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Abstract

Type II orientifolds based on Landau-Ginzburg models are used to describe moduli

stabilization for flux compactifications of type II theories from the world-sheet CFT

point of view. We show that for certain types of type IIB orientifolds which have

no Kähler moduli and are therefore intrinsically non-geometric, all moduli can be

explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can

describe Minkowski as well as Anti-de-Sitter vacua. This construction provides the

first string vacuum with all moduli frozen and leading to a 4D Minkowski background.
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1 Introduction

With the discovery of Calabi-Yau compactifications more than twenty years ago it

became evident that many aspects of the 4D theory can be traced back to the topology

of the internal manifold. It did not take long until backgrounds resembling the real

world were constructed. At the same time it became evident that string theory does

not have a unique ground state because the values of the moduli fields describing the

deformations of the internal manifold could not be determined. This has been an open

problem for many years, not only for particle phenomenology predictions coming from

string theory, but also for string cosmology. This situation changed over the past years,

as it has been realized that flux compactifications of string theory can stabilize all the

moduli fields.

Due to the incorporation of fluxes, the continuous choice of moduli parameters was

restricted to a large number of discrete choices. Thus this still left an extremely large

number of string vacua. These vacua are part of the string theory landscape, which at

present is analyzed with statistical methods [1] and techniques borrowed from number

theory [3]. See [2] for a review.

All the more it is surprising that the number of explicit models known in the liter-

ature with all geometric moduli stabilized is rather limited [4] and no models leading

to four-dimensional Minkowski space have been explicitly constructed. So far, moduli

stabilization has been discussed in the literature in the supergravity approximation,

a limit for which the radial modulus is assumed to be large and the string coupling

is small. In many cases the radial modulus is then fixed in terms of non-perturbative

corrections to the superpotential in a KKLT [5] like fashion, leading to supersymmetric

Anti-de-Sitter vacua. More recently, moduli stabilization in terms of fluxes only (i.e.

at the classical level) was achieved in [6] and in [7] in the context of type IIA massive

supergravity, where it was shown that fluxes stabilize all geometric moduli of a simple

T 6/Z3 × Z3 orientifold. In these models, the restrictions on the fluxes again result in

a negative cosmological constant.

One of the goals of this paper is to construct a set of simple models in which all

moduli are explicitly stabilized by fluxes only and which have a vanishing 4D cosmo-

logical constant. We will do so in the context of the type IIB theory, which allows

the most freedom for dialing the fluxes. It is known that in this theory fluxes gener-

ate a classical superpotential for the complex structure moduli. This is in contrast to
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the potential for Kähler moduli, which is typically generated through non-perturbative

effects, which are less under control.

To avoid the complication of stabilizing Kähler moduli, the basic idea underlying

our work is to start in the type IIB theory with a model which does not have any Kähler

moduli to begin with, and stabilize the complex structure moduli and the dilaton by

turning on appropriate R-R and NS-NS fluxes. With ten-dimensional supergravity in

mind, it appears quite hopeless to make any progress with this idea. Indeed, in any

geometric compactification with an ordinary manifoldM6 as internal space, the overall

size of that manifold will appear as a free parameter, a Kähler modulus. Thus, we

will need M6 to be non-geometric in one way or another. Thanks to string theory,

we know that such non-geometric models do exist. It might be expected that the flux

superpotential stabilizes all moduli in such compactifications and that the resulting

supersymmetric vacua can be either Minkowski or AdS.

The fact that understanding string compactifications requires generalized notions of

geometry is well-appreciated. The best-known example is probably the correspondence

between sigma models on Calabi-Yau manifolds and an effective Landau-Ginzburg (LG)

orbifold model as the “analytic continuation to small volume” of the sigma model

[8–10]. This correspondence also plays a fundamental role in the understanding of

mirror symmetry [11].

The existence of dualities has accentuated the relevance of string vacua without a

ten-dimensional geometric interpretation. For instance, there are examples of Calabi-

Yau manifolds whose complex structure cannot be deformed. Mirror symmetry ex-

changes the complex structure with the Kähler structure. Therefore, the mirror duals

of such rigid manifolds would not have Kähler moduli and cannot correspond to a ge-

ometric manifold. Nevertheless, they have an effective world-sheet description as LG

models, in accord with the general ideas of [11].

When turning on fluxes, mirror symmetry as well as other dualities require an

even broader enlargement of the allowed class of compactification spaces. From the

study of simple local or toroidal models, it is well-known that the mirror or T-duals of

compactifications with generic fluxes cannot be described by a conventional geometry,

see e.g., [13]. More generally, by looking at the panoply of R-R and NS-NS fluxes

that are available in supergravity, and invoking (perturbative and non-perturbative)

dualities, one can argue that the most general flux compactification will not allow a

geometric description in any duality frame [14]. As mentioned above, the usual ten-
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dimensional effective supergravity of string theory will not be useful for the study of

such vacua. Approaches which have been taken in the past include effective super-

gravity descriptions in dimensions less than ten dimensions [14–16], as well as exact

world-sheet descriptions [14, 17, 18].

In the present paper, we will use a combination of “non-geometric” world-sheet

techniques and 4D effective space-time description to exhibit a simple class of models

in which all moduli can be stabilized by fluxes. Depending on the particular model,

different values of the cosmological constant (Minkowski or AdS) are obtained. Charge

conservation is accomplished by the presence of orientifolds.

We will illustrate such a generic claim in a precise manner, by studying two explicit

models with Hodge numbers h11(M) = 0 and h21(M) = 84, 90 respectively. The

underlying models before turning on the fluxes are mirror duals of rigid Calabi-Yau

manifolds and admit an effective description as LG models [12]. At a particular point

in moduli space, they are also equivalent to some Gepner model [19].

Our models do not have a manifold interpretation, and therefore geometrical no-

tions such as cycles, differential forms, etc., do not have the conventional meaning.

An appropriate description of D-branes and supersymmetric cycles in LG models was

developed in [20] using world-sheet techniques. A great deal of information about D-

branes and orientifolds in Gepner models and their relation to LG and geometry is also

available from the literature [21–23,25,26,60]. For convenience we summarize the most

important results in section 2.

The first new aspect of our work is the description of fluxes in these models, which is

done in section 3. The flux configurations we are interested in satisfy constraints coming

from supersymmetry and the type IIB tadpole cancellation condition. Supersymmet-

ric type IIB vacua have fluxes belonging to the H2,1(M)⊕H0,3(M) cohomology of the

internal space M . We will argue that these vacua are stable even non-perturbatively.

This is due to the existence of a non-renormalization theorem for the superpotential

of [27]. This basically follows because there are no relevant instantons to correct it.

The existence of this non-renormalization theorem was crucial for the works [28, 29]

where the classically generated superpotential (which is holographically dual to the

sum of the planar diagrams of the gauge theory) does not receive any corrections. The

fact that these results are in complete agreement with the exact non-perturbative dy-

namics of supersymmetric theories is a powerful check on the non-renormalization of

the superpotential. We will also discuss in section 3 the other known consistency con-
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ditions of type IIB flux compactifications, including flux quantization and the tadpole

cancellation condition.

In section 4, we will explicitly solve the supersymmetry equations which follow

from the flux superpotential and the tadpole cancellation condition for the simpler of

our two models, related to the so-called 19 Gepner model. We find supersymmetric

Minkowski vacua for several types of flux configurations.

It turns out that the spectrum of possibilities in the 19 model is quite constrained,

and we have not been able to find solutions leading to 4D AdS space in this model.

One might ask whether this has any significance or whether it is just an accident in

this particular case. We address this question in section 5 by repeating the analysis

for the so-called 26 Gepner model. We will see that the range of possibilities is much

larger, and that we can in particular find 4D AdS solutions.

We would like to point out that we have not been able to find solutions or sequences

of solutions in which the dilaton is stabilized at very small values, although we have no

general argument why this cannot be done. Because of the non-renormalization theo-

rem for the superpotential which we have mentioned above, having a string coupling of

O(1) does not affect the existence of the solutions. Nevertheless, it does mean that for

other aspects of the solution, such as the masses of the moduli, as well as introduction

of supersymmetry breaking effects which do receive quantum corrections, one should

try to find a sequence of vacua which stabilize the coupling constant at weaker values.

In the appendix, we present an analysis of type IIB orientifolds of the quintic

threefold from the LG point of view. In particular, we discuss the computation of

the O-plane charge in the LG model, as well as the LG representation of the D3-

brane sitting at a point of the quintic. The orientifold actions which we study include

exchanges of variables, and have not been treated before in either the Gepner model

or LG literature. This discussion, which is an application of the general setup of [26],

serves as background for our discussion of tadpole cancellation condition in section 3.4.

We discuss the implications of our results for studies of the string theory landscape

in section 6.

2 Branes and Orientifolds in Landau-Ginzburg models

Due to their simplicity, LG models of string compactifications have been studied in

great detail over the years. They were among the first examples in which to access
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“stringy geometry”. Moreover, as studied in [8–10], LG models can often be thought

of as the analytical continuation of Calabi-Yau sigma models to substringy volume.

The models for which this works most straightforwardly are Calabi-Yau hypersur-

faces in weighted projective space. Namely, they are given by the vanishing locus of

a homogeneous polynomial P (x1, . . . , x5) = 0 in five variables of weight w1, . . . , w5,

and of total degree H =
∑
wi. Under the CY/LG correspondence, this sigma model

corresponds to an N = (2, 2) LG orbifold model with five chiral fields and world-

sheet superpotential W = P . The orbifold group is a ZH acting by phase rotations

xi → e2πi/hixi, where hi = H/wi, which are assumed to be integer. For a special choice

of polynomial P , this LG model flows in the IR to a particular CFT with a rational

chiral algebra known as a Gepner model. These Gepner models are formally defined

as the tensor product of some number r of N = 2 minimal models of level ki = hi − 2,

such that the total central charge is ĉ =
∑

(1 − 2/hi) = 3. Gepner models with a

hypersurface interpretation have r = 5, in which case the central charge condition is

equivalent to the CY condition on the degree of P .

The correspondence between LG models and Calabi-Yau sigma models can be ex-

tended to the boundary sector, D-branes, and orientifolds. Boundary states in Gepner

models were first constructed in [21], and their geometric interpretation was first ad-

dressed in [22]. In [20], A-branes in LG models were shown to correspond to a particular

type of non-compact cycle in the x-space on which the superpotential W has a con-

stant phase. More recently, B-branes in LG models were studied in terms of matrix

factorizations [30]. For the extension to orientifolds, we refer to [23, 25, 26].

In the present paper, we will be concerned with a slightly different type of LG

models which do not have a manifold interpretation, as we have mentioned in the

introduction. Nevertheless, the techniques which are used to study LG models with

such a connection can still be applied. Let us now proceed to introduce this technology

concretely in the relevant examples, referring to the literature for the more general

discussion.
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2.1 The 19/Z3 Gepner Model

2.1.1 Landau-Ginzburg model

Our first example is a LG model M based on nine minimal models and world-sheet

superpotential

W =

9∑

i=1

x3i ,

divided by a Z3 generated by

g : xi → ωxi, i = 1, 2, . . . 9 and ω ≡ e2πi/3 . (2.1)

It is easy to compute the Hodge numbers of this model. As far as complex structure

deformations are concerned, they all come from deformations of W and a basis is given

by the Z3-invariant monomials of the chiral ring C[x1, . . . , x9]/(x
2
1, . . . , x

2
9). In other

words they are given by the polynomials in the chiral fields

xixjxk with i 6= j 6= k 6= i , (2.2)

and there are h2,1(M) = 84 of them. To see that there are no Kähler structure defor-

mations, we recall from [12] that ground states corresponding to the even cohomology

always arise from the twisted sectors in LG orbifolds. In a Z3 orbifold, there are only

two non-trivial twisted sectors, and the first must contribute to h00(M) = 1, while

the second contributes in the conjugate h33(M) = 1. Hence h11(M) = h22(M) = 0.

This reasoning also readily implies that there are no contributions to h21(M) from the

twisted sectors. As a result the Hodge diamond is

1

0 0

0 0 0

1 84 84 1

0 0 0

0 0

1

. (2.3)

2.1.2 Geometric description

We can use the LG orbifold technology of [12] and the above-mentioned correspondence

with geometry to give alternative descriptions of the background. To illustrate this idea
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consider the simpler example of the LG model based on the quotient of

W = x31 + x32 + x33 , (2.4)

by a Z3 action which sends (x1, x2, x3) → ω(x1, x2, x3). This corresponds to a T 2 torus

model at the Z3 symmetric point in both complex structure and Kähler moduli space

where

τ = ω and ρ = ω . (2.5)

This model has three Z3 symmetries that will be relevant for us. Two of them act

geometrically by phase rotations on the xi’s, modulo the diagonal phase rotation which

we have already divided out. These Z3’s correspond to geometric symmetries of the

T 2. The third, somewhat less familiar, Z3 is a so-called “quantum symmetry” [12], and

is formally identified with the dual of the original Z3 orbifold group defining our LG

model,

Z
quantum
3 = (ZLG

3 )∗ ∼= Z3 . (2.6)

More concretely, the quantum symmetry multiplies a state in the l-th twisted sector

by ωl. Dividing out by Z
quantum
3 gives back the unorbifolded LG model described by

the polynomial (2.4).

The model M of our interest is based on nine cubics instead of three, and it is

natural to expect a relation to geometry via (T 2)3 = T 6. The precise statement is that

M is mirror to a certain rigid Calabi-Yau Z which can be obtained as a quotient of T 6

by a Z3 × Z3 action generated by

g̃12 : (z1, z2, z3) → (ωz1, ω
−1z2, z3) ,

g̃23 : (z1, z2, z3) → (z1, ωz2, ω
−1z3) .

(2.7)

Here z1, z2, z3 are the complex coordinates of T 6 = (T 2)3. This manifold has Hodge

numbers h11(Z) = 84 and h21(Z) = 0. Note that in order for g̃12, g̃23 to be symmetries,

we have to fix the complex structure of the torus to be diagonal and equal to τi = ω

for i = 1, 2, 3. Being mirror to Z, M can also be described as a toroidal orbifold,

except that the orbifold group does not act geometrically. To explain this in more

detail, we state that M can be obtained by starting from T 6, where now we fix the

Kähler structure of T 6 at the Z3 orbifold point in each T 2 factor, ρi = ω for i = 1, 2, 3,

and divide out by a Z3 × Z3 subgroup of the (Z3)
3 quantum symmetry group. While

preserving supersymmetry, this orbifold projects out all Kähler moduli, so that we end
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up with h11(M) = 0. The complex structure moduli of the torus are projected, and

new ones appear in the twisted sector, for a total of h21(M) = 84.

Alternatively, we can start with the 19/Z3 Gepner model and turn it into a T 6 at

the orbifold point in Kähler moduli space by modding out by a Z3 × Z3 generated by

g1 : (x1, x2, x3, x4, x5, x6, x7, x8, x9) → (ωx1, ωx2, ωx3, x4, x5, x6, x7, x8, x9) ,

g2 : (x1, x2, x3, x4, x5, x6, x7, x8, x9) → (x1, x2, x3, ωx4, ωx5, ωx6, x7, x8, x9) .
(2.8)

The quantum symmetry group (Z3)
3 of this W/(Z3)

3 LG orbifold model of (T 2)3 is

generated by g∗1, g
∗
2 and g∗3, where g3 = gg−1

1 g−1
2 . The Z3 × Z3 which turns T 6 back

into M is then generated by g∗1(g
∗
2)

−1 and g∗2(g
∗
3)

−1, which are mirror duals of g̃12 and

g̃23 in (2.7), respectively. Here, g is the original orbifold generator in (2.1).

2.2 Orientifolds

2.2.1 Involutions

We intend to compactify type IIB string theory on an orientifold ofM , which results in

an N = 1 theory in four dimensions. The orientifold is defined by dividing out B-type

world-sheet parity ΩB dressed with a holomorphic involution σ such that the square of

it is in the orbifold group and such the superpotential is invariant up to a sign [23,26]

W (σx) = −W (x) . (2.9)

This last condition comes from the fact that superpotential enters the world-sheet

action as an F-term, ∫
dθ+dθ−W (x) , (2.10)

and B-type world-sheet parity exchanges the fermionic coordinates in superspace θ+ ↔
θ−. The sign resulting from this parity transformation is compensated for by different

types of involutions. The simplest involution that cancels the sign in (2.9) changes the

sign of all nine bosonic coordinates

σ0 : (x1, x2, . . . , x9) → (−x1,−x2, . . . ,−x9) . (2.11)

Under this transformation the superpotential changes sign W (σ0x) = −W (x). Since

we are already working with a Z3 orbifold by g in (2.1), we also have to divide out by

the parity reversing symmetries gσ0 and g
2σ0. The full orientifold group Z3 ⋉Z2

∼= Z6

is generated by gσ0.
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orientifold h+21 b+3

σ0 84 170

σ1 63 128

σ2 52 106

σ3 47 96

σ4 44 90

Table 1: Number of invariant complex structure deformations for various orientifolds of M .

We can consider other orientifolds with a more non-trivial action on the xi’s. In

particular, we can permute, respectively, 1, 2, 3, or 4 pairs of xi’s:

σ1 : (x1, x2, x3, x4, x5, x6, x7, x8, x9),→ −(x2, x1, x3, x4, x5, x6, x7, x8, x9) ,

σ2 : (x1, x2, x3, x4, x5, x6, x7, x8, x9) → −(x2, x1, x4, x3, x5, x6, x7, x8, x9) ,

σ3 : (x1, x2, x3, x4, x5, x6, x7, x8, x9) → −(x2, x1, x4, x3, x6, x5, x7, x8, x9) ,

σ4 : (x1, x2, x3, x4, x5, x6, x7, x8, x9) → −(x2, x1, x4, x3, x6, x5, x8, x7, x9) .

(2.12)

One of the effects of the orientifold is to project the space of complex structure de-

formations onto the subspace which is compatible with W (σx) = −W (x). The num-

ber of invariant complex structure deformations h+21, as well as invariant three-cycles,

b+3 = 2(h+21 + 1) is tabulated in table 1. They can be obtained as follows. The 84

deformations of M correspond to the monomials xixjxk with distinct i, j, k = 1, . . . , 9.

A parity σi acts on these monomials, leaving nfix(σi) of them invariant up to the sign,

and permuting the others pairwise. The number of (anti-)invariant deformations is

then given by

h+21(M
(σi)) =

84− nfix(σi)

2
+ nfix(σi) . (2.13)

Eg, for σ1, invariant monomials are x1x2xj with j = 3, . . . , 9 as well as xixjxk with

distinct i, j, k = 3, . . . , 9, so nfix(σ1) = 7 + 35 = 42 and h+21 = 63.

2.2.2 Orientifold planes

One important piece of data of an orientifold in the geometric setting is the fixed point

locus of the involution that dresses world-sheet parity. The connected components of

this fixed point locus are referred to as “orientifold planes” (O-planes). O-planes carry

R-R charge and NS-NS tension. The crucial role of O-planes arises from the fact that
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both charge and tension can be negative, while preserving space-time supersymmetry.

In fact, in compact models, O-planes are necessary in order to cancel the tadpoles

generated by D-branes and fluxes.

In our present setup, which is non-geometric, there is no straightforward notion of

orientifold “plane” as a geometric locus. Nevertheless, since the charge of O-planes

can be detected on the world-sheet by computing a crosscap diagram with R-R field

insertion, we can still ask in a meaningful way for the R-R charge sourced by the

orientifold. We will present pertinent formulas for these R-R charges in subsection 2.4.

In geometric type IIB orientifolds, the mutually supersymmetric O-planes that can

occur together are either O9 and O5-planes or O7 and O3-planes. In other words,

the complex codimension of the fixed point locus of the dressing involution can be

either 0 mod 2 or 1 mod 2. For example, we can view the type I string as a type

IIB orientifold with trivial involution dressing world-sheet parity. This corresponds

to the O9/O5-case, where O5-plane charge can be induced from the curvature of the

compactification manifold.

In our model, we also have a similar distinction between two types of orientifolds

based on the space-time supersymmetry of the crosscap state resulting from the various

involutions. For instance, we can anticipate that the canonical action σ0 corresponds

to type I compactification on M . Then, because they are of “even codimension” in

the sense of having an even number of −1 eigenvalues, the orientifolds associated with

σ2, and σ4 are also of the O9/O5-type, and similarly σ1 and σ3 correspond to O7/O3-

type. The latter is the class of orientifold models considered in the supergravity regime

in [33], and in which moduli can be stabilized by fluxes. In this section, we will discuss

all possible orientifolds of M . The fact that even in the non-geometric LG model we

study we find only two distinct types of O-planes is a strong indication that even in

the non-geometric model, the intuition of the geometric case continues to hold.

2.3 D-branes and supersymmetric cycles

2.3.1 Supersymmetric cycles

Before we can describe the fluxes and the tadpole cancellation condition in our model,

we need to review some background material about the LG description of D-branes

wrapping supersymmetric cycles. Generally speaking, there are two types of supersym-

metric cycles in Calabi-Yau type compactifications: A-cycles are middle-dimensional
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cycles represented by (special) Lagrangian submanifolds. They are relevant for flux

compactifications as the cycles supporting R-R and NS-NS three-form fluxes. B-cycles

are even-dimensional cycles represented by holomorphic submanifolds carrying (stable)

holomorphic vector bundles. They are the cycles that can be wrapped by O-planes and

D-branes of various types to, for instance, support standard model gauge fields, cancel

tadpoles from fluxes, etc.

In the non-geometric setting, the most useful way to talk about supersymmetric

cycles is in terms of D-branes. Namely, we can distinguish A- and B-branes by the

boundary conditions on the N = (2, 2) supercurrents on the world-sheet

A-type: G±
L(z) = G∓

R(z̄) at z̄ = z̄ ,

B-type: G±
L(z) = G±

R(z̄) at z = z̄ .
(2.14)

So let us review some of what is known about D-branes wrapping supersymmetric cycles

in LG models. There are generally two languages to describe the cycles. In [20], A-

branes in LG models were related to Picard-Lefshetz vanishing cycles of the singularity

described by the LG superpotential. In the simple homogeneous cases, these cycles

can be pictured as wedges in the x-plane, see e.g., Fig. 1. It is straightforward to

implement orbifolding in this description. The other language we will use is the more

abstract language of matrix factorizations, originally introduced in [30]. These matrix

factorizations describe B-cycles in LG models and their orbifolds and have been studied

extensively in the last few years.

Since A-model and B-model are mirror to each other, and the mirror of an LG

model is an orbifold of it, we can also combine the roles of these two descriptions. The

wedge description is easier to picture, while the matrix factorization approach is more

general, in the sense that not all matrix factorizations have a (known) mirror wedge

description. Moreover, the O-plane charge is in general only known how to compute

in this language.

We will first describe these cycles in the parent LG model (including the orbifold,

but before orientifolding). Later, we will describe how the orientifold projects them

and work out invariant representatives.

2.3.2 A-branes

By studying the A-type world-sheet supersymmetry condition (2.14), one finds [20]

that A-type D-branes in LG models correspond to middle-dimensional cycles. In the
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V

V

V0

1

2

Figure 1: The piece of cake picture of Lagrangian (A-type) D-branes in LG model x3.

x-space D-branes correspond to the preimages of the positive real axis (or, by an R-

rotation, some other straight ray with constant slope) in the W -plane, i.e. to the

preimages of

Im(W ) = 0 . (2.15)

In the simplest case of LG models, based on the superpotential W = xk+2 (and its

deformations), this condition can be solved completely, and one can compare with

RCFT results on boundary states in N = 2 minimal models. Specifically, the condition

(2.15) selects (k + 2) spokes through the origin in the x-plane at an angle which is an

integer multiple of e2πi/(k+2), and the branes correspond to all possible wedges built

from these spokes. A useful homology basis is provided by the (k+2) wedges V0, . . . Vk+1

of smallest angular size e2πi/(k+2).

For example, for the minimal model building block of the 19 Gepner model, each

of the factors comes with a set of three A-branes, see Fig. 1. We will call these three

cycles V0, V1, and V2. The Vn’s generate the homology of the minimal model, but

satisfy the one relation

V0 + V1 + V2 = 0 , (2.16)

as can be seen from the figure.

On the other hand, the cohomology basis of the space of A-type D-brane charges

in the minimal model is spanned by the two R-R sector ground states, |l〉, with l = 1, 2

[12]. These can be equivalently represented by the chiral ring C[x]/x2 = 〈1, x〉. The
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correspondence is given by

|l〉 ↔ xl−1 . (2.17)

The R-R charges of the Vn’s can be computed as the overlaps [20] (disk one-point

functions)

〈Vn|l〉 =
∫

Vn

xl−1e−x3

dx = (1− ωl)ωln . (2.18)

The normalization we have chosen here differs slightly from the ones of [20], but is

more convenient for our purposes.

2.3.3 Intersection form of A-cycles

For later applications, it is useful to discuss the action of the Z3 symmetry, as well as

the intersection form on the A-cycles in the minimal model.

First of all, it is quite obvious that the Z3 symmetry which sends x → ωx is

represented on the Vi’s as

(V0, V1, V2) → (V1, V2, V0) = (V0, V1, V2)g with g =



0 0 1

1 0 0

0 1 0


 . (2.19)

Turning to the intersection form, this is best defined as the Witten index Tr(−1)F in the

Hilbert space of open strings between two branes. Geometrically, there is clearly one

R-R ground state localized at each geometric intersection point. In the more abstract

setting such as the LG models considered herein, we can still compute Tr(−1)F as the

cylinder amplitude for open strings stretched between two branes with supersymmetric

boundary conditions around the cylinder. In the limit that the cylinder becomes very

long, this amplitude factorizes on disk amplitudes with closed string ground states

inserted, thus providing an alternative (and often very simple) derivation of D-brane

charges from the Witten index. In the case at hand, the intersection product between

Vm and Vn, which is defined as TrHmn
(−1)F , follows most easily from the relation to

soliton counting [20]. One finds

TrHmn
(−1)F = id− g =




1 0 −1

−1 1 0

0 −1 1


 . (2.20)
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The “index theorem” which expresses this in terms of the R-R overlap (2.18) is explic-

itly

TrHmn
(−1)F =

1

3

∑

l=1,2

〈Vm|l〉
1

1− ωl
〈l|Vn〉 , (2.21)

where 〈l|Vn〉 = 〈Vn|l〉.
Clearly, (2.20) does not have full rank, which is a reflection of the relation in

homology (2.16). We can truncate the Z3 representation and intersection matrix by

passing to a basis of A-cycles, given for instance by (V0, V1). The Z3 generator takes

the form

A =

(
0 −1

1 −1

)
, (2.22)

while the intersection matrix is

I =

(
1 0

−1 1

)
. (2.23)

We now tensor together nine such minimal models and orbifold by g acting diagonally

as in (2.1). The orbifolding projects R-R ground states and chiral ring to those states

|l〉 = |l1, . . . , l9〉 with li = 1, 2 and

9∑

i=1

li = 0 mod 3 , (2.24)

and identifies brane states by summing over orbits. We will denote these branes as

Γ[n] =
1√
3
(⊗iVni

+⊗iVni+1 +⊗iVni+2) with n = (n1, . . . n9) , (2.25)

where the ni’s are taken mod 3. To see that the factor 1/
√
3 on the RHS is the correct

normalization factor of the boundary states, we look at the open string spectrum. Let

us look in particular at the intersection index Tr(−1)F between Γ[m] and Γ[n]. In the

parent (unorbifolded) LG model, each of them has three pre-images rotated by g. It

is clear that the intersection of the two branes in the orbifold is given by looking at

the intersection points of all these 9 preimages. Now if we rotate the preimages of

both branes simultaneously, the intersection does not change, trivially because g is a

symmetry. In other words, the intersection points related by rotating both preimages

simultaneously are gauge equivalent. Therefore, to obtain the intersection in the orb-

ifold, we fix any one preimage of Γ[m] and look for intersections with all preimages of

Γ[n]. Thus, the intersection form on the Γ[n] is given by [22]

(1− g)⊗9
[
1 + g⊗9 + (g⊗9)2

]
, (2.26)
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or, restricted to those Γ[n] with representatives with all ni = 0, 1,

I = I⊗9
[
1 + A⊗9 + (A⊗9)2

]
. (2.27)

The same result can also be expressed in a form similar to (2.21)

Inm =
1

38

∑

l

∏
(1− ωli)

1∏
(1− ωli)

∏
(1− ω−li)ωn·l−m·l , (2.28)

where n · l = ∑
nili and the sum is over all l with

∑
li = 0 mod 3, cf. (2.24). Since

we are summing over 170 intermediate states in (2.28), the 29× 29-dimensional matrix

I has rank ≤ 170. As it turns out, when restricting I to the first 170 (in alphabetical

order) of the Γ[n] with ni = 0, 1, I is invertible and has determinant 1. We have thus

described an algorithm for finding a minimal integral basis of A-cycles in our 19 LG

model.

2.3.4 B-branes and matrix factorization

The analog of (2.15) for B-type boundary condition (2.14) would naively impose the

holomorphic condition W = 0 at the boundary. Both conditions arise from the fact

that the F-term world-sheet interaction
∫
d2θW is supersymmetric only up to partial

integration, and picks up a contribution from the boundary if one is present. In the

case of A-branes, this boundary term is eliminated by imposing the boundary condition

(2.15). But for B-branes, restricting to W = 0 would not allow for a great diversity

of boundary conditions. In that case one introduces additional boundary degrees of

freedom and boundary interactions whose susy variation will cancel the boundary term.

As it was shown in [30], one way of encoding these boundary interactions is in terms

of matrix factorization. Briefly, a matrix factorization of the world-sheet superpotential

W is a block off-diagonal matrix Q with polynomial entries in the LG variables and

satisfying the equation

Q2 =W · id . (2.29)

Physically, the boundary interactions encoded by Q can be viewed as an open string

tachyon configuration between space filling branes and anti-branes: The blocks of Q

correspond to the Chan-Paton spaces of the branes, resp., the anti-branes. The off-

diagonal blocks correspond to the open string tachyon. The diagonal blocks could

carry a gauge field configuration, which however can be gauge away in the standard

LG models.
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For example, for the minimal model x3, there is essentially only one non-trivial

factorization x3 = x · x2, with associated matrix factorization

Q =

(
0 x

x2 0

)
Q2 = x3 · id . (2.30)

The spectrum of massless open strings between two such branes is computed as the

cohomology of the matrix factorizations acting on matrices with polynomial entries.

For the simple example (2.30) for instance, it is easy to see that there are exactly two

such states,
[
Q,

(
1 0

0 1

)
]
= 0,

{
Q,

(
0 1

−x 0

)
}
= 0 . (2.31)

We must refer to the original literature [30], and citations thereof, for more details

about the matrix factorization description of B-branes in minimal models. We will

review the essentials here in view of their applications in our models.

Now let us discuss B-branes in orbifolds. The simplest, and also useful, example is

the Z3 orbifold of a single minimal model x3 divided by the action x → ωx. As we have

mentioned, this orbifolding is nothing but an implementation of mirror symmetry, so

we should compare the result with the wedge picture of A-branes in the (unorbifolded)

model we have described above. Since we are dealing with space filling branes, we seek

a representation of the orbifold group on their Chan-Paton spaces. It is easy to see

that Z3-generator is represented on the matrix Q of (2.30) by

γ = ωn

(
1 0

0 ω

)
, (2.32)

where n = 0, 1, 2. This generator satisfies

γQ(ωx)γ−1 = Q(x) . (2.33)

The factorization Q equipped with these three representations of Z3 corresponds via

mirror symmetry of the minimal model with its orbifold precisely to the three A-type

wedges Vn discussed in the previous subsection. One can also work out the projection

on the open strings and thereby recover (2.20). The expressions (2.18) and (2.21) are

then special cases of the general formulas in [31].

For our purposes, we are interested in the orbifold of W =
∑9

i=1 x
3
i by a diagonal

Z3. Before orbifolding, we have just one factorization, given by tensoring nine copies of
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Q in (2.30). In the orbifold, this yields three different branes: We tensor together nine

copies of γ in (2.32), with naively 39 choices of representation, but clearly only the sum

of n’s (mod3) matters. We’ll now call these three branes Λn, n = 0, 1, 2. A different

way to think of the Λn’s is as A-branes in the mirror W/Z8
3, where we are dividing by

all symmetries that leave the product of xi’s invariant. This orbifold action allows to

“align” the wedges in all nine factors, so Λn can be identified with Vn in one of the

factors, e.g., the first one.

2.3.5 Minimal integral basis for B-cycles

From either one representation, we find that the intersection matrix of the Λn’s is given

by

J =




0 −81 81

81 0 −81

−81 81 0


 . (2.34)

For example, the evaluation of the formulas in [31] reads

TrHΛm,Λn
(−1)F =

1

3

∑

k=1,2

ωkm(1− ωk)9
1

(1− ωk)9
ω−kn(1− ω−k)9 . (2.35)

From this, we could also read off the overlaps of the B-type boundary states with

Ramond ground states |k〉 in the twisted sectors k = 1, 2,

〈Λn|k〉 = Strgk = (1− ωk)9ωkn , (2.36)

where g = γ⊗9, cf., (2.18).

In distinction to the A-brane situation, we see that the Λn’s do not contain a

minimal integral basis of the B-type charge lattice. For the later discussion of tadpole

cancellation in the flux models, we will however need to know the precise quantization

condition, so it is necessary to digress a little further on the construction of such a

minimal basis.

In the context of matrix factorizations, it is by now well-known how to construct

the minimal basis. Namely, one has to use factorizations which are not obtained as

tensor products of minimal model factorizations. Eg, the potential x31 + x32 has the

factorization1

Q(12) =

(
0 x1 + x2

x21 − x1x2 + x22 0

)
, (2.37)

1These factorizations are also known as “permutation branes” [36]. The mirror A-model description

of these branes is not known in the LG formulation.
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which is not the tensor product of minimal model Cardy states. Such a tensor product

would be a 4×4 matrix. It is thus no surprise that Q(12) is also “smaller” as far as R-R

charges are concerned. For instance, the diagonal Z3 is represented on Q(12) by a single

copy of γ in (2.32) instead of two. Thus, if we denote by Λ
(12)
n the branes obtained by

tensoring together the Q(12) in (2.37) with 7 copies of the Cardy brane (2.30), their

charges are

〈Λ(12)
n |k〉 = (1− ωk)8ωkn , (2.38)

and their mutual intersections are

TrH
Λ
(12)
m ,Λ

(12)
n

(−1)F =




0 −27 27

27 0 −27

−27 27 0


 . (2.39)

This is still not minimal, but it’s clear how to proceed. We denote e.g., by Λ(12)(34) the

tensor product of Q(12) with Q(34) and 5 copies of Q, and then with obvious further

notation, we find the overlaps

〈Λ(12)(34)
n |k〉 = (1− ωk)7ωkn ,

〈Λ(12)(34)(56)
n |k〉 = (1− ωk)6ωkn ,

〈Λ(12)(34)(56)(78)
n |k〉 = (1− ωk)5ωkn .

(2.40)

The intersection matrix of the last set is
(

0 −1 1
1 0 −1
−1 1 0

)
, yielding a minimal basis. It is

also not hard to express the charges of these branes built from (2.37) in terms of the

standard Λn’s. Using (1− ω)−1 = (1− ω2)/3, we find by comparing (2.36) with (2.38)

[Λ(12)
n ] =

[Λn]− [Λn+2]

3
,

[Λ(12)(34)
n ] = − [Λn+2]

3
,

[Λ(12)(34)(56)
n ] = − [Λn+2]− [Λn+1]

9
,

[Λ(12)(34)(56)(78)
n ] =

[Λn+1]

9
.

(2.41)

2.4 Charges of O-planes

The charges of the O-planes2 associated with the orientifold actions σi described in

(2.12) can be computed using the formula (5.37) in [26]. This formula says that, in the

2As we have mentioned before, rather than implying that there is a geometric locus which can be

identified as an “O-plane”, we here simply mean the abstract world-sheet concept.
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same basis of charges in which D-brane charges are given by the formulas in [31], such

as we have, e.g., used them in (2.36), (2.38), (2.40), the charge of the O-plane, namely

the overlap of the crosscap state |C〉 with the Ramond ground state |k〉, is given by3

〈C|k〉 =
9∏

i=1

(1 + σi) , (2.42)

where σi are the eigenvalues of the element of the orientifold group which squares to

gk (where g is the generator of the orbifold group).

For example, let us consider the “trivial” orientifold action, (2.11). The orientifold

group has three elements which reverse world-sheet parity, namely σ0, gσ0 and g2σ0.

To determine 〈C|k〉 with k = 1, we notice that (g2σ0)
2 = g and the eigenvalues of g2σ0

are (−ω2, . . . ,−ω2) for i = 1, . . . 9. Thus, 〈C|1〉 = (1 − ω2)9 = −(1 − ω)9 = −〈Λ0|1〉.
Similarly, 〈C|2〉 = −(1 − ω2)9 = −〈Λ0|2〉.

Next, we consider the orientifold action involving a single permutation of variables.

The eigenvalues of g2σ1 are (ω2,−ω2, . . . ,−ω2), and 〈C|1〉 = (1 + ω2)(1 − ω2)8 =

−ω2(1−ω)8. Instead of going through the computations for the remaining cases, let us

simply quote the result for the topological classes of the O-planes Oi associated with

σi. In terms of the basis Λn (n = 0, 1, 2), we find

[O0] = −[Λ0] ,

[O1] =
[Λ1]− [Λ2]

3
,

[O2] =
[Λ0]

3
,

[O3] = − [Λ1]− [Λ2]

9
,

[O4] = − [Λ0]

9
.

(2.43)

Notice that these charges coincide with the charges of particular “permutation branes”

(2.41). However, this is an accident of having level 1 minimal models. For example,

a similar statement is not true on the quintic. The charge of the permutation brane

associated with the factorization x51+x
5
2 = (x1+x2)(· · · ), although it owes its existence

to the permutation x1 → x2, does not coincide with the charge of the orientifold

associated with that permutation. We discuss this explicitly in appendix A.2.

3This formula gives the contribution to the charge from the internal theory only. The spacetime

contribution is universal and multiplies the formulas in [26] by 4. See the next section for further

discussion.
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3 Fluxes in Landau-Ginzburg models

Because our models do not have a radial modulus, it will now be shown that all moduli

of the internal space can be stabilized in terms of fluxes. Our solution is exact, i.e. there

are no perturbative or non-perturbative corrections in the string coupling constant. The

reason is that our analysis is based on two ingredients, the supersymmetry constraints

following from the space-time superpotential and the tadpole cancellation condition.

As argued in this section, both equations are exact.

3.1 Flux superpotential

Let us first discuss the situation in the geometric case, and then explain how it continues

to hold in the non-geometric LG case of interest to us. In the type IIB theory there

are three-form fluxes in the R-R and NS-NS sector, HRR and HNS respectively, that

can be combined into a complex three-form

G = HRR − τHNS . (3.1)

Here τ = C0+ ie−φ is the axion-dilaton combination. In the type IIB theory the fluxes

generate a space-time superpotential for the complex structure moduli

W =

∫

M

G ∧ Ω . (3.2)

This superpotential was derived in [27] and can be obtained with two different ar-

guments. First, supersymmetry constrains the form of the allowed flux components.

These constraints were derived for M-theory/F-theory on four-fold compactifications

in [34], [32] and the superpotential is such that it reproduces these constraints. Simi-

larly, the type IIB superpotential can be derived from the supersymmetry constraints

imposed on the fluxes in type IIB. The second method involves general arguments

which relate the tensions of domain walls to the superpotential [27], [35]. As we will

elaborate in the next subsection this latter derivation of the superpotential can be

used to show that the superpotential is exact and does not receive any corrections,

perturbative or non-perturbative, beyond the tree level.

Unbroken supersymmetry demands

DiW = ∂iW + ∂iKW = 0 . (3.3)
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Here i runs over the complex structure moduli and τ . Further K describes the Kähler

potentials for the complex structure moduli and the dilaton-axion.

K = K(za) +K(τ) , (3.4)

K(τ) = −log[−i(τ − τ̄ )], K(za) = −log(i

∫

M

Ω ∧ Ω̄) . (3.5)

Demanding

DτW =
−1

(τ − τ̄ )

∫

M

Ḡ ∧ Ω = 0, DaW =

∫

M

G ∧ χa = 0 , (3.6)

where χa is a basis of harmonic (2, 1) forms, leads to the conclusion

G = HRR − τHNS ∈ H2,1(M)⊕H0,3(M) . (3.7)

Since for the first case the superpotential vanishes it corresponds to a Minkowski solu-

tion, while the second option corresponds to AdS. We will restrict to supersymmetric

vacua, so that our analysis can be based purely on a solution to the supersymmetry

constraints. Notice that the situation here is different than for geometric models, where

a (0, 3) component breaks supersymmetry due to the presence of the radial modulus.

3.2 Non-renormalization theorem

It is important for our subsequent analysis that this superpotential does not receive any

perturbative nor non-perturbative corrections, neither in α′ nor in the string coupling

constant gs. Since we are dealing with type IIB model, α′ corrections are already

summed up in the LG model. We will thus focus on the potential gs corrections. This

will guarantee that our solutions are valid to all orders in perturbation theory and

even non-perturbatively. We will argue that W does not receive perturbative nor any

non-perturbative corrections4. The arguments for the non-renormalization ofW in the

geometric case are already known and used in the literature. Here we will elaborate

them in detail as it is important to argue for its non-renormalization even in the non-

geometric case which is the case of interest for us.

First the geometric case: Consider type IIB D5-branes and suppose we have some

HRR flux turned on in the internal Calabi-Yau manifold. If we wrap D5-branes over

4There are other similar arguments for the perturbative non-renormalization. Despite the subtlety

that the space-time superpotential depends explicitly on the dilaton, this can be shown perturbatively

using the type IIB R-invariance, Peccei-Quinn symmetry as well as SL(2, Z) invariance [38].
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a three-cycle in the Calabi-Yau, and let it be a domain wall in space-time, then the

flux value jumps from one side of the domain wall to the other. The BPS computation

for the tension of this domain wall is by definition the change in the value of the

superpotential W as we go from one side to the other. On the other hand the BPS

tension of the D5-brane wrapped on a 3-cycle C is given by5

T =

∫

C

Ω . (3.8)

Since we have

∆W = T =

∫

C

Ω , (3.9)

and HRR has changed by one unit over each 3-cycle that intersects C in the positive

sense, this implies that

W =

∫

M

HRR ∧ Ω . (3.10)

Similarly if we also have HNS and adapt the above argument to the NS 5-brane we

have a similar story (as can also be deduced by the S-duality of type IIB) yielding

W =

∫

M

G ∧ Ω . (3.11)

Thus the question of whether there are quantum corrections to this formula translates

to the question of whether there are corrections to the BPS tension of the D5-brane

domain walls. It is known that this is not renormalized. To see this first of all note that

by T-duality in spacetime part (viewing the 4d on T 4) this is related to the quantum

correction in the tension of D3-branes. But it is well known that the BPS tension of

electrically charged states is exact at the tree level (in the N = 2 terminology. This

follows from the fact that string coupling constant is a hypermultiplet whereas the

tension of the D3-brane is determined by vector multiplet data, which do not interact

with hypermultiplet terms in holomorphic terms). By S-duality this leads to the above

formula for the tension of the NS 5-brane domain walls as well and also to its non-

renormalization.

Another way to argue for non-renormalization is to note that the only branes that

could have corrected the tension of D5-branes, should have been Euclidean instantons

5This point will be made more precise below.
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which break half the supersymmetry and have three-dimensional world-volume6: They

would have wrapped the corresponding internal three-cycles of the Calabi-Yau. But,

the type IIB has no Euclidean two-brane which preserves supersymmetry. Therefore

there is no candidate instanton.

The non-renormalization theorem is crucial for us, because we will fix the coupling

constant at a value of order 1. The non-renormalization theorem for the superpoten-

tial has passed some highly non-trivial checks: In the context of N = 1 holography

studied in [28, 29] this statement was equivalent with the statement that the exact

non-perturbative superpotential fixing the glueball vevs of the gauge theory can be

computed exactly by considering the planar diagrams only, which in turn is equivalent

to saying that the superpotential, determined by the fluxes is exact at the tree level

(which automatically sums up the planar diagrams). Note that the 1/N corrections to

the N = 1 superpotential would translate directly to gs corrections and if there were

such corrections it would have ruined the exact results of [28,29]. Needless to say, the

fact that this reproduces exact non-perturbative results for gauge theories is a strong

check for the validity of the non-renormalization theorem of the superpotential.

Now we turn to the non-geometric LG case, which is the case of main interest for

us in this paper. In such cases before even considering the superpotential we first have

to argue that the corresponding HNS, HRR degrees of freedom exist! Since the internal

CFT is not geometric, we cannot identify HRR and HNS with three-forms in the inter-

nal theory. However the notion of degree of the form can be replaced by the notion of

the internal U(1) charge of the underlying (2, 2) SCFT. We would like to argue that

for each chiral field Φ with charge (1,−1) field, which in our notation, corresponds to

the H2,1(M) elements, there exists complex HNS and HRR fields (complexification cor-

responding to the H1,2(M) elements). In fact we can use the world-sheet construction

to write down the corresponding vertex operators which is most naturally done in the

Berkovits’ hybrid formalism [58, 59, 24]:

(ǫij(q
i
Lq

j
L − qiRq

j
R)) · Φ + c.c. ↔ HNS ,

ǫijq
i
Lq

j
R · Φ + c.c. ↔ HRR ,

(3.12)

6One may have also worried about potential correction to the tension of the D5-brane domain

walls from the D-instantons. This could not have done the job by itself, without wrapped internal

D-brane instantons, because we know that for pure D(−1) instantons, which would have therefore

been present in the decompactified limit (as it does not depend on the internal moduli) there is no

contribution due to higher supersymmetry.
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where qiL,R denote the left/right supersymmetry generators.7

We can now formulate the non-renormalization of W along the lines of the argu-

ments discussed in the geometric case. Since we have identified all the relevant objects

in terms of the internal CFT theory, we can apply it to the LG case. In particular the

superpotential can be viewed as such an object: The internal D-branes of the geometric

case, fixing the superpotential in the geometric case, can now be translated to the non-

geometric case, simply by formulating the objects in the CFT language. For example

the notion of a D3-brane wrapping an internal cycles clearly has a CFT description.

This directly leads to the CFT definition for a D5-brane (simply by extending the

D-brane in 2 of the spatial directions). Moreover the lack of instantons to correct the

D3 brane tension, still holds as in the geometric case (the N = 2 BPS charges are

not renormalized, as evidenced by the absence of relevant geometric objects; also the

notion of the brane tension certainly makes sense and the jump of flux across the cor-

responding domain wall can also be formulated). Similarly the non-renormalization of

the superpotential in terms of the lack of availability of suitable branes follows in a sim-

ilar form. We can thus formulate all the relevant ingredients for non-renormalization

of W in the non-geometric case.

There is however, one point to consider in more detail: Note that there is no similar

non-renormalization argument for the Kähler potential K. Therefore one may worry

about the renormalization of the criticality of the potential, namely the condition

DiW = 0 (3.13)

also involves the Kähler potential K. First of all note that this issue does not exist in

the case of Minkowski solutions that we will consider because in that case W = 0 and

7 In this language the turning on of the auxiliary fields in the N = 2 supersymmetry multiplet

is what is responsible for the generation of the superpotential. Moreover the non-renormalization of

the superpotential would then follow directly from the non-renormalization of the prepotential of the

N = 2 theory. This was in particular the description used in [57]. Basically the point is that if Φ

denotes a vector multiplet N = 2 superfield and giving vev v to its θ2 components yields
∫

d4θF0(Φ) =

∫
d2θv · ∂F0 ,

which leads to the above formula for W when we include all contributions. This view of the non-

renormalization theorem is nice in that it follows directly from the 4d data, without assuming anything

about whether the internal theory is geometric or not. In particular the non-renormalization of the

prepotential F0 which is crucial for the exact computations in the context of the N = 2 theories

directly leads to the non-renormalization theorem for the case with fluxes.
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thus DiW = ∂iW . However for our AdS type solutions we would need to argue about

the non-renormalization of DiW . This may sound impossible if K gets renormalized.

However we now argue that this is indeed the case.

First of all note that W is not a holomorphic function but a holomorphic section of

a line bundle. The fact that instead of ∂iW we have the covariantized DiW reflects this

fact. In particular when we mentioned that the tension of the domain wall does not

get renormalized and wrote the tension as an integral of the holomorphic three-form Ω,

this reflects the fact that W is a section of a line bundle. In this case the line bundle

corresponds to the rescaling of

Ω → λΩ . (3.14)

Thus the worry would have been if the covariantization of derivative could receive

quantum corrections. The solution we have found for the flux extremization states

that the flux G should lie in the H0,3 ⊕H2,1. Since the rescaling of Ω does not affect

this statement, even if the section receives quantum corrections, and may affect how

W is expressed as a function, it would not affect the form of the solution we have found

which is gauge invariant, i.e. invariant under the rescaling of Ω. Another way to say

this is as follows: Suppose we find our solution at tree level at some fixed value of

fluxes. We can choose our coordinates of moduli ti such that the Kähler potential will

have an expansion

K = titi + aijtitjf(t, t) , (3.15)

where ti = ti = 0 is the solution. Quantum corrections to ∂iK evaluated at ti = ti = 0

will affect the solution only by terms which are purely holomorphic, i.e., corrections of

the form

δK = δf(t) + c.c. . (3.16)

But this can be reabsorbed to the definition of the holomorhic section of W , i.e. W →
exp(−δf(t))W will get rid of it, without affecting our solution.

3.3 Dirac Quantization condition

Throughout this paper, our basic strategy for finding vacua is to start from the effective

four-dimensional superpotential induced by the fluxes and then find its critical points

as described in the previous subsection. On top of that, we impose all known string

consistency conditions which are not captured by the four-dimensional supergravity

description. An example for such a condition is the tadpole cancellation condition,
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which crucially puts a bound on the total amount of flux that can be turned on. We

will discuss this condition in the next subsection.

Another condition which cannot be seen purely within supergravity is the Dirac

quantization condition for the fluxes. This constraint arises from the requirement

that the quantum mechanics for various brane probes charged under these fluxes be

consistent.8 Flux quantization is notoriously delicate to analyze in topologically non-

trivial backgrounds, and this is even more true in the presence of orientifolds. One

potential subtlety is related to the so-called Freed-Witten anomaly [39–41], whose full

consequences in orientifolds has, to our knowledge, not been rigorously worked out even

in the supergravity regime [46] (but see [45]). Conceivably, one could translate these

constraints to the worldsheet and check whether they are satisfied in our non-geometric

models.

Another subtlety of flux quantization in orientifolds was pointed out in [42, 43]. 9

To discuss this, let us consider a manifold X together with an involution σ, by which we

wish to dress world-sheet parity to construct an orientifold model. One usually calls X

the “covering space” of the orientifold X/σ. It can then happen that the quotient space

X/σ has cycles that are not inherited from X (see [42] for examples). Indeed, consider

a p-cycle C ⊂ X which is mapped to itself by σ, but meets the fixed point locus of σ

in a lower-dimensional cycle. Then C/σ is a p-cycle of X/σ which is represented in X

by C/2.

The Frey-Polchinski puzzle arises [42] when turning on a p-form flux F in the

orientifold. Naively, one would require that the periods over any p-cycle in X/σ be

integral. In particular
∫
C/σ

F ∈ Z. This means that in the covering space,
∫
C
F is

an even integer. On the other hand, orientifolding can be viewed simply as gauging

world-sheet parity dressed by σ, and this point of view only requires that F be integral

on X and invariant under σ (or anti-invariant, depending on the intrinsic parity of F ).

The conundrum was resolved in [42] in favor of the covering space point of view.

Namely, at least for a single cycle C, one can project any (even or odd) integral flux

configuration. The naive lack of integrality in the quotient space is repaired by noticing

that the fixed loci of σ, the O-planes, carry discrete versions of the p-form fluxes. Those

discrete fluxes contribute to
∫
C/σ

F , and make it integral independent of the parity of

8It has been argued [44] that other consistency conditions such as the tadpole cancellation can also

be seen from the brane probe point of view.
9It is possible that this condition is subsumed in the complete analysis of the Freed-Witten anomaly

for orientifolds. We discuss it here as if it were independent.
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∫
C
F .

While this argument appears to work for a single cycle at a time, there are mutual

consistency conditions between different cycles. (Because the discrete fluxes at the

O-planes require an overall choice.) We suspect that this condition must appear in the

covering space as an obstruction to choosing a gauge such that the gauge potential of

F is invariant under σ, and not just the flux F itself.

It would be important to understand this better, however we believe that this

subtlety does not affect our results: As far as discrete NS-NS fluxes are concerned,

we can argue from the world-sheet perspective. Discrete NS-NS fluxes correspond to

discrete choices in the orientifold action on the NS-NS sector. But as is evident from the

analysis in section 2, our orientifolds do not admit such discrete choices. Therefore,

following [42], fluxes can have either parity in the covering space, and there can be

no consistency condition which exist when such choices are possible. It is natural to

believe the same holds for R-R flux (which would also be natural from the viewpoint

of S-duality).

To summarize, we will simply impose the Dirac quantization condition on the fluxes

in the covering space of the orientifold. Namely, we require that the integral of Ramond-

Ramond and NS-NS flux through any three-cycle be integer,
∫

Γ

HRR ∈ Z ,

∫

Γ

HNS ∈ Z , (3.17)

for any Γ ∈ H3(M ;Z). (We work with a normalization for the fluxes in which the

periods are directly integer). The compatibility with the orientifold is simply the

invariance condition
∫

Γ

HRR =

∫

σ(Γ)

HRR ,

∫

Γ

HNS =

∫

σ(Γ)

HNS . (3.18)

3.4 Tadpole cancellation condition

Geometrically, the tadpole cancellation condition in type IIB reads 10

∫

M

HRR ∧HNS +ND3 = Q3(O-plane) , (3.19)

where the first term is the contribution of (integrally normalized) R-R and NS-NS

three-form fluxes, ND3 is the number of wandering D3-branes in the geometry, and

10A more rigorous description of the type IIB tadpole cancellation condition can be obtained in

terms of twisted K-theory. Such a description is addressed in [46].
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Q3(O-plane) is the D3-brane charge of the orientifold plane(s). All charges are mea-

sured in the covering space, in which a single D3-brane contributes one unit. So eg, for

the T-dual of type I compactification, there are 64 O3-planes with total three-brane

charge 32 in our units.

Our goal is to derive the CFT equivalent of the tadpole cancellation condition.

Note that in our non-geometric model M , we cannot readily evaluate equation (3.19).

The reason is that while we know explicitly the charge of the O-plane in terms of the

LG basis of B-branes Λn, or the overlaps with the closed string R-R ground states, we

do not know which one of these charges should we identify with a D3-brane.

The LG analogue of (3.19) can be obtained by looking at models that are continu-

ously connected with geometry. In the geometry, we can identify the charges appearing

in (3.19) in the large radius limit, and phrase them in CFT language. An important

property of the tadpole cancellation condition is that it is a topological condition and

hence does not depend on the moduli we vary to reach the LG point. The tadpole

cancellation condition will therefore take the same form, no matter at what point in

the moduli space it is phrased.

For some simple cases, the comparison between Gepner model orientifolds and

geometry was successfully done in [25]. We review this comparison and extend the check

to orientifolds of the quintic involving permutations in the appendix A.4. This will be

a useful check on the methods used in this section to obtain the tadpole cancellation

condition of our non-geometric model in CFT language.

3.4.1 Application to the non-geometric torus orbifold

As mentioned in section 2, we can view the non-geometric LG/Gepner model 19 as

a Z3 × Z3 orbifold of T 6 = (T 2)3. The idea to identify the tadpole contribution

due to fluxes in the non-geometric model is to first identify this contribution in T 6.

This we can do throughout the moduli space because, being topological, it is locally

constant over the moduli space and we know what it is at large volume, where it can be

expressed in supergravity. We then translate this knowledge into a LG language. At

this point, we forget that there ever was a geometric interpretation, and simply track

the flux contribution to the tadpole as we orbifold the LG model for T 6 to obtain the

non-geometric model of our interest.11

11We point out that for this procedure to be successful, it is crucial that the T 6/Z3 × Z3 orbifold

has no B-type charges from the twisted sectors.
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The flux contribution to the D3-brane tadpole on T 6 is simply that if we turn on

one unit of R-R flux through cycle A and one unit of NS-NS flux through cycle B,

then the contribution to the tadpole is precisely one unit of D3-brane charge for every

intersection point. In other words the R-R charge generated by the fluxes is

[Flux] = (A ∩B)[pt.] , (3.20)

where [pt.] is the class of a point on T 6, where a D3-brane can sit. In this formula, we

can give a world-sheet interpretation to the intersection product A∩B, because it can

be computed as Tr(−1)F in the open string sector between D-branes wrapped on the

corresponding cycles.

To give a world-sheet (LG) interpretation to [pt.], we use the Calabi-Yau/LG cor-

respondence for branes, which we have reviewed in the appendix. We start from the

LG model for a single T 2,

(W = x31 + x32 + x33)/Z3 . (3.21)

Under the canonical CY/LG correspondence, the branes (Λ0,Λ1,Λ2) (see section 2)

arise in large volume by restricting to the elliptic curve the “exceptional collection”

∧nΩ(n) from the ambient P2 (where Ω is the cotangent bundle of P2). It is simple to

compute the large volume charges of these bundles. In terms of their Chern classes,

chi(Λn) = Bin =

(
1 −2 1

0 1 −1

)
. (3.22)

In words, Λ0 corresponds to a D2-brane wrapping the whole T 2, Λ1 corresponds to a

bound state of 2 anti-D2-branes and 3 D0-branes, and Λ2 to a bound state of one D2-

brane and 3 anti-D0’s. Here, the factor of 3 comes from the fact that the (hyper-)plane

class H of P2 intersects the elliptic curve {x31 + x32 + x33 = 0} ⊂ P2 in three points. The

LG monodromy Λn → Λn+1 when acting on the large volume charges looks as

A =

(
−2 −3

1 1

)
. (3.23)

As is by now familiar, the Λn are not a minimal charge basis and do not contain a D0-

brane. Such a minimal basis can be constructed using permutation branes. Specifically,

the D0-brane, which has charges ch(D0) = (0, 1/3)T in our large-volume basis, arises

in the charge orbit

(1− A)−1B =

(
0 −1 1
1
3

1
3

−2
3

)
. (3.24)
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Going back to the LG model, we note that the LG charges of the Λn in the 13 model

are (ω ≡ e2πi/3, k = 1, 2)

〈Λn|k〉 = (1− ωk)3ωkn , (3.25)

while the charges of the set containing the point on T 2 are

〈[pt.]T 2 |k〉 = (1− ωk)2 . (3.26)

(Again, these are represented by permutation branes.)

Let us now take three copies of this LG model for T 2. We get three exceptional

collections Λ
(j)
n , where j = 1, 2, 3 labels the T 2 factor. The point on T 6 is of course the

tensor product of points on the T 2’s, and so has charges

〈[pt.]T 6 |k(1)k(2)k(3)〉 =
3∏

j=1

(1− ωk(j))2 . (3.27)

Here, k(j) = 1, 2 label the appropriate R-R ground states in the T 2’s. Now we forget the

geometric interpretation and state that every intersection point (measured by Tr(−1)F )

between the cycle through which we put NS-NS flux and the cycle through which we

put R-R flux contributes in the class
∏3

j=1(1 − ωk(j))2. We can then orbifold the T 6

by Z3 × Z3 as described in section 2. This has the effect of projecting the k(j), Λ
(j)
n so

that a single set remains. This can be identified as the set Λn from section 2.3.4. In

the orbifold then, the tadpole contribution will be

〈[Flux]|k〉 = (A ∩B)(1− ωk)6 , (3.28)

which can also be written as

[Flux] = (A ∩ B)
[Λ1]− [Λ2]

9
. (3.29)

This is to be compared with the charges of the orientifold planes (2.43). Namely, we

conclude from this analysis that the tadpole cancellation condition between O-plane

and fluxes in the non-geometric model 19 is (assuming no background D-branes are

present)
∫
HNS ∧HRR =




12 for orientifold action σ1 ,

−4 for orientifold action σ3 .
(3.30)

Here, we have taken the O-plane charges for the orientifold action involving one or three

permutations, from (2.43). The additional factor of four is the contribution from the

uncompactified space-time directions. (The general formula is 2d/2 for a d-dimensional

space-time, and evaluates to 32 for d = 10, and 4 for d = 4.)
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4 Solutions

We are now ready to present some explicit examples in which all moduli are stabilized

by fluxes along the lines we have sketched in the introduction. Since the foregoing two

sections have been quite detailed and technical, we will begin by rewriting explicitly

the equations that we are to solve.

4.1 Summary of the conditions

We have seen that unbroken supersymmetry requires that given integral three-form

fluxes HRR and HNS the complex structure of M and the dilaton must be adjusted so

that

G = HRR − τHNS ∈ H2,1(M)⊕H0,3(M) . (4.1)

Fluxes which have a non-trivial component along the (0, 3) direction lead to AdS

spaces, while fluxes with only (2, 1) components gives rise to Minkowski space solutions.

Except for some brief comments, we will mostly be interested in choosing the complex

structure, and trying to find a dilaton and an integral flux which is supersymmetric for

those values of the moduli. In this interpretation, the equations (4.1) are simply linear

equations in the flux quantum numbers, and at first they are rather easy to solve.

The problem becomes more interesting when we also impose the tadpole cancella-

tion condition, ∫
HRR ∧HNS =

1

τ − τ̄

∫
G ∧ Ḡ = 12−ND3 , (4.2)

where 12 is the contribution from the orientifold plane for the orientifold action, σ1, on

which we concentrate from now on (we have not been able to find any solutions for, σ3).

Here ND3 the number of D3-branes that we might want to allow. The LHS of equation

(4.2) is quadratic and positive definite in the flux quantum numbers. Moreover, the

fluxes being quantized leads to a quantization of the LHS of (4.2), and it is at priori

not clear whether the smallest quantum consistent with (4.1) will be sufficiently small.

As we will see, the simplest solutions of (4.1) do in fact not satisfy (4.2). We

will nevertheless present this simplest ansatz first and then improve on it, eventually

exhibiting a supersymmetric flux satisfying all requirements.
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∑
li spans

18 H0,3

15 H1,2

12 H2,1

9 H3,0

Table 2: Landau Ginzburg representation of H3(M) at the Fermat point.

4.2 Ansatz

Recall that we have introduced an integral basis {Γn} of the lattice of A-cycles which

are labeled by the first 170 non-negative integers in binary notation with 9 digits,

n = (n1, n2, . . . , n9), ni = 0, 1. We can then introduce a set of “three-forms” γn which

are Poincaré dual to the Γn, i.e.,∫

Γm

γn = Γm ∩ Γn = Imn , (4.3)

where Imn is the intersection form (2.27). For convenience, we also introduce a “dual

basis” γn of three-forms, defined by the condition
∫

Γm

γn = δn
m
. (4.4)

Clearly, γm = Imnγn where Imn is the inverse of Imn, and
∫
γm ∧ γn = Imn.

Also recall the LG description of H3(M) according to which harmonic forms are

represented by R-R sector ground states which are labeled by a set of nine integers

l =| l1, . . . , l9〉 with li = 1, 2 and
9∑

i=1

li = 0 mod 3 . (4.5)

The Hodge decomposition of H3(M) at the Fermat point is displayed in table 2. The

pairing between homology and cohomology is given by
∫

Γn

Ωl = Bl ω
n·l with n · l =

∑
nili . (4.6)

Here Bl is an l-dependent constant which will eventually drop out of our equations.

There are now two ways to parameterize the general solution to (4.1) (which, again,

we view as an equation for the flux, fixing the complex structure at the Fermat point).

One is to start from the integral ansatz

G = HRR − τHNS =
∑

Nnγn − τ
∑

Mnγn , (4.7)
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and then impose
∫
G ∧ Ωl = 0 for all l with

∑
li = 12, 18 (4.8)

as a constraint on the flux quantum numbers Nn, Mm, The alternative is to start from

an ansatz

G =
∑

P

li=12,18

Al Ωl , (4.9)

and then adjust the coefficients Al in such a way that G has all integral periods
∫

Γn

G = Nn − τMn . (4.10)

The two parameterizations are clearly related, by Nn = InmNn and Mm = ImnMm

(where all N ’s and M ’s are integer).

Even more explicitly, using (4.6) the conditions (4.8) reduce to

∑

n

(Nn − τMn)ωn·l = 0 where
∑

li = 12, 18 . (4.11)

Note that anyone of these equations implies that τ is of the form (this also follows

alternatively from (4.10))

τ =
aω + b

cω + d
, (4.12)

where a, b, c, d are integers. As a result the value of τ is constrained. As we will see

below, solutions τ = ω (where ω is a third root of unity), which corresponds to one of

the cusps in the fundamental domain of the torus, can be explicitly constructed12.

Finally, we should also ensure that our flux is invariant under the orientifold action.

To implement this, we study the action of σi on our basis Γn. (We should restrict from

now on to i = 1, 3, since only in that case can fluxes be supersymmetric with respect to

the orientifold plane at all.) By using σi(Γn) = Γσi(n) and our choice of basis explained

in section 2.3.2, it’s not hard to find the expansion

σi(Γn) = Si
m

n
Γm , (4.13)

where Si is a 170 × 170-dimensional matrix. The invariance condition on the flux

quantum numbers in (4.7) can then be written as

NmSi
m

n
= Nm Mn(Si)

m
n

=Mm . (4.14)

12Solutions in which τ = i, which would correspond to another fixed point of the fundamental

domain, are not allowed since they cannot be written in the form (4.12).
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These equations are easy to solve over the integers and allow to rewrite equation (4.11)

in terms of 2h+21 + 2 = 128, 96 independent flux quantum numbers for σ1 and σ3,

respectively.

It is similarly simple to impose invariance under the orientifold on the ansatz (4.9).

In either way it turns out that the invariance condition on the fluxes is not a severe

restriction on the spectrum of possible solutions.

4.3 One flux component

A simple solution to the supersymmetry constraints (which, however, does not sat-

isfy the tadpole cancellation condition) is provided by a flux proportional to the Ω

component corresponding to the R-R ground state with |l〉 = |222222222〉. In this case

∫

Γn

Ω = A ω2|n| where |n| =
∑

i

ni mod 3 . (4.15)

Here |n| takes three different values, and A is some constant. Taking into account that

1+ω+ω2 = 0 it turns out that the flux numbers are determined by four integers only,

which we denote by N0, N1,M0 and M1, where the index on the flux numbers denotes

the value of |n|. These integers are constrained to satisfy the determining equations

for the dilaton and the parameter A

τ =
N0 − ωN1

M0 − ωM1

and A = N1 − τM1 . (4.16)

It is not hard to find that the contribution of this flux configuration to the tadpole is

given by ∫
HNS ∧HRR =MnI

nmNm = 27 (N1M0 −N0M1) . (4.17)

For integer values ofM0, N0,M1, N1, this result (4.17) is clearly in excess of the tadpole

contribution from the O-plane (4.2), but this will be improved upon shortly.

It is an instructive check to derive the result (4.17) in a different basis of three-

cycles, called the homogeneous basis. This basis is spanned by the cycles dual to the

R-R sector ground states according to

∫

Cl

Ωl′ = δl
l′
. (4.18)

Note that under complex conjugation the set of integers characterizing a R-R sector

ground state transforms by interchanging li = 1 and li = 2. As a result we define the
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index l̄i = 1 + li mod 2 and have
∫

Cl

Ω
l
′ = δl

l′
, (4.19)

Indices are raised and lowered, again, with the help of the intersection matrix

Jll′ =

∫
Ωl ∧ Ω

l
′ = αδl,l′ , (4.20)

which turns out to be diagonal. Here α = i27
√
3 is a normalization constant. This

expression is useful since it provides an alternative derivation of the intersection matrix

Imn after transforming back to the basis spanning the integral lattice using (4.6). We

now apply the Riemann bilinear identity and obtain
∫
G ∧G = Jll′

∫

Cl

G

∫

Cl
′

G . (4.21)

In case that one flux component in the (0,3) direction is turned on, i.e. if G = AΩ this

yields ∫
HNS ∧HRR =

1

τ − τ̄

∫
G ∧G = 27 (N1M0 −N0M1) , (4.22)

where we have used the result for τ and the quantization condition for A in equation

(4.16). Here, then, is an alternative derivation of (4.17). The homogeneous basis is

practical since it results in a diagonal intersection matrix. However, flux quantization

becomes cumbersome in this basis.

Note that the same line of reasoning shows that a minimal non-trivial contribution

to the tadpole of 27 is present each time a single component in any of the (2, 1)

directions is present. Thus no flux along a single direction in H2,1(M) ⊕ H0,3(M)

provides a solution of the tadpole cancellation condition. It remains to show that the

combination of several flux components will reduce the minimal non-trivial value of

the tadpole. We do this in the next subsection.

4.4 The general supersymmetric flux

One may attempt to improve on the previous flux configuration, with smallest tad-

pole contribution of 27, by turning on some (small) number of supersymmetric flux

components in the homogeneous ansatz (4.9),

G =

N∑

i=1

AiΩl(i) . (4.23)
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As we have noted, we need to make the flux invariant under the orientifold. In other

words, we have only b+3 /2 = h+21 + 1 independent fluxes we can turn on, where b+3 and

h+21 are tabulated in table 1. We denote the number of components with N . As a

result the flux spans an hyperplane. We are interested in the sublattice created from

the intersection of this hyperplane with the integral lattice given by H3(M,Z), i.e.

(
H2,1(M)⊕H0,3(M)

)
∩H3(M,Z) . (4.24)

Note that the contribution to the tadpole can be succinctly written in the form

(α ≡ i37/2)

1

τ − τ̄

∫
G ∧G =

α

τ − τ̄

N∑

i=1

| Ai |2 , (4.25)

where the coefficients Ai have to be chosen so that the flux is integrally quantized. In

order to impose integrality we note that (4.8) and (4.23) implies

N∑

i=1

AiΩl(i) =
∑

n

(Nn − τMn) γn , (4.26)

which becomes ∫

Γn

G =
∑

j

Ajω
mj = Nm − τMm (4.27)

after integrating over the integral basis. Here m = (m1, . . .) = (n · l(1), . . .), i.e.,

mj = 0, 1, 2.

Note that by squaring the two sides (4.26) one obtains

α

τ − τ̄

N∑

i=1

| Ai |2= NnI
nmMm . (4.28)

As a result once (4.27) is imposed the contribution to the tadpole given by (4.25) will

always be integral. However, due to (4.11) not all the flux quanta are independent.

Consequently even though the entries of the intersection matrix Imn are ±1 the flux

numbers will appear on the right hand side of (4.28) with a certain multiplicity. This

multiplicity is the origin of the factor 27 on the right hand side of (4.22).

Since the D3-brane charge originating from the orientifold plane is 12 the minimal

non-trivial contribution of the three-form fluxes can maximally be 12 in order to lead

to a vanishing total tadpole. Achieving this while at the same time satisfying the set

of Diophantine equations (4.27) is highly non-trivial and the existence of solutions is

not a priori guaranteed. Below we show the existence of solutions by presenting a set

of explicit examples.
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4.5 Some sample solutions

We have seen that the simplest supersymmetric flux, G ∝ Ω makes a minimal contri-

bution to the tadpole of 27. It is not hard to see that by turning on 2 flux components

(N = 2 in the notation of the previous subsection), we can reduce this value to 18,

which however is still too large. Turning on more components makes the equations

increasingly cumbersome and it is not easy to find the general integral solution by

working with the ansatz (4.9). One may instead attempt to work with the integral

ansatz (4.7), although this has the disadvantage that the tadpole contribution is far

less controlled.

In any event, after a tedious but in the end serendipitous search, we have found solu-

tions satisfying all requirements, including the tadpole cancellation condition. Namely,

we have found supersymmetric flux configurations which are invariant under the ori-

entifold action σ1 and make a tadpole contribution of 12, or 8. (We have not found

any solutions consistent with the orientifold σ3.)

Let us write down explicitly three examples of solutions we have found, all corre-

sponding to an axio-dilaton combination

τ = ω , (4.29)

resulting in a string coupling constant, gs = 2/
√
3. Let us write out these solutions in

both the integral basis and in the homogeneous basis. Namely, the flux

H1
RR =− γ000010101 + γ000010110 + γ000011001 − γ000011010 + γ000100101

− γ000100110 − γ000101001 + γ000101010 + γ001000101 − γ001000110

− γ001001001 + γ001001010 + γ001100101 − γ001100110 − γ001101001

+ γ001101010 + γ001110101 − γ001110110 − γ001111001 + γ001111010

H1
NS =+ γ000000101 − γ000000110 − γ000001001 + γ000001010 + γ000010101

− γ000010110 − γ000011001 + γ000011010 + γ000110101 − γ000110110

− γ000111001 + γ000111010 + γ001010101 − γ001010110 − γ001011001

+ γ001011010 − γ001100101 + γ001100110 + γ001101001 − γ001101010

G1 =H1
RR − τH1

NS =
1

3

(
Ω111122121 − Ω111122112 − Ω111121221 + Ω111121212

)

(4.30)

has tadpole ∫
H1

RR ∧H1
NS = 12 , (4.31)

38



the configuration

H2
RR =− γ010010101 + γ010010110 + γ010011001 − γ010011010 + γ010100101

− γ010100110 − γ010101001 + γ010101010

H2
NS =− γ000010101 + γ000010110 + γ000011001 − γ000011010 + γ000100101

− γ000100110 − γ000101001 + γ000101010

G2 =H2
RR − τH2

NS =
1

3(1− ω)

(
− Ω111212121 + Ω111212112 + Ω111211221−

Ω111211212 + Ω111122121 − Ω111122112 − Ω111121221 + Ω111121212

)

(4.32)

contributes ∫
H2

RR ∧H2
NS = 8 , (4.33)

and finally, for

H3
RR =+ γ000000001 + γ010000001 + γ100000001 + γ001000001 − γ111000001

− γ000010000 − γ010010000 − γ100010000 − γ001010000 + γ111010000

H3
NS =− γ010000001 − γ100000001 − γ110000001 − γ001000001 − γ011000001

− γ101000001 + γ010010000 + γ100010000 + γ110010000 + γ001010000

+ γ011010000 + γ101010000

G3 =H3
RR − τH3

NS =
1

3(1− ω)

(
− Ω111222111 − Ω111221211 − Ω111221121

+ Ω111212112 + Ω111211212 + Ω111211121 − Ω111122211 − Ω111122121

− Ω111121221 + Ω111112212 + Ω111112122 + Ω111111222

)

(4.34)

one finds ∫
H3

RR ∧H3
NS = 12 . (4.35)

It is interesting that the point τ = ω that we have found for the axio-dilaton

corresponds to one of the cusps or fixed points in the fundamental domain of the torus.

As advertised before, these solutions correspond to Minkowski space, which follows

from the fact that the coefficient of Ω222222222 is zero in all solutions we have found.

5 The 26 Gepner model

We have seen in the previous section that it is rather hard to find supersymmetric flux

configurations satisfying the tadpole cancellation condition in the 19 model, and in fact
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we have been extremely lucky to find any solutions at all! From our perspective, the

difficulty stems mainly from the fact that the O-plane contribution to the tadpole is

so small (12 or 4, depending on the choice of involution). One naturally wonders why

this is so. After all, our model is nothing but a torus orbifold, and for the orientifold

of T 6 in which world-sheet parity inverts all 6 torus directions, there are 64 O3-planes,

with total charge 32. The reason we get something smaller in the LG description can

be traced back to the fact that the 13 Gepner model actually corresponds to a T 2 with

B-field B = 1/2. One can show that this forces some of the O3-planes to be “exotic”

in the sense that they have positive charge where regular O3-planes have negative

charge. This reduces the contribution from the O-planes. However, this observation

also indicates that it should be easier to find solutions in a model related to T 6 with

B = 0, for which tadpole canceling flux configurations were for example discussed

in [43]. Indeed, there is such a Gepner model, which is the so-called 26 model. This

is also a torus orbifold T 6/Z4 × Z4 (with zero B-field) with Hodge numbers h11 = 0,

h21 = 90. In this section, we will see that repeating the analysis for this model has

several payoffs.

5.1 The model

The so-called 26 model is best understood as emerging from the world-sheet superpo-

tential

W =

6∑

i=1

x4i + z2 , (5.1)

divided by a Z4 action

g : xi → ixi z → −z . (5.2)

The extra z2 term in the superpotential might seem trivial and indeed it can be inte-

grated out. However, doing so, the orbifold action xi → ixi has to be dressed by (−1)F

and this is somewhat awkward to implement at the level of the branes. It is generally

recommended13 to study LG models with the number of fields congruent to ĉ modulo

2.

Similarly to the 19 model, the 26 model is an orbifold T 6/Z4 × Z4. So most of the

previous discussion carries over to the present case, however there are several subtleties

associated with the fact that the levels are now even. For example, we have new choices

13Geometrically it is more natural to add three quadratic fields z2i .
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in the orientifold action. The canonical choice is

σ0 : (x1, . . . , x6) → ω(x1, . . . , x6) z → iz , (5.3)

where now ω = e2πi/8. The orientifold group is Z8 and fits into the sequence

Z4 −→ Z8 −→ Z2 . (5.4)

The orientifold action can be dressed in various ways by symmetries. The restrictions

are that parity remain involutive up to the orbifold group and we count orientifold

actions as equivalent when they differ by conjugation by a symmetry. For example, we

can have (suppressing z → iz)

σ1 : (x1, x2, x3, x4, x5, x6) → ω(−x1, x2, x3, x4, x5, x6) ,
σ2 : (x1, x2, x3, x4, x5, x6) → ω(−x1,−x2, x3, x4, x5, x6) ,
σ3 : (x1, x2, x3, x4, x5, x6) → ω(−x1,−x2,−x3, x4, x5, x6) ,
σ4 : (x1, x2, x3, x4, x5, x6) → ω(−x1,−x2,−x3,−x4, x5, x6) ,
σ5 : (x1, x2, x3, x4, x5, x6) → ω(−x1,−x2,−x3,−x4,−x5, x6) ,
σ6 : (x1, x2, x3, x4, x5, x6) → ω(−x1,−x2,−x3,−x4,−x5,−x6) .

(5.5)

Note that σ6 = g2σ1, σ5 = g2σ2, σ4 = g2σ3, so these parities define the same orientifold.

One might also note that we did not have the similar option to dress parity action

with a non-trivial phase in the 19 model, where all levels are odd. In the present

case, we can in addition to the phase symmetries also consider permuting some of the

variables, but these parities are always equivalent by a change of variables to one of

the σi’s, perhaps with a change of superpotential. Eg, the action x1 → x2 on x41 + x42

is equivalent to (x̃1, x̃2) = (x1 − x2, x1 + x2) → (−x̃1, x̃2), with the superpotential

x̃41 + 6x̃21x̃
2
2 + x̃42. The projection of moduli is given in the table 3 There is one further

option in the orientifold action which was not available for the 19 model, namely the

“dressing by quantum symmetry”. Recall that the quantum symmetry associated with

the Z4 orbifold is Z∗
4
∼= Z4 and measures the twisted sector. Dressing parity by an

element χ ∈ Z∗
4 means that we multiply a state in the sector twisted by g ∈ Z4 by

the phase χ(g). Any such dressing is involutive, and those related modulo (Z∗
4)

2 are

equivalent. In upshot, we have one non-trivial dressing by quantum symmetry, and

we will denote the corresponding orientifolds by σ̃i, i = 0, 1, 2, 3. The projection of

complex structure moduli is unchanged, whereas the projection of Kähler parameters,

if they were present, would be different. (See [25] for examples of such situations.)
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orientifold h+21 b+3

σ0 90 182

σ1 60 122

σ2 50 102

σ3 48 96

Table 3: Number of invariant complex structure deformations for various orientifolds of the

26 model.

5.2 A-branes

In the x4 minimal model, we have to divide the cake into 4 pieces, which we call

V0, V1, V2, V3, satisfying the relation V0 + V1 + V2 + V3 = 0, and having intersection

matrix

id− g =




1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1



. (5.6)

In the z2 factor, there are only two straight wedges, which only differ by orientation.

Following the same strategy as before in the 19 model, we obtain basic A-branes Γ[n]

in the 26 model, where n = (n1, . . . , n6, nz), ni ≡ ni mod 4, and nz ≡ nz mod 2. The

orbifold equivalence is n ≡ n+(1, 1, 1, 1, 1, 1, 1). The intersection matrix in the orbifold

is

(1− g)⊗6 ⊗ (1− gz)
⊗6
(
1 + g⊗6 ⊗ gz + (g⊗6 ⊗ gz)

2 + (g⊗6 ⊗ gz)
3
)
. (5.7)

In practice, it is convenient to go to a truncated set by using the relations satisfied

by the Vi’s. In the x4 models, the symmetry generator and intersection matrix look,

respectively,

A =



0 0 −1

1 0 −1

0 1 −1


 I =




1 0 0

−1 1 0

0 −1 1


 . (5.8)

In the z2 model, we have, Iz = 1, Az = −1. Thus, the truncated intersection matrix

of the 26 model is:

I = I⊗6
(
1− A⊗6 + (A⊗6)2 − (A⊗6)3

)
. (5.9)
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The formula in the closed string channel (cf., (2.21)) is

I[n],[m] =
1

45

∑

l

∏
(1− i−li)inili−mili , (5.10)

where the sum is over l = (l1, . . . l6) with li = 1, 2, 3 with
∑
li = 0 mod 4 (there

are 182 of them). The formula (5.10) can be understood, from the mirror symmetry

construction using matrix factorizations, or from the wedge picture.

As in the 19 model, it turns out that the first (in alphabetical order) 182 Γ[n] with

ni = 0, 1, 2 form an integral basis of the charge lattice.

5.3 B-branes

The basic B-branes correspond to the tensor product of matrix factorizations x4 = x·x3,
on which the Z4 generator is represented by

γ =

(
1 0

0 i

)
. (5.11)

In the z2 model, we only have the factorization z · z with Z2 generator represented by

γz =

(
1 0

0 −1

)
. (5.12)

We now tensor together and orbifold, which means choosing a representation of Z4,

g = inγ⊗6 ⊗ γz . (5.13)

We call the resulting branes Λn, n = 0, 1, 2, 3. There are two twisted Ramond ground

states in our model, from twisted sector k = 1 and k = 3. The brane charges are (cf.,

(2.36))

〈Λn|k〉 = Strgk = 2(1− ik)6 . (5.14)

One way to see that there is no Ramond ground state for k = 2 is that Strg2 = 0 for

any brane. It is also easy to see that Λn is the anti-brane of Λn+2, and consequentially

Λ0, Λ1 form a (non-integral) basis, with intersection form

Jnm =
1

4

∑

k=1,3

2(1− ik)6
1

2(1− ik)6
2(1− i−k)6ik(n−m) =

(
0 8

−8 0

)
. (5.15)
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A minimal basis is provided by the maximal permutation branes with charges

〈Λ(12)(34)(56)
n |k〉 = 2(1− ik)3 , (5.16)

which are related to the Λ0, Λ1 basis by

[Λ
(12)(34)(56)
0 ] =

−[Λ0] + [Λ1]

4
[Λ

(12)(34)(56)
1 ] =

−[Λ0]− [Λ1]

4
. (5.17)

By following a similar analysis as for the 19 model, one can show that these charges

(5.17) are the charges corresponding to the “point class” in the non-geometric 26 model,

and hence are the normalization for the tadpole contribution from the fluxes.

5.4 O-plane charges

To get the charges of the O-planes associated with the various orientifold actions (5.5)

as well as their quantum symmetry twists, we turn again to eq. (5.37) in [26]. There

are now two distinctions from the 19 model. First of all, we notice that for any given

orbifold element gk (k = 1, 3) with a ground state in the corresponding twisted sector,

there are two parities which square to it: If σ is one, then g2σ is the other. Thus, (5.37)

becomes a sum of two terms.

To understand the possible dressing by quantum symmetry, we have to resolve

the definition of the phase c(σ) from eqs. (4.13), (4.14). Without quantum symmetry

dressing, χ ≡ 1, the phase is just an overall choice of sign of the O-plane. The non-

trivial χ is defined by χ(g) = i , and we get the values

c(gσ) = −ic(σ) c(g2σ) = −c(σ) c(g3σ) = ic(σ) , (5.18)

where c(σ) = ±ω−1, and ω = e2πi/8. (The sign is an overall choice, and we’ll omit it.)

Now let us compute the O-plane charge associated with the canonical orientifold

action σ0. As we said, for each orbifold element there are two parities which square to

it. Eg, for k = 1, the eigenvalues of σ0 are (ω, ω, ω, ω, ω, ω, i), while those of g2σ0 are

(−ω,−ω,−ω,−ω,−ω,−ω, i). So we obtain

〈C|1〉 = (1 + i)
(
(1 + ω)6 + (1− ω)6

)
= −56

〈C|3〉 = (1− i)
(
(1 + ω−1)6 + (1− ω−1)6

)
= −56 .

(5.19)

With dressing by quantum symmetry, we get

〈C̃|1〉 = iω−1(1 + i)
(
(1 + ω)6 − (1− ω)6

)
= −40 − 40i

〈C̃|3〉 = (−i)(iω−1)(1− i)
(
(1 + ω−1)6 − (1− ω−1)6

)
= −40 + 40i .

(5.20)
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Continuing in this fashion, and expressing the charges in the Λ0, Λ1 basis, we find the

following analog of (2.43)

[O0] =
7

2
[Λ1] [Õ0] =

5

2
(−[Λ0] + [Λ1]) (5.21)

[O1] =
3

2
[Λ0] [Õ1] = [Λ0] + [Λ1] (5.22)

[O2] = − [Λ1]

2
[Õ2] =

[Λ0]− [Λ1]

2
(5.23)

[O3] = − [Λ0]

2
[Õ3] = 0 . (5.24)

As before, these results should be multiplied by 4 to get the actual charge of the

orientifold planes in space-time.

5.5 Simple ansatz

As we have done in the 19 model, it is a useful starting point to first study the tadpole

contribution of a flux with only a (0, 3) component turned on. i.e., G = HNS−τHRR ∝
Ω. More precisely, we set G = AΩl0 where l0 = (3, 3, 3, 3, 3, 3) in the normalization in

which the intersection form is given by (5.10), namely

∫
Ωl ∧ Ωl = 45

∏
(1− i li) = −213i . (5.25)

Imposing integrality on the fluxes means

∫

Γn

G = A
∏

(1− i li)inili = Nn − τMn . (5.26)

As in the 19 model, we can parameterize this solution in terms of just 4 integers, N0,

N1, M0, M1. We find

τ =
N0 − iN1

M0 − iM1
A =

N1 − τM1

(1 + i)6
, (5.27)

and as a result

1

τ − τ̄

∫
G ∧ Ḡ =

|M0 − iM1|2
2i(N0M1 −M0N1)

i213

|(1 + i)6|2
(N1M0 −M1N0)

2

|M0 − iM1|2
= 64(N0M1 −M0N1) .

(5.28)
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5.6 Tadpole cancellation

When combining together (5.17), (5.21), and (5.28), we see that we ought to use the

orientifolds which include twist by quantum symmetry in order to get O-plane charges

in the direction of a “D3-brane”, which we have identified with (5.17). Moreover,

we should remember to multiply the results of (5.21) by 4 to take into account the

space-time contribution.

In this way, we obtain the following tadpole cancellation condition

∫
HRR ∧HNS = 40, 16, 8, 0 , (5.29)

respectively, for the four possible orientifolds. This equation (5.29) cannot be satisfied

by the simple ansatz and result (5.28) used above. But there are more complicated

flux configurations which do the job.

5.7 Sample solutions

We have made a search for supersymmetric flux configurations in the 26 model whose

tadpole contribution is within the bound imposed by the charge of at least one of the

O-planes (5.29). As anticipated, the spectrum of possibilities is wider than in the 19

model, due to the fact that the O-plane contribution is larger. Nevertheless, most of

the solutions are still quite complicated.

As an example, the configuration

H1
RR =γ000002 + 2γ000011 + 2γ000012 + γ000020 + 2γ000021 − γ000110 − γ000112 − γ000120

− γ000122 − γ000200 − γ000210 + γ000211 + γ000221 − γ001001 − γ001002 − γ001021

− γ001022 − γ002000 − γ002001 + γ002011 + γ002012

H1
NS =γ000001 + γ000010 + 2γ000011 − γ000012 − γ000021 − 2γ000022 − γ000100 − γ000102

− γ000110 − γ000112 + γ000201 + γ000210 + γ000211 + γ000220 − γ001000 − γ001001

− γ001020 − γ001021 + γ002001 + γ002002 + γ002010 + γ002011

G1 =H1
RR − τH1

NS ∝ Ω121321 − Ω122311 + Ω123112 − Ω123211 + Ω131221 + Ω132112

− 2Ω132211 + Ω211321 − Ω212311 + Ω213112 − Ω213211 + Ω221221 + Ω222112

− 2Ω222211 + Ω231112 + Ω231121 − Ω231211 − Ω232111 + Ω311221 + Ω312112

− 2Ω312211 + Ω321112 + Ω321121 − Ω321211 − Ω322111

(5.30)
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has a tadpole contribution of
∫
H1

RR ∧H1
NS = 40 , (5.31)

exactly saturating the tadpole from [Õ0]. Since G
1 does not have a Ω333333 component

turned on, it corresponds to a Minkowski space solution.

As another example, let us look at

H2
RR =γ000101 + γ000102 + γ000110 + 2γ000111 + γ000112 + γ000120 + γ000121 − γ001001

− γ001002 − γ001010 − 2γ001011 − γ001012 − γ001020 − γ001021 ,

H2
NS =γ000100 + γ000101 + γ000110 − γ000112 − γ000121 − γ000122 − γ001000 − γ001001−

γ001010 + γ001012 + γ001021 + γ001022 ,

G2 =H2
NS − τH2

RR ∝ (−1 + i)Ω322111 + (1− i)Ω321211 + 2iΩ313111 − 2iΩ311311

− (1− i)Ω232111 + (1− i)Ω231211 + 2iΩ223111 − 2iΩ221311 + (1 + i)Ω213211

− (1 + i)Ω212311 + 2iΩ133111 − 2iΩ131311 + (1 + i)Ω123211 − (1 + i)Ω122311 .

(5.32)

This configuration has a smaller tadpole,
∫
H2

RR ∧H2
NS = 16 . (5.33)

As a result, if we use it in conjunction with the orientifold [Õ0], the flux will not com-

pletely cancel the charge of the O-plane. This gives the freedom to include additional

D-branes into the background. It is an interesting open question to determine whether

there exist D-branes with the correct charge but without continuous moduli solving

the tadpole cancelation condition. However, since the solutions presented herein are

at gs = O(1) the description of the properties of these D3 branes would be difficult to

control.

Finally, we have searched for solutions which have a (0, 3) component turned on.

There are several possibilities for such solutions giving rise to 4-d AdS space, one of

which is of the form

G3 ∝ 4iΩ3,3,3,3,3,3 − Ω2,2,2,2,1,1 , (5.34)

with ∫
H3

RR ∧H3
NS = 40 . (5.35)

(This is the only solution we do not write out in the integral basis, as it would take

several pages.)
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6 Discussion and Conclusions

In this paper, we have studied moduli stabilization by fluxes in LG compactifications of

type IIB string theory. We have given both a world-sheet and a 4D effective description

of fluxes in these theories. The particular models considered are non-geometric (as they

do not have any Kähler moduli h11 = 0) and can be represented by orientifolds of LG

models. It has been shown that the complex structure moduli can be stabilized in

terms of fluxes only, while the tadpole cancellation condition is satisfied due to the

presence of the orientifold charge. The value of the string coupling constant for our

solutions is of the order of unity, so that our solutions are at strong coupling and

describe points in moduli space of enhanced symmetry [3]. This type of vacua are of

interest for model building. So for example, low energy theories like the MSSM have a

discrete R-symmetry that helps to explain the stability of the proton.

Since our solutions are at strong coupling, our analysis heavily relies on supersym-

metry and non-renormalization theorems. The particular vacua that have been found

have N = 1 supersymmetry, so that only a non-vanishing H0,3 and H2,1 component of

the flux or a linear combination thereof is allowed. It has been shown that the classical

superpotential of [27] is exact, so that our solutions persist even non-perturbatively.

Among our main results is a set of examples of totally explicit flux configurations

which are supersymmetric, invariant under the orientifold, and satisfy the tadpole

cancellation condition. Technically, these fluxes are solutions to a large number (∼ 100)

of linear Diophantine equations, and a single positive definite quadratic inequality. This

type of problem was used in [47] to argue that the landscape of string vacua might be

so complex from the computational complexity point of view as to preclude finding and

studying individual vacua explicitly. From this point of view, it can appear surprising

that we have found a solution in such a high-dimensional case. In fact, in all studies

of flux stabilization so far (outside of the statistical approach), the number of moduli

has been of order 1. Nevertheless, our findings need not be viewed as being at odds

with the arguments of ref. [47], which rely on statements about the “generic” problem

in this class. Moreover, our problem clearly has additional symmetry properties such

as all periods being cube roots of unity. Although we have not crucially used these

structures to find the solution, it is likely that one could.

Our models provide the first explicit examples of flux compactifications with all

moduli stabilized by fluxes only and which have an external Minkowski space-time.
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The reason for this is the absence of Kähler moduli. All models constructed in the

literature before, lead to AdS space-times, which is the generic case in all geometric

models.

One can ask whether the existence of 4D solutions of string theory with all moduli

stabilized and exactly vanishing cosmological constant should have been expected. In

particular, is this consistent with the concept of “landscape naturalness”?14 A possible

resolution of the cosmological constant problem is via a dense but discrete distribution

of stable and meta-stable vacua in the landscape. If zero is not a special value, is

it “natural” to find it on the list of allowed values? Clearly the solution we have

found adds a new angle on this question and it would be interesting to study in more

detail the distribution of solutions of the type discussed in this paper. In the context

of supersymmetric vacua, vanishing superpotential leads to an unbroken R-symmetry,

which might make such vacua look more natural. Some work on vacua with unbroken

R-symmetry has been done in [3] and [48].

One possible extension of our work would be to deform the LG model away from

the Fermat point in the complex structure moduli space. There is one particularly

interesting limit in the moduli space, namely the mirror of the large radius limit of

the corresponding rigid Calabi-Yau manifolds. Indeed, in this limit, our models should

be related by mirror symmetry to certain type IIA vacua studied in [7], which found

infinite families of AdS solutions with all geometrical moduli stabilized. It would be

interesting to recover and generalize these solutions in the type IIB setup.

It would also be interesting to gain a better understanding of the microscopic de-

scription of fluxes in non-geometric LG models. If this can be achieved, one could also

address a world-sheet derivation of the tadpole cancellation condition and ultimately

the derivation of a dual CFT theory description of the KKLT-like AdS vacua appearing

in the string theory landscape.
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A Analytic continuation

The purpose of this appendix is to provide some background checks on the connection

between LG orientifolds and the large volume Calabi-Yau manifolds, when it exists.

In particular, we wish to review the canonical identification of the D0-brane in the

LG/Gepner model. We also provide a non-trivial check of the formulas of [26], which we

have used to compute the O-plane charges in the non-geometric LG. Namely, we verify

that the O-plane charges of the exchange orientifolds of the quintic agree between the

LG and CY geometric description. This has not so far been available in the literature,

and could be useful for other purposes as well.

A.1 Geometric Interpretation of Cardy states in Gepner models

A general Gepner model connected with a hypersurface in weighted projective space

has an LG description with five factors15

W =

5∑

i=1

xhi

i , (A.1)

with
∑

1 − 2/hi = 3, modded out by a ZH symmetry, where H ≡ l.c.m.(hi). The

corresponding hypersurface is X = {W = 0} ⊂ P4
w1,...,w5

, where wi = H/hi.

The LG description yields H basic B-branes in these models, which we’ll call Λn,

n = 0, 1, . . .H − 1. The corresponding matrix factorizations are based on factorizing

xhi

i = xi · xhi−1
i . After choosing a path in Kähler moduli space which connects the LG

model with the large volume, we can ask for a geometric interpretation of the Λn’s in

terms of bundles on the corresponding hypersurface. This was studied in great detail

following the work [22], and understood in generality in [49, 50], using results of [20].

15One of the hi’s could be equal to 2, which one wouldn’t see in the Gepner model.
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See also the recent work [51]. Namely, following a particular path in Kähler moduli

space, the Λn reduce to the restriction to the hypersurface of a so-called “exceptional

collection” of bundles on the ambient P4
w1,...,w5

. Exceptional collections are particularly

nice bases of branes to work with, and have appeared previously e.g., in the description

of mirror symmetry for Fano varieties [20].

A.2 The quintic

In the following we would like to consider the example of the quintic in P4. In order

to change the basis from LG to large volume (LV) it is enough to determine how the

charges of the branes transform. The LG charges of these branes are 16

〈Λn|k〉 = (1− ωk)5ωkn , (A.2)

where n = 0, . . . 4 and k = 1, . . . 4.

At large volume BPS charges arising from D-branes wrapping cycles in the Calabi-

Yau are determined in terms of the topology of the embedded cycle and a choice of

bundle E to be [55] [40] [56]

Q = ch(E)

√
Â(TX) . (A.3)

Wrapping a p-brane on a cycle induces a Dp-brane charge given by the rank of E, for

example, while lower brane charges resulting from the expansion of the Chern character

are also induced. The Chern characters of the bundles in the exceptional collection

Λn = Ωn(n) (here n = 0, . . . , 4 and Ω is the cotangent bundle of P4) corresponding to

the fractional branes at the LG point are

ch(Λ0) = 1

ch(Λ1) = −4 +H +
H2

2
+
H3

6

ch(Λ2) = 6− 3H − H2

2
+
H3

2

ch(Λ3) = −4 + 3H − H2

2
− H3

2

ch(Λ4) = 1−H +
H2

2
− H3

6
,

(A.4)

16In this section, of course, ω = e
2πi/5.
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where H is the hyperplane class of P4. In matrix notation

Bin = chi(Λn) =




1 −4 6 −4 1

0 1 −3 3 −1

0 1
2

−1
2

−1
2

1
2

0 1
6

1
2

−1
2

−1
6



. (A.5)

Combining (A.5) with (A.2), we can work out the change of basis between the LG and

the LV limit.

One can then derive the matrix A representing the LV counterpart of the LG

monodromy g (which sends Λn → Λn+1), namely

chi(Λn+1) = Aj
i chj(Λn) (A.6)

with

A =




−4 −20
3

−5 −5

1 1 0 0
1
2

1 1 0
1
6

1
2

1 1



. (A.7)

The intersection matrix of the Λn’s is

1

5

4∑

k=1

(1− ωk)5ωkm 1

(1− ωk)5
(1− ω−k)5ω−kn =




0 5 −10 10 5

−5 0 5 −10 10

10 −5 0 5 −10

−10 10 −5 0 5

−5 −10 10 −5 0



,

(A.8)

and again, the Λn’s are not a minimal integral basis of the charge lattice. We can

improve on this, as first pointed out in [52], by using permutation branes.

The permutation branes based on the exchange of x1 and x2 have LG charges

〈Λ(12)
n |k〉 = (1− ωk)4ωkn = (1− ωk)−1〈Λn|k〉 , (A.9)

which in LV translates to the Chern characters

B
(12)
in = chi(Λ

(12)
n ) =




0 −1 3 −3 1

0 0 −1 2 −1

0 0 −1
2

0 1
2

1
5

1
5

1
30

− 7
15

1
30



, (A.10)
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where

B
(12)
in =

[
(1− A)−1B

]
in
. (A.11)

The first of those

ch(Λ
(12)
0 ) = ch3 =

H3

5
, (A.12)

describes a point on the quintic. Remember that H is the hyperplane class of P4 and

the quintic is in the class 5H , so Λ
(12)
0 intersects the quintic exactly once. Note that

even though this set of branes contains a D0-brane, the Λ
(12)
n are still not a minimal

basis of the charge lattice.

Continuing, the permutation branes Λ
(12)(34)
n , which are based on the exchange of

x1 and x2, and x3 and x4, have LG charges

〈Λ(12)(34)
n |k〉 = (1− ωk)3ωkn = (1− ωk)−2〈Λn|k〉 (A.13)

and Chern characters

chi(Λ
(12)(34)
n ) =

[
(1− A)−2B

]
in
=




0 0 1 −2 1

0 0 0 1 −1

−1
5

−1
5

−1
5

3
10

3
10

1
5

0 −1
5

− 7
30

7
30



. (A.14)

These are now indeed a minimal basis of the charge lattice (but do not contain a

D0-brane). Their intersection form is

1

5

4∑

k=1

(1− ωk)3ωkm 1

(1− ωk)5
(1− ω−k)3ω−kn =




0 0 −1 1 0

0 0 0 −1 1

1 0 0 0 −1

−1 1 0 0 0

0 −1 1 0 0



. (A.15)

A.3 Identification of the D0-brane

It follows from the previous discussion that the set of fractional branes Λ
(12)
n containing

the D0-brane and the set of Cardy-Recknagel-Schomerus branes Λn containing the

D6-brane are related by the formula

Λn = (1− g)nmΛ
(12)
m . (A.16)
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Such an identification of the D0-brane in the LG model appears in fact to be canonical

and holds in particular for all hypersurfaces whose analytical continuation has been

studied so far, see, e.g., [50, 53].

More properly, the statement that “one of the Λ
(12)
n is a D0-brane” of course depends

on the analytical continuation that one has chosen to connect LG to LV. For example,

encircling the LG point leads to a cyclic permutation n → n + 1. One of the conse-

quences of this ambiguity in the context of flux compactifications is that the statement

“the fluxes contribute to the D3-brane tadpole” is not invariant under all small volume

monodromies: If the D0-brane on the Calabi-Yau returns under monodromy as a gen-

eral combination of even-dimensional cycles, this can only be consistent with tadpole

cancellation if after the monodromy, the fluxes become non-geometric and contribute

in other classes as well.

However, now we have to take into account that we are performing an orientifold

projection. In type IIB, this selects a real subspace of the Kähler moduli space, which

therefore eliminates some of the possible monodromies. Moreover, as we will see in the

next section for the particular example of the quintic the orientifold projection fixes

the ambiguity completely.

In the above discussion we have seen an interesting interplay between orientifolds,

monodromies and tadpole contributions generated by fluxes. In the present context

we have used this interplay to identify the class of a point in the LG regime but we

expect it to have implications beyond the present discussion and to play a pivotal role

in the search for the LG theories incorporating NS-NS and R-R fluxes.

A.4 Orientifolds of the quintic

We consider first the trivial involution

σ0 : (x1, x2, x3, x4, x5) → (−x1,−x2,−x3,−x4,−x5) , (A.17)

where, the full orientifold group consists of gk and gkσ0 for k = 0 . . . 4. To compute

〈C|k〉, following [26], we have to look for those elements of the orientifold group which

square to the element gk of the orbifold group, and then compute its eigenvalues. Eg,

for k = 1, (g3σ0)
2 = g, with eigenvalues (−ω3, . . . ,−ω3) and so on:

〈C|k〉 = (1− ω3k)5 . (A.18)
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and using (1− ω)−1 = 1
5
(4 + 3ω + 2ω2 + ω3), we find for the class of the O-plane

[O] = 3[Λ0]− 5[Λ2]− 5[Λ3] , (A.19)

which corresponds to large volume charges −7 + 5H2. After we recall that the for-

mulas in [26] are missing a factor of 4 from the extended directions, we see that this

would correspond to a rank 28 bundle, which cannot be correct for tadpole cancella-

tion for a type I compactification on the quintic, which we would have naively expected

corresponds to this orientifold (and would hence require a rank 32 bundle).

A solution to this was noted in [25]. Recall that the correspondence between Λn’s

and bundles is in fact ambiguous by the path we choose to get to large volume. In

the quintic case, the path is fixed by the orientifold projection, except at the orbifold

point. In fact,

g2[O] = 3[Λ2]− 5[Λ4]− 5[Λ0] (A.20)

corresponds to large volume charges 8− 4H − 4H2 + 7
3
H3, and gives rank 32 after we

multiply by our factor of 4. Thus, if we modify our path by 2 LG monodromies (which

is compatible with the orientifold projection on the moduli space), we get agreement

with large volume data.

To understand that this is in fact the path we must take, we recall that a global

coordinate on the Kähler moduli space is the complex structure parameter ψ of the

mirror quintic

y51 + y52 + y53 + y54 + y55 − 5ψy1y2y3y4y5 . (A.21)

More precisely, ψ gives a five-fold cover of the moduli space, which is usually

parametrized by z = (5ψ)−5. The LG monodromy corresponds to ψ → e2πi/5ψ. Now,

the orientifold acts on the mirror quintic simply by complex conjugation yi → ȳi, and

hence restricts ψ to be real. This is a stronger condition than requiring z to be real.

Navigating from positive real ψ to negative real ψ in fact requires encircling the origin

of the moduli space z = 0 twice in the positive direction (or thrice in the negative

direction).

That g2[O] does not seem to correspond to a real bundle in this case (odd Chern

classes are non-zero) is explained by the fact that we actually end up with a non-zero

NS-NS B-field (more precisely B = H/2) under this analytical continuation. Namely

4eH/2[O] = 32− 20H2 (A.22)

which is correct for anomaly cancellation in type I on the quintic.
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To complete the story, we note that the naive result (A.19), 4(−7 + 5H2) differs

from the type I result with B = 0 simply by one unit of D6-brane charge, as well

as a sign. Both can be understood by noting that the path starting at large volume

with B = 0 has to go through the conifold singularity before reaching the LG point.

At the conifold, the O-plane looses exactly one unit of the vanishing cycle, which is

the D6-brane, and also changes into an anti-orientifold plane, see [54]. We thus see

that we can understand completely the charge of the orientifold plane under analytical

continuation through the quintic moduli space, and that large volume and Gepner/LG

data agree beautifully.

A.4.1 Exchange orientifolds

Consider now the orientifold action

σ1 : (x1, x2, x3, x4, x5) → (−x2,−x1,−x3,−x4,−x5) . (A.23)

Its LG charges are

〈C|k〉 = (1 + ω3k)(1− ω3k)4 , (A.24)

which gives at large volume

[O1] = −1 + 2H − 19

15
H3 ,

g2[O1] = −2H +H2 +
16

15
H3 .

(A.25)

Again, we can check that this matches the geometric expectations. At large volume,

the fixed point locus of the involution consists of two components [23]: An O7-plane

at a hyperplane x1 = x2, and an O3-plane at a point x1 = −x2, x3 = x4 = x5 = 0. The

general formulas (see, e.g., [25]) give the O-plane charge of a fixed component Y ⊂ X

as

± [Y ]
23−codimR(Y )

√
Â(X)

√
L
(
1
4
TY
)

L
(
1
4
NY

) , (A.26)

where [Y ] is the Poincaré dual of the fixed point locus, and the sign ± is the type of

O-plane (O+ or O−). For the quintic X in P4, Â(X) = 1 + 10
12
H2. The hyperplane has

[Y ] = H , and c(NY ) = 1+H , so c(TY ) = (1+10H2−40H3)/(1+H) = 1−H+11H2.

We find L
(
1
4
NY

)
= 1+H2/48, L

(
1
4
TY
)
= 1− 21H2/48. For the point on the quintic,

[pt] = H3/5, so the formula evaluates altogether to

± 2H

√
(1− 21H2/48)

(1 +H2/48)(1 + 10H2/12)
± H3

40
= ±

(
2H − 31

24
H3
)
± H3

40
. (A.27)
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Let’s compare this with [O1] and g
2[O1] we have computed above. First of all, we have

to add 1 to [O1] because the path to large volume crosses the conifold locus. Then

we see that the resulting O-plane is an O7 with an O3 of the same type (we can’t

determine the overall type from these considerations)

2H − 31

24
H3 +

H3

40
= 2H − 19

15
H3 . (A.28)

For g2[O1], we have to multiply it with e−H/2 because of the B-field, and find that this

is an O7 with an O3 of the opposite type

e−H/2
(
2H − 31

24
H3 − H3

40

)
= 2H +H2 − 16

15
H3 . (A.29)

It should be possible to understand geometrically why the B-field changes the type of

the O3-plane in this fashion.

Finally, we consider the orientifold action with two exchanges, which is in LG limit:

σ2 : (x1, x2, x3, x4, x5) → (−x2,−x1,−x4,−x3,−x5) . (A.30)

Its LG charges are

〈C|k〉 = (1 + ω3k)2(1− ω3k)3 (A.31)

which gives at large volume

[O2] = 1− 3

5
H2 ,

g2[O2] =
2

5
H2 − 1

5
H3 .

(A.32)

In the geometric regime, the fixed point locus corresponds to an O5 at a degree 5 curve

at x1 = x2, x3 = x4, 2x
5
1+2x53+x

5
5 = 0 in cohomology class H2, plus an O5 at a rational

curve x1 = −x2, x3 = −x4, x5 = 0 in class H2/5. The general formula evaluates to

± 1

2

H2

5
± 1

2
H2 . (A.33)

Indeed, removing the 1 from [O2], this is

− 3

5
H2 = −1

2
H2 − 1

10
H2 , (A.34)

whereas for g2[O2], we get

2

5
H2 − 1

5
H3 = e−H/2(

1

2
H2 − 1

10
H2) . (A.35)

Again, the type of one component of the O-plane changes as we navigate through the

non-geometric phase, or as we change the B-field from 0 to 1/2.
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