
ar
X

iv
:0

71
1.

04
00

v2
  [

he
p-

th
] 

 1
5 

Fe
b 

20
08

Infinite-Dimensional Symmetries of Two-Dimensional Coset

Models
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Abstract

It has long been appreciated that the toroidal reduction of any gravity or supergrav-
ity to two dimensions gives rise to a scalar coset theory exhibiting an infinite-dimensional
global symmetry. This symmetry is an extension of the finite-dimensional symmetry
G in three dimensions, after performing a further circle reduction. There has not been
universal agreement as to exactly what the extended symmetry algebra is, with different
arguments seemingly concluding either that it is Ĝ, the affine Kac-Moody extension of G,
or else a subalgebra thereof. We take the very explicit approach of Schwarz as our start-
ing point for studying the simpler situation of two-dimensional flat-space sigma models,
which nonetheless capture all the essential details. We arrive at the conclusion that the
full symmetry is described by the Kac-Moody algebra Ĝ, whilst the subalgebra obtained
by Schwarz arises as a gauge-fixed truncation. We then consider the explicit example
of the SL(2,R)/O(2) coset, and relate Schwarz’s approach to an earlier discussion that
goes back to the work of Geroch.
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1 Introduction

The study of supergravity theories, and their symmetries, have played a very important rôle
in uncovering the underlying structures of string theory. Especially significant are the U-
duality symmetries of the string, which have their origin in the classical global symmetries
exhibited by eleven-dimensional supergravity and type IIA and IIB supergravities after
toroidal dimensional reduction. For example, if one reduces eleven-dimensional supergravity
on an n-torus, for n ≤ 8, the resulting D = (11 − n)-dimensional theory exhibits a global
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En symmetry [1–3]. In the cases n ≥ 3 this symmetry arises in quite a subtle way, involving
an interplay between the original eleven-dimensional metric and the 3-form potential.

In view of the large E8 symmetry that one finds after reduction to three dimensions,
it is natural to push further and investigate the symmetries after further reduction to two
dimensions, and even beyond. It turns out that the analysis of the global symmetry for a
reduction to two dimensions is considerably more complicated than the higher-dimensional
ones. There are two striking new features that lead to this complexity. The first is that,
unlike a reduction to D ≥ 3 dimensions, one can no longer use a reduction scheme in which
the metric is reduced from an Einstein-frame metric in the higher dimension to an Einstein-
frame metric in the lower dimension. (In the Einstein conformal frame, the Lagrangian for
gravity itself takes the form L ∼ √−gR, with no scalar conformal factor.) The inability to
reach the Einstein conformal frame in two dimensions is intimately connected to the fact
that

√−gR is a conformal invariant in two dimensions. It has the consequence that the
metric in two dimensions is not invariant under the global symmetries.

The second striking new feature is that an axionic scalar field (i.e. a scalar appearing
everywhere covered by a derivative) can be dualised to give another axionic scalar field in
the special case of two dimensions. This has the remarkable consequence that the global
symmetry group actually becomes infinite in dimension. This was seen long ago by Geroch,
in the context of four-dimensional gravity reduced to two. There are degrees of freedom in
two dimensions that are described by the sigma model SL(2,R)/O(2), and under dualisation
this yields another SL(2,R)/O(2) sigma model. Geroch showed that the two associated
global SL(2,R) symmetries do not commute, and that if one takes repeated commutators
of the two sets of transformations, an infinite-dimensional algebra results [4]. The precise
nature of this symmetry, now known as the Geroch Group, was not uncovered in [4].

The feature of having an infinite-dimensional symmetry in two dimensions is not re-
stricted to situations where gravity is involved, and in fact the same essential mechanism
operates in a similar fashion if one considers a sigma model in a flat two-dimensional space-
time. Thus, a natural preliminary to investigating the symmetries of two-dimensional re-
ductions in supergravity is to study the symmetry of a flat two-dimensional sigma model
G/H. Considerable simplifications arise if one restricts attention to symmetric-space sigma
models, and since these in any case always arise in supergravity dimensional reductions, the
specialisation to this class of models is a very natural one. We shall use the acronym SSM
to denote a symmetric-space sigma model.

There is quite a considerable literature on the subject of the infinite dimensional sym-
metries of two-dimensional symmetric-space sigma models, both in the flat and the curved
spacetime cases (see, for example, [5–15], some of which considers also principal chiral
models). A very clear and explicit presentation of the global symmetry algebras of two-
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dimensional SSMs has been provided by Schwarz, whose papers formulate the problem in
a very transparent way. He first considers the problem of two-dimensional theories in flat
spacetime in [16], and then generalises to the case of a curved two-dimensional spacetime
in [17]. He also gives an extended history of the earlier literature, and rather than attempt-
ing to repeat that here, we refer the reader to his papers for further details.

Our work in the present paper is concerned entirely with the case of symmetric-space
sigma models in flat two-dimensional spacetime, and we follow very closely the approach
taken by Schwarz in [16]. The results in [16] differ somewhat from those in much of the
literature, where the infinite-dimensional global symmetry algebra of the SSMG/H is found
to be Ĝ, the affine Kac-Moody extension of the underlying algebra G of the “manifest” global
symmetry group G. The generators of Ĝ may be represented by J in, satisfying

[J im, J
j
n] = f ijk J

k
m+n , (1.1)

where f ijk are the structure constants for the Lie algebra G, whose generators T i satisfy
[T i, T j ] = f ijk T

k.

By contrast, Schwarz obtained a certain subalgebra ĜH of Ĝ as the global symmetry
algebra, essentially generated by J ′i

n = J in ± J i−n, where the + sign is chosen if i lies in the
denominator algebra H, and the − sign if i lies in the coset K = G/H.

We find that by extending the techniques developed by Schwarz, we can construct ex-
plicit global symmetries for the entire Ĝ Kac-Moody algebra, expressed purely in terms
of local field transformations. As far as we are aware, it is only through the use of the
construction that Schwarz developed that it has become possible to obtain explicit local
transformations for the entire Kac-Moody algebra. We find also that the subalgebra ob-
tained by Schwarz can be viewed as a gauge-fixed version of this full Kac-Moody symmetry.

In order to understand this, we recall that the possibility of dualising axions to give new
axions in two dimensions means that the original theory can be reformulated in terms of
new fields that are non-locally related to the original ones (since the process of dualisation
requires differentiation and Hodge dualisation, followed by integration, to obtain the new
variables). A convenient way to handle this is to enlarge the system by introducing auxiliary
fields, so that the manifest global symmetries of the original and the dualised sigma models
can be exhibited simultaneously, in purely local terms. In fact to do this, one has to
introduce an infinite number of auxiliary fields. The full set of Kac-Moody symmetries,
generated by J in with −∞ ≤ n ≤ ∞, acts on the complete set of original plus auxiliary
fields. However, the “negative half” of the Kac-Moody algebra Ĝ, generated by J in with
n < 0, acts exclusively on the auxiliary fields, whilst leaving the original sigma-model fields
inert. In fact these symmetries are essentially constant shift transformations of the auxiliary
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fields, reflecting the arbitrariness of the choice of constants of integration that arose when
the non-local dualisation was recast into a local form in terms of the auxiliary fields.

The subalgebra ĜH of symmetries found by Schwarz can be viewed as a gauge fixing in
which the values of the original and the auxiliary fields are all set to prescribed values at
some chosen point in the two-dimensional spacetime. Effectively, the level-0 transformations
J i0 that lie in K are used up in gauge fixing the original fields to their prescribed values,
and the entirety of the J in transformations with n < 0 are used up in doing the same for
the auxiliary fields.

The formulation in which the auxiliary fields are added has been developed considerably
by Nicolai, and Julia [18, 19]. However, the work of Schwarz provided a procedure for
obtaining explicit expressions for the transformations associated with the “upper half” of
the Kac-Moody algebra. We are able to draw the two approaches together and provide a
fully explicit and local description of the entire Kac-Moody algebra of symmetries.

In order to illustrate these ideas in detail, it is useful to examine an example. For this
purpose we choose the simplest non-trivial symmetric-space sigma model, SL(2,R)/O(2).
We show how one needs to introduce an infinity of auxiliary fields in order to describe
simultaneously the original SL(2,R) symmetry and the SL(2,R) symmetry of the dualised
version (we denote this by SL(2,R)). We also show how each generator of each copy
of SL(2,R) can be precisely matched with a corresponding generator in the Kac-Moody
algebra, and this allows us to show explicitly that the Geroch algebra generated by taking
multiple commutators of SL(2,R) and SL(2,R) transformations is exactly the same as the

full Kac-Moody algebra ̂SL(2,R).

We also examine a further symmetry of two-dimensional symmetric-space sigma models
G/H, again basing our analysis on the work of Schwarz [16]. This is again an infinite-
dimensional symmetry, but this time a singlet under the original G symmetry. It turns out
to be related to the centreless Virasoro algebra.

2 Lax Equation and Infinite-Dimensional Symmetries

2.1 Basic formalism

We shall begin by considering an arbitrary symmetric-space sigma model (SSM) in a flat
two-dimensional spacetime background, with coset given by K = G/H, where G is a Lie
group with subgroup H. The commutation relations for the corresponding generators of
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the algebra take the form

[H,H] = H , [H,K] = K , [K,K] = H . (2.1)

The condition that K is a symmetric space is reflected in the absence of K generators on
the right-hand side of the last commutation relation. The symmetric-space algebra implies
that there is an involution ♯ under which

K♯ = K , H♯ = −H . (2.2)

In many cases, such as whenG = SL(n,R)/O(n), the involution map is given by Hermitean
conjugation,

K† = K , H† = −H , (2.3)

and later, we shall typically write formulae under this assumption. In some cases, such as
G = E(8,8), H = O(16), the involution ♯ is more involved.

Let V be a coset representative in K. We may then define

M = V♯ V , A =M−1dM . (2.4)

Under transformations
V −→ hVg , (2.5)

where g is a global element in the group G and h is a local element in the denominator
subgroup H, we have shall have

M −→ g♯Mg , A −→ g−1Ag , (2.6)

since it follows from H♯ = −H that h♯ = h−1.

The Cartan-Maurer equation d(M−1dM) = −(M−1dM) ∧ (M−1dM) implies that the
field strength for A vanishes:

F ≡ dA+A ∧A = 0 . (2.7)

The Lagrangian for the coset model may be written as L = −1
4tr(∗A∧A) (or, using indices,

L = −1
4η

µνtr(AµAν)) and hence the equation of motion is

d∗A = 0 . (2.8)

The Lagrangian is clearly invariant under the global G transformations, and the equations
(2.7) and (2.8) transform covariantly under G.

As discussed in [16], the equations (2.7) and (2.8) can both be derived from the integra-
bility condition for the Lax Pair of linear equations

(
∂+ +

t

t− 1
A+

)
X = 0 ,

(
∂− +

t

t+ 1
A−

)
X = 0 , (2.9)
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to admit a solution X(x; t), where t is an arbitrary constant spectral parameter. These
equations are written in light-cone coordinates on the two-dimensional flat spacetime, in
which the metric is ds2 = 2dx+ dx−. We prefer to use the language of differential forms,
for which A = A+dx

+ +A−dx
−. On 1-forms we have ∗2 = +1, where ∗ is the Hodge dual

operator, and

∗dx± = ±dx± , and so ∗A = A+dx
+ −A−dx

− . (2.10)

It is useful also to record the following properties for 1-forms u and v:

∗u ∧ v = ∗v ∧ u , ∗u ∧ ∗v = −u ∧ v , (2.11)

and for Lie-algebra valued 1-forms A and B:

∗A ∧B = −A ∧ ∗B , ∗A ∧ ∗A = −A ∧A . (2.12)

In terms of differential forms, the Lax pair (2.9) becomes simply the single equation

t(d+A)X = ∗dX . (2.13)

We shall call this the Lax Equation. By taking the appropriate linear combination of this
and its dual, we obtain

dXX−1 =
t

1− t2
∗A+

t2

1− t2
A . (2.14)

Thus the integrability condition for the existence of a solution X(x; t) to the Lax equation,
which follows from the Cartan-Maurer equation d(dXX−1) = (dXX−1) ∧ (dXX−1), gives

d∗A+ t(dA+A ∧A) = 0 . (2.15)

Since this must hold for all t we indeed derive (2.7) and (2.8). Note that (2.14) is an
equivalent formulation of the Lax equation; an appropriate linear combination of (2.14) and
its dual gives back (2.13). Thus we may use the term “Lax equation” interchangeably for
(2.13) and (2.14).

2.2 Infinite-dimensional extension of the global G symmetry

We have already noted that the global G transformations (2.6) are a symmetry of the zero-
curvature condition (2.7) and the equations of motion (2.8) of the two-dimensional coset
model. In fact, these symmetries are merely the tip of an infinite-dimensional “iceberg”
of global symmetries. These extended symmetries are a special feature that arises because
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the coset model lives in a two-dimensional world volume, and they may be understood in a
variety of ways. An intuitive understanding, which we shall turn into a concrete discussion
in section 4 for the example of the coset SL(2,R)/O(2), is that the axionic scalars can
be dualised into new, non-locally related sets of axions in two dimensions, and that the
manifest global symmetries in the different duality pictures do not commute, but instead
their commutators close only on an infinite-dimensional extension of the finite-dimensional
symmetries that are manifest in each individual duality choice.1

In the present section, we shall begin by following a construction given in [16], which
shows how the formalism of the Lax equation may be used to derive the infinite-dimensional
algebra. Our description will be formulated in the language of differential forms rather than
light-cone coordinates. The details of our calculation differ somewhat from those in [16], and
our conclusions differ also. Specifically, we find that the full symmetry of the symmetric-
space sigma model is precisely the affine Kac-Moody extension Ĝ of the manifest G global
symmetry, and not merely the subalgebra of Ĝ that was found in [16]. (We shall comment
further about this later in this subsection, and in appendix A.)

At the infinitesimal level, the transformation (2.5) becomes

δV = Vǫ+ δhV , (2.16)

where ǫ is an infinitesimal global element of the Lie algebra G and δh is a local element
of H. In order to exhibit the infinite-dimensional extension of this symmetry algebra, one
may consider more general transformations of the form [16]

δV = Vη + δhV , where η = X(t)ǫX(t)−1 . (2.17)

The meaning of this equation is as follows. As before, V is a coset representative for G/H,
and thus it depends on the scalar fields parameterising the coset, which themselves depend
on the two spacetime coordinates x, but it does not depend on the spectral parameter t.
The function X(t) is the solution of the Lax equation (2.13) and thus it depends on the
spacetime coordinates x (we are now suppressing the explicit indication of this dependence)
and on the spectral parameter t. The quantity δh, in the denominator algebra H, is a
function of the spacetime fields and it may now depend upon t. On the left-hand side of
(2.17) there is t-dependence only in the variational symbol δ itself, and it is to be interpreted
as

δ = δ(ǫ, t) =
∑

n≥0

tn δ(n)(ǫ) . (2.18)

Thus by equating powers of t on the two sides of (2.17) we obtain a hierarchy of transfor-
mations δ(n) that act upon the scalar fields in the coset representative V. The lowest set of

1This idea dates back to a paper on four-dimensional gravity reduced to two dimensions, by Geroch [4],
although at that time the precise nature of the infinite-dimensional algebra was not addressed.
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transformations, i.e. for n = 0, just correspond to the original infinitesimal G transforma-
tions that were manifest in the coset model from the outset. By contrast the transformations
δ(n) with n > 0, which all involve t-dependent terms in X(t), are non-local expressions in
terms of the original fields of the scalar coset.2

To check that (2.17) does indeed give symmetries of the theory, one must check that
the corresponding variation of the equation of motion (2.8) vanishes. First, one sees from3

M = V†V and A =M−1dM that (2.17) implies

δM =Mη + η†M , δA = Dη +D(M−1η†M) , (2.19)

where the G-covariant exterior derivative is defined on any G-valued function f by

Df = df + [A, f ] . (2.20)

It can also be seen from the definition of η in (2.17), after making use of the Lax equation
(2.13), that

Dη =
1

t
∗dη , D(M−1η†M) = t ∗d(M−1η†M) . (2.21)

Thus we conclude that under (2.17),

δA = ∗d
(1
t
η + tM−1η†M

)
, (2.22)

which indeed verifies that d∗δA = 0.

In order to read off the symmetry algebra one needs to calculate commutators of the
form [δ(m), δ(n)]. Since, as noted above, the variations δ(n) involve X(t), which itself depends
non-locally on the fields of the scalar coset, one first needs to calculate the variations of
X(t) with respect to the hierarchy of transformations δ(n). This was obtained in [16], and
with a small but important modification that we shall discuss later, it is given by

δ1X2 =
t2

t1 − t2
(η1X2 −X2ǫ1) +

t1t2
1− t1t2

M−1η†1MX2 . (2.23)

Here δ1 (with no parentheses around the 1) denotes δ(ǫ1, t1) =
∑

n≥0 t
n
1δ(n)(ǫ1), whilst X2

denotes X(t) for a different and independent choice of spectral parameter t2. By equating

2Note, however, that all the transformations become local if one introduces an infinite set of auxiliary
fields, as we shall do later.

3From this point onwards, we shall assume for simplicity, and to make the expressions look more palatable,
that the involution of the symmetric space algebra is implemented by Hermitean conjugation, as in (2.3).
In a case where the more general ♯ involution operator is required, all † symbols in what follows should be
replaced by ♯.
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the coefficients of tm1 t
n
2 on both sides of (2.23), one can read off the variation under δ(m) of

the tn2 term in the series expansion of X(t2).

In order to derive (2.23), we follow the method used in [16], which amounts to varying
the Lax equation (2.13) under (2.17), with δA given in (2.19) and δX given by (2.23), and
verifying that the varied equation is also satisfied. Thus, one must substitute (2.23) into

[t2(d+A)− ∗d](δ1X2) + t2(δ1A)X2 = 0 , (2.24)

or in other words, after using (2.19), into

[t2(d+A)− ∗d](δ1X2) + t2[Dη1 +D(M−1η†1M)]X2 = 0 . (2.25)

After some algebra, again involving the use of the Lax equation, the desired result follows.

Using (2.23) one can calculate the commutator of transformations onM = V† V, finding
(in a similar manner to [16]) that

[δ1, δ2]M =
t1 δ(ǫ12, t1)− t2 δ(ǫ12, t2)

t1 − t2
M , (2.26)

where ǫ12 = [ǫ1, ǫ2]. It is also straightforward to show, after some lengthy algebra, that

[δ1, δ2]X3 =
t1 δ(ǫ12, t1)− t2 δ(ǫ12, t2)

t1 − t2
X3 , (2.27)

If the transformations δ given in (2.17) and (2.23) were the only ones extending G then
we would have essentially “half” of the affine Kac-Moody extension Ĝ. However, there are
additional transformations, which we shall denote by δ̃, that also extend G. These leave M
invariant but they do act non-trivially on X. They are given by

δ̃1M = 0 , δ̃1X2 =
t1t2

1− t1t2
X2ǫ1 . (2.28)

Again, the notation here is that δ̃1 = δ̃(ǫ1, t1) =
∑

n≥1 t
n
1 δ̃(n), and X2 = X(t2). (Note that

there is no n = 0 term here in the expansion of δ̃1, as can be seen from the absence of a t01
term on the right-hand side of (2.28).) It is easy to verify that (2.28) describes symmetries
of the Lax equation. The easiest way to do this is to note that (2.28) implies δ̃(dXX−1) = 0,
and so since δ̃A = 0, it is evident that the Lax equation (2.14) is indeed invariant under δ̃.

The commutators of the δ̃ transformations give

[δ̃1, δ̃2]X3 =
t2

t1 − t2
δ̃(ǫ12, t1)X3 −

t1
t1 − t2

δ̃(ǫ12, t2)X3 , (2.29)
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where again, ǫ12 = [ǫ1, ǫ2]. (This commutation relation is vacuous, of course, when acting
on M .) Finally, we may calculate the commutators of δ and δ̃ transformations, finding

[δ1, δ̃2]X3 =
t1t2

1− t1t2
δ(ǫ12, t1)X3 +

1

1− t1t2
δ̃(ǫ12, t2)X3 . (2.30)

(The commutator on M is the same, except that there is no δ̃ term on the right-hand side
since δ̃M = 0.)

In summary, we therefore have in total the commutation relations

[δ1, δ2] =
t1

t1 − t2
δ(ǫ12, t1)−

t2
t1 − t2

δ(ǫ12, t2) , (2.31)

[δ1, δ̃2] =
t1t2

1− t1t2
δ(ǫ12, t1) +

1

1− t1t2
δ̃(ǫ12, t2) , (2.32)

[δ̃1, δ̃2] =
t2

t1 − t2
δ̃(ǫ12, t1)−

t1
t1 − t2

δ̃(ǫ12, t2) . (2.33)

From these, one can read off the towers of modes in the t-expansions, using δ(ǫ, t) =∑
n t

nδn(ǫ), etc. For example, (2.31) gives

∑

m≥0

∑

n≥0

tm1 t
n
2 [δ(m)(ǫ1), δ(n)(ǫ2)] =

1

t1 − t2

∑

p≥0

(tp+1
1 − tp+1

2 ) δ(p)(ǫ12) ,

=
∑

p≥0

p∑

q=0

tq1t
p−q
2 δ(p)(ǫ12) ,

=
∑

m≥0

∑

n≥0

tm1 t
n
2 δ(m+n)(ǫ12) , (2.34)

whence we obtain

[δ(m)(ǫ1), δ(n)(ǫ2)] = δ(m+n)(ǫ12) , m ≥ 0 , n ≥ 0 . (2.35)

The analogous calculations for (2.32) and (2.33) give

[δ(m)(ǫ1), δ̃(n)(ǫ2)] = δ(m−n)(ǫ12) + δ̃(n−m)(ǫ12) , m ≥ 0 , n ≥ 1 , (2.36)

[δ̃(m)(ǫ1), δ̃(n)(ǫ2)] = δ̃(m+n)(ǫ12) , m ≥ 1 , n ≥ 1 , (2.37)

where in (2.36) it is to be understood that δ(n) = 0 for n ≤ −1 and δ̃(n) = 0 for n ≤ 0.

The three sets of commutation relations can be combined into one by introducing a new
set ∆(n) of variations, defined for all n with −∞ ≤ n ≤ ∞, according to

∆(n) = δ(n) , n ≥ 0 ,

∆(−n) = δ̃(n) , n ≥ 1 . (2.38)
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It is then easily seen that (2.35), (2.36) and (2.37) become

[∆(m)(ǫ1),∆(n)(ǫ2)] = ∆(m+n)(ǫ12) , m, n ∈ Z , (2.39)

with ǫ12 = [ǫ1, ǫ2]. This defines the affine Kac-Moody algebra Ĝ. In terms of currents J i(σ)
defined on a circle, with

J i(σ) =

∞∑

n=−∞

einσ J in , (2.40)

the commutation relations (2.39) are equivalent to

[J im, J
j
n] = f ijk J

k
m+n , (2.41)

where f ijk are the structure constants of the Lie algebra G. Specifically, we have the
association

∆(n)(ǫ
i) ↔ J in , (2.42)

where ǫ = ǫi Ti, and Ti are the generators of the Lie algebra G.

Since we have arrived at a somewhat different conclusion from Schwarz, who finds only
a subalgebra of the Kac-Moody algebra Ĝ as a symmetry of the SSM [16], we shall discuss
in appendix A exactly why the difference has arisen. In essence, the key distinction is that
we include the transformations δ̃ defined in (2.28) as independent symmetries. They are
non-trivial symmetries of the Lax equation, even though they act trivially on the scalar
fields in the coset representative V itself. In section 4, we shall study the explicit example
of the SL(2,R)/O(2) coset model, in order to illustrate this point in greater detail. We
shall show that a natural formulation of the model involves introducing an infinite number
of additional scalar fields, in terms of which X appearing in the Lax equation (2.13) can be
expressed as a local quantity. The δ̃ transformations act on this infinite tower of additional
fields. We shall also show how this infinity of extra scalars can be interpreted as fields
that one introduces in order to exhibit in a local fashion the symmetries arising from the
closure of the two non-commuting SL(2,R) symmetries of the original theory and a dualised
version.

A further remark about the Kac-Moody transformations δ and δ̃ is also in order. The δ̃
transformation defined in (2.28) are of the general form δ̃X ∼ Xǫ. It can be seen that the
second of the three terms on the right-hand side of the δX transformation given in (2.23)
is also of this general form. This means that as far as obtaining symmetries of the Lax
equation is concerned, one could have omitted the second term in (2.23) altogether, since
it is itself a distinct symmetry in its own right. However, it actually serves an important
purpose in (2.23), namely to subtract out what would otherwise be a pole at t1 = t2 if
one had only t2η1X2/(t1 − t2) rather than t2(η1X2 −X2ǫ1)/(t1 − t2). (The third term is in
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(2.23) is necessary in addition, in order to get a symmetry, but there is no pole associated
with this term, since we expand t1 and t2 around zero.) Now, the derivations of the δX
and δ̃X transformations as symmetries involved considering the variation of (dXX−1) in
the Lax equation (2.14). In the case of the δ̃ transformation we have δ̃A = 0, and one
may view δ̃X as the solution of the homogeneous equation δ̃(dXX−1) = 0, whilst δX
is the solution of the inhomogeneous equation δ(dXX−1) = (non-zero source). Thus the
inclusion of a δ̃X contribution as the second term in (2.23) can be viewed as the necessary
addition of a solution of the homogeneous solution that is needed in order to ensure that
the inhomogeneous solution satisfies the necessary boundary condition (i.e. that δ1X2 be
regular at t1 = t2).

This discussion also emphasises the point that it is really the δ transformations found by
Schwarz, appearing in our slightly modified form in (2.23), that lie at the heart of the Kac-
Moody symmetries of the symmetric-space sigma models. The δ̃ transformations, although
they are of course equally necessary in order to obtain the complete Kac-Moody symmetry,
are somewhat secondary in nature since they are already present within the construction of
the δ transformations.

It is also worth remarking that we have obtained the full Kac-Moody algebra as a
symmetry of the SSM by means of a purely perturbative analysis, which involved a small-t
expansion of X(t) around t = 0. One may also consider instead a large-t expansion of
X(t), around t = ∞. The result is in fact equivalent. This can be seen by letting t = t̃−1,
whereupon the Lax equation (2.14) becomes

dXX−1 = − t̃

1− t̃2
∗A− 1

1− t̃2
A . (2.43)

If we let X = M−1(X̃−1)†, we arrive at a Lax equation that is identical in form to the
original expression (2.14), namely

dX̃X̃−1 =
t̃

1− t̃2
∗A+

t̃2

1− t̃2
A , (2.44)

showing that the large-t expansion is equivalent to the small-t̃ expansion. One would there-
fore reach identical conclusions had one performed a large-t expansion instead of a small-t
expansion. It would be interesting to study the regime where the small-t and large-t expan-
sions overlap. Although the Lax equation is regular in both regions, it becomes singular at
t = ±1. Even if such a non-perturbative analysis could be performed, we would not neces-
sarily expect to find a larger symmetry algebra than the full Kac-Moody algebra, which is
already found in our perturbative approach.
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2.3 Virasoro-like symmetry

The symmetry discussed in section 2.2 is an infinite-dimensional extension of the manifest
G symmetry of the G/H symmetric-space sigma model. As such, the transformation pa-
rameters ǫ in (2.17) are themselves G valued. There is an additional infinite-dimensional
symmetry of the SSM, with transformation parameters that are singlets under G, which
turns out to be a subalgebra of the Virasoro algebra. Our discussion here again begins
by using an approach that is very close to that of Schwarz [16], although with certain
modifications and elaborations.

The transformations in question act on the coset representative V as follows4 [16]:

δV (t)V = Vξ , where ξ = −tẊ(t)X(t)−1 . (2.45)

By equating the coefficients of each power of t in (2.45), one obtains an infinite set of
transformations δV

(n) of the scalar fields in the SSM, with5

δV (t) =
∑

n≥1

tnδV
(n) . (2.46)

Note that it is because of the explicit t factor in the definition of ξ in (2.45) that the sum
in (2.46) does not include n = 0.

To see that (2.45) indeed describes symmetries of the theory, one must show that the
equation of motion d∗A = 0 is preserved. It follows from (2.45) that

δVA = Dξ +M−1dξ†M = Dξ +D(M−1ξ†M) , (2.47)

where as usual Dξ = dξ + [A, ξ]. Differentiating the Lax equation (2.13) with respect to
t, and subtracting the Lax equation premultiplied by (ẊX−1) and postmultiplied by X−1,
one finds that

D(ẊX−1) =
1

t

[
∗d(ẊX−1)− 1

1− t2
A− t

1− t2
∗A
]
, (2.48)

4We should really include an infinitesimal parameter as a prefactor in the definition of ξ in equation
(2.45). However, since it is a singlet it plays no significant rôle, and so it may be omitted without any risk
of ambiguity.

5Our transformations (2.45) differ slightly from those given in [16], in which the lowest-order term is
subtracted out and the overall t-dependent factor is different. Our choice for the explicit t-dependent factor
is made so that the algebra takes the simplest possible form. The subtraction was shown to be necessary in
the context of principal chiral models in [16], and was carried over into the discussion of the SSM case in
that paper. In fact, the subtraction becomes optional in the SSM case, which amounts to saying that the
SSM has an additional mode in the symmetry transformation. We shall discuss this in further in appendix
B.
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From this, one can also show that

D(M−1(ẊX−1)†M) = t ∗d(M−1(ẊX−1)†M) +
1

1− t2
∗A+

t

1− t2
A . (2.49)

Substituting into (2.47), we find

δV A = ∗d
(
1

t
ξ + tM−1ξ†M

)
+A , (2.50)

and from this is follows that d∗δV A = 0, thus proving that δV is a symmetry of the equations
of motion.6

The next step is to calculate the commutator of the δV transformations, in order to
determine their algebra. As a preliminary, we need an expression for δV1 X2. Guided by the
discussion in [16], we find that it is given by

δV1 X2 = Y X2 , Y =
1

t1 − t2

[
t2 ξ1 +

t1(t
2
2 − 1)

1− t1t2
ξ2

]
+

t1t2
1− t1t2

M−1ξ†1M . (2.51)

The verification that (2.51) is correct is achieved by substituting (2.47) and (2.51) into the
Lax equation (2.14).

After lengthy calculations of the commutators [δV1 , δ
V
2 ]M and [δV1 , δ

V
2 ]X3, we find that

[δV1 , δ
V
2 ] = −2t1t2

[
1

(t1 − t2)2
+

1

(1− t1t2)2

]
δV1 +

t1t2(1− t21)

(t1 − t2)(1− t1t2)
δ̇V1 − [1 ↔ 2] , (2.52)

where δ̇V1 denotes the derivative of δV1 with respect to its argument t1, and the symbol
[1 ↔ 2] indicates the subtraction of two terms obtained from those that are displayed by
exchanging the 1 and 2 subscripts everywhere.

To derive the mode algebra, we substitute the mode expansion (2.46) into (2.52), and
collect terms associated with each power of t1 and t2. We then find that the abstract algebra
of the δV transformations is given by

[δV
(m), δ

V
(n)] = (m− n)δV(m+n) − (m+ n)δV(m−n) , (2.53)

where it is understood that δV
(n) with negative mode numbers n is defined to be given by

δV(−n) ≡ −δV
(n) , n ≥ 1 . (2.54)

6It is because of the cancellation in (2.50) of the contributions proportional to ∗A coming from the two
terms in (2.47) that there is no need to make the lowest-order subtraction that was found in [16] to be
necessary in the PCM case.
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One might have thought that the ostensible occurrence of pole terms at t1 = t2 in (2.52)
would have presented difficulties in interpreting the algebra, but in fact one finds that
cancellations imply there are no such poles. One way to make this manifest is to note that
(2.52) can be rewritten as

[δV1 , δ
V
2 ] = −2t1t2(δ

V
1 − δV2 )

(1− t1t2)2
− t1t2(t1 − t2)

1− t1t2

∂2

∂t1∂t2

[ t2(t1 − t−1
1 )δV1 − t1(t2 − t−1

2 )δV2
t1 − t2

]
.

(2.55)

We may define a current K(σ) in which we associate the mode Kn with the symmetry
transformation δV

(n):

K(σ) =

∞∑

n=−∞

einσKn . (2.56)

The reflection condition (2.54) implies that the modes Kn satisfy Kn = −K−n, and from
(2.53), they satisfy the algebra

[Km,Kn] = (m− n)Km+n − (m+ n)Km−n , (2.57)

This is clearly not the Virasoro algebra, but it is closely related to it. Specifically, if we
introduce generators Lm for a centreless Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n , (2.58)

then we find that the modes Km may be represented as

Km = Lm − L−m , m 6= 0 (2.59)

(Recall that that (2.45) contains no δV(0) transformation, and so K0 is not present in the

algebra.) If we define the usual Virasoro current

T (σ) =
∞∑

m=−∞

Lm e
imσ , (2.60)

then it follows from (2.56) and (2.59) that

K(σ) = 2iℑ (T (σ)) . (2.61)

It is interesting to contrast this result with the analogous one that was obtained in [16]
for the case of a principal chiral model, where it was shown that Km = Lm+1 − Lm−1 and
hence K(σ) = −2i sinσ T (σ). In that case, one could view this relation as a definition of
the energy-momentum tensor T (σ) in terms of K(σ), save for the degenerate points σ = 0
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and σ = π at the ends of the line segment. By contrast, the relation (2.61) for the SSM
cannot be used to define the whole of T (σ), but only its imaginary part. Thus the Virasoro
algebra itself is not described by the symmetry transformations (2.45).

We may also calculate the commutators of the Virasoro-like transformations δV with the
Kac-Moody transformations δ and δ̃ of section 2.2. These commutators must be evaluated
on X, and not merely on M , in order to capture the resulting terms that correspond to δ̃
transformations, since M is inert under these.

By calculating the commutator [δV1 , δ̃2] acting on M and on X3, we find that

[δV1 , δ̃2] =
t1t2

(1− t1t2)2
δ(t1, ǫ2) + t1t2

[
1

(1− t1t2)2
+

1

(t1 − t2)2

]
δ̃(t2, ǫ2)

− t1t2
(t1 − t2)2

δ̃(t1, ǫ2)−
t1t2(t

2
2 − 1)

(t1 − t2)(1 − t1t2)
˙̃
δ(t2, ǫ2) , (2.62)

where
˙̃
δ(t2, ǫ2) denotes the derivative of δ̃(t2, ǫ2) with respect to t2.

Similarly, calculating the commutator [δV1 , δ2] acting on M and on X3, we find

[δV1 , δ2] =
t1t2

(1− t1t2)2
δ̃(t1, ǫ2) + t1t2

[
1

(1− t1t2)2
+

1

(t1 − t2)2

]
δ(t2, ǫ2)

− t1t2
(t1 − t2)2

δ(t1, ǫ2)−
t1t2(t

2
2 − 1)

(t1 − t2)(1 − t1t2)
δ̇(t2, ǫ2) , (2.63)

As in the case of (2.52), although there are ostensibly poles in (2.62) and (2.63) at t1 = t2,
these in fact cancel. Expanding in powers of t1 and t2, and making use of the definition
(2.38) for the full set of Kac-Moody transformations ∆m, we find that

[δV
(m),∆(n)] = −n(∆(n+m) −∆(n−m)) . (2.64)

In terms of the Kac-Moody current-algebra modes J in and Virasoro-like modes Kn that we
introduced earlier, we therefore find

[Km, J
i
n] = −n(J in+m − J in−m) . (2.65)

One may verify that this is consistent with the Jacobi identity [Km, [Kn, J
i
p]]+ · · · = 0, after

using our result (2.57) for the commutator [Km,Kn].

3 An Alternative Description

A slightly different approach to describing the symmetries of two-dimensional symmetric-
space coset models was taken in [18], and it is useful to summarise some salient aspects
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here, since we shall make use of some of the formalism in section 4. It is again an approach
where the SSM is viewed as an integrable system, and it is essentially equivalent to the
description in [16] in terms of the Lax equation.

Starting from the coset representative V that we introduced previously, one may define

dVV−1 = Q+ P , (3.1)

where Q is the projection into the denominator algebra H and P is the projection into the
coset algebra K. From the Cartan-Maurer equation d(dVV−1) = (dVV−1) ∧ (dVV−1), one
can then read off the equations

dQ−Q ∧Q− P ∧ P = 0 , (3.2)

DP ≡ dP −Q ∧ P − P ∧Q = 0 . (3.3)

Under the transformations (2.5) one has

Q −→ hQh−1 + dhh−1 , P −→ hPh−1 , (3.4)

which shows that D = d−Q∧−∧Q can be viewed as an H-covariant connection. P trans-
forms covariantly under H and is invariant under the global right-acting G transformations.

From (2.4), and making the convenient assumption again that the involution ♯ is imple-
mented by Hermitean conjugation, we see that with M = V†V

A =M−1dM = V−1
(
dVV−1 + (dVV−1)†

)
V = V−1(Q+P +Q†+P †)V = 2V−1PV , (3.5)

since under the involution we shall have Q† = −Q, P † = P . It follows from (2.14) that

VdXX−1V−1 =
2t

1− t2
∗P +

2t2

1− t2
P ,

=
2t

1− t2
∗P +

1 + t2

1− t2
P − P ,

=
2t

1− t2
∗P +

1 + t2

1− t2
P +Q− dVV−1 , (3.6)

and hence

dV̂(t)V̂(t)−1 = Q+
2t

1− t2
∗P +

1 + t2

1− t2
P , (3.7)

where we define
V̂(t) ≡ VX(t) . (3.8)
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The Kac-Moody transformations δ and δ̃, which we defined in (2.17), (2.23) and (2.28),
can now be applied to V̂ . We find

δ1V̂2 =
t1

t1 − t2
V̂2X

−1
2 η1X2 −

t2
t1 − t2

V̂2ǫ1 +
t1t2

1− t1t2
V̂2(MX2)

−1η†1MX2 + δhV̂2 ,(3.9)

δ̃1V̂2 =
t1t2

1− t1t2
V̂2ǫ1 , (3.10)

where as usual η1 = X1ǫ1X
−1
1 , δh is an H compensating transformation and V̂2 = VX2.

The quantity A = M−1dM can be thought of as a G-valued conserved current, since
as we noted in section (2.1), it transforms under global G transformations V → hVg as
A → g−1Ag, and it satisfies d∗A = 0. We see from (3.5) that A = 2V−1PV. One can
construct a hierarchy of conserved currents Ĵ (t), for which Ĵ (0) = A, by defining

Ĵ (t) =
2

1− t2
V̂−1

(
1 + t2

1− t2
P +

2t

1− t2
∗P
)
V̂ . (3.11)

That Ĵ is conserved can be seen from the following calculation, which also provides [18] a
simpler expression for the currents:

Ĵ =
2

1− t2
V̂−1 ∗

(
2t

1− t2
P +

1 + t2

1− t2
∗P
)
V̂ ,

= V̂−1 ∗ ∂

∂t

(
1 + t2

1− t2
P +

2t

1− t2
∗P
)
V̂ ,

= V̂−1 ∗ ∂

∂t

(
Q+

1 + t2

1− t2
P +

2t

1− t2
∗P
)
V̂ ,

= V̂−1 ∗ ∂

∂t

(
dV̂ V̂−1

)
V̂ ,

= ∗d
(
V̂−1 ∂V̂

∂t

)
. (3.12)

Note that using (3.8), we can also write Ĵ as

Ĵ = ∗d(X−1Ẋ) . (3.13)

It is also useful to define the quantity

v(t) = X−1(t)Ẋ(t) =
∑

n≥0

tnv(n) , (3.14)

such that J = ∗dv.
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The quantity v(t) has a simple transformation under the δ̃ Kac-Moody symmetries, with

δ̃1v(t2) =
t1

(1− t1t2)2
ǫ1 +

t1t2
1− t1t2

[v(t2), ǫ1] . (3.15)

In terms of the mode expansion in (3.14), this implies

δ̃(m)(ǫ)v(n) = mδm,n+1ǫ+ [v(n−m), ǫ] . (3.16)

The generalised currents Ĵ = ∗dv also transform nicely under the Kac-Moody transfor-
mations δ̃. From (3.15) we find

δ̃1Ĵ2 =
t1t2

1− t1t2
[Ĵ2, ǫ1] , (3.17)

where Ĵ2 ≡ ∗d(X−1
2 Ẋ2). If we expand Ĵ as a power series

Ĵ (t) =
∑

n≥0

tnĴ(n) , (3.18)

then (3.17) implies that

δ̃(m)(ǫ)Ĵ(n) = [Ĵ(n−m), ǫ] , n ≥ m. (3.19)

One might be tempted therefore to regard Ĵ as defining a hierarchy of Kac-Moody cur-
rents. However, although they transform covariantly under the “lower half” of the Kac-
Moody symmetries corresponding to δ̃, their transformations in general under the “upper
half” of the Kac-Moody symmetries, corresponding to δ, are very complicated, and one
cannot express δ(m)(ǫ)Ĵ(n) as any linear combination of Ĵ(p) currents with field-independent
coefficients.

4 An Explicit Example: SL(2,R)/O(2) Coset Model

4.1 Infinitely many fields

The simplest non-trivial example that illustrates the constructions we have described in
this paper is provided by the symmetric-space sigma model SL(2,R)/O(2). We begin by
defining the SL(2,R) generators

H =

(
1 0
0 −1

)
, E+ =

(
0 1
0 0

)
, E− =

(
0 0
1 0

)
. (4.1)
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The O(2) denominator group is generated by the anti-Hermitean combination E+ − E−,
whilst the generators in the coset are the Hermitean matrices H and E++E−. A convenient
way to parametrise the coset representative V is in the Borel gauge, for which

V = e
1
2φ0Heχ0E

+
. (4.2)

The fields φ0 and χ0 are the standard dilaton and axion of the SL(2,R)/O(2) sigma model,
with the Lagrangian

L = −1
4tr(A

µAµ) = −1
2(∂φ0)

2 − 1
2e

2φ0(∂χ0)
2 . (4.3)

From (3.1) we find

Q = 1
2(E

+ − E−)Q̃ , P = 1
2HPφ +

1
2(E

+ + E−)Pχ , (4.4)

with
Q̃ = eφ0dχ0 , Pφ = dφ0 , Pχ = eφ0dχ0 . (4.5)

The standard SL(2,R) symmetry of the sigma model is given by

δ(ǫ)V = δhV + Vǫ , (4.6)

with ǫ = ǫ0H+ǫ−E++ǫ+E−, where δh is the appropriateO(2) compensating transformation
to restore the Borel gauge choice. Thus we have

δφ0 = 2ǫ0 + 2ǫ+ χ0 , δχ0 = ǫ− − 2ǫ0 χ0 + ǫ+ (e−2φ0 − χ2
0) . (4.7)

The next step is to define V̂, whose relation to X is given in (3.8). Following the general
idea described in [18], we do this by introducing scalar fields φ̂, χ̂ and ψ̂, which depend on
the spectral parameter t as well as the spacetime coordinates, and writing

V̂(t) = e
1
2φ(t)Heχ(t)E

+
eψ(t)E

−

. (4.8)

We require that V̂ smoothly approach V, defined in (4.2), as t goes to zero, and so

φ(0) = φ0 , χ(0) = χ0 , ψ(0) = 0 . (4.9)

In terms of power-series expansions for φ, χ and ψ, we may therefore write

φ(t) = φ0 + tφ1 + t2φ2 + · · · ,
χ(t) = χ0 + tχ1 + t2χ2 + · · · ,
ψ(t) = tψ1 + t2ψ2 + · · · . (4.10)
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Since Q, P and ∗P in (3.7) are independent of the spectral parameter t, it follows that
by substituting (4.8) into (3.7) we can read off a hierarchy of equations for the fields φi, χi
and ψi. At order t0, we simply obtain the expressions for Q̃, Pφ and Pχ already given in
(4.5). At order t1, we find

∗Pφ = 1
2dφ1 + χ0dψ1 , (4.11)

∗Pχ = 1
2e
φ0(dχ1 + φ1dχ0 − χ2

0dψ1) +
1
2e

−φ0dψ1 , (4.12)

0 = eφ0(dχ1 + φ1dχ0 − χ2
0dψ1)− e−φ0dψ1 , (4.13)

where the last equation comes from the absence of t-dependence in the denominator group
term Q̃. It can be used to simplify the ∗Pχ expression, to give

∗Pχ = e−φ0dψ1 . (4.14)

By equating the t1 expressions (4.11) and (4.14) for ∗Pφ and ∗Pχ to the duals of the t0

expressions for Pφ and Pχ in (4.5), we obtain, together with (4.13), the t1 equations of
motion

∗dφ0 = 1
2dφ1 + χ0 dψ1 , (4.15)

e2φ0 ∗dχ0 = dψ1 , (4.16)

0 = dχ1 + φ1dχ0 − (χ2
0 + e−2φ0)dψ1 . (4.17)

At order t2 we find

Pφ = 1
2dφ2 + χ1dψ1 + χ0dψ2 , (4.18)

Pχ = e−φ0 (dψ2 − φ1dψ1) , (4.19)

0 = dχ2 + φ1dχ1 + (φ2 +
1
2φ

2
1)dχ0 − (χ2

0 + e−2φ0)dψ2

+[φ1e
−2φ0 − χ0(2χ1 + φ1χ0)]dψ1 , (4.20)

and we therefore obtain in total 3 equations at this order, after equating these expressions
for Pφ and Pχ to those in (4.5). One can continue this process to any desired order in t.

The SL(2,R) symmetry δ(ǫ) in (4.7) extends to the higher-level fields via the con-
struction (2.23), with t1 = 0. Thus we have δ(ǫ)X = [X, ǫ], and so using (3.8) to write
X = V−1V̂ , together with (4.8), we find we can write the SL(2, R) transformations as

δφ = −2ǫ−ψ + 2ǫ0φ+ 2ǫ+χeφ−φ0 ,

δχ = ǫ−(1 + 2χψ) − 2ǫ0χ+ ǫ+e−φ−φ0(1− χ2e2φ) , (4.21)

δψ = −ǫ−ψ2 + 2ǫ0ψ + ǫ+(1− eφ−φ0) .
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Note that these transformations are linear when acting on v defined in (3.14): δv = [v, ǫ].

Expanding out (4.21) in powers of t, using (4.10), we recover (4.7) at order t0, and at
the next couple of orders we find

δψ1 = −ǫ+φ1 + 2ǫ0ψ1 ,

δφ1 = 2ǫ+(χ1 + χ0 φ1)− 2ǫ−ψ1 ,

δχ1 = −ǫ+(2χ0χ1 + χ2
0φ1 + e−2φ0φ1)− 2ǫ0χ1 + 2ǫ−χ0ψ1 ,

δψ2 = −ǫ+(φ2 + 1
2φ

2
1) + 2ǫ0ψ2 − ǫ−ψ2

1 ,

δφ2 = ǫ+
(
2χ2 + 2χ1φ1 + χ0(φ

2
1 + 2φ2)

)
− 2ǫ−ψ2 ,

δχ2 = ǫ+
(
− 2χ0(χ2 + χ1φ1)− 1

2χ
2
0(φ

2
1 + 2φ2)− χ2

1 + e−2φ0(12φ
2
1 − φ2)

)

−2ǫ0χ2 + 2ǫ−(χ1ψ1 + χ0ψ2) . (4.22)

The hierarchy of equations of motion for the higher-level fields, for which we presented
the first two orders in (4.15)–(4.17), and (4.18)–(4.20), are invariant under the SL(2,R)
transformations (4.21).

4.2 The Geroch group

An interpretation of the higher-level fields can be given as follows. The equations of motion
for the original level-0 fields, following from the Lagrangian (4.3), are

d∗dφ0 + e2φ0 ∗dχ0 ∧ dχ = 0 , d(e2φ0 ∗dχ0) = 0 , (4.23)

Since we are in two dimensions, the axion χ0 can be dualised to another axion χ̄0, such that

dχ̄0 = e2φ0 ∗dχ0 . (4.24)

Substituting this into the φ0 equation of motion, we can remove a derivative from this
equation too, obtaining

∗dφ0 = dσ + χ0dχ̄0 , (4.25)

for some new field σ. Defining φ̄0 = −φ0, the original Lagrangian (4.3) can be written in a
dualised form, terms of the barred fields, as

L = −1
2(∂φ̄0)

2 − 1
2e

2φ̄0(∂χ̄0)
2 . (4.26)

We see, comparing (4.24) and (4.25) with (4.15) and (4.16), that

χ̄0 = ψ1 , σ = 1
2φ1 . (4.27)
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The dualised Lagrangian (4.26) clearly also has an SL(2,R) symmetry, which we shall
denote by SL(2,R). Denoting its infinitesimal parameters by ǭ± and ǭ 0, this symmetry
acts on φ̄0 and χ̄0 exactly analogously to the action of the original SL(2,R) on φ0 and χ0:

δ̄φ̄0 = 2ǭ 0 + 2ǭ− χ̄0 , δ̄χ̄0 = ǭ+ − 2ǭ 0 χ̄0 + ǭ− (e−2φ̄0 − χ̄2
0) . (4.28)

(For notational reasons that will become clear shortly, we switch the + and − indices on
ǭ±, relative to ǫ±, when passing to this barred version of (4.7).)

One may also define an infinite tower of higher-level barred fields for the dualised sigma
model, precisely analogous to the unbarred ones defined above. For example, in order to
obtain the barred version of (4.15)–(4.17), we should make the identifications

φ̄0 = −φ0 , χ̄0 = ψ1 , φ̄1 = −φ1 − 2χ0ψ1 . (4.29)

The barring operation is an involution, with the bar of a bar being the identity operator,
and so there is an analogous version of (4.29) in which all barred and unbarred fields are
exchanged. The relations (4.29) can be extended to all levels, as we shall now discuss.

What we are seeing here is that although the original (φ0, χ0) fields are non-locally
related to the dual fields (φ̄0, χ̄0) (because of the differential relation (4.24) expressing χ̄0

in terms of χ0), there exists a purely local relation between the full hierarchy of fields
(φi, χi, ψi) and their barred analogues. This relation can be established to any desired
higher order in level number, by systematically examining the systems of equations that
follow from (3.7), which we presented at level-1 in (4.15)–(4.17) and level-2 in (4.18)–(4.20).
There is, however, a simpler way of presenting the entire hierarchy of relations in a compact
form.

To do this, we first introduce a barred version of V̂, which was defined in equation (4.30):

ˆ̄V(t) = e
1
2 φ̄(t)H̄eχ̄(t)Ē

+
eψ̄(t)Ē

−

. (4.30)

Here H̄ and Ē± are SL(2,R) generators that satisfy identical commutation relations to H
and E±, namely

[H,E±] = ±2E± , [E+, E−] = H ; [H̄, Ē±] = ±2Ē± , [Ē+, Ē−] = H̄ . (4.31)

This is already enough to ensure that the barred hierarchy of fields will satisfy identical
equations of motion to the unbarred hierarchy; they are derived from the barred version of
(3.7). Next, we note that we may make the following choice for the barred generators in
terms of the unbarred ones:

Ē+ = t E− , Ē− =
1

t
E+ , H̄ = −H , (4.32)
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since this is consistent with (4.31). Thus we have

ˆ̄V(t) = e−
1
2 φ̄(t)Het χ̄(t)E

−

et
−1 ψ̄(t)E+

. (4.33)

We now impose the relation
ˆ̄V(t) = V̂(t) (4.34)

which therefore establishes a relation between these barred and unbarred fields, which have
already been established to satisfy the same system of equations. This is easy to solve
explicitly, since one has only to exponentiate 2 × 2 matrices in this example. We find
(suppressing the explicit indication of the t-dependence of all the fields)

ψ =
tχ̄

1 + χ̄ψ̄
, χ =

1

t
ψ̄
(
1 + χ̄ψ̄

)
, φ = −φ̄− 2 log

(
1 + χ̄ψ̄

)
. (4.35)

Expanding in powers of t allows us to read off the relation between the entire hierarchies
of barred and unbarred fields. At the leading order, we find precisely the relations (4.29) that
we obtained previously when we started the level-by-level process of mapping the unbarred
equations of motion into barred ones. If one carries out such a sequential calculation, one
finds that the entire hierarchy of relations between barred and unbarred fields uniquely
follows, once the leading-order relations (4.29) are fed in. Thus, we may conclude that since
the all-level relations (4.35) match (4.29) at the leading order, they represent the unique
completion of this relation to all orders.

The barred hierarchy of fields transforms under SL(2,R) in precisely the same way as
the unbarred hierarchy transforms under SL(2,R). For example, for the first couple of
levels, the barred fields will transform under the dual SL(2,R) symmetry according to the
barred version of (4.22) (with the exchange of ǭ+ and ǭ−, as we discussed previously for φ̄0
and χ̄0 in (4.28)). The SL(2,R) transformations of the entire hierarchy of dual fields can
be succinctly expressed as the barred analogue of (4.21), which is therefore given by

δ̄φ̄ = −2ǭ+ψ̄ + 2ǭ 0φ̄+ 2ǭ−χ̄eφ̄−φ̄0 ,

δ̄χ̄ = ǭ+(1 + 2χ̄ψ̄)− 2ǭ 0χ̄+ ǭ−e−φ̄−φ̄0(1− χ̄2e2φ̄) , (4.36)

δ̄ψ̄ = −ǭ+ψ̄2 + 2ǭ 0ψ̄ + ǭ−(1− eφ̄−φ̄0) .

Since we also have the relation (4.35) between the barred and the unbarred fields, it
is now a straightforward matter to work out the transformations of the original unbarred
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fields under the dual SL(2, R) symmetry. From (4.35) and (4.36) we find

δ̄φ = −2ǭ 0 − 2ǭ−
[
tχeφ+φ0 +

1

t
ψ

]
,

δ̄χ = 2ǭ 0χ+ ǭ−
[
tχ2eφ+φ0 +

1

t
(1 + 2χψ − e−φ+φ0)

]
, (4.37)

δ̄ψ = tǭ+ − 2ǭ 0ψ + ǭ−
[
teφ+φ0 − 1

t
ψ2

]
.

Expanded, as usual, in powers of t, these equations give the transformations of the entire
hierarchy of original fields (φi, χi, ψi) under the dual SL(2, R) symmetry. Note that there
are no negative powers of t in the expansions.

It is evident from (4.37) that the ǭ 0 transformation in SL(2,R) is the same (modulo a
sign) as the ǫ0 transformation with respect to the original SL(2,R) (see equation (4.21)).
The ǭ+ transformation in (4.37) is also very simple, with

δ̄(ǭ+)φ = 0 , δ̄(ǭ+)χ = 0 , δ̄(ǭ+)ψ = tǭ+ . (4.38)

In terms of the expansions (4.10), this means that all fields (φi, χi, ψi) in the hierarchy are
inert except for ψ1, which suffers the shift transformation

δ̄(ǭ+)ψ1 = ǭ+ . (4.39)

It is easy to see that this is precisely the same as the transformation given by δ̃1X2 in
equation (2.28), at order t11 and with ǫ1 taken to be just ǫ+, i.e.

δ̃(1)(ǭ
+)X2 = t2X2ǭ

+ . (4.40)

This shows that the ǭ+ transformation in SL(2,R) is implemented by the Kac-Moody
generator J+

−1 (see (2.42)).

This leaves the ǭ− transformation in SL(2,R) still to be identified. In fact, this is
precisely a δ1X2 transformation as given in (2.23), at order t11 and with ǫ1 taken to be just
ǭ−. Using (2.23), this is given by

δ(1)(ǫ1)X2 =
1

t2
[X2, ǫ1]− η̇1(ǫ1, 0)X2 + t2M

−1ǫ†1MX2 , (4.41)

with ǫ1 = ǭ−, where η1(ǫ1, t) ≡ X(t)ǫ1X
−1(t). Substituting X = V−1V̂ into this, and using

(4.8), one straightforwardly reproduces the ǭ− transformation in (4.37). This shows that
the ǭ− transformation in SL(2,R) is implemented by the Kac-Moody generator J−

1 (see
(2.42)).
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At this stage, we have arrived at a complete understanding of all six transformations
in the original and dual symmetry groups SL(2,R) and SL(2,R). The original SL(2,R)
transformations ǫ± and ǫ0 of course correspond to the level-0 Kac-Moody generators J±

0 and
J0
0 . We have also shown that the dual SL(2,R) transformations ǭ+, ǭ− and ǭ 0 correspond

to the Kac-Moody generators J+
−1, J

−
1 and J0

0 :

SL(2,R) : (J+
0 , J

−
0 , J

0
0 ) ,

SL(2,R) : (J+
−1, J

−
1 , J

0
0 ) . (4.42)

It is indeed clear from the Kac-Moody algebra (2.41) that both these triplets selected from
the generators J in form SL(2,R) subalgebras. It is also clear that the two triplets do not
commute. In fact, from the two triplets one can fill out the entire Kac-Moody algebra, by
taking appropriate sequences of multiple commutators.

Thus we have shown in a very explicit and precise way that the affine ̂SL(2,R) Kac-
Moody symmetry of the two-dimensional SL(2,R)/O(2) symmetric-space sigma model is
generated by taking multiple commutators of the two SL(2,R) symmetries of the original
and the dualised formulations of the theory.

It is interesting to note that the entire “negative half” of the Kac-Moody symmetry
(i.e. J in with n < 0), which can be generated by multiple commutation of J+

−1 with J in with
n ≥ 0, emerges from the humble shift symmetry δ̄ψ1 = ǭ+ that we obtained in (4.39).
This emphasises the point, which we remarked on earlier, that the negative half of the
Kac-Moody algebra arises through symmetries that are realised only on the infinite tower
of fields (φi, χi, ψi) with i > 0 that were introduced in order to allow the symmetries of the
sigma model to be expressed in a local, as opposed to non-local, manner. (See appendix A
for further discussion of this point.)

4.3 Explicit formulae for δ̃ and some example δ transformations

It is not hard to work out the explicit form of all the δ̃ transformations on the fields
(φi, χi, ψi). From (2.28), (3.8) and (4.8) we find

δ̃1ψ(t2) =
t1t2

1− t1t2

(
ǫ+ + 2ǫ0ψ(t2)− ǫ− ψ(t2)

2
)
,

δ̃1χ(t2) =
t1t2

1− t1t2

(
−2ǫ0χ(t2) + ǫ− (1 + 2χ(t2)ψ(t2))

)
,

δ̃1φ(t2) =
2t1t2

1− t1t2
(ǫ0 − ǫ− ψ(t2)) . (4.43)

26



Collecting the powers of t1 and t2, we find for n ≥ m ≥ 1 that

δ̃(m)(ǫ)φn = 2δmn ǫ
0 − 2ǫ− ψn−m ,

δ̃(m)(ǫ)χn = −2δmn ǫ
0 χn + δmn ǫ

− + 2ǫ−
n−m−1∑

p=0

χp ψn−m−p ,

δ̃m(ǫ)ψn = δmn ǫ
+ + 2ǫ0ψn−m − ǫ−

n−m−1∑

p=1

ψp ψn−m−p , (4.44)

where it is understood that on the right-hand side χn = 0 for n < 0 and ψn = 0 for n < 1.
Note that δ̃(m)φn = 0, δ̃(m)χn = 0 and δ̃(m)ψn = 0 whenever m < n. Of course we also have

δ̃(m)φ0 = 0, δ̃(m)χ0 = 0.

The symmetries δ̃ in (4.44) are essentially just shift transformations of φn, χn and ψn by
constant parameters ǫ0, ǫ− and ǫ+ (with independent sets of these SL(2,R) parameters at
each of the negative Kac-Moody levels), with the extra terms being the necessary “dressings”
that ensure that the transformations leave the equations of motion invariant. In accordance
with an observation we made previously, the δ̃ transformations could therefore be used in
order to “gauge fix” the auxiliary fields (i.e. (φi, χi, ψi) for i ≥ 1 in this SL(2,R)/O(2)
example) to any desired set of values at one chosen point in spacetime. Since the auxiliary
fields also transform under the δ symmetries, one could view the δ̃ transformations, in such
a gauge-fixed situation, as compensating transformations that restored the fields to these
chosen values after having performed δ transformations. This is effectively what happens
in the construction of Schwarz’s subalgebra of the full Kac-Moody algebra.

As we observed in section 3, the δ̃ transformations become more elegant if they are
applied to the quantities v(n) defined in (3.14), for which we have (3.16). In fact v(t) is
easily calculated in terms of φ(t), χ(t) and ψ(t), giving

v− = χ̇+ χφ̇ , v0 = 1
2 φ̇+ ψχ̇+ χψφ̇ , v+ = ψ̇ − (1 + χψ)ψφ̇− ψ2χ̇ . (4.45)

Thus, as can be seen by expanding in powers of t, the v±
(n) and v0

(n) are are just certain
combinations of the φm, χm and ψm fields,

v−(0) = χ1 + χ0φ1 , v0(0) =
1
2φ1 , v+(0) = ψ1 , etc. (4.46)

The δ symmetries in (2.17) and (2.23) are more non-trivial, but again they are completely
local transformations of the fields (φi, χi, ψi), which can be read off explicitly to any desired
order of non-negative Kac-Moody level, and to any desired order in the t-expansion of the
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fields. For example, we find for the SL(2,R)/O(2) example that at Kac-Moody level 1, the
transformations on (φ0, χ0, ψ1, χ1, ψ1) are given by

δ(1)(ǫ)φ0 = 2ǫ+ χ1 + 4ǫ0 χ0ψ1 − 2ǫ− ψ1 ,

δ(1)(ǫ)χ0 = −ǫ+ (φ1e
−2φ0 + 2χ0χ1 + χ2

0φ1) + ǫ− (φ1 + 2χ0ψ1)

+2ǫ0 (ψ1e
−2φ0 − χ1 − χ0φ1 − χ2

0ψ1) ,

δ(1)(ǫ)φ1 = ǫ+
(
2χ2 + χ0(2 + 2φ2 − φ21) + 2χ3

0e
2φ0
)
+ 2ǫ− (ψ2 + χ0e

2φ0)

+2ǫ0 (1 + 2χ2
0e

2φ0 + 2χ1ψ1 + 2χ0φ1ψ1) ,

δ(1)(ǫ)χ1 = ǫ+
(
(1 + φ21)e

−2φ0 − χ2
1 − 2χ0χ2 + χ2

0(φ
2
1 − 2φ2)− χ4

0e
2φ0)

+ǫ− (φ2 + 2χ0ψ2 + 2χ1ψ1 − 1
2φ

2
1 + χ2

0e
2φ0)

+ǫ0
(
− 2χ2 + χ0(φ

2
1 − 2φ2 − 4χ1ψ1)− 2χ2

0φ1ψ1 − 2φ1ψ1e
−2φ0 − 2χ3

0e
2φ0
)
,

δ(1)(ǫ)ψ1 = −ǫ+ (φ2 − 1
2φ

2
1 + χ2

0e
2φ0) + ǫ− (e2φ0 − ψ2

1)

+2ǫ0 (ψ2 − φ1ψ1 − χ0e
2φ0) . (4.47)

5 Conclusions

In this paper, we have studied the global symmetries of flat two-dimensional symmetric-
space sigma models. This can be viewed as a preliminary to studying the somewhat more
intricate problem of curved-space two-dimensional sigma models, which arise in the toroidal
compactification of supergravity theories. Both the curved and the flat cases share the
common feature that the global symmetries include an infinite-dimensional extension of the
manifest G symmetry of the G/H sigma model.

There has been some controversy over the precise nature of the infinite-dimensional
extension. Whilst most authors have asserted that the symmetry is the affine Kac-Moody
extension Ĝ of G, Schwarz [16] found instead a certain subalgebra ĜH of the Kac-Moody
algebra. One of our goals in this paper has been to resolve the discrepancies.

In our work we made extensive use of Schwarz’s results which have, it seems for the first
time, provided explicit expressions for the key transformations that underlie the positive
half of the Kac-Moody symmetry algebra. By synthesising this with earlier work where the
idea of introducing an infinity of auxiliary fields in order to provide a local formulation was
developed, we have been able to construct a fully local description of the entire Kac-Moody
algebra of global symmetry transformations.

We have also shown how the subalgebra found by Schwarz can be viewed as a conse-
quence of making a gauge choice, in which the values of the complete set of fields are fixed
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to prescribed values at a chosen distinguished point in the two-dimensional spacetime.

In order to make some of the ideas more concrete, we also studied a simple explicit
example, where the coset of the sigma model is taken to be SL(2,R)/O(2). We showed
how our present analysis could be related to much earlier work by Geroch [4], in which the
infinite-dimensional symmetry was obtained by commuting SL(2,R) symmetry transfor-
mations of the original sigma model and its dual version. In particular, we were able to
exhibit the precise correspondence between the two sets of SL(2,R) transformations and
certain generators of the Kac-Moody algebra. This provides an explicit demonstration that
the Geroch algebra formed by taking commutators of the two SL(2,R) transformations is

the same as the Kac-Moody algebra ̂SL(2,R).
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A Schwarz Algebra ĜH Versus Kac-Moody Algebra Ĝ

In [16], the Lax equation (2.14) is solved for X as a non-local function of the original
sigma-model fields, by writing

X(x; t) = P exp
[ ∫ x

x0

( t

1− t2
∗A+

t2

1− t2
A
)]
, (A.1)

where P denotes path ordering along the integration path, and x0 is an arbitrarily-chosen
point. This is a significantly different approach from the one we have followed, where X is
expressed locally in terms of an infinity of auxiliary fields.

Our transformation (2.23) for δ1X2 is not quite the same as the one given in Schwarz’s
discussion [16]. Let us denote his expression by δ′1X2; it is given by

δ′1X2 =
t2

t1 − t2
(η1X2 −X2ǫ1) +

t1t2
1− t1t2

(M−1η†1MX2 −X2M
−1
0 ǫ†1M0) , (A.2)
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where M0 =M(x0), and x0 is chosen as the lower limit of the integral expression (A.1) for
X(t). Thus the relation between δ′1 and our expression δ1 is

δ′1 = δ1 −
t1t2

1− t1t2
X2M

−1
0 ǫ†1M0 . (A.3)

In [16], Schwarz calculates the commutator [δ′1, δ
′
2]M , finding

[δ′1, δ
′
2]M =

t1 δ
′(ǫ12, t1)− t2 δ

′(ǫ12, t2)

t1 − t2
M − t1 t2

1− t1 t2

(
δ′(ǫ′12, t1)− δ′(ǫ′12, t2)

)
M , (A.4)

where
ǫ12 = [ǫ1, ǫ2] , ǫ′12 = [M−1

0 ǫ†1M0, ǫ2] . (A.5)

(In obtaining this result, one must hold M0 fixed.) The right-hand side of (A.4) involves
δ′ transformations again, and so the algebra appears to be closing. However, Schwarz does
not calculate [δ′1, δ

′
2]X3. Let us denote his result in (A.4) as [δ′1, δ

′
2]M = δSM . After some

algebra, we find that

[δ′1, δ
′
2]X3 = δSX3 +

t1t3
1− t1t3

X3(M
−1
0 ǫ†12M0 − ǫ′12) +

t2t3
1− t2t3

X3(M
−1
0 ǫ†12M0 + ǫ′21) . (A.6)

This shows that on X3, the commutator of δ′ transformations does not close merely on δ′,
but instead it gives transformations of the form X3ǫ̃ as well, for certain ǫ̃. In fact, such
transformations are of the type δ̃ that we introduced in (2.28), and (A.6) may be written
abstractly as

[δ′1, δ
′
2] = δS + δ̃(M−1

0 ǫ†12M0 − ǫ′12, t1) + δ̃(M−1
0 ǫ†12M0 + ǫ′21, t2) . (A.7)

Of course, the extra δ̃ terms on the right-hand side was not seen in Schwarz’s calculations,
because he calculated the commutator only on M , for which we know δ̃M = 0, but not on
X.

The conclusion from (A.7) is that if all the δ′ transformations (A.3) are included in the
symmetry algebra, then it is necessary to extend the algebra further by including the δ̃
transformations too, in order to achieve closure. As may be seen from (A.3), Schwarz’s δ′

transformations are themselves a combination of our δ and δ̃ transformations; in fact, one
has

δ′(ǫ1) = δ(ǫ1)− δ̃(M−1
0 ǫ†1M0) . (A.8)

The upshot is that once one has extended Schwarz’s transformations to comprise not only
δ′ but also δ̃, one has, equivalently, extended to the full set of δ and δ̃ transformations that
we considered in section 2.2. These, as we showed, generate the complete affine Kac-Moody
extension Ĝ of the original G algebra.
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One can, alternatively, take a more restrictive viewpoint, which is effectively the one
that was adopted by Schwarz in [16]. Namely, the commutation relations (A.7) imply
that it is only if either δ′1 or δ′2 is a level-0 transformation that the δ̃ transformations are
generated. (This follows from the fact that the second term on the right-hand side of (A.7)
is independent of t2, and the third term is independent of t1.) Thus, we have

[δ′
(m)(ǫ1), δ

′
(n)(ǫ2)] = δS(m+n)(ǫ12) , for m > 0 , n > 0 , (A.9)

[δ′(0)(ǫ1), δ
′
(n)(ǫ2)] = δS

(n)(ǫ12) + δ̃(n)(M
−1
0 ǫ†12M0 + ǫ′21) , n > 0 . (A.10)

(We have taken δ′1 to be a level-0 transformation in the second equation, for definiteness.)
One can therefore avoid generating any δ̃ transformations if one restricts the level-0 trans-
formations in δ′ to be such that

M−1
0 ǫ†1M0 + ǫ1 = 0 . (A.11)

This equation is essentially the condition that ǫ should belong to the denominator algebra H
of the coset model. This is most immediately clear if one chooses, as one may, the “gauge”
in which M0 = 1. Equation (A.11) then implies that ǫ is anti-Hermitean, which is precisely
the standard condition for it to lie in the denominator algebra H. If some other gauge
choice is made for M0, then ǫ is again required to be in the denominator algebra, in a basis
conjugated by M0. The upshot of this discussion is that the necessity of including all the
δ̃ symmetries as well in order to achieve closure of the algebra (A.7) can be avoided if one
truncates to that subset of the δ′ transformations in which the K transformations at 0-level
are omitted.

This, therefore, accounts for the symmetry algebra that was found by Schwarz in [16].
The full Kac-Moody symmetry algebra Ĝ is generated by our δ and δ̃ transformations, whilst
Schwarz’s subalgebra, which he denoted by ĜH , corresponds to the transformations δ′ given
in (A.8), with the further restriction that at level-0 the K transformations are omitted.
Omitting these particular transformations is precisely what is needed in order to maintain
a fixed boundary condition for M0 (such as M0 = 1). In the gauge choice M0 = 1, we see
from (A.8) that δ′(ǫ) = δ(ǫ) ± δ̃(ǫ), with the plus sign occurring when ǫ lies in H and the
minus sign when ǫ lies in K. The generators J ′

n
i of the Schwarz subalgebra are therefore

given in terms of the Kac-Moody generators J in by

J ′
n
i

= J in + J i−n , for i ∈ H ,

J ′
n
i

= J in − J i−n , for i ∈ K . (A.12)

One sees immediately that the level-0 generators J ′
0
i vanish if t lies in K. It can easily be

verified directly that the generators J ′
n
i form a closed subalgebra of the full Kac-Moody

algebra (2.41).

31



The Schwarz subalgebra of the Kac-Moody algebra can be interpreted as follows. By
writing X(t) as in (A.1), a choice has been made to set X(t) = 1 at the point x0 in the
two-dimensional spacetime. This can be viewed as a gauge-fixing that is achieved by using
the δ̃ transformations. Furthermore, as we remarked below (A.5), M0 must be held fixed,
which is a further gauge fixing (of the original sigma-model fields), achieved by using the
K part of the original G Lie algebra transformations. In other words, only the H part
of the original G symmetry survives. If we wish instead to retain the full algebra G of
original symmetries, then Schwarz’s subalgebra will necessarily have to be extended to the
full Kac-Moody algebra Ĝ.

It is instructive to look at this truncated subalgebra in the concrete example of the
SL(2,R)/O(2) sigma model that we studied in section 4. Especially, it is interesting to look
at the transformations of the original SL(2,R) symmetry and the dual SL(2,R) symmetry,
to see which are retained and which are truncated out in the subalgebra.

The combinations of Kac-Moody generators J in that lie in K and in H are given, respec-
tively, by

K : J0
n , (J+

n + J−
n ) ,

H : (J+
n − J−

n ) . (A.13)

It then follows from (A.12) that the generators J ′
n
i that are retained in the truncated algebra

of [16] are

K : J ′
n
(1)

= J0
n − J0

−n , J ′
n
(2)

= J+
n + J−

n − J+
−n − J−

−n ,

H : J ′
n
(3)

= J+
n − J−

n + J+
−n − J−

−n . (A.14)

Since the SL(2,R) transformations correspond to the Kac-Moody generators J i0, and
the SL(2,R) transformations correspond to the generators J+

−1, J
0
0 and J−

1 , it suffices to
consider just the levels m = 0 and m = 1 in (A.14). These give the four following non-
vanishing generators:

n = 0 : J ′
0
(3)

= 2(J+
0 − J−

0 ) ,

n = 1 : J ′
1
(1)

= J0
1 − J0

−1 ,

J ′
1
(2)

= J+
1 + J−

1 − J+
−1 − J−

−1 ,

J ′
1
(3)

= J+
1 − J−

1 + J+
−1 − J−

−1 . (A.15)
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We see that just two of the five inequivalent transformations in SL(2,R) and SL(2,R) are
retained within the truncated algebra:

J ′
0
(3) ↔ (ǫ+ − ǫ−) , (J ′

1
(2) − J ′

1
(3)
) ↔ (ǭ+ − ǭ−) . (A.16)

Thus, the infinite-dimensional subalgebra of the full Kac-Moody algebra that is retained in
the truncation (A.12) omits not only the K generators in the original SL(2,R), but also
the K generators in the dual symmetry algebra SL(2,R). If one wants to have a symmetry
algebra that at least contains all the generators of the original and the dual SL(2,R)
algebras then, as we showed in section 4.2, this will necessarily be the full Kac-Moody
algebra.

B The Virasoro-type Symmetry and the Schwarz Approach

In section 2.3 we obtained a Virasoro-like symmetry of the symmetric-space sigma models,
with generators Kn satisfying the algebra (2.57). Our construction was closely related to
one given in [16] but there were significant differences, which we shall elaborate on here.

The first respect in which our discussion diverges from that in [16] is that in that paper,
the quantity ξ(t) appearing in the our transformation δV (t)V = Vξ(t) (see (2.45)) is replaced
by

ξ̃(t) = (t2 − 1)Ẋ(t)X(t)−1 + I , (B.1)

where

I =

∫
∗A . (B.2)

One can see from the path-ordered integral expression (A.1) for X(t) that

X(t) = 1 + t

∫
∗A+O(t2) , (B.3)

and so in fact I = Ẋ(0) = Ẋ(0)X(0)−1. Thus from (B.1) we see that Schwarz’s ξ̃ and our
ξ are related by

ξ̃(t) =
1− t2

t
ξ(t)−

[
1− t2

t
ξ(t)

]

t=0

. (B.4)

Thus the lowest mode in our transformation is excluded in the PCM analysis in [16].

The lowest mode had to be excluded in [16] for the principal chiral model, as opposed
to the symmetric-space sigma model, in order to ensure that the transformation was a
symmetry of the equations of motion. In brief, the transformation of A under ξ (defined as
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in (2.45)) in the PCM case is simply δVA = Dξ, rather than (2.47) of the SSM case, and
so using (2.48) one finds

δV A = ∗d(t−1ξ) +
1

1− t2
A+

t

1− t2
∗A . (B.5)

This means that d∗δV A = t/(1 − t2)dA, and so the equation of motion d∗A = 0 is not
preserved. However, if the lowest-order term in δV (t) is subtracted out, as is done in (B.4),
then the resulting transformation δ̃V does give a symmetry.

Although Schwarz carried over the assumption that the lowest mode should also be
subtracted out when he then considered the SSM case, it is actually no longer necessary to
do so, as we explained in section 2.3. As we showed there, with the transformation δV A
now given by (2.47), one finds using (2.48) and (2.49) that the contributions to δV A of the
form ∗A coming from the two terms in (2.47) cancel out, and so d∗δV A = 0 automatically,
without the need to subtract the lowest mode term. The upshot is that the set of Virasoro-
like symmetries that we find for the symmetric-space sigma models is actually larger then
the set obtained by Schwarz in [16], by virtue of the inclusion of the lowest mode in δV (t).

A second difference between our results and those in [16] is concerned with the precise
form of the Virasoro-like algebra in the two cases. We were able to make a convenient choice
of −t as the prefactor of ẊX−1 in (2.45) which gave the algebra in the form (2.57), which
is very close in structure to the Virasoro algebra. On the other hand, in [16] the choice
of t-dependent prefactor was apparently constrained by certain requirements of matching
between left and right acting transformations on the group manifold of the PCM (a consid-
eration that does not apply in the SSM case). This led to the choice of (t2 − 1) prefactor
that was made in [16], and this in turn led to the rather different algebra

[Km,Kn] = (m− n)(Km+n+1 −Km+n−1) (B.6)

for the PCM case.
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