0→gx̃1
0 because typicallyx̃1

6,x̃2
0 and x̃2

0→W* x̃1
6 .

For m,0, there are four regions. In region 2, which is the
region suggested in@2#, the x̃2

0 is the photino,x̃1
0 is the

Higgsino, and the decayx̃2
0→gx̃1

0 dominates. In region 3,x̃2
0

is the Higgsino andx̃1
0 is the photino and the photon decay

still dominates. In region 1 the photino has become so heavy
it is now the x̃3

0. In region 4, the Higgsino has become the

x̃3
0. In regions 3 and 4 it is still possible to get photon decays,

sometimes evenx̃3
0→gx̃2

0.
We choose to concentrate on region 2 where the photon

plus b decay signature can be reliably estimated by the
Monte Carlo event generatorPYTHIA @20#. The x̃2

0→gx̃1
0 de-

cay dominates here. We also note that in this region the cross
section forx̃2

6x̃2
0 is 3–10 times larger than the cross section

for x̃1
6x̃2

0 even though thex̃2
6 is significantly heavier than

the x̃1
6 . This is due to the largeW̃ component of thex̃2

6 .
Since region 2 is approximately one dimensional, we scan

in only one dimension, along the diagonal, when setting lim-
its on x̃2

6x̃2
0 production. To decide where in the region to

place the model, we note that the mass ofx̃2
0 equalsM2 and

the mass ofx̃1
05umu in this region. To give the photon added

boost for a greater sensitivity, we will setM2 significantly
larger thanumu. This restricts us to the upper part of region 2.
The dotted line in Fig. 8 is the set of points defined by all
these criteria and is given byM250.89*umu139 GeV.

TABLE IX. Characteristics of the one event with a photon, tagged jet, and an electron.

Run/Event g Et E” t M (g,e) b Et electronEt Df(g2E” t) Ht

63149/4148 42 17 21 106 33 43 212

FIG. 8. The five regions in the supersymmetry parameterM2-m
plane where different mass hierarchies occur. The three lightest neu-

tralinos are denotedx̃1,2,3
0 , respectively. The dashed line is the locus

of points scanned for the limits and is given byM250.89umu
139 GeV. The dot is the baseline model described in the text.

TABLE X. The approximate content of the neutralinos in the
four regions of them-M2 plane withm,0 shown in Fig. 8. The

symbols h̃a and h̃b are simply the antisymmetric and symmetric

combinations ofh̃1
0 and h̃2

0 @19#.

Region x̃1
0 x̃2

0 x̃3
0 x̃4

0

1 h̃b Z̃ g̃ h̃a

2 h̃b g̃ Z̃ h̃a

3 g̃ h̃b Z̃ h̃a

4 g̃ Z̃ h̃b h̃a
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The next step is to choose at̃ mass. It is necessary that
x̃1

0, t̃ ,x̃1
6 for the decayx̃1

6 ,x̃2
6→b t̃ to dominate. We find

that in region 2,x̃1
6'M2. If the t̃ mass is near thex̃1

6 , the

b will only have a small boost, but thex̃1
0 in the decayt̃

→cx̃1
0 will have a greater boost, giving greaterE” t . If the t̃

mass is near thex̃1
0, the opposite occurs. In Monte Carlo

studies, we find considerably more sensitivity if thet̃ mass is
near thex̃1

0. We set thet̃ mass to beM x̃
1
015 GeV. Since the

x̃2
6x̃2

0 production cross section is larger thanx̃1
6x̃2

0 and will
be detected with better efficiency, when we simulate direct
production we set the Monte Carlo program to produce only
x̃2

6x̃2
0 pairs. The final limit is expressed as a cross section

limit plotted versus thex̃2
6 mass~which is very similar to the

x̃2
0 mass!. This model is designed to provide a simple, intui-

tive signature that is not complicated by branching ratios and
many modes of production.

For the baseline model, we chose a value ofm near the
exclusion boundary of current limits@21# on a t̃ which de-
cays tocx1

0. The point we chose isM x̃
1
0580 GeV. From the

above prescription, this corresponds toM x̃
1
052m

580 GeV, M x̃
2
05M x̃

1
65M25110 GeV, andM t̃585 GeV.

This point, indicated by the dot in Fig. 8, gives the lightest
mass spectrum with good mass splittings that is also near the
exclusion boundary from the CERNe1e2 collider LEP and
DO Collaborations.

2. Squarks and gluinos

Now we address the squarks and gluinos, which can pro-
ducex̃ i

6x̃2
0 in their decays, and sleptons, which can appear in

the decays of charginos and neutralinos. We will set the
squarks~the lighterb̃ and both left and rightũ, d̃, s̃ and c̃)
to 200 GeV and the gluino to 210 GeV. The heaviert̃ andb̃
are above 1 TeV. The gluino will decay to the squarks and
their respective quarks. The squarks will decay to charginos
or neutralinos and jets. This will maximize the production of
x̃ i

6x̃2
0 and therefore the sensitivity.

This brings us to the limit on indirect production in the
x̃2

0→gx̃1
0 model. The chargino and neutralino parameters are

fixed at the baseline model parameters. We then vary the
gluino mass and set the squark mass according toMG̃
5MQ̃110 GeV. The limit is presented as a limit on the
cross section plotted versus the gluino mass. When the
gluino mass crosses thet̃ t̄ threshold at 260 GeV, the gluino

can decay tot̃ t̄ and production ofx̃ i
6x̃2

0 decreases. However,
since all squarks are lighter than the gluino, the branching
ratio to thet̃ is limited and production will not fall dramati-
cally.

Some remaining parameters of the model are now ad-
dressed. Sleptons could play a role in this model. They have
small cross sections so they are not often directly produced,
but if the sleptons are lighter than the charginos, the chargi-
nos can decay into the sleptons. In particular, the chargino
decay t̃ b may be strongly suppressed if it competes with a
slepton decay. We therefore set the sleptons to be very heavy
so they do not compete for branching ratios. We setMA
large. The lightest Higgs boson turns out to be only 87 GeV
due to the corrections from the light third-generation
squarks. This is below current limits so we attempted to tune
the mass to be heavier and found it was difficult to achieve,
given the light t̃ and low tanb.

Using thePYTHIA Monte Carlo program, we find that 69%
of all events generated with squarks and gluinos have the
decay x̃2

0→gx̃1
0, 58% have the decayx̃ i

6→ t̃ b, and 30%
have both.~To be precise, the light stop squark was excluded
from this exercise, as it decays only tocx1

0. A light stop pair

thus gives the signaturecc̄1E” t , one of the signatures used
to search for it,@21,22# but it is not of interest here.!

3. Acceptances and efficiencies

This section describes the evaluation of the acceptance
and efficiency for the indirect production ofx̃ i

6x̃ i
0 through

squarks and gluinos and the direct production ofx̃2
6x̃2

0 in the

MSSM model ofx̃2
0→gx̃1

0. We use thePYTHIA Monte Carlo
program with the CTEQ4L parton distribution functions
~PDFs! @23#. The efficiencies for squark and gluino produc-
tion at the baseline point are listed in Table XI.

The total efficiencies, which will be used to set production
limits below, are listed in Table XII for the production of
x̃ i

6x̃ i
0 through squarks and gluinos, and in Table XIII for

direction production. Typical efficiencies are 2 –3 % in the
former case, and 1% in the latter.

4. Systematic uncertainty

Some systematics are common to the indirect production
and the direct production. The efficiencies of the isolation
requirement in the Monte Carlo calculation andZ→e1e2

control sample cannot be compared directly due to differ-
ences in theEt spectra of the electromagnetic cluster, and the

TABLE XI. Efficiencies for the baseline point with squark and gluino production. The efficiencies do not
include branching ratios.

Cuts Cumulative efficiency (%)

Photon Et.25 GeV,uhu,1.0, ID cuts 50
One jet Et,corr.30 GeV,uhu,2.0 47
One SVX tag Et,corr.30 GeV,uhu,2.0 4.3
E” t .40 GeV 2.9
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multiplicity and Et spectra of associated jets. The difference
(14%) is taken to be the uncertainty in the efficiency of the
photon identification cuts. The systematic uncertainty on the
b-tagging efficiency(9%) is the statistical uncertainty in
comparisons of the Monte Carlo calculation and data. The
systematic uncertainty on the luminosity(4%) reflects the
stability of luminosity measurements.

We next evaluate systematics specifically for the indirect
production. The baseline parton distribution function is
CTEQ4L. Comparing the efficiency with this PDF to the
efficiencies obtained with Martin-Roberts-Stirling set D08
(MRSD08) @24# and Glock-Reya-Vogt 1994~GRV 94! lead-
ing order~LO! results@25# for the squark and gluino produc-
tion, we find a standard deviation of 5%. Turning off initial-
and final-state radiation~ISR/FSR! in the Monte Carlo cal-
culation increases the efficiency by 1% and 2%, respec-
tively, and we take half of these as the respective systemat-
ics. Varying the jet energy scale by 10% causes the
efficiency to change by 4%. In quadrature, the total system-
atic for the indirect production is 18%.

Evaluating the same systematics for the direct production,
we find the uncertainty from the choice of the PDF is 5%,
from the ISR/FSR is 2%/9%, and from the jet energy scale
is 4%. In quadrature, the total systematic uncertainty for the
direct production is 20%.

5. Limits on thex̃2
0\gx̃1

0 model, indirect production

To calculate an approximate upper limit on the number of
gbE” t events from squark and gluino production, we use the
limit implied from the observed two events, including the
effect of the systematic uncertainties@26,27#. We divide the

Poisson probability for observing<2 events for a given ex-
pected signal and background, convoluted with the uncer-
tainties, by the Poisson probability for observing<2 events
for a given background only, also convoluted with the uncer-
tainties. The number of expected signal events is increased
until the ratio falls below 5%, leading to an approximate
95% confidence level limit of 6.3 events. Other limits in this
paper are computed similarly.

This upper limit, the efficiency described above~also see
Table XII!, and the luminosity, 85 pb21, are combined to
find the cross section limit for this model. The theoretical
cross section is calculated at NLO using thePROSPINOpro-
gram @28#. The effect is to uniformly increase the strong
interaction production cross sections by 30%~improving the
limit !. At the baseline point~including squarks and gluinos!
described above, we expect 18.5 events, so this point is ex-
cluded. Next we find the limit as a function of the gluino
mass. The squark mass is 10 GeV below the gluino mass and
the rest of the sparticles are as in the baseline point. We can
exclude gluinos out to a mass of 245 GeV in this model. The
limits are displayed in Table XII and Fig. 9.

6. Limits on thex̃2
0\gx̃1

0 model, direct production

In this case the number of observed events~two! is con-
voluted with the systematic uncertainty to obtain an upper
limit of 6.4 events (95% C.L.!. To calculate the expected
number of events from the direct production ofx̃2

6x̃2
0 we

vary m, and calculate theM t̃ and M2 as prescribed above.
The results are shown in Table XIII and Fig. 10. For these
values of the model parameters, the branching ratiosx̃2

6

→ t̃ b and x̃2
0→gx̃1

0 are 100%.

TABLE XII. Efficiency times acceptance and limits on indirect production ofx̃ i
6x̃2

0 though squarks and

gluinos. Approximately 30% of events contain the decaysx̃2
0→gx̃1

0 and x̃ i
6→ t̃ b. The efficiencies in this

table are found as the number of events passing all cuts divided by the number of events that contain both of
these decays. The product of the cross section times the branching ratio listed in each case is for all open
channels of SUSY production. Masses are given in GeV~following our convention of quotingM3c2) and
cross sections are in pb. The second row is the baseline point.

Mg̃ (GeV) Mq̃ (GeV) s th3BR ~pb! Ae (%) s95% l im3BR ~pb!

185 175 16.8 1.97 3.76
210 200 7.25 2.98 2.49
235 225 3.49 3.23 2.30
260 250 1.94 2.69 2.76
285 275 1.24 2.16 3.45

TABLE XIII. Efficiencies and limits on direct production ofx̃2
6x̃2

0. Branching ratiosx̃2
0→gx̃1

0 andx̃ i
6→ t̃ b→(x̃1

0c)b are 100%. Masses
are in GeV and the cross sections are in pb. The third row is the baseline point.

M x̃
1
052m M x̃

2
05M2, M x̃

1
6 M x̃

2
6 M t̃ s th Ae (%) s95% l im

25 61 71 110 30 0.23 0.93 8.06
62 95 94 130 67 0.034 1.41 5.33
79 110 108 140 85 0.018 1.29 5.85
93 123 118 150 98 0.0075 1.34 5.58
118 146 140 170 123 0.0022 1.27 5.94
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As can be seen from Fig. 10, the predicted rates from
direct production are smaller than the measured limits by
1–3 orders of magnitude, and no mass limit on thex̃2

6 mass
can be set.

B. Gauge-mediated model

This is the second SUSY model@19# which can give sub-
stantial production of the signaturegbE” t . In this model the

difference between the mass of the standard model particles
and their SUSY partners is mediated by gauge~the usual
electromagnetic, weak, and strong! interactions@29# instead
of gravitational interactions as in SUGRA models. The
SUSY model is assumed broken in a hidden sector. Messen-
ger particles gain mass through renormalization loop dia-
grams which include the hidden sector. SUSY particles gain
their masses through loops which include the messenger par-
ticles.

This concept has the consequence that the strongly inter-
acting squarks and gluinos are heavy and the right-handed
sleptons are at the same mass scale as the lighter gauginos. A
second major consequence is that the gravitino is very light
~eV scale! and becomes the LSP. The source of theb quarks
is no longer the third generation squarks, but the decays of
the lightest Higgs boson. If the lightest neutralino is mostly
Higgsino, the decayx̃1

0→hG̃ can compete with the decays

x̃1
0→ZG̃ and x̃1

0→gG̃. The Higgs boson decays tobb̄ as
usual. Since SUSY particles are produced in pairs, each
event will contain two cascades of decays down to twox̃1

0’s,
each of which in turn will decay by one of these modes. If
one decays to a Higgs boson and one decays to a photon, the
event will have the signature of a photon, at least one
b-quark jet, and missingEt .

We will use a minimal gauge-mediated model with one
exception. This MGMSB model has five parameters, with the
following values:

L561–90 TeV, the effective SUSY-breaking scale;
M /L53, whereM is the messenger scale;
N52 the number of messenger multiplets;
tanb53;
the sign ofm,0.
We will compute the MGMSB model using the GMSB

option of ISAJET @30#. We then reenter the model using the
MSSM options so that we can make one change: we setm
520.75M1. This makes the lightest neutralino a Higgsino
so the branching ratio forx̃1

0→hG̃ will be competitive with

x̃1
0→gG̃. We produce all combinations ofx̃ i

6 andx̃ j
0 , which

are the only significant cross sections. We varyL which
varies the overall mass scale of the supersymmetric particles.

The model masses and branching ratios are given in Table
XIV. The branching ratio is defined as the number of events
with x̃1

0→gG̃ andx̃1
0→hG̃ divided by the number of events

produced from all sources predicted by the model. We are
using ISAJET with the CTEQ4L parton distribution function.
The first point appears to have an unusually large efficiency

FIG. 9. The limits on the cross section times the branching ratio

for SUSY production ofgbE” t events in thex̃2
0→gx̃1

0 model. All
production processes have been included; the dominant mode is the
production of squarks and gluinos which decay to charginos and
neutralinos. The overall branching ratio to thegbE” t topology is
approximately 30%.

FIG. 10. The limits on thex̃2
6x̃2

0 cross section in thex̃2
0→gx̃1

0

SUSY model. The branching ratiosx̃2
0→gx̃1

0 and x̃ i
6→ t̃ b

→(x̃1
0c)b are taken to be 100%.

TABLE XIV. The models used in the limits on the GMSB sce-
nario. The lightest Higgs boson is 100 GeV. The masses are in GeV
and the branching ratios are in %.

M x̃
1
0 M x̃

2
0 M x̃

1
6 BR(x̃1

0→gG̃) BR(x̃1
0→hG̃)

113 141 130 90 2
132 157 147 62 18
156 178 170 33 40
174 194 186 22 50
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because of other sources forb quarks which are not reflected
in the definition of the signal branching ratio. We use the
systematic uncertainties evaluated using the direct produc-
tion of the x̃2

0→gx̃1
0 model.

Taking the two events observed, and convoluting with a
20% systematic uncertainty gives an upper limit of 6.4
events observed at 95% C.L. The final limits on this model
are presented in Table XV and are displayed in Fig. 11.
Again, one can see that the experimental sensitivity is not
adequate to set a mass limit~this time on thex̃1

6 mass! by
several orders of magnitude.

VI. MODEL-INDEPENDENT LIMITS

As described in the Introduction, there are several advan-
tages to presenting limits of searches in a model-independent
form. In the previous sections we derived limits on models of
supersymmetry and presented the results as a limit on a cross
section times branching ratio for a specific model, (s
3BR) l im5Nlim/LAe, where Nlim is the 95% confidence
level on the number of events of anomalous production and

L is the integrated luminosity. We make a distinction be-
tween the acceptance,A, which is defined as the probability
that an object passesEt , h, andDf cuts, and the efficiency,
e, which is the probability of events surviving all other
sources of inefficiencies, such as photon identification cuts or
b-tagging requirements, which is detector-specific. The ac-
ceptance may be calculated from kinematic and geometric
criteria alone, so an experienced worker in the field can com-
pute it using only a Monte Carlo event generator program,
while the efficiency requires access to the full detector simu-
lation and, typically, multiple control samples. In our formu-
lation, Nlim includes the degradation in sensitivity due to
uncertainties onAe, luminosity, and background subtrac-
tions, when they are included, as well as the statistical upper
limit on the number of events.

In the case of model-independent limits, there is no model
to determine the efficiency and therefore we report a limit on
(s3BR3Ae) l im5Nlim/L. These limits, which are pre-
sented in the next section, do not have an immediate inter-
pretation.~They do imply, however, a cross section range
that we arenot sensitive to, even with perfect efficiency.! In
order to determine the meaning of these limits, in particular
if a model is excluded or not, there must still be a mechanism
for an interested physicist to calculateAe for the model, and
we develop three methods in the Appendix.

A. Model-independent limits on gbX signatures

The limit on (s3BR3Ae) i
l im5Nlim/L is described by

reporting that two events are observed with an isolated pho-
ton with Et.25 GeV anduhu,1, a SVX-taggedb-quark jet
with Et.30 GeV anduhu,2, Df(g2E” t),168° andE” t
.40 GeV. The cuts are fully described in Sec. II. The inte-
grated luminosity for this sample is (8563) pb21.

The resulting 95% confidence level limit on (s3BR
3Ae) l im for thegbE” t signature is then 0.069 pb. Adding the
4% luminosity uncertainty we find the cross section limit
increases to 0.070 pb. If we also add the 22% uncertainty in
Ae from the WW limits ~a typical uncertainty on an effi-
ciency for this signature! discussed in the Appendix, we find
the cross section limit increases 10% to 0.077 pb. This is the
final model-independent limit on the signaturegbE” t . The
limit on thegb signature before anyE” t requirement is 5.9 pb
and the limit from thegbE” t signature from the 98-event
sample withE” t.20 GeV is 0.99 pb.

The search for other objects in these events is described in
Secs. II E and IV C. When we find no events, we can set a
95% confidence level limit on (s3BR3eA) l im of 0.038 pb
assuming 4% uncertainty in the luminosity and 22% uncer-
tainty in the efficiency. This would apply to the searches for
events with an additional photon, a muon or tau. For events
with an additional electron, we observe one event and our
limit becomes 0.057 pb.

For events withN or more jets as shown in Fig. 7, we find
the limits listed in Table XVI.

VII. CONCLUSIONS

We have searched in 85 pb21 of CDF data for anomalous
production of events with a high-Et photon and ab-tagged

TABLE XV. Efficiencies and limits on direct production of

x̃ i
6x̃ j

0 in the GMSB scenario. Branching ratios are not included in
these efficiencies. The first row has an inflated efficiency due to the
definition of the branching ratio. The units ofAe and the branching
ratio are % and the cross sections are in pb.

Ae BR s th3BR s95% l im3BR

27.4 3 0.010 0.27
7.5 20 0.0402 1.00
8.4 23 0.0230 0.89
11.4 18 0.0111 0.66

FIG. 11. The limits on the cross section times branching ratio
for the SUSY production ofgbE” t events in the GMSB model. All
production processes have been included.
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jet. We find 1175 events with a photon withEt.25 GeV and
a b-tagged jet withEt.30 GeV, versus 10406186 expected
from standard model backgrounds. Further requiring missing
transverse energyE” t.40 GeV, in a direction not back-to-
back with the photon (Df,168°), we observed two events
versus 2.361.6 events expected. In addition we search in
subsamples of these events for electrons, muons, and tau-
leptons, additional photons, jets andb-quark jets. We con-
clude that the data are consistent with standard model expec-
tations.

We present limits on three current models of supersym-
metry. The first is indirect production of chargino-neutralino
pairs through squark and gluino production, where the pho-
ton is produced inx̃2

0→gx̃1
0 and theb-quark comes from the

chargino decay into the light stop squarkx̃1
1→ t̃ b. A choice

of favorable values of the parameters allows setting a lower
mass limit on the gluino mass of 250 GeV. The second model
is similar, but we look only at direct production of thex̃2

0x2
6

pair. A cross section limit of;7-10 pb is set, but is above
the predictions for allx̃2

0 masses so that no mass limit can be
set. Lastly, a GMSB model is considered in which the photon
comes from the decayx̃1

0→gG̃. Limits in the range 0.3–1.0

pb are set versus the mass of thex̃1
0, but again no mass limit

can be set as the cross section predictions are lower than the
limit.

Finally, we present a model-independent limit of 0.077 pb
on the production of events containing the signaturegbE” t ,
and we propose new methods for applying model-
independent limits to models that predict similar broad sig-
natures. We conclude that an experienced model builder can
evaluate whether model-independent limits apply to a par-
ticular model with an uncertainty of approximately 30%.
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APPENDIX: APPLICATION OF MODEL-INDEPENDENT
LIMITS

In the body of this paper, we present the limits on specific
models of new physics that predict thegbE” t signature, then
rigorously calculateAe for that model by using a Monte
Carlo program with a full detector simulation. We present
our limits on (s3BR) l im5Nlim/LAe, or a parameter of the
model such as the mass of a supersymmetric particle.

A new paradigm, the signature-based or, equivalently,
model-independent search may be an effective method for
reporting the results of searches in the future. In this case, a
signature, such as the photon andb-quark jet addressed in
this paper, is the focus of the search rather than the predic-
tions of a particular model.

There are several advantages to this approach@1,3,4#.
~1! The results are not dated by our current theoretical

understanding.
~2! No a priori judgment is necessary to determine what

is an interesting model.
~3! The results more closely represent the experimental

observations and results will be presented in a form that can
be applied to a broad range of models including those not yet
imagined.

~4! The number of signatures is more reasonably limited
than the number of models and model parameters.

~5! Concentrating on a particular model can tend to focus
the search very narrowly, ignoring variations on the signature
which may be just as likely to yield a discovery.

~6! Time spent on studying models can be diverted to
systematically searching additional signatures.

In order to reflect the data results more generally, in the
body of this paper we also present a limit on (s3BR
3Ae) l im5Nlim/L for the signatures with no calculation of
Ae. With limits presented this way, the collaboration itself,
model builders and other interested workers are no longer
given limits on the physics models directly but now must
derive the limits themselves. This has the potential for a
wider application of the limits. In a practical sense, it means
the interested workers must calculateAe for the model under
study.

In this appendix we present three methods to calculate
Ae. These results, together with the model-independent lim-
its, can be used to set limits on most models that predict
events with thegbE” t signature.

The three methods are referred to as ‘‘object efficiencies,’’
the ‘‘standard model calibration process,’’ and the ‘‘public
Monte Carlo Simulation.’’ In the sections below we describe
each in turn. In the following sections, we test these methods
by comparing the results of eachAe calculation to the rigor-
ously derivedAe for the specific supersymmetry models.

TABLE XVI. The 95% confidence level limits on (s3BR
3eA) l im in pb for events withN or more jets, including theb jet.

N s l im
95% ~pb!, E” t.0 GeV s l im

95% ~pb!, E” t.20 GeV

1 5.9 0.99
2 2.5 0.77
3 1.5 0.50
4 0.52 0.18
5 0.24 0.10
6 0.14 0.062
7 0.083 0.038
8 0.062 0.038
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1. Object efficiencies

The first method for derivingAe to use in conjunction
with the model-independent limits is object efficiencies. The
person investigating a model would run a Monte Carlo gen-
erator and place the acceptance cuts on the output which will
determine the acceptance,A. The next step would be to apply
efficiencies ~simple scale factors! for the identification of
each object in the signature, such as the photon or the
b-quark tag. This has the advantage of being very straight-
forward and the disadvantage that correlations between the
objects in the event are not accounted for. For example, a
model with many jets would tend to have a lower efficiency
for the photon isolation requirement than a model with few
jets and this effect would not be reflected in this estimate of
the efficiency.

Using a sample ofZ→e1e2 events to measure the effi-
ciencies of the global event cuts, we find thez,60 cm cut is
92% efficient. The probability of finding no energy out-of-
time is 98%. In this case the total global efficiency would be
the product of these two efficiencies. In the discussion below,
the efficiency of the identification of each object is often
listed as efficiencies of several separate steps which should
be multiplied to find the total efficiency.

We can also useZ→e1e2 events to measure the effi-
ciency of the photon identification cuts. One electron from
theZ is required to fire the trigger, but the second electron is
unbiased with respect to the trigger. In addition theZ peak
indicates the number of true physics events, ideal for mea-
suring efficiencies. WhichZ electron is required to pass
which set of cuts~trigger or offline! must be effectively ran-
domized to avoid correlations between the two sets of cuts.
Requiring the cluster to be far from the boundary of the
active area in the calorimeters is 73% efficient@31#. The
trigger is 91% efficient, the identification cuts are 86% and
the isolation requirement is 77% efficient.

For theb-quark efficiency we use a 70% probability that
the jets from the event are contained in the SVX.~This
would be 64% if the global event vertex was not already
required to havez,60 cm.! We add a 90% probability that
the jet was taggable~containing two reconstructed tracks in
the SVX, passingpt cuts! and apply the published@32# tag-
ging probability as a function of the jetEt which can be
summarized as

0 for Et,18 GeV

0.3510.00277*Et for 18,Et,72 GeV

0.6 for Et.72 GeV.

The missingEt is found as the vector sum of the noninter-
acting particles in the event. As long as the missingEt is
large, the resolution on theE” t should not greatly effect the
efficiency.

In Sec. IV C we searched the events in thegb sample for
additional leptons; here we present approximate object effi-
ciencies for those cuts. These requirements and their efficien-
cies are borrowed from top-quark analyses@11,12# as a rep-
resentative selection for high-Et leptons. The efficiencies

quoted here are measured in those contexts and therefore
they are approximations in a search for new physics. In par-
ticular, the isolation efficiency is likely to be dependent on
the production model. For example, if a model of new phys-
ics contained no jets, then the isolation efficiency is likely to
be greater than that measured in top-quark events which con-
tain several jets on average.

For the electron search we requireEt.25 GeV anduhu
,1.0. Given that an electron, as reported in the output of the
Monte Carlo generator, passes these acceptance cuts, the
probability that the electron strikes the calorimeter well away
from any uninstrumented region is 87%, the probability to
pass identification cuts is 80%, and to pass isolation cuts is
approximately 87%@31#.

For muons we requirept.25 GeV anduhu,1.0. Given
that the muon, as reported in the output of the Monte Carlo
generator, passes these cuts, the fiducial acceptance of the
muon detectors is 48%. Once the muon is accepted, the
probability to pass identification cuts is 91%, and to pass
isolation cuts is approximately 81%.

Tau leptons are identified only in their one- and three-
prong hadronic decays which have a branching ratio of 65%.
~Tau semileptonic decays can contribute to the electron and
muon searches.! We require that the calorimeter cluster has
Et.25 GeV anduhu,1.2 and the object is not consistent
with an electron or muon. Given that thet decays to a one-
or three-prong hadronic decay mode and passes theEt andh
requirements, the probability that the tau passes identifica-
tion and isolation cuts is approximately 57%.

In Sec. IX D we apply these object efficiencies to the
supersymmetry models and compare the results of the rigor-
ously derived efficiency to test the accuracy of the results.

2. Standard model calibration process

The second method for determiningAe for a model is the
standard model process or efficiency model. In this method
we select a simple physics model that produces the signature.
The model is purely for the purpose of transmitting informa-
tion aboutAe so it does not have any connection to a model
of new physics. Since it may be considered a calibration
model, it does not have to be tuned and will not become
dated. The interested model builder runs a Monte Carlo
simulation of the new physics and places acceptance cuts on
the output, determiningA, the same as the first step in the
object efficiencies method. This result is then multiplied by
the value ofe which is taken to be the same as the value of
e which we report here for the standard model process.

We have adoptedWWproduction as our efficiency model.
OneW is required to decay toen and we replace the electron
with a photon before the detector simulation. The secondW
is forced to decay tobu, so the combination yields the sig-
naturegbE” t . Since some efficiencies may be dependent on
theEt of the objects in the event, we will vary the ‘‘W’’ mass
to present this effect. A model builder would then choose the
efficiency that most closely matches the mass scale of the
new physics models.

TheAe for this model is found using the same methods as
used for the models of supersymmetry. From the difference
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in the observed efficiencies in Monte Carlo and dataZ
→eesamples, we use a 14% uncertainty on the efficiency of
the photon identification and isolation. We use 9% for the
b-tagging efficiency uncertainty. The parton distribution
function we use is CTEQ4L. Comparing this efficiency to
those obtained with the MRSD08 and GRV-94LO parton dis-
tribution functions, we find a standard deviation of 5%.
Turning off initial- and final-state radiation increases the ef-
ficiency by 2% and 23%, respectively, and we take half
these numbers as the systematic uncertainty. Varying the jet
energy scale by 10% causes the efficiency to change by 6%.
We use a 4% uncertainty for the luminosity. In quadrature,
the total systematic is 22%. Table XVII summarizes the re-
sults.

In Sec. IX D we apply this method of calculatingAe to
the supersymmetry models and compare to the results of the
rigorously derived efficiency to test the accuracy of the re-
sults.

3. A public Monte Carlo program

A Monte Carlo event generator followed by a detector
simulation is the usual method for determining the efficiency
of a model of new physics. However, there is usually con-
siderable detailed knowledge required to run the simulation
programs correctly so it is not practical to allow any inter-
ested person access to it. But if the simulation is greatly
simplified while still approximating the full program, it could
become usable for any worker in the field. The model-builder
then only has to run this simple Monte Carlo program to
determineAe.

An example of this kind of detector simulation, called
SHW, was developed for the Fermilab Run II SUSY/Higgs
Workshop@33#. Generated particles are traced to a calorim-
eter and energy deposited according to a simple fractional
acceptance and Gaussian resolution. A list of tracks is also
created according to a simple efficiency and resolution
model, and similarly for muon identification. The calorimeter
energy is clustered to find jets. Electromagnetic clusters, to-
gether with requirements on isolation and tracking, form
electron and photon objects. The tagging ofb-quarks is done
with a simple, parametrized efficiency. At points where ob-
ject identification efficiencies would occur, such as ax2 cut
on an electron shower profile, the appropriate number of can-
didates are rejected to create the inefficiency. The result is a
simple list of objects that are reconstructed for each event.
This method of determining efficiencies addresses the largest
concern not addressed in the previous methods—the correla-
tion of the characteristics of jets in the model with isolation
requirements. We note that a highly parametrized Monte
Carlo program has obvious limitations.

We have used the SHW program to compute efficiencies
for the three models considered above. Since the program is
tuned to provide the approximate efficiency of the Run II
detector, we made a few minor changes to reflect the Run I
detector. In particular, we changed the photon fiducial effi-
ciency from 85% to 73% and the offline efficiency from
85% to 60%. We reduced the SVX acceptance along thez
axis from 60 cm to 31 cm. Finally, we removed soft leptonb
tagging and added a 90% efficiency for the global event cuts.

In the next section we use the public Monte Carlo pro-
gram to calculateAe for the supersymmetry models and
compare the results to the rigorously derived efficiency to
test the accuracy of the public Monte Carlo program.

4. Tests of the model-independent efficiency methods

In the body of this paper we have provided rigorous limits
on several variations of three supersymmetry physics models
that produce the signature ofgbE” t . In this section we apply
the model-independent efficiency methods to the supersym-
metry models. We can then compare the results with the
rigorous limits to evaluate how effective it is to apply the
model-independent limits to real physics models.

In most cases we need to distinguish between acceptance
and efficiency. Acceptance, indicated byA, we define as the
probability for generated Monte Carlo objects to pass all
geometric andEt cuts. For thegbE” t signature, withE” t de-
fined as the vector sum of neutrinos and lightest supersym-
metric particle~LSP’s!, the cuts defining the acceptance of
the signature are listed in Table XVIII.

Table XIX and Fig. 12 list the results. The columns
marked R are the efficiency times acceptance done rigor-
ously, divided by the the same found using each of the
model-independent methods. The difference of this ratio
from 1.0 one is a measure of the accuracy of the approximate
methods compared to the rigorous method.

5. Conclusions from tests

There are several notable effects apparent immediately
from Table XIX and Fig. 12. The first is that the comparison
of efficiencies for one model point fares especially poorly.
This occurs when the branching ratio for the model is very
small (2%).When the events do not contain many real pho-
tons andb quarks, the small number of objects misidentified
as photons andb quarks becomes important. For example,
jets may pass photon cuts andc quarks may beb tagged.
When this occurs, the full simulation will be more efficient
than a method which specifically requires that the Monte
Carlo generate an isolated photon orb quark in order to
accept the event. This is true of the object efficiencies

TABLE XVII. Summary of the efficiencies found for the values of theW mass used in theWW calibra-
tion model versus the value of the ‘‘W’’ mass.

MW 75 GeV 100 GeV 125 GeV 150 GeV 175 GeV

eA (%) 0.85 2.56 4.86 6.98 8.12
e (%) 11.8 10.7 13.9 15.4 16.5
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method and the efficiency model method. We note that the
public Monte Carlo method does allow misidentification and
so it does not show this large mismatch. We can conclude
that when the branching ratios are small, the public Monte
Carlo method is vastly superior to the others.

In the object efficiency method, the acceptance of the sig-
nature is computed by running the Monte Carlo simulation
without a detector simulation. As each object in the signature
is identified and passes acceptance cuts, the individual object
efficiencies are multiplied. These object efficiencies which
may or may not beEt or h dependent, are listed in Sec.
IX A. In this test, these efficiencies are typically well
matched to the rigorously derived efficiencies. The average
of Rob j over all models except the first is 0.8860.21, where

0.21 is the rms computed with respect to 1.0, the ideal result.
In the efficiency model method, we generate a Monte

Carlo model that is not related to a search for new physics
but produces the signature of interest. For the signature of
gbE” t , we generatedWW→(gn)(bu). The efficiency model
results are also optimistic, the average is a ratio of 0.74
60.35 where again the uncertainty is actually the rms with
1.0, the ideal result. We found that the difficulty of applying
this method was in choosing the mass scale. For example, we
chose to match the ‘‘W’’ mass to thex̃2

6 mass in the direct

production of thex̃2
0→gx̃1

0 model. However, the photon
comes from a secondary decay and the effect of the LSP
mass compared to the massless neutrino causes theEt of the

TABLE XVIII. The list of requirements on the output of a
Monte Carlo generator which define the acceptance of a signature,
A. The requirements on the photon andb-quark jet above the double
line are common to all signatures in this paper. When missingEt is
required, as in all the supersymmetry searches and the tests of
model-independent methods, bothE” t.40 GeV andDf(g2E” t)
,168° are required. TheE” t requirement is removed and other re-
quirements are added to make specific subsamples.

g Et.25 GeV uhu,1.0
b quark Et.30 GeV uhu,2.0

Additional signatures

Spt(n,LSP) E” t.40 GeV, Df(g2E” t),168°
e Et.25 GeV uhu,1.0
m Et.25 GeV uhu,1.0
t Et.25 GeV uhu,1.2
secondg Et.25 GeV uhu,1.0
secondb Et.30 GeV uhu,2.0
Jets Et.15 GeV uhu,2.0

TABLE XIX. The results of comparing the methods of calculatingAe using the model-independent methods and the rigorously derived
Ae. Each row is a variation of a model of supersymmetry as indicated by the label in the first column and the mass of a supersymmetric
particle listed in column two~GeV!. The column labeledA is the acceptance of the model in % and the next column is the rigorously derived
Ae. The columns labeled withR are the ratios of the rigorously derivedAe to Ae found using the model-independent method indicated.

Model Ms BR (%) A A•e Rob j RWW RSHW

130 3 65.0 27.50 2.79 3.03 1.07
GMSB 147 20 49.8 7.45 0.91 1.00 0.70
Ms5M x̃

1
6 170 23 51.7 8.35 0.97 1.00 0.87

186 18 54.7 11.44 1.26 1.22 1.11
185 30 17.0 1.97 0.91 0.68 0.48

x̃2
0→gx̃1

0 210 30 22.0 2.98 1.04 0.73 0.90

q̃,g̃ production 235 30 24.0 3.23 1.01 0.68 0.90

Ms5Mg̃ 260 30 24.5 2.69 0.82 0.52 0.75
285 30 19.7 2.16 0.84 0.48 0.72
110 100 13.5 0.93 0.54 0.54 0.59

x̃2
0→gx̃1

0 130 100 12.6 1.41 0.88 0.80 0.87

q̃,g̃ production 140 100 14.8 1.29 0.68 0.60 0.66

Ms5M x̃
2
6 150 100 13.7 1.34 0.77 0.65 0.78

170 100 11.5 1.27 0.85 0.68 0.65

FIG. 12. The ratio of the efficiencies obtained with the full
detector simulation to those obtained with the model-independent
methods. Thex axis is the row number from Table XIX.
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g andb to be poorly matched to theEt of these objects in the
WW model.

In the public Monte Carlo method, we compute the effi-
ciency using SHW, a highly parametrized, self-contained
Monte Carlo program. In general, results here are somewhat
optimistic with the average ratio to the rigorous total effi-
ciency being 0.7760.28, where the uncertainty is the rms
computed with respect to 1.0, the ideal result.

For completeness we also include the ratio of the simple
acceptance to the rigorous acceptance times efficiency. The
average ratio is 0.1260.87.

The methods for calculating efficiency without access to
the full detector simulation are accurate to approximately
30% overall. They tend to underestimateAe by 10–25 % but
the result for individual comparisons varies greatly. These
uncertainties are larger than, but not greatly larger than, a
typical uncertainty in a rigorously derived efficiency, which
is 20%.

We conclude that in order to determine if a model is easily
excluded or far from being excluded by the data, the model-
independent methods are sufficient. If the model is within
30% of exclusion, no conclusion can be drawn and the effi-
ciency should be rigorously derived.
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