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Abstract
The contribution of thermal fluctuations to the widths of isoscalar giant multipole resonances
(GMR) in heated nuclei is studied. Starting from the collisional kinetic equation, it is shown that
an additional contribution to the nuclear friction and the corresponding GMR widths arises due to
the nonlinear dissipativity effect. It is also shown that the magnitude of the contributions of the

thermal fluctuations to the nuclear friction coefficient and the GMR widths do not exceed ~ 20%.
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I. INTRODUCTION

In general, the damping of collective excitations in a cold finite Fermi system, e.g. the
width of a giant multipole resonance (GMR) in cold nuclei, is determined by the two-body
collisions, the particle-hole energy fragmentation (Landau damping) and the escape width.
The damping in cold nuclei was intensively investigated in both the quantum (RPA like)
[, 2,13, 4, 5] and the semiclassical (kinetic theory) approaches [6, [1, |8, 9, [10, [11, 12]. The
collisional damping is due to the coupling of particle-hole excitations to more complicated
states. In the kinetic theory, this type of damping is simulated by the collision integral and
leads to a collisional component of the intrinsic width of the collective eigenstates. The
fragmentation width is caused by the interaction of particles with the time-dependent self-
consistent mean field. This contribution to the intrinsic width does not reflect a motion
of the system toward the thermal equilibrium but indicates rather a redistribution of the
particle-hole excitations in the vicinity of the collective state. In a hot system an additional
contribution to the damping of the collective excitations arises through thermodynamic
fluctuations of the corresponding collective variables because of the fluctuation-dissipation
theorem. In this context, one of the most important open problem is the behavior of the
GMR width in hot nuclei as a function of the temperature 7. There are two essential
different sources for the T-dependence of the GMR width. The first one is given by the
thermal contribution to the damping width from an increasing nucleon-nucleon collision
rate (2p2h excitations) plus a Landau spreading due to thermally allowed ph transitions
[3, 4, 13, [14, 15, [16]. In the second one a temperature increasing of the width is caused by
the coupling of the GDR to the thermal shape fluctuations of the nucleus [17, [18, [19]. In
the present work, we study a new effect of the influence of the thermal shape fluctuations

of the nucleus on the damping of the collective motion caused by the nonlinear dissipativity

appearing in the higher order variations of the collision integral. We point out that in the
commonly used linear order of the variation of the collision integral, the thermal fluctuations
do not lead to dissipation (viscosity) in the macroscopic equations of motion because the
following ensemble smearing of the kinetic equation washes out the fluctuation terms from
the final macroscopic equations of motion. This paper is organized as follows. In section I we
suggest a proof of the Langevin equation for nuclear local variables (particle density, velocity

field and pressure tensor), starting from the collisional kinetic equation. We perform a high



order expansion of the collisional integral and derive the non-Markovian pressure tensor
to the Navier—Stokes-like equation of motion. In section III we carry out the ensemble
averaging and reduce the local equations of motion to the macroscopic form and derive
the macroscopic response function. In the derivations, the main features of the dynamical
distortion of the Fermi surface are taken into account. Results of numerical calculations are
presented in section IV. We conclude and summarize in section V. The Appendixes provide
a derivation of the high order variations of the collision integral with respect to the variation

of the phase space distribution function.

II. LOCAL EQUATIONS OF MOTION

We will start from the collisional kinetic equation in the following form [2()]
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Here, f = f(7,p,t) is the Wigner distribution function, V' = V (¥, p, t) is the self-consistent
mean field, ﬁext is the external driving force and dSt[f] is the collision integral which takes
into account the memory effects [21]. The random variable y = y(7, p, t) in Eq. () represents
the random force. As such, its ensemble average vanishes, (y) = 0. To reduce Eq. () to
closed equations of motion for the macroscopic collective variables we will follow the nuclear
fluid dynamic approach [22, 23, 24, 24, 26] and take into account the dynamic Fermi-surface
distortion up to multipolarity [ = 2. Evaluating the first three moments of Eq. () in the p’
space, we reduce Eq. () to the hydrodynamic-like equations of motion for particle density

p, velocity field u and the pressure tensor P,s (for details, see Ref. [21])
dp 0

a9 T T o 2
ot (97’,/'0%/’ (2)
0 0 0
atmpua + arumpu,,ua + B, v +pamV pEecta =0, (3)
and
0 0 0 0
apaﬁ + EVUVPQB + Pyﬁauua -+ PVQEVU,ﬁ = Qaﬁ -+ yaﬁ (4)
Here,
gdp n 1/ gdp P 1/gdﬁ
- - . Pa = — a T « - 5
o= il 1= [ et Feo= o [ e~ mue) s~ mu)f, (9



g = 4 is the spin-isospin degeneracy factor, (),s is associated with dissipative processes

Qus = - [ o = ) s = )35, )

and y,p gives the contribution from the random force
1/ gdp

In Egs. () to (@) and in the following expressions, repeated Greek indices are to be under-

stood as summed over. The pressure tensor P,g can be written as

Paﬁ = Poqéaﬁ + Pt;ﬁv (8)
where
gdp
= Qrhy — mug)(pp — mug)d fa, (9)

dfa = dfo(r,p;t) is the small quadrupole deviation of the distribution function f from the
one in equilibrium, foq = feq(7, D), and P, is the pressure due to the Fermi motion of the
nucleons in the ground state of the nucleus. Assuming the Thomas-Fermi approximation

for foq, one has
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where peq = peq() is the particle densfcy in equilibrium. Using Eq. () we will rewrite Eq.

@) as
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To evaluate the tensor Qs in Eq. () we will use the collision integral in the following

general form [2(]

55t f M U DQULY) 5(AQS(AD). (13)

where w({p;}) = w(p1, P2; Ps, pa) is the spin-isospin averaged probability for two-body scat-
tering, Q({f;}) = fife(1 — f3)(1 — f1) — (1 — f1)(1 — f2) faf4 is the Pauli blocking factor,
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AP = Py + Po — P3 — pu and Ae = € + € — €3 — €4, With ¢; = p?/2m + V (r;) being the
single-particle energy. In performing the variation of the Pauli blocking factor Q({f;}) with
respect to 0 f , we will keep all the terms, up to the third order in d f. The collision integral
then takes the following form (see Appendix A)

§St = §Sty + Sty + dSts, (14)

where 0St,, is the variation of the collision integral St in the n-th order of §f. Considering

Egs. (@) and (), the tensor (),s can be written as
Qup = Qup + Qo + Qi (15)

where Qfxnﬁ) is due to the contribution of §St, in Eq. (@). The first order term QSB) is
simplified as [2§]
1
1
Qus == Pag. (16)

where 75 is the two-body relaxation time in the case of quadrupole deformation of the Fermi
(2

«,

Appendix A, Egs. ([(AIS) and ([(A30))

surface. The higher order terms @) ) and QS’B) can be reduced to the following forms (see

mPé (3) m2P0’2
C P&B? Qaﬁ = 5

where the quantities ¢ and £ are deduced from the collision integral (see Appendix A, Egs.

(AT9) and ([A3T)) and

Q%) = P, (17)

1

To simplify the derivations, we will introduce the operator N as

NP, =Q% + QY. (19)
Equation (IT) is then rewritten as
9 / 1 / T D/ \" D/

We will look for a solution of Eq. (£0) in the following form
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Here, the tensor P;(g) is obtained as a solution to the following linear differential equation
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and it is given by the following non-Markovian form
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The tensor P;(BNL) in Eq. (1)) satisfies the nonlinear differential equation

1 ~
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To solve Eq. (24), we will use the iteration procedure. The first order iteration P(;(ﬁNlL ) (') to
Eq. 4) reads

Py / d exp< ) (NP ()~ LP ()] (25)

and the second iteration is given by
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Below, we will apply Egs. (B) to @) to the small-amplitude vibrations of the particle density
0p near the equilibrium. We point out that we do not assume the velocity field @ to be small.
Finally, taking into account the above mentioned derivations we will rewrite Eq. () as
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where ¢ is the particle energy density.

III. ENSEMBLE AVERAGING AND MACROSCOPIC RESPONSE

Let us introduce the displacement field ¥ related to the velocity field « by u(7,t) = )Z(F, t),
where the dot denotes a time derivative. For the displacement field we will assume the
following separable form (7, t) = B(¢)U(7). Using this separable form of \(,t), we reduce
Eq. (1) to the equation of motion for the collective variable 5(¢) in the presence of the
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external field Fe(f) and the random force g(t) (see Appendix C, Eq. (I)). Below, we
will look for the response of a nucleus to the periodic external field Fey(t) = F,, exp(iwt).
Because of the random force y(t) in Eq. (CIl), we will separate the description of the
collective motion into two parts with 8(¢) = 5(t) + 65(t). The first motion is related to the
driving force Fey(t) and it is associated with the velocity B The second one is due to the

random force §j(t) with the velocity §3. We will assume that |63 > | B |. Performing the

ensemble averaging, one can write
(Bt)A(E)B(t)) = Blta) (58(t2) 4(ts)) + B(t2) (55(11) 66(ts))
+ B(ts) (58(t2) 85 (1)) (28)

We will also assume the following ergodic property for the correlation function

(38(t) 3B(t')) , see Ref. 30, Ch.12,

(38(t) 5B(t)) = /_ Z Z—: (68) e, (29)

The Fourier component, (562)w, of the correlation function is governed by the correlation
properties of the random force g(t), see below. The macroscopic equation of motion (CI])
is significantly simplified in the case of a Fermi distribution for the equilibrium distribution
function feq

-1

: (30)

o= (55)

where ep is the Fermi energy. In this case, one obtains from Eqs. (BATJ) that 1/ < 1 (see
also Figs. 1 and 2) and the contribution of the terms with Ay, A3 and As in Eq. (1) is

negligible. Performing the ensemble averaging of Eq. (CIl), using Eq. [£8) and (y(¢)) = 0
and assuming (8(t)) = B(t) = B exp(iwt), we reduce Eq. (1) to the following form

—Bw?By+CrpmBu+ T, (A0+7-22A4/_00 d_w’ (562)w/ n 473 Ay /oo dw’ (552)w,

1+ iwn oo 2 1+iw'ry 1 +iwr J-oo 2 1+ (W'ry)?
o, [ (), 1 = [ O \a_pr
T — — ., = BF,,.
2 oo 1+ wnl+i(w+wmn 14+iwn J-o 20 1+ i(w + w)m
(31)

Considering the nuclear isoscalar quadrupole mode, we will assume an irrotational motion

with the displacement field #(7') given by [31]

— —

U(r) =V (r*Ya(7))/2, (32)
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and the time dependent radius of the nucleus given by
R(t) = Ro |1+ B(t)Yao ()] - (33)

In this particular case the calculation of the coefficients A; and Ay from Eqs. (C4l) and (C7)
gives: A; = 16Ag(mPy)*/€ and Ay = 12A,. The mass coefficient B of Eq. (C2) for the
displacement field of Eq. (B2) is given by

3
B = gAang, (34)

where A is the nuclear mass number. Let us introduce the collective response function y(w)

as

B = x(w) Fu. (35)

Using Egs. (Bl) and (B3), we obtain from Eq. (B3)
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We have also used the following notations
2
') = AT 39
(W) 0 1+ (w72)2 ( )

and

7" =€/ (mPay)*

We point out that the additional contribution to the stiffness coefficient C’(w) in Eq. (B7)
is caused by the distortion of the Fermi surface [29]. The expression (Bf) can be rewritten
as

X Hw) = (wf + Awg — w?) +iw (y0 + AY), (40)



where we have introduced the following notations for the additional components of the

relaxation coefficient and the squared frequency w

A
2T 21272 {ReK (w) + wrlmK (w)} (41)
7o
Aw? 5 1 Crom ™
— =12 K(w) — —ImK 1 . 42
w? E {Re (w) WTo m (w)} + C'(w) (42)
Note that above, w is real. Finally, the macroscopic strength function S(w) = —Imy(w) is
given by
A

(W + B — WD+ (20 + Ao Pt
Both the additional spreading A~y and the resonance shift Awg appear in the strength
function ([E3)) due to the nonlinear dissipativity effect.

IV. NUMERICAL RESULTS AND DISCUSSION

We have performed the numerical calculations assuming a Fermi distribution for the equi-
librium distribution function of Eq. (Bl) and adopting the Fermi energy ez = 39 MeV and
the nuclear radius Ry = 79A"? with ry = 1.12 fm. The higher order relaxation parameters
7' = (/mP and 7" = £/(mP.)?* are related to the collision integral and can be evaluated
using Egs. (AT9) and ([A3) from Appendix A. We point out that in the limit of a cold
nucleus, I’ — 0 and fo, = O(ep — €), the corrections 7" and 7" take the following simple

form
3 p2
m? Py wo

%

where pp is the nucleon Fermi momentum and the scattering probability wy = 157%h° /m?ga

1 1

o ’ (44)
is related to the in-medium cross section oy, of nucleon-nucleon scattering. We use o = 9.2
MeV from [14], which corresponds to oy, & Ofee/2, Where ogee ~ 40 mb is the cross section
for the nucleon-nucleon scattering in free space. Note that both relaxation parameters 7’
and 7" can not be directly interpreted as the corrections to the observable relaxation time.
In particular, the value of 1/7” does not equal to zero in the ground state of the nucleus. The
relaxation parameters 7/ and 7" determine the contribution of the viscous tensors Qfﬁ) and
QSB) (see Eq. (1)) to the local equations of motion and both tensors Qfﬁ) and QSB) disappear

in the ground state. We also point out that the relaxation parameters 7/ and 7”7 as well as
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FIG. 1: Temperature dependence of /7" (solid curve 1) and %/7” (solid curve 2) for the case of
the temperature-dependent Fermi distribution function (B0). The dashed line is the calculation of

h/7" with the sharp Thomas-Fermi distribution function ©(ep — €).

¢ and ¢ depend on the nuclear mean field potential V' due to the space integrals r;; and
Tijk, see Eqgs. (AI0) and ([AZ20). This dependence appears after the Abrikosov-Khalatnikov
transformation ([A7) in the collision integral 0St[f]. However, due to the presence of the
strongly picked functions 0feq:/0¢€;, at € = ep, in Eqs. (AI0) and ([AZ]) the final results for
¢ and & are not sensitive to the specific choice of the mean field potential V at T' < ep. In
Fig. 1, we have plotted the results of calculations of the quantities i/7’ (solid curve 1) and
h/7T" (solid curve 2) as functions of temperature, T', for the nucleus with A = 224.

Both quantities i/7" and h/7"” show a very broad and weak maximum. The magnitude
of the maximum does not exceed the value of 0.07 MeV for 7/7" and 0.49 MeV for h/7".
The dashed line in Fig. 1 corresponds to the value of h/7” from Eq. ([@l). We can see from
Fig. 1 and Eq. (@) that the simplest Thomas-Fermi distribution function ©(ep — €), with
h/7" and h/7" from Eq. (@), provides a good description of both quantities /7" and h/7".

Fig. 2 shows the ratio of the collisional relaxation time 75 to both relaxation parameters 7’
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FIG. 2: Same as in Fig. 1 but for the ratio 7/7’ multiplied by the factor 10 (solid curve 1) and

the ratio 75/7" (dashed and solid curves 2).

and 7”. For the relaxation time 7, we have used the expression from Ref. [14] which takes
into account the memory effects. Namely,

Am2ah
(hwo)? 4 4m2T%

(45)

Ty =

As seen from Fig. 2, the value of 75/7" is relatively small over the entire range of the
temperature. The value of 75/7" decreases with the temperature monotonically starting
from 7 /7" = 1.16 at zero temperature.

Let us now carry out a numerical study of the additional contribution to the friction
coefficient, A~y, caused by the nonlinear dissipativity, see Eqs. () and (#Il) and the corre-
sponding contribution to the width I' of the isoscalar giant quadrupole resonance (GQR).
To apply Egs. (BS) and (I), we have to derive the spectral correlation function (562)@

Using the correlation properties of the random force [3(]]

7). = 20 (46)
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we obtain according to the fluctuation-dissipation theorem the following result [32]

2D w?

o\
(55 )w (R — w?)2 +Rw? (47)
where D is the diffusion coefficient
T
D= %. (48)

To evaluate the relative contribution to the collisional width I' from A~y, we will start from
the usual case with Ay = 0. In this case, the width I" of the GQR can be obtained from the
solution in the form w = Rew + i[' /2% to the following secular equation, see Eq. (E3J),

(Wi — w?)? + yaw? = 0. (49)

For the numerical solution of Eq. (@J), we have used in Eq. (B1) the liquid drop stiffness
coefficient Cppys in the form [33]

5 L—-1 Z?

1
= (L —1)(L+2)bgA?? - =~ "~ p, = _
Crom 47r( L +2)bs on 2L +1 C AL’

(50)

where bg = 17.2 MeV and bs = 0.7 MeV are respectively, the surface and Coulomb energy
coefficients appearing in the nuclear mass formula.

Fig. 3 shows the results of the numerical solution of Eq. (EY) for the nucleus with
A =224 and Z = A(1 —6-10734%3)/2 = 87, which corresponds to the valley of beta-
stability [33]. The energy of the collective excitation 2 = h Rew decreases with temperature
and approaches the hydrodynamic (liquid drop model) limit Eppy = hy/Crpy /B at high
temperatures. In Fig. 4 we have plotted the temperature dependence of the parameter
E7y/h which determines the sound regime: E7y/h > 1 for the zero sound (rare collision
regime) and E1y/h < 1 for the first sound (frequent collision regime).

The solid curve in Fig. 4 corresponds to the calculation with the temperature dependence
of E given by Fig. 3. For the dashed line, the phenomenological parametrization of the GQR
energy E = Er = 60 - A~'/3 MeV was used. Using Eqs. BY), (@), @7) and @X), one can
evaluate the contribution Ay to the friction coefficient due to the nonlinear dissipativity.
In Fig. 5, the value of Avy/v, is shown as a function of temperature. The ratio Avy/v
equals to zero at T' = 0 because A~y appears due to the thermodynamical fluctuations of the
collective variable §. The ratio A~/ increases with temperature and reaches a maximum

value, which does not exceed ~ 0.2.
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FIG. 3: Energy E = hRew of the isoscalar giant quadrupole resonance (GQR) and the corre-
sponding collisional width I" for the nucleus with A = 224 as obtained from Eq. £J).

In the high-temperature region the ratio Ay /vy decreases because the temperature de-
pendence of vy ~ T2 is stronger than that of Ay ~ T. For comparison, we have also
performed the calculation of the ratio A~y/+ using the phenomenological parametrization
for the GQR energy Er = 60- A™1/3 MeV (see dashed line in Fig. 5). In this case, the vari-
ation of Ay /vy with temperature is somewhat stronger. Taking into account the nonlinear
dissipativity effects, the collisional width IV of the GQR is obtained from the solution, in
the form w = Rew + il”/2h, to the secular equation, see Eq. (3],

(W 4+ Aw? — w?)? + (70 + AY)?w? = 0. (51)

In Fig. 6 we have plotted the temperature dependence of the widths I' (dashed lines) and
I'" (solid lines) for two choices of the resonance energy: E = h Rew using Eq. ([#Y) (curves
1) and Er = 60 - A™Y/3 MeV (curves 2).

We point out that an increase of the width is more apparent for curves 1 in Fig. 6 because
of the temperature dependence of E. The comparison of the solid and dashed lines in Fig.

6 shows that the contribution of the nonlinear dissipative effects to the width I' does not
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FIG. 4: Dependence of the dimensionless parameter E7o/h on the temperature T' for the GQR in
the nucleus with A = 224 with 7 from Eq. (). The solid curve was obtained using £ = hRew
from Eq. @J). The dashed curve was obtained with E = Eg, where Er = 60 - A~1/3 MeV is the

experimental value of the GQR energy.

exceed ~ 20%.

In Figs. 7 and 8 we have plotted the strength function S(w) of Eq. (E3)). The comparison
between the solid and the dashed lines in Fig. 7 shows the accuracy of the derivation of the
value of A~ directly from the strength function S(w) of Eq. ([#3) and through the solution
of the secular equation (&1]). The comparison of the solid lines with the dashed lines in Fig.

8 demonstrates the effect of the nonlinear dissipativity on the strength function.

V. SUMMARY AND CONCLUSIONS

Starting from the collisional kinetic equation with a random force and using the p-
moments techniques, we have derived the equations of motion of the viscous fluid dynamic

for the local values of particle density, velocity field and pressure tensor. The obtained
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FIG. 5: Temperature dependence of the ratio Avy /7o for the nucleus with A = 224 for the GQR.

The solid curve was obtained using Eq. (Il) with w from Eq. ([@J) (see also Fig. 3); the dashed line
was obtained using Eq. [{Il) with v from Eq. [B1) and w = wr = Fr/h with the phenomenological

parametrization Er = 60 - A~Y/3 MeV.

equations are closed due to the restriction imposed on the multipolarity [ of the Fermi sur-
face distortion, up to [ = 2. The important features of these equations of motion are due
to the non-Markovian form of the pressure tensor F,s. In contrast to the commonly used
T-approximation, we take into account the higher orders of the variation of the collision
integral with respect to the variation of the phase-space distribution function. Using the
Abrikosov-Khalatnikov transformation we have then obtained the collision integral in the
form of the extended T-approximation. Assuming a separable form for the displacement
field, we have introduced the macroscopic collective variable §(t) and reduced the problem
to a macroscopic equation of motion for 4(t). Note that we do not assume the velocity 3(t)
to be small. The final macroscopic equation of motion ([CIl) includes both the memory ef-
fects and the nonlinear dissipativity terms ~ 3%. We have separated the description of the

collective motion into two parts. The first (slow) one is related to the driving force Fey(t)
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FIG. 6: Collisional width I" as a function of temperature T' for the nucleus with A = 224 for

the GQR. The solid lines are for I' = 2Ailmw from Eq. (#J) and the dashed lines are for I”
from Eq. (EIl). The curves 1 were obtained using the temperature dependent resonance frequency
w = wgp = Rew from Eq. (@J). The curves 2 were obtained using w = wr = Egr/h with the

phenomenological parametrization Er = 60 - A~Y/3 MeV (see also Fig. 5).

and it is associated with a slow motion having the velocity B The second (fast) one is
due to the random force y(t) with the velocity 66 > B Using the correlation properties
of the random force, we have performed the averaging of the macroscopic equation of mo-
tion over the fast fluctuations ~ 3, reducing the nonlinear dissipativity terms to the form
~ B(t) <5B(t’ )oB(t" )>, which is linear with respect to the slow collective motion ~ B Fi-
nally, assuming a periodic driving force Fo(t) ~ exp(iwt), we have derived the macroscopic
strength function S(w). As seen from Eq. (#3), the nonlinear dissipativity effect leads to the
additional spreading Ay and the resonance shift Awy in the strength function S(w). The
contribution Ay appears due to the thermodynamical fluctuations of the collective variable
B. In contrast to the Fermi-liquid friction parameter v with vo ~ T2 (at T < €r), the

spreading A~ is a linear function of the temperature 7T'. This fact provides a non-monotonic
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FIG. 7: The strength function S(w) in h2-units for two temperatures: T' = 1.9 MeV (curves 1) and

T =5 MeV (curves 2). The solid curves 1 and 2 were obtained from Eqs. [@Il), [#2) and @3]). The
dashed curves 1 and 2 were obtained using Eq. (@) with 4o + Ay = T'/h and w3 + Aw? = (E/h)?,

where FE and I' are obtained from the solution, in the form w = E/h + iI'/2h, to the secular

equation (&1J).

behavior of the ratio Avy/~o, see Fig. 5. As seen from Fig. 5, the nonlinear dissipativity
effects are enhanced at the moderate temperatures T' ~ 2 MeV and do not exceed ~ 20%.
The nonlinear dissipativity effect increases the collisional width of the GMR. Usually the
total collisional width of the isoscalar GQR in cold nuclei does not exceed 30-40% of the
experimental value and the main contribution to the width is due to the Landau damping.
One can expect that the nonlinear dissipativity effect on the collisional width can lead to a
deviation of the temperature dependent width I'(7") from the usual Fermi liquid prediction
[(T) ~ T?. Unfortunately, at present time, experimental data on the temperature behavior
of T'(T') of the isoscalar GQR are not available. In this respect, it is more instructive to
study the isovector giant dipole resonance where the temperature dependence of I'(T") was

studied for some heavy nuclei |36, 37]. However our final results for the viscous tensor Qs
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FIG. 8: The strength function S(w) in h2-units for two temperatures: T = 1.9 MeV (curves 1) and

T =5 MeV (curves 2). The solid curves 1 and 2 are the same as in Fig. 7. The dashed curves 1
and 2 were obtained from Eqs. (3), but with Ay = 0.

and the relaxation parameters ¢ and & can not be applied directly to the isovector mode
because the dipole distortion of the Fermi surface must be taken into account in the collision
integral ([I3)), in contrast to our case of the isoscalar GMR, see Sect. II. The generalization

of our approach to the case isovector modes is now in progress.
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APPENDIX A

As a basic expression for the collision integral 0St[f] we use Eq. (3). The second and
third variations of Eq. (I3]) with respect to df take the following form

G*dpsdpsdpy = &Q

Sty = Gy v wlBY Sras i ST970) |, 0f(1)0.f(7) 6(Ae)d(Ap), (A1)

g2 dpadpsdp, 0°Q
dSts = 7) w({ ]})Z Sf()of(5)of(k )

where 6 f (i) = §f(p;) and the symbol 3 means a summation over indices i, j, k = 1 +4 with

0f(0)0f(5)0f (k) 6(Ae)o(Ap), (A2)

1# 7,5 #k, k#1i. We will follow the fluid dynamic approach and represent the variation

of the distribution function d f in the following form:

30) = =200, ) = 2 o (0o (). (A3)

We point out that the [ = 0 and 1 components of the expansion ([A3]) do not contribute to
the collision integral ([3)), reflecting the conservation of particle number and momentum in

a collision. The expansion coefficients vy, (7, t) in Eq. ([A3) are related to the pressure tensor

Pls of Eq. (). Using Eqs. () and ([Ad), we obtain

, gl g / o
mPaB (271.7-1)3 m§—2 Vamy d) P pﬁ}/?mz(Q)v (A4>
where
I = / dpp* ZLea A
o PP e (A5)

and 7= ' /p is the unit vector. In particular, performing the angle integration in Eq. (B4),

3 [5(2rh)*m _,
= —y/———P, A
V20 i\ 7 gl 0 ( 6)

where P} is given by Eq. ([I8). To evaluate the collision integral dSts, we will substitute Eq.

we obtain

([A3)) into ([Adl) and make use of the Abrikosov-Khalatnikov transformation in the following

form [20]

3 0o Q
/ ARadpisdi () 6(AP) = /V desdesdes / % (), (A7)

where df) = sin 0dfd¢, 0 is the angle between p; and ps, ¢ is the angle between the planes

formed by (pi,p2) and (p3,ps), and ¢q is the azimuthal angle of the momentum ps in the

co-ordinate system with z-axes along p;. We point out that the angle ¢ varies only from
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0 to m because the particles are indistinguishable. Using the transformation (A7) and the

relation (see Appendix B)

2
/ %Ynm(QJYn/m/(Q]) = Ynm(Ql>Yn/m/(Ql)Pn(COS ei)Pn/(COS Hj), (AS)
0o 27
we obtain
o (2m)*m° 2\ A
0Sty =g ) [v(1)] Z(ng(cos 0;)Py(cos 0;))r;. (A9)
Here, r;; is given by
0 52Q O Foci Ofoc i
ij = deadezd St 2 §(A Al
" /v TGP ’ o 0 (O o
and the symbol (...) denotes the following average
T ) T d¢
(w(6, 6) Py(cos 6;) Py(cos §;)) = 2 / d6 sin(0/2) / Sow(®, 6)Palcos 0:) Pa(cos 0.
0 0 2w
where cosf; = (]%'J . py), ie. 6y =0, and
cos B3 = cos?(0/2) + sin?(0/2) cos ¢, cos 04 = cos®(6/2) — sin®(6/2) cos ¢, (A11)

and Pj(cosf) is a Legendre polynomial. Using Eqs. (@), ([4), (&) and ([AJ), we obtain

L _gdp
Qf(fﬁ) - E/ (27Th)3 (pa - muoc)(pﬁ - mUB)(SStQ

= E((Q;ifg; i(ng(cos 0;)Py(cos0;)) R;; /dQl DPla ]51,5[1/(1)]2, (A12)

NS

where
Ri; = /0 dplpilrij-
To exclude the unknown amplitude v(1) from Eq. ([AT2), we will calculate the arbitrary par-

tial contribution to the tensor Qfg. Using Eq. ([Ad]), we will consider the partial contribution
Qgﬁ),m to the tensor Q((fﬁ) given by

3
Q((fﬁ),m = m/dﬁlpl,apl,ﬁ(sf(l)/dﬁ25f(2)/dﬁgdﬁ4

 wie.g) 0L

ST )| SAAn). (A13)

eq
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We will assume the isotropic probability scattering w(#, ¢) = wyp, and apply the Abrikosov-

Khalatnikov transformation in the following form

[ ddii () 6(AF) =

where pr is the Fermi momentum. Using Eqs. (A3) and ([AT4), we transform Eq. (A13) as

W / d€3d€4d¢ ) (A14)

g3 2rm3wy 2 Yom (€22)
—_— Q
m2(27rh) By 3. :_2”2’“/ 2 0s(6/2)

Q%12 = / A pro g v(l).  (A19)

Integrating over dfy in Eq. (ATH) and using Eq. ([Af), we obtain

37rm Wo ng
(27rh)6 1

Comparing Eq. (AT0) with the partial i = 1, j = 2 term of Eq. ([AI2)), we find the relation

3 (27h)3
Q pra prs V(1)) =
/d 1 Pra P V(1)) Ag(Pa(cosh))y T

Finally, from Eqs. (A12), (A4)) and (AT7) we obtain

Qaﬁ 12 = /d91 Pra P1s v(1). (A16)

mP’/dQl Pra prs v(1). (A17)

mP _,
Qo = ¢ — Lo (AL8)
where -
1 _ 3mgmPwy S(Pa(cos b;) Py(cos ;) Ry (A19)

¢ (2mh)3 (Py(cos0))I?
Let us go now to the third order variation of the collision integral §St3 of Eq. (A2). Applying
Egs. ([A3) and the transformation (A7) to Eq. ([AZ) and using the relation (see Appendix

B)
d
%Ynm(ﬁi)yn,m,(Qj)yn,,m,,(gk)

= Yo (1) Yo (1) Yo (Q1) Py (cos 0;) Py (cos 8;) P (cos 6y,

we will reduce the collision integral dSt; to the following form

2,3 _
0S5t = —g2% (1) (wPs(cos 6;) Py(cos 0;) Pa(cos ) )7iji, (A20)
where ,
. > 5 Q 8.feq,z' afeq,j afeq,k
Tijk = /V deadesdey STF G|, e e Oe d(Ae). (A21)

Using Eqs. (@), ([d), () and ([A20), we obtain

@ _ 1 gdp - B
Qas = m/(zwh)?’(pa M) (ps — mug)dSts
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(cosB;)Psy(cos b)) Riji /dQl Pra b [V, (A22)
where

Rk = /oo dpp4rijk. (A23)
Similar to the previous evaluation of the tensor Qaﬁ, we will consider the partial term of

Eq. (B20) with i =1, j = 2, k = 3 and the corresponding partial tensor Q) op.123 Which is

given by
(3) 9° A
Qopioz = T mRh) /dpl P1,ab1,5 0f(1)
< [apof(2) [ dpdf(3) [ dpuw(6,)5(200(Ap), (A24)
where we have used the following relation
3
"¢ = —1.

0f(1)3f(2)0f(3)].
We will again assume the isotropic scattering probability: w(f#,¢) = wy and apply the

transformation (AT4l) to Eq. ([A24)). The angle integrals over d€yd¢, appearing in Eq.
([A24)), can be transformed as

Yo (22) Py(cos 63)
/ A0ty 0 5 Yo (95) = Yo (0) / dQngbWYQm/(Qg), (A25)
where we have used the relation [34]
" 92 Yo (%) = Vi () Py (cos 6;). (A26)
0 27

The result reads
3

g mwo
1z
Qaﬁ 123 = m2( Rigs Z 2m

/ dQ0d (C((;S/Z‘”;) Yo (2s) / A pra prs V(D)2 (A27)

Performing the integration over dQyd¢ in Eq. ([A27) and using Eqs. ([(AT7) and ([AG), we

obtain
27 gm3 Wo R123 2 ~ ~
it P, / 9 pra 1). A2
Qaﬁ 123 — 28 (271'7—1)3 <P2(COS 9)> 12 miyg 1 Pla P18 V( ) ( 8)

Comparing Eq. (A2]) with the partial i = 1, j = 2, k = 3 term of Eq. ([A22) we obtain the

following relation

27 (27h)° m2Py?
28 (27)2g212 (Py(cos 0)) (P2 (cos 0) Py(cos 63))

/dQl ﬁl,a ﬁl,ﬁ Vg(l) =
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x [ 4 pra brs v(1). (A29)
Finally, substituting Eq. ([A29) into Eq. ([(A22) and using Eq. (A4)), we obtain

2P/2
Quri=—("
Po¢

P(;zﬁv (ABO)

where o
1 2TmPwo 3 (Po(cos ;) Pa(cos 6;) Po(cos Ok )) Rijk
28 (Py(cos 0)){(Py(cos 0) Py(cos 03)) I3~

(A31)

APPENDIX B

In this Appendix, we will consider some angle integrals which appear in the calculations

of the collision integral and its variations. Let us start from the integral

ds) , , .
M3 = 4—2P (cos ©2)e™™®* P (cos ©3)e™®* Py(cos §), (B1)

where (0;, ®;) are the angle coordinates of the momentum vectors p; in the arbitrary co-
ordinate frame (j = 1+ 4) and @ is the angle between the vectors p; and p>. Using the

addition theorem for spherical harmonics [35]

r

Py(cosf) = Z (L= }

+|r

:; P‘ ‘(cos@ )P| |(cos@ )e ir(®1-®2) (B2)

we find l
B (L= |r])! ddy
Mys = E - T+ )] / /sm ©2dOs P (cos Oq) P; (cos ©3)

. VT _
XPl‘T’\ (COS @2)PZIT|(COS @1)ezm<l>gezm <I>36W(<I>1 P3)

5 m im®P, pm/ im/ ®q
= o T 1Pn (cos ©1)e™* P (cos ©1)e P,/(cos O3). (B3)

Here, 65 is the angle between p; and p3. On the other hand, using the direction of p; as
a polar axis with d€)y = sin 6dfd¢p, where ¢ is the azimuthal coordinate of py in the new

co-ordinate frame, we will rewrite Eq. (BIl) as

Mss = /—sm 0P (cos 6’){ %Pm(cos@ )em®2 P (cos @3)€iml¢3}. (B4)
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Here and below the angles ©; and ®; are dependent on the angles § and ¢,. Comparing Egs.
(B3) and (B4)) and using the orthogonality condition for the Legendre polynomial P;(cos )
in Eq. (B4), one obtains the following integral relation

d / . /
2—2Pm(cos O3)e™®2 P (cos O3)e™™ P2

= P™(cos ©,)e™® P (cos ©1)e™ ®1 P, (cos ) P,y (cos ). (B5)
Starting from the integral
_ dQ2 m im®s pm/’ im®Py
My, = 4—P (cos ©y)e"™*2 P (cos ©4)e"™** P(cos ),

we will also obtain an integral relation analogous to Eq. (BH) but with the replacement

3 — 4. Let us consider now the integral

dQ ! ; /
M3y = /4—3Pm(cos O3)e™®3 P (cos ©4)e™ 4 Py(cos 3). (B6)

Using the addition theorem for Pj(cos#3) (see Eq. (B2)), we reduce Eq. (Bd) as

On ,
M, = o Jlr | " (cos O )e ™ / o ™ (cos Oy) e P

5 m im®; pm’ im/®q
= o+ 1Pn (cos ©1)e™* P (cos ©1)e P, (cos ©y). (B7)

Replacing in Eq. (BA) the integration over ®3 to integration over ®5 and using the direction

of pi as a polar axis, we will rewrite Eq. (Bf) as
de d ) -
Msy = / —3 §in 63 P,(cos 63) {/ 2¢2 P™(cos O3)e™®3 P (cos ©4)e™ ¢4} : (B8)

Comparing Egs. (B7) and (BY) and using the orthogonality conditions for the Legendre

polynomials, we obtain

d / ; /
%Pm(cos O3)e™®3 P (cos ©4)e™ 4

= P™(cos ©1)e™® P (cos ©,)e™ 1 P, (cos 03) P (cos 0y). (B9)

Using the representation of the spherical function Y,,,(€2) via the Legendre polynomials

P™(cos ) [35]

Yo () = J 2”4; ! EZ - Z?:PN (cos )¢, (B10)
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and collecting Eqs. (BI) and (BY) we obtain the following integral relation

Ao

o o (23) Yo () = Yo (1) Yo (1) P (cos 0;) Py (cos 6;),

where 7,5 = 1+ 4. Let us consider finally the integral

Masy = / —2 P (cos ©y)e™™ P2 P (cos O3)e™ P2 P (cos ©4)e™™ 1 P (cos 6).

Similar to the previous consideration, we will transform Eq. (BI2) as
df
Mysy = / 3 sin 6 P,(cos 0)
d . ’ -y " 1
X {/ %Pf(cos B)e™®2 P (cos O3)e™ 2 P (cos O4)e™ <1>4}
T

6 ’ ; ’
= o+ 1an(cos 0,)e™®1 P (cos O )™ ™1

x P (cos ©1)e™ ' Py (cos ©3) Py (cos ©,).

Using the orthogonality conditions for the Legendre polynomials, we obtain
d¢2 m im®s pm/’ im/®3 pm/’ im/ ®y
o —— P (cos ©3)e™*? P} (cos O3)e P, (cos ©y)e
= P™(cos ©,)e™®1 P (cos ©4)e™ 1 P (cos O )™ 1
X P, (cos )P, (cosb3) P, (cosby).

Finally, taking into account Eq. (BI0) we will generalize Eq. (BI4) as

des

ﬁynm(QZ)Yn/m/ (Q])Yn"m” (Qk)

= Yo (1) Yo (1) Yo (1) Py (cos 0;) Py (cos 0;) P (cos ).

APPENDIX C

(B11)

(B12)

(B13)

(B14)

(B15)

In this Appendix we give a proof of the macroscopic equation of motion for the nuclear

shape variable [(t) derived by the displacement field as \(7,t) = B(¢)U(F), see Sect. III

Substituting this separable form in Eq. (27) and multiplying by v,, summing over «, and
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integrating over 7 space, we obtain the equation of motion for the collective variable 3(t).

Namely,
t—t

T2

BB+D052+A0/_ZOdt/eXp< ) ﬁ(t,)‘l'CLDMﬁ

—D, / "t ; dt} exp (tl _t> BB(H)

—00 - T2

t t/ t t —t th—t . .
S B B e = P =S AR
—00 —00 —00 T2 T2

t / ¢ ’ v / v / t/l —1 t/2 —
+A4, / dt / dt; / dt;, dt}, exp exp
—00 —00 —0o0 — 00 7—2 7-2

s exp (t% = t/) BB

T2

t , + ) t , t ) t/z_t té—t/ T
vy [ ar [ty [ ar, [ dtgexn (22 Jexp (B2 ) A)A0)A)
t t/ th t! t t/ —t t/ o 2,:/
+A3/ dt’/ dt’l/l altg/1 dtg/ dtﬁlexp< 2 )exp< 3 1)
- e o0 oo —o0 T2 T2

s oxp (tﬁ = t’) B BB

T

2
t t’ t t—t

+A4/ dt'/ alt'l/1 dt), exp< 27_
—00 —00 —00 D)

L T L S ty —t th—th\ e
+A5/_oodt /_oodtl /_oodt2/_oodt3 exp< = >exp (—TZ ) BB B(E,)
= B Fux(t) + B (1), (C1)

) BB ()

where BF. and B §(t) are, respectively, the external and random forces in the collective
space of the variable 8 (we have separated the mass coefficient B from the external and
random forces for technical convenience). The transport coefficients in Eq. (C1]) are given

by

. L (6% 0 2
penfirn, o= [ (%) [Liwe]
Dozm/dfp S Dlz/dff(PK )a”a (C3)

eq¥a I/arlj7 eq v 8’]”V’
P2_ _ o
- — eq «
D2 - /d’/’ C AOAaV 07“,,’ (04)
B o — OUgy o L P e?’q—z— g
Ay = / APlon g™ Ar=m / A KR, (C5)
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Ay =m / a7 % <Ka,,f(PCqKO) + K@(poqxw)) Ova (C6)

or,’
P3 —o v =2 - v
_ 2 - €q e — = ol
Ay =2m? [ dF ARy A= [ar T (PuBia) o (c7)
L= Pe2 - 8Ua
As =m / A7 T < CquAa,,> o (C8)
with
- oP! ov ov ov
LP/ =0, af P/ 14 P/ 8 P/ o
ag = ¥ or, + “For, * W or, * v or,’
Ky Lo v 25 Ou
f Org  Or, 3 5oy,
and
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