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Abstract

The contribution of thermal fluctuations to the widths of isoscalar giant multipole resonances

(GMR) in heated nuclei is studied. Starting from the collisional kinetic equation, it is shown that

an additional contribution to the nuclear friction and the corresponding GMR widths arises due to

the nonlinear dissipativity effect. It is also shown that the magnitude of the contributions of the

thermal fluctuations to the nuclear friction coefficient and the GMR widths do not exceed ∼ 20%.
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I. INTRODUCTION

In general, the damping of collective excitations in a cold finite Fermi system, e.g. the

width of a giant multipole resonance (GMR) in cold nuclei, is determined by the two-body

collisions, the particle-hole energy fragmentation (Landau damping) and the escape width.

The damping in cold nuclei was intensively investigated in both the quantum (RPA like)

[1, 2, 3, 4, 5] and the semiclassical (kinetic theory) approaches [6, 7, 8, 9, 10, 11, 12]. The

collisional damping is due to the coupling of particle-hole excitations to more complicated

states. In the kinetic theory, this type of damping is simulated by the collision integral and

leads to a collisional component of the intrinsic width of the collective eigenstates. The

fragmentation width is caused by the interaction of particles with the time-dependent self-

consistent mean field. This contribution to the intrinsic width does not reflect a motion

of the system toward the thermal equilibrium but indicates rather a redistribution of the

particle-hole excitations in the vicinity of the collective state. In a hot system an additional

contribution to the damping of the collective excitations arises through thermodynamic

fluctuations of the corresponding collective variables because of the fluctuation-dissipation

theorem. In this context, one of the most important open problem is the behavior of the

GMR width in hot nuclei as a function of the temperature T . There are two essential

different sources for the T -dependence of the GMR width. The first one is given by the

thermal contribution to the damping width from an increasing nucleon-nucleon collision

rate (2p2h excitations) plus a Landau spreading due to thermally allowed ph transitions

[3, 4, 13, 14, 15, 16]. In the second one a temperature increasing of the width is caused by

the coupling of the GDR to the thermal shape fluctuations of the nucleus [17, 18, 19]. In

the present work, we study a new effect of the influence of the thermal shape fluctuations

of the nucleus on the damping of the collective motion caused by the nonlinear dissipativity

appearing in the higher order variations of the collision integral. We point out that in the

commonly used linear order of the variation of the collision integral, the thermal fluctuations

do not lead to dissipation (viscosity) in the macroscopic equations of motion because the

following ensemble smearing of the kinetic equation washes out the fluctuation terms from

the final macroscopic equations of motion. This paper is organized as follows. In section II we

suggest a proof of the Langevin equation for nuclear local variables (particle density, velocity

field and pressure tensor), starting from the collisional kinetic equation. We perform a high
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order expansion of the collisional integral and derive the non-Markovian pressure tensor

to the Navier–Stokes-like equation of motion. In section III we carry out the ensemble

averaging and reduce the local equations of motion to the macroscopic form and derive

the macroscopic response function. In the derivations, the main features of the dynamical

distortion of the Fermi surface are taken into account. Results of numerical calculations are

presented in section IV. We conclude and summarize in section V. The Appendixes provide

a derivation of the high order variations of the collision integral with respect to the variation

of the phase space distribution function.

II. LOCAL EQUATIONS OF MOTION

We will start from the collisional kinetic equation in the following form [20]

∂f

∂t
+

~p

m

∂f

∂~r
−

∂V

∂~r

∂f

∂~p
+

→

F ext
∂f

∂~p
= δSt[f ] + y. (1)

Here, f ≡ f(~r, ~p, t) is the Wigner distribution function, V ≡ V (~r, ~p, t) is the self-consistent

mean field,
→

F ext is the external driving force and δSt[f ] is the collision integral which takes

into account the memory effects [21]. The random variable y ≡ y(~r, ~p, t) in Eq. (1) represents

the random force. As such, its ensemble average vanishes, 〈y〉 = 0. To reduce Eq. (1) to

closed equations of motion for the macroscopic collective variables we will follow the nuclear

fluid dynamic approach [22, 23, 24, 25, 26] and take into account the dynamic Fermi-surface

distortion up to multipolarity l = 2. Evaluating the first three moments of Eq. (1) in the ~p

space, we reduce Eq. (1) to the hydrodynamic-like equations of motion for particle density

ρ, velocity field
→
u and the pressure tensor Pαβ (for details, see Ref. [27])

∂ρ

∂t
= −

∂

∂rν
ρuν , (2)

∂

∂t
mρuα +

∂

∂rν
mρuνuα +

∂

∂rν
Pνα + ρ

∂

∂r α
V − ρFext,α = 0, (3)

and
∂

∂t
Pαβ +

∂

∂r ν
uνPαβ + Pνβ

∂

∂r ν
uα + Pνα

∂

∂r ν
uβ = Qαβ + yαβ. (4)

Here,

ρ =
∫ gd~p

(2πh̄)3
f, ~u =

1

ρ

∫ gd~p

(2πh̄)3
~p

m
f, Pαβ =

1

m

∫ gd~p

(2πh̄)3
(pα −muα)(pβ −muβ)f, (5)
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g = 4 is the spin-isospin degeneracy factor, Qαβ is associated with dissipative processes

Qαβ =
1

m

∫
gd~p

(2πh̄)3
(pα −muα)(pβ −muβ)δSt[f ], (6)

and yαβ gives the contribution from the random force

yαβ =
1

m

∫ gd~p

(2πh̄)3
pαpβ y. (7)

In Eqs. (2) to (4) and in the following expressions, repeated Greek indices are to be under-

stood as summed over. The pressure tensor Pαβ can be written as

Pαβ = Peqδαβ + P ′
αβ , (8)

where

P ′
αβ =

1

m

∫
gd~p

(2πh̄)3
(pα −muα)(pβ −muβ)δf2, (9)

δf2 ≡ δf2(r,p; t) is the small quadrupole deviation of the distribution function f from the

one in equilibrium, feq ≡ feq(~r, ~p), and Peq is the pressure due to the Fermi motion of the

nucleons in the ground state of the nucleus. Assuming the Thomas-Fermi approximation

for feq, one has

Peq =
2

3

∫
gd~p

(2πh̄)3
p2

2m
feq =

2

5

h̄2

m

(
6π2

g

)2/3

ρ5/3eq ,

where ρeq ≡ ρeq(~r) is the particle density in equilibrium. Using Eq. (8) we will rewrite Eq.

(4) as
∂

∂t
P ′
αβ + PeqΛαβ + L̂P ′

αβ = Qαβ + yαβ, (10)

where

Λαβ =
∂uα

∂rβ
+

∂uβ

∂rα
−

2

3
δαβ

∂uν

∂rν
, (11)

and the operator L̂ is defined by

L̂P ′
αβ = uν

∂

∂rν
P ′
αβ + P ′

αβ

∂uν

∂rν
+ P ′

αν

∂uβ

∂rν
+ P ′

βν

∂uα

∂rν
. (12)

To evaluate the tensor Qαβ in Eq. (10) we will use the collision integral in the following

general form [20]

δSt[f ] =
∫

g2d~p2d~p3d~p4
(2πh̄)6

w({~pj})Q({fj}) δ(∆ǫ)δ(∆~p), (13)

where w({~pj}) ≡ w(~p1, ~p2; ~p3, ~p4) is the spin-isospin averaged probability for two-body scat-

tering, Q({fj}) = f1f2(1 − f3)(1 − f4) − (1 − f1)(1 − f2)f3f4 is the Pauli blocking factor,
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∆~p = ~p1 + ~p2 − ~p3 − ~p4 and ∆ǫ = ǫ1 + ǫ2 − ǫ3 − ǫ4, with ǫj = p2j/2m + V (rj) being the

single-particle energy. In performing the variation of the Pauli blocking factor Q({fj}) with

respect to δf , we will keep all the terms, up to the third order in δf . The collision integral

then takes the following form (see Appendix A)

δSt = δSt1 + δSt2 + δSt3, (14)

where δStn is the variation of the collision integral δSt in the n-th order of δf . Considering

Eqs. (6) and (14), the tensor Qαβ can be written as

Qαβ = Q
(1)
αβ +Q

(2)
αβ +Q

(3)
αβ , (15)

where Q
(n)
αβ is due to the contribution of δStn in Eq. (6). The first order term Q

(1)
αβ is

simplified as [28]

Q
(1)
αβ = −

1

τ2
P ′
αβ , (16)

where τ2 is the two-body relaxation time in the case of quadrupole deformation of the Fermi

surface. The higher order terms Q
(2)
αβ and Q

(3)
αβ can be reduced to the following forms (see

Appendix A, Eqs. (A18) and (A30))

Q
(2)
αβ =

mP ′
0

ζ
P ′
αβ, Q

(3)
αβ =

m2P ′2
0

ξ
P ′
αβ , (17)

where the quantities ζ and ξ are deduced from the collision integral (see Appendix A, Eqs.

(A19) and (A31)) and

P ′
0 =

1

2
(P ′

xx + P ′
yy − P ′

zz). (18)

To simplify the derivations, we will introduce the operator N̂ as

N̂P ′
αβ = Q

(2)
αβ +Q

(3)
αβ . (19)

Equation (10) is then rewritten as

∂

∂t
P ′
αβ + PeqΛαβ +

1

τ2
P ′
αβ + L̂P ′

αβ = N̂P ′
αβ + yαβ. (20)

We will look for a solution of Eq. (20) in the following form

P ′
αβ = P

′(0)
αβ + P

′(NL)
αβ . (21)
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Here, the tensor P
′(0)
αβ is obtained as a solution to the following linear differential equation

[29]
∂

∂t
P

′(0)
αβ + PeqΛαβ +

1

τ2
P

′(0)
αβ = yαβ, (22)

and it is given by the following non-Markovian form

P
′(0)
αβ (t) = −

∫ t

−∞
dt′ exp

(
t′ − t

τ2

)
[Peq Λαβ(t

′)− yαβ(t
′)] . (23)

The tensor P
′(NL)
αβ in Eq. (21) satisfies the nonlinear differential equation

∂

∂t
P

′(NL)
αβ +

1

τ2
P

′(NL)
αβ + L̂P ′

αβ − N̂P ′
αβ = 0. (24)

To solve Eq. (24), we will use the iteration procedure. The first order iteration P
′(NL)
αβ,1 (t′) to

Eq. (24) reads

P
′(NL)
αβ,1 (t) =

∫ t

−∞
dt′ exp

(
t′ − t

τ2

) [
N̂P

′(0)
αβ (t′)− L̂P

′(0)
αβ (t′)

]
, (25)

and the second iteration is given by

P
′(NL)
αβ,2 (t) =

∫ t

−∞
dt′ exp

(
t′ − t

τ2

)

×
[
N̂
(
P

′(0)
αβ (t′) + P

′(NL)
αβ,1 (t′)

)
− L̂

(
P

′(0)
αβ (t′) + P

′(NL)
αβ,1 (t′)

)]
. (26)

Below, we will apply Eqs. (2) to (4) to the small-amplitude vibrations of the particle density

δρ near the equilibrium. We point out that we do not assume the velocity field ~u to be small.

Finally, taking into account the above mentioned derivations we will rewrite Eq. (3) as

mρeq
∂uα

∂t
+mρequν

∂uα

∂rν
+ ρeq

∂

∂rα


 δ

2ε

δρ2

∣∣∣∣∣
eq

δρ


+

∂P
′(0)
αβ

∂rα
+

∂P
′(NL)
αβ

∂rα
− ρeqFext,α = 0 (27)

where ε is the particle energy density.

III. ENSEMBLE AVERAGING AND MACROSCOPIC RESPONSE

Let us introduce the displacement field ~χ related to the velocity field ~u by ~u(~r, t) = ~̇χ(~r, t),

where the dot denotes a time derivative. For the displacement field we will assume the

following separable form ~χ(~r, t) = β(t)~v(~r). Using this separable form of ~χ(~r, t), we reduce

Eq. (27) to the equation of motion for the collective variable β(t) in the presence of the
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external field Fext(t) and the random force ỹ(t) (see Appendix C, Eq. (C1)). Below, we

will look for the response of a nucleus to the periodic external field Fext(t) = Fω exp(iωt).

Because of the random force ỹ(t) in Eq. (C1), we will separate the description of the

collective motion into two parts with β(t) = β̃(t) + δβ(t). The first motion is related to the

driving force Fext(t) and it is associated with the velocity
˙̃
β. The second one is due to the

random force ỹ(t) with the velocity δβ̇. We will assume that |δβ̇| ≫ |
˙̃
β|. Performing the

ensemble averaging, one can write

〈
β̇(t1)β̇(t2)β̇(t3)

〉
≈

˙̃
β(t1)

〈
δβ̇(t2) δβ̇(t3)

〉
+

˙̃
β(t2)

〈
δβ̇(t1) δβ̇(t3)

〉

+
˙̃
β(t3)

〈
δβ̇(t2) δβ̇(t1)

〉
. (28)

We will also assume the following ergodic property for the correlation function
〈
δβ̇(t) δβ̇(t′)

〉
, see Ref. [30], Ch.12,

〈
δβ̇(t) δβ̇(t′)

〉
=
∫ ∞

−∞

dω

2π

(
δβ̇2

)

ω
e−iω(t−t′). (29)

The Fourier component,
(
δβ̇2

)

ω
, of the correlation function is governed by the correlation

properties of the random force ỹ(t), see below. The macroscopic equation of motion (C1)

is significantly simplified in the case of a Fermi distribution for the equilibrium distribution

function feq

feq =
[
1 + exp

(
ǫ− ǫF
T

)]−1

, (30)

where ǫF is the Fermi energy. In this case, one obtains from Eqs. (A19) that 1/ζ ≪ 1 (see

also Figs. 1 and 2) and the contribution of the terms with A2, A3 and A5 in Eq. (C1) is

negligible. Performing the ensemble averaging of Eq. (C1), using Eq. (28) and 〈y(t)〉 = 0

and assuming 〈β(t)〉 = β̃(t) = β̃ω exp(iωt), we reduce Eq. (C1) to the following form

−Bω2β̃ω+CLDM β̃ω+
iωτ2

1 + iωτ2


A0 + τ 22A4

∫ ∞

−∞

dω′

2π

(
δβ̇2

)

ω′

1 + iω′τ2
+

4τ 32A1

1 + iωτ2

∫ ∞

−∞

dω′

2π

(
δβ̇2

)

ω′

1 + (ω′τ2)2

+ τ 22A4

∫ ∞

−∞

dω′

2π

(
δβ̇2

)

ω′

1 + iω′τ2

1

1 + i(ω′ + ω)τ2
+

τ 22A4

1 + iωτ2

∫ ∞

−∞

dω′

2π

(
δβ̇2

)

ω′

1 + i(ω′ + ω)τ2



 β̃ω = BFω.

(31)

Considering the nuclear isoscalar quadrupole mode, we will assume an irrotational motion

with the displacement field ~v(
→
r ) given by [31]

~v(
→
r ) =

→

∇ (r2Y20(r̂))/2, (32)
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and the time dependent radius of the nucleus given by

R(t) = R0

[
1 + β̃(t)Y20(r̂)

]
. (33)

In this particular case the calculation of the coefficients A1 and A4 from Eqs. (C4) and (C7)

gives: A1 = 16A0(mPeq)
2/ξ and A4 = 12A0. The mass coefficient B of Eq. (C2) for the

displacement field of Eq. (32) is given by

B =
3

8π
AmR2

0, (34)

where A is the nuclear mass number. Let us introduce the collective response function χ(ω)

as

β̃ω = χ(ω) Fω. (35)

Using Eqs. (31) and (33), we obtain from Eq. (35)

χ−1(ω) = −ω2 + ω2
0 + iω γ0 + 12τ 22

A0

B

iωτ2
1 + iωτ2

K(ω). (36)

Here,

ω0 =

√
CLDM + C ′(ω)

B
, γ0 =

A0

B

τ2
1 + (ωτ2)2

(37)

and

K(ω) =
∫ ∞

−∞

dω′

2π

(
δβ̇2

)

ω′

1 + iω′τ2

(
1 +

1

1 + i(ω′ + ω)τ2
+

4

1 + iωτ2

τ2/τ
′′

1− iω′τ2

+
1

1 + iωτ2

1 + iω′τ2
1 + i(ω′ + ω)τ2

)
. (38)

We have also used the following notations

C ′(ω) = A0
(ωτ2)

2

1 + (ωτ2)2
(39)

and

τ ′′ = ξ/(mPeq)
2.

We point out that the additional contribution to the stiffness coefficient C ′(ω) in Eq. (37)

is caused by the distortion of the Fermi surface [29]. The expression (36) can be rewritten

as

χ−1(ω) = (ω2
0 +∆ω2

0 − ω2) + iω (γ0 +∆γ), (40)

8



where we have introduced the following notations for the additional components of the

relaxation coefficient and the squared frequency ω

∆γ

γ0
= 12τ 22 {ReK(ω) + ωτ2ImK(ω)} , (41)

∆ω2
0

ω2
0

= 12τ 22

{
ReK(ω)−

1

ωτ2
ImK(ω)

}(
1 +

CLDM

C ′(ω)

)−1

. (42)

Note that above, ω is real. Finally, the macroscopic strength function S(ω) = −Imχ(ω) is

given by

S(ω) =
(γ0 +∆γ)ω

(ω2
0 +∆ω2

0 − ω2)2 + (γ0 +∆γ)2ω2
. (43)

Both the additional spreading ∆γ and the resonance shift ∆ω0 appear in the strength

function (43) due to the nonlinear dissipativity effect.

IV. NUMERICAL RESULTS AND DISCUSSION

We have performed the numerical calculations assuming a Fermi distribution for the equi-

librium distribution function of Eq. (30) and adopting the Fermi energy ǫF = 39 MeV and

the nuclear radius R0 = r0A
1/3 with r0 = 1.12 fm. The higher order relaxation parameters

τ ′ = ζ/mPeq and τ ′′ = ξ/(mPeq)
2 are related to the collision integral and can be evaluated

using Eqs. (A19) and (A31) from Appendix A. We point out that in the limit of a cold

nucleus, T → 0 and feq = Θ(ǫF − ǫ), the corrections τ ′ and τ ′′ take the following simple

form
1

τ ′
= 0,

1

τ ′′
≈ 1.5

m3P 2
eqw0

p6F
, (44)

where pF is the nucleon Fermi momentum and the scattering probability w0 = 15π2h̄5/m3gα

is related to the in-medium cross section σin of nucleon-nucleon scattering. We use α = 9.2

MeV from [14], which corresponds to σin ≈ σfree/2, where σfree ≈ 40 mb is the cross section

for the nucleon-nucleon scattering in free space. Note that both relaxation parameters τ ′

and τ ′′ can not be directly interpreted as the corrections to the observable relaxation time.

In particular, the value of 1/τ ′′ does not equal to zero in the ground state of the nucleus. The

relaxation parameters τ ′ and τ ′′ determine the contribution of the viscous tensors Q
(2)
αβ and

Q
(3)
αβ (see Eq. (17)) to the local equations of motion and both tensors Q

(2)
αβ and Q

(3)
αβ disappear

in the ground state. We also point out that the relaxation parameters τ ′ and τ ′′ as well as

9



FIG. 1: Temperature dependence of h̄/τ ′ (solid curve 1) and h̄/τ ′′ (solid curve 2) for the case of

the temperature-dependent Fermi distribution function (30). The dashed line is the calculation of

h̄/τ ′′ with the sharp Thomas-Fermi distribution function Θ(ǫF − ǫ).

ζ and ξ depend on the nuclear mean field potential V due to the space integrals rij and

rijk, see Eqs. (A10) and (A21). This dependence appears after the Abrikosov-Khalatnikov

transformation (A7) in the collision integral δSt[f ]. However, due to the presence of the

strongly picked functions ∂feq,i/∂ǫi, at ǫ = ǫF , in Eqs. (A10) and (A21) the final results for

ζ and ξ are not sensitive to the specific choice of the mean field potential V at T ≪ ǫF . In

Fig. 1, we have plotted the results of calculations of the quantities h̄/τ ′ (solid curve 1) and

h̄/τ ′′ (solid curve 2) as functions of temperature, T , for the nucleus with A = 224.

Both quantities h̄/τ ′ and h̄/τ ′′ show a very broad and weak maximum. The magnitude

of the maximum does not exceed the value of 0.07 MeV for h̄/τ ′ and 0.49 MeV for h̄/τ ′′.

The dashed line in Fig. 1 corresponds to the value of h̄/τ ′′ from Eq. (44). We can see from

Fig. 1 and Eq. (44) that the simplest Thomas-Fermi distribution function Θ(ǫF − ǫ), with

h̄/τ ′ and h̄/τ ′′ from Eq. (44), provides a good description of both quantities h̄/τ ′ and h̄/τ ′′.

Fig. 2 shows the ratio of the collisional relaxation time τ2 to both relaxation parameters τ ′

10



FIG. 2: Same as in Fig. 1 but for the ratio τ2/τ
′ multiplied by the factor 10 (solid curve 1) and

the ratio τ2/τ
′′ (dashed and solid curves 2).

and τ ′′. For the relaxation time τ2, we have used the expression from Ref. [14] which takes

into account the memory effects. Namely,

τ2 =
4π2αh̄

(h̄ω0)2 + 4π2T 2
. (45)

As seen from Fig. 2, the value of τ2/τ
′ is relatively small over the entire range of the

temperature. The value of τ2/τ
′′ decreases with the temperature monotonically starting

from τ2/τ
′′ = 1.16 at zero temperature.

Let us now carry out a numerical study of the additional contribution to the friction

coefficient, ∆γ, caused by the nonlinear dissipativity, see Eqs. (40) and (41) and the corre-

sponding contribution to the width Γ of the isoscalar giant quadrupole resonance (GQR).

To apply Eqs. (38) and (41), we have to derive the spectral correlation function
(
δβ̇2

)

ω
.

Using the correlation properties of the random force [30]

(ỹ2)ω =
2γ0T

B
, (46)

11



we obtain according to the fluctuation-dissipation theorem the following result [32]

(
δβ̇2

)

ω
=

2D ω2

(ω2
0 − ω2)2 + γ2

0ω
2
, (47)

where D is the diffusion coefficient

D =
γ0T

B
. (48)

To evaluate the relative contribution to the collisional width Γ from ∆γ, we will start from

the usual case with ∆γ = 0. In this case, the width Γ of the GQR can be obtained from the

solution in the form ω = Reω + iΓ/2h̄ to the following secular equation, see Eq. (43),

(ω2
0 − ω2)2 + γ2

0ω
2 = 0. (49)

For the numerical solution of Eq. (49), we have used in Eq. (37) the liquid drop stiffness

coefficient CLDM in the form [33]

CLDM =
1

4π
(L− 1)(L+ 2)bSA

2/3 −
5

2π

L− 1

2L+ 1
bC

Z2

A1/3
, (50)

where bS = 17.2 MeV and bC = 0.7 MeV are respectively, the surface and Coulomb energy

coefficients appearing in the nuclear mass formula.

Fig. 3 shows the results of the numerical solution of Eq. (49) for the nucleus with

A = 224 and Z = A(1 − 6 · 10−3A2/3)/2 = 87, which corresponds to the valley of beta-

stability [33]. The energy of the collective excitation E = h̄Reω decreases with temperature

and approaches the hydrodynamic (liquid drop model) limit ELDM = h̄
√
CLDM/B at high

temperatures. In Fig. 4 we have plotted the temperature dependence of the parameter

Eτ2/h̄ which determines the sound regime: Eτ2/h̄ ≫ 1 for the zero sound (rare collision

regime) and Eτ2/h̄ ≪ 1 for the first sound (frequent collision regime).

The solid curve in Fig. 4 corresponds to the calculation with the temperature dependence

of E given by Fig. 3. For the dashed line, the phenomenological parametrization of the GQR

energy E = ER = 60 · A−1/3 MeV was used. Using Eqs. (38), (41), (47) and (48), one can

evaluate the contribution ∆γ to the friction coefficient due to the nonlinear dissipativity.

In Fig. 5, the value of ∆γ/γ0 is shown as a function of temperature. The ratio ∆γ/γ0

equals to zero at T = 0 because ∆γ appears due to the thermodynamical fluctuations of the

collective variable β. The ratio ∆γ/γ0 increases with temperature and reaches a maximum

value, which does not exceed ≈ 0.2.
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FIG. 3: Energy E = h̄Reω of the isoscalar giant quadrupole resonance (GQR) and the corre-

sponding collisional width Γ for the nucleus with A = 224 as obtained from Eq. (49).

In the high-temperature region the ratio ∆γ/γ0 decreases because the temperature de-

pendence of γ0 ∼ T 2 is stronger than that of ∆γ ∼ T . For comparison, we have also

performed the calculation of the ratio ∆γ/γ0 using the phenomenological parametrization

for the GQR energy ER = 60 ·A−1/3 MeV (see dashed line in Fig. 5). In this case, the vari-

ation of ∆γ/γ0 with temperature is somewhat stronger. Taking into account the nonlinear

dissipativity effects, the collisional width Γ′ of the GQR is obtained from the solution, in

the form ω = Reω + iΓ′/2h̄, to the secular equation, see Eq. (43),

(ω2
0 +∆ω2

0 − ω2)2 + (γ0 +∆γ)2ω2 = 0. (51)

In Fig. 6 we have plotted the temperature dependence of the widths Γ (dashed lines) and

Γ′ (solid lines) for two choices of the resonance energy: E = h̄Reω using Eq. (49) (curves

1) and ER = 60 · A−1/3 MeV (curves 2).

We point out that an increase of the width is more apparent for curves 1 in Fig. 6 because

of the temperature dependence of E. The comparison of the solid and dashed lines in Fig.

6 shows that the contribution of the nonlinear dissipative effects to the width Γ does not

13



FIG. 4: Dependence of the dimensionless parameter Eτ2/h̄ on the temperature T for the GQR in

the nucleus with A = 224 with τ2 from Eq. (45). The solid curve was obtained using E = h̄Reω

from Eq. (49). The dashed curve was obtained with E = ER, where ER = 60 · A−1/3 MeV is the

experimental value of the GQR energy.

exceed ∼ 20%.

In Figs. 7 and 8 we have plotted the strength function S(ω) of Eq. (43). The comparison

between the solid and the dashed lines in Fig. 7 shows the accuracy of the derivation of the

value of ∆γ directly from the strength function S(ω) of Eq. (43) and through the solution

of the secular equation (51). The comparison of the solid lines with the dashed lines in Fig.

8 demonstrates the effect of the nonlinear dissipativity on the strength function.

V. SUMMARY AND CONCLUSIONS

Starting from the collisional kinetic equation with a random force and using the p-

moments techniques, we have derived the equations of motion of the viscous fluid dynamic

for the local values of particle density, velocity field and pressure tensor. The obtained

14



FIG. 5: Temperature dependence of the ratio ∆γ/γ0 for the nucleus with A = 224 for the GQR.

The solid curve was obtained using Eq. (41) with ω from Eq. (49) (see also Fig. 3); the dashed line

was obtained using Eq. (41) with γ0 from Eq. (37) and ω = ωR = ER/h̄ with the phenomenological

parametrization ER = 60 · A−1/3 MeV.

equations are closed due to the restriction imposed on the multipolarity l of the Fermi sur-

face distortion, up to l = 2. The important features of these equations of motion are due

to the non-Markovian form of the pressure tensor Pαβ. In contrast to the commonly used

τ -approximation, we take into account the higher orders of the variation of the collision

integral with respect to the variation of the phase-space distribution function. Using the

Abrikosov-Khalatnikov transformation we have then obtained the collision integral in the

form of the extended τ -approximation. Assuming a separable form for the displacement

field, we have introduced the macroscopic collective variable β(t) and reduced the problem

to a macroscopic equation of motion for β(t). Note that we do not assume the velocity β̇(t)

to be small. The final macroscopic equation of motion (C1) includes both the memory ef-

fects and the nonlinear dissipativity terms ∼ β̇3. We have separated the description of the

collective motion into two parts. The first (slow) one is related to the driving force Fext(t)

15



FIG. 6: Collisional width Γ as a function of temperature T for the nucleus with A = 224 for

the GQR. The solid lines are for Γ = 2h̄ Imω from Eq. (49) and the dashed lines are for Γ′

from Eq. (51). The curves 1 were obtained using the temperature dependent resonance frequency

ω = ωR = Reω from Eq. (49). The curves 2 were obtained using ω = ωR = ER/h̄ with the

phenomenological parametrization ER = 60 ·A−1/3 MeV (see also Fig. 5).

and it is associated with a slow motion having the velocity
˙̃
β. The second (fast) one is

due to the random force y(t) with the velocity δβ̇ ≫
˙̃
β. Using the correlation properties

of the random force, we have performed the averaging of the macroscopic equation of mo-

tion over the fast fluctuations ∼ δβ̇, reducing the nonlinear dissipativity terms to the form

∼
˙̃
β(t)

〈
δβ̇(t′)δβ̇(t′′)

〉
, which is linear with respect to the slow collective motion ∼

˙̃
β. Fi-

nally, assuming a periodic driving force Fext(t) ∼ exp(iωt), we have derived the macroscopic

strength function S(ω). As seen from Eq. (43), the nonlinear dissipativity effect leads to the

additional spreading ∆γ and the resonance shift ∆ω0 in the strength function S(ω). The

contribution ∆γ appears due to the thermodynamical fluctuations of the collective variable

β. In contrast to the Fermi-liquid friction parameter γ0 with γ0 ∼ T 2 (at T ≪ ǫF ), the

spreading ∆γ is a linear function of the temperature T . This fact provides a non-monotonic

16



FIG. 7: The strength function S(ω) in h̄2-units for two temperatures: T = 1.9 MeV (curves 1) and

T = 5 MeV (curves 2). The solid curves 1 and 2 were obtained from Eqs. (41), (42) and (43). The

dashed curves 1 and 2 were obtained using Eq. (43) with γ0 +∆γ = Γ/h̄ and ω2
0 +∆ω2

0 = (E/h̄)2,

where E and Γ are obtained from the solution, in the form ω = E/h̄ + iΓ/2h̄, to the secular

equation (51).

behavior of the ratio ∆γ/γ0, see Fig. 5. As seen from Fig. 5, the nonlinear dissipativity

effects are enhanced at the moderate temperatures T ≈ 2 MeV and do not exceed ≈ 20%.

The nonlinear dissipativity effect increases the collisional width of the GMR. Usually the

total collisional width of the isoscalar GQR in cold nuclei does not exceed 30-40% of the

experimental value and the main contribution to the width is due to the Landau damping.

One can expect that the nonlinear dissipativity effect on the collisional width can lead to a

deviation of the temperature dependent width Γ(T ) from the usual Fermi liquid prediction

Γ(T ) ∼ T 2. Unfortunately, at present time, experimental data on the temperature behavior

of Γ(T ) of the isoscalar GQR are not available. In this respect, it is more instructive to

study the isovector giant dipole resonance where the temperature dependence of Γ(T ) was

studied for some heavy nuclei [36, 37]. However our final results for the viscous tensor Qαβ
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FIG. 8: The strength function S(ω) in h̄2-units for two temperatures: T = 1.9 MeV (curves 1) and

T = 5 MeV (curves 2). The solid curves 1 and 2 are the same as in Fig. 7. The dashed curves 1

and 2 were obtained from Eqs. (43), but with ∆γ = 0.

and the relaxation parameters ζ and ξ can not be applied directly to the isovector mode

because the dipole distortion of the Fermi surface must be taken into account in the collision

integral (13), in contrast to our case of the isoscalar GMR, see Sect. II. The generalization

of our approach to the case isovector modes is now in progress.
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APPENDIX A

As a basic expression for the collision integral δSt[f ] we use Eq. (13). The second and

third variations of Eq. (13) with respect to δf take the following form

δSt2 =
∫ g2d~p2d~p3d~p4

(2πh̄)6
w({~pj})

∑ δ2Q

δf(i)δf(j)

∣∣∣∣∣
eq

δf(i)δf(j) δ(∆ǫ)δ(∆~p), (A1)

δSt3 =
∫

g2d~p2d~p3d~p4
(2πh̄)6

w({~pj})
∑ δ3Q

δf(i)δf(j)δf(k)

∣∣∣∣∣
eq

δf(i)δf(j)δf(k) δ(∆ǫ)δ(∆~p), (A2)

where δf(i) ≡ δf(~pi) and the symbol
∑

means a summation over indices i, j, k = 1÷ 4 with

i 6= j, j 6= k, k 6= i. We will follow the fluid dynamic approach and represent the variation

of the distribution function δf in the following form:

δf(i) = −
∂feq,i
∂ǫi

ν(i), ν(i) =
l=2∑

l,ml

ν2ml
(~r, t)Y2ml

(Ωi). (A3)

We point out that the l = 0 and 1 components of the expansion (A3) do not contribute to

the collision integral (13), reflecting the conservation of particle number and momentum in

a collision. The expansion coefficients ν2m(~r, t) in Eq. (A3) are related to the pressure tensor

P ′
αβ of Eq. (9). Using Eqs. (9) and (A3), we obtain

mP ′
αβ = −

gI

(2πh̄)3

2∑

ml=−2

ν2ml

∫
dΩ p̂α p̂βY2ml

(Ω), (A4)

where

I =
∫ ∞

0
dpp4

∂feq
∂ǫ

, (A5)

and ~̂p = −→p /p is the unit vector. In particular, performing the angle integration in Eq. (A4),

we obtain

ν20 =
3

4

√
5

π

(2πh̄)3m

gI
P ′
0, (A6)

where P ′
0 is given by Eq. (18). To evaluate the collision integral δSt2, we will substitute Eq.

(A3) into (A1) and make use of the Abrikosov-Khalatnikov transformation in the following

form [20] ∫
d~p2d~p3d~p4 (...) δ(∆~p) ⇒

m3

2

∫ ∞

V
dǫ2dǫ3dǫ4

∫
dΩdφ2

cos(θ/2)
(...) , (A7)

where dΩ = sin θdθdφ, θ is the angle between ~p1 and ~p2, φ is the angle between the planes

formed by (~p1, ~p2) and (~p3, ~p4), and φ2 is the azimuthal angle of the momentum ~p2 in the

co-ordinate system with z-axes along ~p1. We point out that the angle φ varies only from
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0 to π because the particles are indistinguishable. Using the transformation (A7) and the

relation (see Appendix B)

∫ 2π

0

dφ2

2π
Ynm(Ωi)Yn′m′(Ωj) = Ynm(Ω1)Yn′m′(Ω1)Pn(cos θi)Pn′(cos θj), (A8)

we obtain

δSt2 = g2
(2π)2m3

(2πh̄)6
[ν(1)]2

∑
〈wP2(cos θi)P2(cos θj)〉rij. (A9)

Here, rij is given by

rij =
∫ ∞

V
dǫ2dǫ3dǫ4

δ2Q

δf(i)δf(j)

∣∣∣∣∣
eq

∂feq,i
∂ǫi

∂feq,j
∂ǫj

δ(∆ǫ), (A10)

and the symbol 〈...〉 denotes the following average

〈w(θ, φ)P2(cos θi)P2(cos θj)〉 = 2
∫ π

0
dθ sin(θ/2)

∫ π

0

dφ

2π
w(θ, φ)P2(cos θi)P2(cos θj),

where cos θj ≡ (~̂pj · ~̂p1), i.e. θ2 = θ, and

cos θ3 = cos2(θ/2) + sin2(θ/2) cosφ, cos θ4 = cos2(θ/2)− sin2(θ/2) cosφ, (A11)

and Pl(cos θ) is a Legendre polynomial. Using Eqs. (6), (14), (15) and (A9), we obtain

Q
(2)
αβ =

1

m

∫
gd~p

(2πh̄)3
(pα −muα)(pβ −muβ)δSt2

=
g3

m

(2π)2m3

(2πh̄)9
∑

〈wP2(cos θi)P2(cos θj)〉Rij

∫
dΩ1 p̂1,α p̂1,β[ν(1)]

2, (A12)

where

Rij =
∫ ∞

0
dp1p

4
1rij.

To exclude the unknown amplitude ν(1) from Eq. (A12), we will calculate the arbitrary par-

tial contribution to the tensor Q
(2)
αβ . Using Eq. (A1), we will consider the partial contribution

Q
(2)
αβ,12 to the tensor Q

(2)
αβ given by

Q
(2)
αβ,12 =

g3

m(2πh̄)9

∫
d~p1p1,αp1,βδf(1)

∫
d~p2δf(2)

∫
d~p3d~p4

× w(θ, φ)
δ2Q

δf(1)δf(2)

∣∣∣∣∣
eq

δ(∆ǫ)δ(∆~p). (A13)
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We will assume the isotropic probability scattering w(θ, φ) = w0, and apply the Abrikosov-

Khalatnikov transformation in the following form

∫
d~p3d~p4 (...) δ(∆~p) ⇒

m2

2pF cos(θ/2)

∫
dǫ3dǫ4dφ (...) , (A14)

where pF is the Fermi momentum. Using Eqs. (A3) and (A14), we transform Eq. (A13) as

Q
(2)
αβ,12 =

g3

m

2πm3w0

2(2πh̄)9
R12

2∑

m=−2

ν2m

∫
dΩ2

Y2m(Ω2)

cos(θ/2)

∫
dΩ1 p̂1,α p̂1,β ν(1). (A15)

Integrating over dΩ2 in Eq. (A15) and using Eq. (A6), we obtain

Q
(2)
αβ,12 = g2

3πm3w0

(2πh̄)6
R12

I
P ′
0

∫
dΩ1 p̂1,α p̂1,β ν(1). (A16)

Comparing Eq. (A16) with the partial i = 1, j = 2 term of Eq. (A12), we find the relation

∫
dΩ1 p̂1,α p̂1,β [ν(1)]2 =

3

4πg〈P2(cos θ)〉

(2πh̄)3

I
mP ′

0

∫
dΩ1 p̂1,α p̂1,β ν(1). (A17)

Finally, from Eqs. (A12), (A4) and (A17) we obtain

Q
(2)
αβ =

mP ′
0

ζ
P ′
αβ , (A18)

where
1

ζ
=

3πgm3w0

(2πh̄)3

∑
〈P2(cos θi)P2(cos θj)〉Rij

〈P2(cos θ)〉I2
. (A19)

Let us go now to the third order variation of the collision integral δSt3 of Eq. (A2). Applying

Eqs. (A3) and the transformation (A7) to Eq. (A2) and using the relation (see Appendix

B) ∫
dφ2

2π
Ynm(Ωi)Yn′m′(Ωj)Yn′′m′′(Ωk)

= Ynm(Ω1)Yn′m′(Ω1)Yn′′m′′(Ω1)Pn(cos θi)Pn′(cos θj)Pn′′(cos θk),

we will reduce the collision integral δSt3 to the following form

δSt3 = −g2
(2π)2m3

(2πh̄)6
[ν(1)]3

∑
〈wP2(cos θi)P2(cos θj)P2(cos θk)〉rijk, (A20)

where

rijk =
∫ ∞

V
dǫ2dǫ3dǫ4

δ3Q

δf(i)δf(j)δf(k)

∣∣∣∣∣
eq

∂feq,i
∂ǫi

∂feq,j
∂ǫj

∂feq,k
∂ǫk

δ(∆ǫ). (A21)

Using Eqs. (6), (14), (15) and (A20), we obtain

Q
(3)
αβ =

1

m

∫
gd~p

(2πh̄)3
(pα −muα)(pβ −muβ)δSt3
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= −
g3

m

(2π)2m3

(2πh̄)9
∑

〈wP2(cos θi)P2(cos θj)P2(cos θk)〉Rijk

∫
dΩ1 p̂1,α p̂1,β [ν(1)]3, (A22)

where

Rijk =
∫ ∞

0
dpp4rijk. (A23)

Similar to the previous evaluation of the tensor Q
(2)
αβ , we will consider the partial term of

Eq. (A20) with i = 1, j = 2, k = 3 and the corresponding partial tensor Q
(3)
αβ,123 which is

given by

Q
(3)
αβ,123 = −

g3

m(2πh̄)9

∫
d~p1 p̂1,αp̂1,β δf(1)

×
∫
d~p2δf(2)

∫
d~p3δf(3)

∫
d~p4w(θ, φ)δ(∆ǫ)δ(∆~p), (A24)

where we have used the following relation

δ3Q

δf(1)δf(2)δf(3)

∣∣∣∣∣
eq

= −1.

We will again assume the isotropic scattering probability: w(θ, φ) = w0 and apply the

transformation (A14) to Eq. (A24). The angle integrals over dΩ2dφ, appearing in Eq.

(A24), can be transformed as

∫
dΩ2dφ

Y2m′(Ω2)

cos(θ/2)
Y2m′′(Ω3) = Y2m′′(Ω1)

∫
dΩ2dφ

P2(cos θ3)

cos(θ/2)
Y2m′(Ω2), (A25)

where we have used the relation [34]

∫ π

0

dφ2

2π
Ynm(Ωi) = Ynm(Ω1)Pn(cos θi). (A26)

The result reads

Q
(3)
αβ,123 = −

g3

m

m3w0

2(2πh̄)9
R123

2∑

m=−2

ν2m

×
∫
dΩ2dφ

P2(cos θ3)

cos(θ/2)
Y2m(Ω2)

∫
dΩ1 p̂1,α p̂1,β [ν(1)]2. (A27)

Performing the integration over dΩ2dφ in Eq. (A27) and using Eqs. (A17) and (A6), we

obtain

Q
(3)
αβ,123 = −

27

28

gm3

(2πh̄)3
w0

〈P2(cos θ)〉

R123

I2
mP ′2

0

∫
dΩ1 p̂1,α p̂1,β ν(1). (A28)

Comparing Eq. (A28) with the partial i = 1, j = 2, k = 3 term of Eq. (A22) we obtain the

following relation

∫
dΩ1 p̂1,α p̂1,β ν3(1) =

27

28

(2πh̄)6

(2π)2g2I2
m2P ′2

0

〈P2(cos θ)〉〈P2(cos θ)P2(cos θ3)〉
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×
∫

dΩ1 p̂1,α p̂1,β ν(1). (A29)

Finally, substituting Eq. (A29) into Eq. (A22) and using Eq. (A4), we obtain

Q
(3)
αβ =

m2P ′2
0

ξ
P ′
αβ , (A30)

where
1

ξ
=

27m3w0

28

∑
〈P2(cos θi)P2(cos θj)P2(cos θk)〉Rijk

〈P2(cos θ)〉〈P2(cos θ)P2(cos θ3)〉I3
. (A31)

APPENDIX B

In this Appendix, we will consider some angle integrals which appear in the calculations

of the collision integral and its variations. Let us start from the integral

M23 =
∫

dΩ2

4π
Pm
n (cosΘ2)e

imΦ2Pm′

n′ (cosΘ3)e
imΦ3Pl(cos θ), (B1)

where (Θj,Φj) are the angle coordinates of the momentum vectors ~pj in the arbitrary co-

ordinate frame (j = 1 ÷ 4) and θ is the angle between the vectors ~p1 and ~p2. Using the

addition theorem for spherical harmonics [35]

Pl(cos θ) =
l∑

r=−l

(l − |r|)!

(l + |r|)!
P

|r|
l (cosΘ1)P

|r|
l (cosΘ2)e

ir(Φ1−Φ2), (B2)

we find

M23 =
l∑

r=−l

(l − |r|)!

(l + |r|)!

∫
dΦ2

4π

∫
sinΘ2dΘ2P

m
n (cosΘ2)P

m′

n′ (cosΘ3)

×P
|r|
l (cosΘ2)P

|r|
l (cosΘ1)e

imΦ2eim
′Φ3eir(Φ1−Φ2)

=
δnl

2n + 1
Pm
n (cosΘ1)e

imΦ1Pm′

n′ (cosΘ1)e
im′Φ1Pn′(cosΘ3). (B3)

Here, θ3 is the angle between ~p1 and ~p3. On the other hand, using the direction of ~p1 as

a polar axis with dΩ2 = sin θdθdφ2 where φ2 is the azimuthal coordinate of ~p2 in the new

co-ordinate frame, we will rewrite Eq. (B1) as

M23 =
∫ dθ

2
sin θPl(cos θ)

{∫ dφ2

2π
Pm
n (cosΘ2)e

imΦ2Pm′

n′ (cosΘ3)e
im′Φ3

}
. (B4)
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Here and below the angles Θi and Φi are dependent on the angles θ and φ2. Comparing Eqs.

(B3) and (B4) and using the orthogonality condition for the Legendre polynomial Pl(cos θ)

in Eq. (B4), one obtains the following integral relation

∫ dφ2

2π
Pm
n (cosΘ2)e

imΦ2Pm′

n′ (cosΘ3)e
im′Φ3

= Pm
n (cosΘ1)e

imΦ1Pm′

n′ (cosΘ1)e
im′Φ1Pn(cos θ)Pn′(cos θ3). (B5)

Starting from the integral

M24 =
∫

dΩ2

4π
Pm
n (cosΘ2)e

imΦ2Pm′

n′ (cosΘ4)e
imΦ4Pl(cos θ),

we will also obtain an integral relation analogous to Eq. (B5) but with the replacement

3 → 4. Let us consider now the integral

M34 =
∫

dΩ3

4π
Pm
n (cosΘ3)e

imΦ3Pm′

n′ (cosΘ4)e
im′Φ4Pl(cos θ3). (B6)

Using the addition theorem for Pl(cos θ3) (see Eq. (B2)), we reduce Eq. (B6) as

M34 =
δnl

2n + 1
Pm
n (cosΘ1)e

imΦ1

∫
dΦ3

2π
Pm′

n′ (cosΘ4)e
im′Φ4

=
δnl

2n+ 1
Pm
n (cosΘ1)e

imΦ1Pm′

n′ (cosΘ1)e
im′Φ1Pn(cosΘ4). (B7)

Replacing in Eq. (B6) the integration over Φ3 to integration over Φ2 and using the direction

of ~p1 as a polar axis, we will rewrite Eq. (B6) as

M34 =
∫

dθ3
2

sin θ3Pl(cos θ3)

{∫
dφ2

2π
Pm
n (cosΘ3)e

imΦ3Pm′

n′ (cosΘ4)e
im′Φ4

}
. (B8)

Comparing Eqs. (B7) and (B8) and using the orthogonality conditions for the Legendre

polynomials, we obtain

∫
dφ2

2π
Pm
n (cosΘ3)e

imΦ3Pm′

n′ (cosΘ4)e
im′Φ4

= Pm
n (cosΘ1)e

imΦ1Pm′

n′ (cosΘ1)e
im′Φ1Pn(cos θ3)Pn′(cos θ4). (B9)

Using the representation of the spherical function Ynm(Ω) via the Legendre polynomials

Pm
n (cos θ) [35]

Ynm(Ω) =

√√√√2n + 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimφ, (B10)
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and collecting Eqs. (B5) and (B9) we obtain the following integral relation

∫
dφ2

2π
Ynm(Ωi)Yn′m′(Ωj) = Ynm(Ω1)Yn′m′(Ω1)Pn(cos θi)Pn′(cos θj), (B11)

where i, j = 1÷ 4. Let us consider finally the integral

M234 =
∫

dΩ2

4π
Pm
n (cosΘ2)e

imΦ2Pm′

n′ (cosΘ3)e
imΦ3Pm′′

n′′ (cosΘ4)e
imΦ4Pl(cos θ). (B12)

Similar to the previous consideration, we will transform Eq. (B12) as

M234 =
∫

dθ

2
sin θPl(cos θ)

×

{∫
dφ2

2π
Pm
n (cosΘ2)e

imΦ2Pm′

n′ (cosΘ3)e
im′Φ3Pm′′

n′′ (cosΘ4)e
im′Φ4

}

=
δnl

2n + 1
Pm
n (cosΘ1)e

imΦ1Pm′

n′ (cosΘ1)e
im′Φ1

× Pm′′

n′′ (cosΘ1)e
im′′Φ1Pn′(cosΘ3)Pn′′(cosΘ4). (B13)

Using the orthogonality conditions for the Legendre polynomials, we obtain

∫
dφ2

2π
Pm
n (cosΘ2)e

imΦ2Pm′

n′ (cosΘ3)e
im′Φ3Pm′′

n′′ (cosΘ4)e
im′′Φ4

= Pm
n (cosΘ1)e

imΦ1Pm′

n′ (cosΘ1)e
im′Φ1Pm′′

n′′ (cosΘ1)e
im′′Φ1

× Pn(cos θ)Pn′(cos θ3)Pn′′(cos θ4). (B14)

Finally, taking into account Eq. (B10) we will generalize Eq. (B14) as

∫ dφ2

2π
Ynm(Ωi)Yn′m′(Ωj)Yn′′m′′(Ωk)

= Ynm(Ω1)Yn′m′(Ω1)Yn′′m′′(Ω1)Pn(cos θi)Pn′(cos θj)Pn′′(cos θk). (B15)

APPENDIX C

In this Appendix we give a proof of the macroscopic equation of motion for the nuclear

shape variable β(t) derived by the displacement field as ~χ(~r, t) = β(t)~v(~r), see Sect. III.

Substituting this separable form in Eq. (27) and multiplying by vα, summing over α, and
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integrating over ~r space, we obtain the equation of motion for the collective variable β(t).

Namely,

Bβ̈ +D0β̇
2 + A0

∫ t

−∞
dt′ exp

(
t′ − t

τ2

)
β̇(t′) + CLDMβ

−D1

∫ t

−∞
dt′
∫ t′

−∞
dt′1 exp

(
t′1 − t

τ2

)
β̇(t′)β̇(t′1)

−D2

∫ t

−∞
dt′
∫ t′

−∞
dt′1

∫ t′

−∞
dt′2 exp

(
t′1 − t

τ2

)
exp

(
t′2 − t′

τ2

)
β̇(t′1)β̇(t

′
2)

+A1

∫ t

−∞
dt′
∫ t′

−∞
dt′1

∫ t′

−∞
dt′2

∫ t′

−∞
dt′3 exp

(
t′1 − t

τ2

)
exp

(
t′2 − t′

τ2

)

× exp

(
t′3 − t′

τ2

)
β̇(t′1)β̇(t

′
2)β̇(t

′
3)

+A2

∫ t

−∞
dt′
∫ t′

−∞
dt′1

∫ t′
1

−∞
dt′2

∫ t′

−∞
dt′3 exp

(
t′2 − t

τ2

)
exp

(
t′3 − t′

τ2

)
β̇(t′1)β̇(t

′
2)β̇(t

′
3)

+A3

∫ t

−∞
dt′
∫ t′

−∞
dt′1

∫ t′
1

−∞
dt′2

∫ t′
1

−∞
dt′3

∫ t′

−∞
dt′4 exp

(
t′2 − t

τ2

)
exp

(
t′3 − t′1
τ2

)

× exp

(
t′4 − t′

τ2

)
β̇(t′2)β̇(t

′
3)β̇(t

′
4)

+A4

∫ t

−∞
dt′
∫ t′

−∞
dt′1

∫ t′
1

−∞
dt′2 exp

(
t′2 − t

τ2

)
β̇(t′)β̇(t′1)β̇(t

′
2)

+A5

∫ t

−∞
dt′
∫ t′

−∞
dt′1

∫ t′
1

−∞
dt′2

∫ t′
1

−∞
dt′3 exp

(
t′2 − t

τ2

)
exp

(
t′3 − t′1
τ2

)
β̇(t′)β̇(t′2)β̇(t

′
3)

= B Fext(t) +B ỹ(t), (C1)

where BFext and B ỹ(t) are, respectively, the external and random forces in the collective

space of the variable β (we have separated the mass coefficient B from the external and

random forces for technical convenience). The transport coefficients in Eq. (C1) are given

by

B = m
∫
d~rρeqv

2, CLDM =
∫
d~r

(
δ2ε

δρ2

)

eq

[
∂

∂rν
(ρeqvν)

]2
, (C2)

D0 = m
∫
d~rρeqvαvν

∂vα
∂rν

, D1 =
∫

d~r L̂
(
PeqΛαν

) ∂vα
∂rν

, (C3)

D2 =
∫
d~r

P 2
eq

ζ
Λ0Λαν

∂vα
∂rν

, (C4)

A0 =
∫

d~rPeqΛαν
∂vα
∂rν

, A1 = m2
∫

d~r
P 3
eq

ξ
Λ

2
0Λαν

∂vα
∂rν

, (C5)
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A2 = m
∫

d~r
Peq

ζ

(
ΛανL̂(PeqΛ0) + Λ0L̂(PeqΛαν)

)
∂vα
∂rν

, (C6)

A3 = 2m2
∫
d~r

P 3
eq

ζ2
Λ

2
0Λαν

∂vα
∂rν

, A4 =
∫

d~r L̂
2 (

PeqΛαν

) ∂vα
∂rν

, (C7)

A5 = m
∫

d~r L̂

(
P 2
eq

ζ
Λ0Λαν

)
∂vα
∂rν

, (C8)

with

L̂P ′
αβ = vν

∂P ′
αβ

∂rν
+ P ′

αβ

∂vν
∂rν

+ P ′
αν

∂vβ
∂rν

+ P ′
βν

∂vα
∂rν

,

Λαβ =
∂vα
∂rβ

+
∂vβ
∂rα

−
2

3
δαβ

∂vν
∂rν

,

and

Λ0 =
1

2
(Λxx + Λyy − Λzz).
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