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ABSTRACT

We construct supersymmetric M3-brane solutions in D = 11 supergravity. They can

be viewed as deformations of backgrounds taking the form of a direct product of four-

dimensional Minkowski spacetime and a non-compact Ricci-flat manifold of G2 holonomy.

Although the 4-form field strength is turned on it carries no charge, and the 3-branes are

correspondingly massless. We also obtain 3-branes of a different type, arising as M5-branes

wrapped over S2.
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1 Introduction

The standard D3-brane provides a natural supergravity dual of four dimensional N =

4 superconformal Yang-Mills theory, via the AdS/CFT correspondence [1, 2, 3]. Branes

with less supersymmetry can in general be constructed by replacing the spheres that form

the level surfaces in the flat transverse space by some other Einstein space that admits a

lesser number of Killing spinors [4]. It was proposed that D3-branes on the six-dimensional

conifold, in which the level surfaces are the T 1,1 space, is dual to an N = 1 superconformal

theory in D = 4 with gauge group SU(N) × SU(N) [5]. The conformal symmetry can

then itself be broken, by introducing fractional branes corresponding to the wrapping of

D5-branes on 2-cycles. The corresponding supergravity solutions were obtained in [6, 7].

It has been proposed that M-theory compactified on a certain singular seven-dimensional

space with G2 holonomy might be related to a N = 1, D = 4 gauge theory [8, 9, 10], which

has no conformal symmetry to begin with. (See also the recent papers [11, 12, 13, 14, 15].)

This leads to the question of whether there might exist a 3-brane configuration in M-theory,

whose transverse space is a deformation of a Ricci-flat space of G2 holonomy, in which the

4-form field is turned on. In this paper we shall indeed obtain 3-brane solutions of this

deformed type.

So far, three explicit metrics for seven-dimensional manifolds of G2 holonomy are known

[16, 17]. They all have cohomogeneity one. The first two have principal orbits that are

CP
3 or SU(3)/(U(1) × U(1)), written as an S2 bundle over S4 or CP

2 respectively. The

associated 7-manifolds have the topology of R3 bundles over S4 or CP2. The third manifold

has principal orbits that are topologically S3×S3, written as an S3 bundle over S3, and the

7-manifold is topologically R
4×S3. In order to construct a non-trivial 3-brane configuration

on such a background in eleven-dimensional supergravity, it is necessary that the background

G2 manifold itself should admit a well-behaved harmonic 4-form (or dual 3-form). It was

shown in [18, 19] that such harmonic forms exist in all three of these explicit examples.

In this paper, we construct M3-brane configurations describing deformations away from

backgrounds having a G2 manifold as the transverse space, taking the 4-form field strength

of M-theory to be proportional to the appropriately deformed harmonic 4-form. We first

obtain the second-order equations for the fields in our ansatz, which follow from those of

eleven-dimensional supergravity, and then we show that in a Lagrangian formulation of

these equations the potential can be derived from a superpotential. This leads to first-order

equations which we are able to solve explicitly.

The exact solutions that we obtain by this method describe configurations with a four-
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dimensional Poincaré invariance in the world-volume, and a seven-dimensional transverse

space that is a deformation of the original Ricci-flat metric of G2 holonomy. We may thus

view them as being 3-brane solutions of M-theory. At large distance they approach the

product of 4-dimensional Minkowski spacetime and the Ricci-flat metric of G2 holonomy.

The rate at which the metrics approach this asymptotic form is rapid enough that the

ADM mass vanishes, and so they may be thought of as massless M3-branes. In common

with other examples of massless branes, they have naked singularities at short distance. We

show that the M3-brane solutions are supersymmetric.

It is of interest also to look for 3-brane configurations in M-theory within a more general

framework. Another natural candidate for a 3-brane is to look for an M5-brane wrapped

on a supersymmetric 2-cycle. Wrapped supersymmetric M5-branes have been discussed in

previous papers [30, 31], and typically these have been of the form AdSd × H7−d, where

Hn denotes the n-dimensional hyperbolic space. In section 5, we shall consider M5-branes

wrapping around a 2-sphere. The solutions can be obtained by starting with SU(2)-gauged

AdS supergravity in D = 7, and looking for 3-branes supported by the Yang-Mills fields.

We obtain the equations of motion for the general non-abelian case, and show that when

only a U(1) subgroup is turned on, we can construct first-order equations derivable from a

superpotential. The general solution can be reduced to Abel’s equation, and the structure

of the resulting configurations can be analysed. The solutions can be lifted to D = 11,

where they describe 3-branes as M5-branes wrapped on S2.

2 M3-branes in backgrounds of R3 bundles over S4 or CP
2

In this section we shall construct M3-brane solutions that can be viewed as living in back-

grounds where the 7-dimensional transverse space is a manifold of G2 holonomy with the

topology of the R
3 bundle over S4 or CP2.

2.1 The ansatz

Let us consider the D = 11 ansatz

ds211 = H2 dxµ dxµ + dρ2 + a2DµiDµi + b2 dΩ2
4 , (1)

where µi µi = 1 and Dµi = dµi+ ǫijkA
j
(1) µ

k, and Ai
(1) is the SU(2) Yang-Mills instanton on

S4, whose unit metric is dΩ2
4. The functions H, a and b will be taken to depend only on the

radial coordinate ρ in the transverse space. This describes the case of the R
3 bundle over
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S4. The second possibility is obtained by replacing the S4 by CP
2. This does not affect the

form of the equations for H, a and b.1 The constrained µi coordinates can be expressed in

terms of two angular coordinates on S2 in a standard way,

µ1 = sin θ sinφ , µ2 = sin θ cosφ , µ3 = cos θ . (2)

The vielbein components in the S2 fibre directions are then given by

e1 = a (dθ −A1
(1) cosφ+A2

(1) sinφ) ,

e2 = a sin θ (dφ+A1
(1) cot θ sinφ+A2

(1) cot θ cosφ−A3
(1)) . (3)

There is clearly a vacuum solution of the form (1) that is simply the direct product

of four-dimensional Minkowski spacetime and the associated Ricci-flat seven-dimensional

manifold with G2 holonomy. In the vacuum we shall have H = 1, with a and b being given

by [16, 17]. We should now like to turn on the 4-form field strength of eleven-dimensional

supergravity. The 4-form ansatz that respects the symmetry of the metric is given by

[17, 19]

F(4) = f1 Ω(4) + f2X(2) ∧ Y(2) + f3 dρ ∧ Y(3) ,

∗F (4) = H4 a2 b−4 f1 ǫ(4) ∧ dρ ∧X(2) +H4 a−2 f2 ǫ(4) ∧ dρ ∧ Y(2) +H4 f3 ǫ(4) ∧X(3) , (4)

where the fi are functions depending only on ρ, and

X(2) ≡ 1

2
ǫijk µ

iDµj ∧Dµk , Y(2) ≡ µi F i
(2) , X(3) ≡ Dµi ∧ F i

(2) ,

Y(3) ≡ ǫijk µ
iDµj ∧ F k

(2) , ǫ(4) ≡ dt ∧ dx1 ∧ dx2 ∧ dx3 . (5)

(Note that F(4) could in principle have had a term of the form dρ ∧ X(3) as well, but this

is ruled out by the field equation d∗F(4) = 0.) The Bianchi identity dF(4) = 0 implies that

f ′1 = 4f3 and f ′2 = 2f3, so we can take f1 = 2f , f2 = f and f3 =
1

2
f ′, giving

F(4) = f (2Ω(4) +X(2) ∧ Y(2)) +
1

2
f ′ dρ ∧ Y(3) . (6)

In fact F(4) = dA(3) with A(3) =
1

2
f Y(3). The field equation d∗F(4) = 0 implies

(2a4 + b4)H4 f − 1

2
a2 b4 (H4 f ′)′ = 0 . (7)

(The F(4) ∧ F(4) term vanishes here.)

1In everything that follows, results obtained for the case of the S2 bundle over S4 apply equally, mutatis

mutandis, to the case of the S2 bundle over CP2.
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In order to impose the D = 11 Einstein equation it is convenient to perform a Kaluza-

Klein reduction on the 4-dimensional world volume of the 3-brane, so that the problem can

be reformulated from a seven-dimensional point of view. This allows us to make use of

curvature calculations for 7-metrics of this type that were performed in [17]. The relevant

seven-dimensional Lagrangian is given by

e−1L7 = R− 1

2
(∂φ)2 − 1

48
e

√
8

5
φ F 2

(4) , (8)

with the ansatz (1) now taking the form

ds27 = dt2 + ã2DµiDµi + b̃2 dΩ2
4 ,

F(4) = f (2Ω(4) +X(2) ∧ Y(2)) +
1

2
f ′ dρ ∧ Y(3) . (9)

The metric in D = 7 is related to the one in D = 11 by

dŝ211 = e
− 2

3

√
2
5
φ
ds27 + e

1
3

√
5
2
φ
dxµ dxµ . (10)

Thus we have

dt = H4/5 dρ , ã = H4/5 a , b̃ = H4/5 b . (11)

The original eleven-dimensional Einstein equation is now recast as the seven-dimensional

dilaton equation and Einstein equation. The dilaton equation gives

(a2 b4 (H4)′ )′ = 2

3
H4

(
f ′

2
+

2f2

a2
+

4f2 a2

b4

)
, (12)

which can be rewritten as

6H ′′

H
+

18H ′2

H2
+

12a′H ′

aH
+

24b′H ′

bH
=

f ′2

a2 b4
+

2f2

a4 b4
+

4f2

b8
. (13)

From the Einstein equation we get three separate equations, namely

5a′′

a
+
28a′H ′

aH
+
5a′2

a2
+
20a′ b′

a b
+
16b′H ′

bH
+
4H ′′

H
+
12H ′2

H2
− 5

a2
− 5a2

b4
=

f ′2

4a2 b4
− 2f2

a4 b4
+
6f2

b8
,

5b′′

b
+
36b′H ′

bH
+
15b′2

b2
+
10a′ b′

a b
+
8a′H ′

aH
+
4H ′′

H
+
12H ′2

H2
− 15

b2
+
5a2

b4
=

f ′2

4a2 b4
+

f2

2a4 b4
− 4f2

b8
,

10a′′

a
+
8a′H ′

aH
+
20b′′

b
+
16b′H ′

bH
+
24H ′′

H
+
12H ′2

H2
= − f ′2

a2 b4
+

3f2

a4 b4
+
6f2

b8
. (14)

This set of equations can be derived from the Lagrangian L = T − V , where

T = −5ȧ2

2a2
− 20ȧ ḃ

a b
− 15ḃ2

b2
− 20ȧ Ḣ

aH
− 40ḃ Ḣ

bH
− 15Ḣ2

H2
+

5ḟ2

8a2 b4
,

V = 5

4
H8

(
2a2 b4 (−a4 + b4 − 6a2 b2)− (2a4 + b4) f2

)
, (15)
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together with the constraint T + V = 0. Note that here a dot is a derivative with respect

to the coordinate η, defined by dρ = a2 (bH)4 dη. The kinetic term T can be expressed as

T = 1

2
gijα̇i α̇j , where a = eα1 , b = eα2 , H = eα3 and f = α4, with

gij =




−5 −20 −20 0

−20 −30 −40 0

−20 −40 −30 0

0 0 0 5

4a2 b4



. (16)

Since gij is field dependent, the system is a non-linear sigma-model. Nevertheless, we

find that the potential V can be expressed in terms of a superpotential W , so that V =

−1

2
gij ∂iW ∂jW , where

W = 5

2
H4 (a2 + b2)

√
4a2 b4 + f2 . (17)

2.2 First-order equations and general solution

From the superpotential (17), we can derive the first-order equations α̇i = gij ∂j W , which,

in terms of the original radial coordinate ρ of equation (1) become

a′ =
6a4 b4 − 6a2 b6 + a2 f2 − 2b2 f2

3a b4K
, f ′ =

2(a2 + b2) f

K
,

b′ = −12a4 b4 + 4a2 f2 + b2 f2

6a2 b3K
, H ′ =

(a2 + b2) f2H

3a2 b4K
, (18)

where a prime denotes d/dρ, and we have defined

K ≡
√

4a2 b4 + f2 . (19)

Solutions of these equations will necessarily satisfy the original second-order equations,

implying that we shall have solutions of the D = 11 supergravity equations. One may note

from (18) that

a b2H3 f = κ , (20)

where κ is a constant of integration.

In order to solve the first-order equations (18) it is helpful to define new hatted variables

as follows:

a = H−1/2 â , b = H−1/2 b̂ , f = H−3/2 f̂ . (21)

At the same time, we introduce a new radial variable τ , defined by dτ = H1/2 dρ. The

metric ansatz (1) now assumes the form

ds211 = H2 dxµ dxµ +H−1 (dτ2 + â2Dµ2 + b̂2 dΩ2
4) . (22)
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The first-order equations (18) are considerably simplified, becoming

dâ

dτ
=

(â2 − b̂2) K̂

2â b̂4
,

db̂

dτ
= − K̂

2b̂3
,

1

f̂

df̂

dτ
=

(â2 + b̂2) K̂

2â b̂4
,

1

H

dH

dτ
=

(â2 + b̂2) f̂2

3â2 b̂4 K̂
, (23)

where K̂ ≡
√

4â2 b̂4 + f̂2.

A further change of radial coordinate to r, defined by dr = −K̂ dτ , puts these equations

in the form

dâ

dr
= −(â2 − b̂2)

2â b̂4
,

db̂

dr
=

1

2b̂3
,

1

f̂

df̂

dr
= −(â2 + b̂2)

2â b̂4
,

1

H

dH

dr
= − (â2 + b̂2) f̂2

3â2 b̂4 (4â2 b̂4 + f̂2)
. (24)

In particular, the equations for â and b̂ have now decoupled from the rest, and they are in

fact nothing but the first-order equations for the G2 metrics on the R3 bundle over S4 (see,

for example, [20]).

The system of first-order equations is now completely solvable. After a final change of

radial variable r → 1

2
r4, we find that the general solution for the metric in the ansatz (1) is

ds211 = H2 dxµ dxµ + 2H−7 U−1 dr2 + 1

2
r2H−1 U DµiDµi + r2H−1 dΩ2

4 , (25)

where

U = 1− ℓ4

r4
, H =

(
1 +

c2

2r12 U2

)1/6
, (26)

and c is a constant. The function f appearing in the 4-form ansatz (6) is given by

f =
c

r3H3/2 U1/2
. (27)

Note that the constant κ appearing in (20) is precisely the constant c.

2.3 Properties of the 3-brane solution

The general solution contains two non-trivial integration constants, ℓ and c. The constant

ℓ measures the scale size of the “gravitional instanton” of the background G2 manifold.

The constant c, on the other hand, measures the strength of the the 4-form field F(4).

Asymptotically at large distance, the gravitational instanton contributions, going as ℓ4/r4,

dominate in comparison to the F(4) contribution, going as c2/r12.

When the constant c is set to zero, the 4-form field is turned off, and consequently the

configuration reduces to the vacuum solution of a direct product M4 ×M7 of Minkowski
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4-spacetime and the seven-dimensional smooth manifold with G2 holonomy. When c is

non-vanishing, the solution describes a 3-brane in D = 11, with a four-dimensional Poincaré

symmetry in its world volume. Asymptotically, the solution approaches M4 ×M7. If the

parameter ℓ is taken to be zero, then the smooth 7-manifold M7 has a singular limit to

the cone over the S2 bundle over S4 (or CP
2). At small distance, near r = ℓ, the metric

becomes singular, with the limiting form

ℓ = 0 : ds211 = ρ−
1

2 dxµ ∧ dxµ + ρ
1

2 (1
2
DµiDµi + dΩ2

4) + dρ2 ,

ℓ 6= 0 : ds211 = ρ−
2

5 dxµ ∧ dxµ + 1

2
ρ
1

5 DµiDµi + ρ
4

5 dΩ2
4 + dρ2 (28)

as the proper distance ρ tends to zero. We can also consider the the possibility of sending

ℓ4 −→ −ℓ4. In this case, the metric behaviour at small proper distance (i.e. near r = 0)

becomes

ds211 = ρ−1/4 (dxµ dxµ + 1

2
DµiDµi) + ρ1/2 dΩ4 + dρ2 . (29)

The 4-form flux is given by

Q = 2f

∫

S4

Ω(4) , (30)

and from (27) this can be seen to vanish when r is sent to infinity. Thus our M3-brane con-

figurations do not carry any conserved charge, and might be described as “3-branes without

3-branes.” The solution should really be thought of as a gravitional monopole involving the

supergravity multiplet. The two constants ℓ and c are both continuous parameters.

What is perhaps the most interesting feature of the solution is that it is massless. The

leading-order r dependence in the function H at large r is c2/r12, whilst a mass term

for a 7-dimensional transverse space would have a leading-order r-dependence of the form

m/r5. The existence of the naked singularity may be related to the fact that the solution

is massless. In fact all the previously known massless p-brane solutions in supergravity

contain naked singularities [21, 22, 23, 24, 25]. A repulson mechanism was proposed in

string theory [26] to resolve such a naked singularity in the massless dyonic string [25]. A

further observation is there appears not to exist a natural and non-trivial decoupling limit.

This may also be a consequence of the masslessness. For example, a massive dyonic string

has a decoupling limit, but this ceases to exist when the charges are tuned for masslessness.

Unlike the dyonic string, where the masslessness is achieved by making an adjustment

of integration constants, in our new M3-brane solution there is no mass integration con-

stant. From the point of view of supersymmetry, the masslessness is consistent with the

absence of a non-vanishing conserved 4-form charge. However, we shall defer a more detailed

investigation of the supersymmetry of this solution until section 4.
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3 M3-brane in background of R4 bundle over S3

In this section we construct an analogous 3-brane solution in the background of the third

manifold of G2 holonomy, whose topology is R4 × S3. As we shall see, the configuration is

again a “no-braner,” which carries no conserved brane charge.

3.1 The ansatz

In this case, we consider the eleven-dimensional metric ansatz

ds211 = H2 dxµ dxµ + dρ2 + a2 ν2i + b2 Σ2
i (31)

where νi ≡ σi − 1

2
Σi, and σi and Σi are two sets of left-invariant on two independent

SU(2) group manifolds. The level surfaces r = constant are therefore an S3 bundle over

S3. Since the bundle is a trivial one, the level surfaces are topologically S3 × S3. There

is a vacuum solution which is a complete Ricci-flat manifold, namely the direct product of

four-dimensional Minkowski spacetime and the known seven-dimensional manifold R
4 × S3

with G2 holomony [16, 17].

Again we should now like to turn on the 4-form field strength, in order to introduce

a 3-brane configuration in this background. The ansatz for the 4-form, respecting the

symmetries of the vacuum, can be written as [18]

F(4) = f1 νi ∧ νj ∧ Σi ∧ Σj + f2 dρ ∧ ν1 ∧ ν2 ∧ ν3 + 1

2
f3 ǫijk dρ ∧ νi ∧ Σj ∧Σk . (32)

The Bianchi identity dF(4) = 0 gives

f ′1 − 1

8
f2 +

1

2
f3 = 0 , (33)

and the field equation d∗̂F(4) = 0 gives

2f1H
4

a b
+ (f3 a b

−1H4)′ = 0 , −3f1H
4

a b
+ (2f2 b

3 a−3H4)′ = 0 . (34)

It is again convenient to derive the conditions implied by the eleven-dimensional Einstein

equation in terms of a dimensional reduction to D = 7. The dilaton equation gives

H ′′

H
+

3H ′2

H2
+

3a′H ′

aH
+

3b′H ′

bH
− 2f21
a4 b4

− f22
6a6

− f23
2a2 b4

= 0 , (35)

and finally, the seven-dimensional Einstein equation gives

5b′′

b
+
4H ′′

H
+
15a′ b′

a b
+
10b′2

b2
+
12a′H ′

aH
+
32b′H ′

bH
+
12H ′2

H2
− 5

2b2
+

5a2

16b4
+

2f21
a4 b4

− 3f22
2a6

+
f23

2a2 b4
= 0 ,

5a′′

a
+
4H ′′

H
+
15a′ b′

a b
+
10a′2

a2
+
32a′H ′

aH
+
12b′H ′

bH
+
12H ′2

H2
− 5

2a2
− 5a2

32b4
+

2f21
a4 b4

+
f22
a6

− 2f23
a2 b4

= 0 ,

15a′′

a
+
15b′′

b
+
24H ′′

H
+
12a′H ′

aH
+
12b′H ′

bH
+
12H ′2

H2
− 18f21
a4 b4

+
f22
a6

+
3f23
a2 b4

= 0 . (36)
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3.2 First order equations and general solution

From (34), we can solve for f1 and f2,

f1 = −1

2
a bH−4(f3 a b

−1H4)′ , f2 = −3

4
a3 b−3H−4 (λ+ f3 a b

−1H4) , (37)

where λ is a constant of integration. The remaining equations for a, b, H and f3 can then

be obtained from the Lagrangian L = T −V , together with the constraint T +V = 0, where

T = 1

2
gij α̇

i α̇j with αi = (log a, log b, logH, f3), and a dot denotes a derivative with respect

to η defined by dt = a3 b3H4 dη. We have

gij =




−60− 15f2
3

b4
−90 +

15f2
3

b4
−120− 60f2

3
b4

−15f3
b4

−90 +
15f2

3
b4

−60− 15f2
3

b4
−120 +

60f2
3

b4
15f3
b4

−120− 60f2
3

b4
−120 +

60f2
3

b4
−120 − 240f2

3
b4

−60f3
b4

−15f3
b4

15f3
b4

−60f3
b4

−15

b4



. (38)

The potential V is given by

V = 15

32
H8 a4 (−a4 b2+16a2 b4+16b6+3a4 b−2 f23+16b2 f23 )+

45

32
λa6 (λ−2a b−1H4 f3) . (39)

As in the previous case, the kinetic term T is of the form of a non-linear sigma model,

with a fairly complicated field-dependent gij . The inverse is relatively simpler, given by

gij =




1

45
− 1

90
− 1

90

1

90
f3

− 1

90

1

45
− 1

90

7

90
f3

− 1

90
− 1

90

1

72
− 1

18
f3

− 1

90
f3

7

90
f3 − 1

18
f3 − 3

45
b4 + 13

45
f23




(40)

If the integration constant λ is taken to be zero,2 we find that the potential can be

expressed in terms of a superpotential W , i.e. V = −1

2
gij ∂iW ∂jW , with

W = 15

4
H4 a2 b−1 (a2 + 4b2)

√
b4 − f2

3
. (41)

2If the integration constant λ were non-vanishing, which would correspond to a configuration including

M5-branes wrapped on 3-cycles in S3
× S3, it is not clear how one would solve the second-order equations.

Similar remarks apply to the previous case in section 2 also. We chose to omit an analogous constant of

integration, in the discussion above (6), in order to obtain a formulation of the second-order equations in

terms of a superpotential and hence a gradient flow. Had we retained the constant of integration, which

would give a non-vanishing flux λΩ(4) for F(4) corresponding to M5-branes wrapping on 2-cycles in CP
3 or

SU(3)/(U(1) × U(1)), it is again not clear how one would solve the second-order equations. We thank S.S.

Gubser for raising this question about our procedure for obtaining gradient flows.
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From this we can obtain first-order equations, given by

a′ =
a2 b4 − 4b6 − 2a2 f23

8b4K
, b′ =

−2a2 b4 + (a2 − 4b2) f23
8a b3K

,

H ′ =
H (a2 + 4b2) f23

8a b4K
, f ′3 =

f3

(
(12b2 − a2)b4 − f23 (a

2 + 20b2)
)

8a b4K
, (42)

where K ≡
√
b4 − f2

3
and a prime denotes a derivative with respect to the original ρ

coordinate appearing in (31). Note that these first-order equations again imply an algebraic

relation among the functions, analogous to (20). This time, we have

a3 bH6 f3 = κ . (43)

The equations can be solved by defining new quantities â ≡ H a, b̂ ≡ H b and f̂3 ≡ H2 f3.

After manipulations analogous to those in section 2, we arrive at the general solution

ds211 = H2 dxµ dxµ + 12H4 U−1 dr2 + 4

3
r2H−2 U ν2i + r2H−2 Σ2

i , (44)

where

U ≡ 1− ℓ3

r3
, H =

(
1− c2

r12 U3

)−1/6
. (45)

The function f3 is given by

f3 =
c

r4H2 U3/2
. (46)

Note that the constant κ in (43) is related to c by κ = 8c/(3
√
3).

Thus we see that the general solution has two non-trivial integration constants, ℓ and c.

The constant ℓ measures the scale size of the the gravitional instanton of the G2 manifold,

whilst the constant c measures the contribution from the 4-form field strength. Again, the

solution is massless and carries no charge, and it can be thought of as a gravitional monopole

involving the supergravity multiplet fields. Asymptotically, the solution a becomes a prod-

uct of four-dimensional Minkowski spacetime and the G2 manifold with R
4 × S3 topology,

since the contribution to the metric is dominated at large r by the instanton contribution

ℓ4/r4, in comparison to the F(4) contribution which is of order c2/r12. At small distance,

the solution has a naked singularity.

4 Supersymmetry of the M3-branes

Since the configurations that we have obtained in the previous two sections arise as the

solutions of first-order systems of equations, it is natural to expect that they should be

supersymmetric. In other words, one would expect that the first-order equations would

10



have the interpretation of being precisely the integrability conditions for supersymmetry.

However, since they were not obtained by explicitly requiring supersymmetry, but rather by

finding a superpotential for the Lagrangian formulation of the original bosonic supergravity

equations of motion, the question of supersymmetry remains to be investigated.

4.1 Solutions in the R4 bundle over S3 background

First, we shall study the supersymmetry for the solutions obtained in section 3, where the

background metric in the transverse space is the R
4 bundle over S3. It is a straightforward

matter to calculate the spin connection for the metric (31) directly in eleven dimensions,

and then to substitute this and the field strength ansatz (32) directly into the gravitino

transformation rule

δψ̂A = DA ǫ̂−
1

288
FBCDE Γ̂A

BCDE ǫ̂+
1

36
FABCD Γ̂BCD ǫ̂ . (47)

We make a standard 4 + 7 decomposition of the Dirac matrices, as follows:

Γ̂µ = γµ × 1l , Γ̂a = γ5 × Γa . (48)

Substituting into (47), and examining first the world-volume directions µ, we find that a

Killing spinor of the form ǫ̂ = ǫ × η must satisfy γ5 ǫ = ±ǫ. For the case of γ5 ǫ = +ǫ we

find

η = g (b2 + f3)
1/2 η1 + g (b2 − f3)

1/2 η2 , (49)

where η1 and η2 are constant spinors in the transverse 7-space, satisfying the projection

conditions

(Γ1 + iΓ4) η2 = 0 , Γ23 η1 = −Γ04 η2 , (Γ26 − Γ35) η1 = −2i Γ04 η2 . (50)

Note that these conditions uniquely determine η1 and η2, up to an overall scale. For the

case where γ5 ǫ = −ǫ, the associated spinor η is given again by (49), but with f3 replaced by

−f3. The dependence of the overall function g on the coordinates of the transverse space

is undetermined by the µ components of δψ̂A = 0.

The components of δψ̂A = 0 lying in the directions A = a of the transverse space

will now determine the dependence of g on the transverse coordinates. It is easiest first to

examine the radial direction (i.e. the “0” direction), which determines the radial dependence

of the Killing spinor. Then, by looking at the remaining transverse directions, we find that

the Killing spinor has no dependence on the angular coordinates of the two 3-spheres. The

11



conclusion is that the function g in (49) is given by

g = b−1H1/2 . (51)

Thus the first-order equations (37) (where f1 and f2 are given by (42) with λ = 0) are

precisely the integrability conditions for the existence of a spinor ǫ̂ satisfying δψ̂A = 0 in

(47). Since we have 2 solutions (corresponding to two spinors ǫ in the M3-brane world-

volume) for each of the cases γ5 ǫ = ±ǫ, the general Killing spinor has four real solutions,

corresponding to N = 1 supersymmetry on the world-volume of the M3-brane. Of course if

the constant c is set to zero, so that the 4-form is turned off, these Killing spinors reduce to

the usual ones in the product of four-dimensional Minkowski spacetime and the Ricci-flat

metric of G2 holonomy.

4.2 Solutions in the R3 bundle over S4 background

Here, we repeat the analysis of the supersymmetry transformations in the case of the R
3

bundle over S4 background, for which the M3-brane solution was constructed in section 2.

Again we begin by considering the components of δψ̂A = 0 lying in the world-volume of

the 3-brane. From δψ̂µ = 0 we deduce that a Killing spinor of the form ǫ̂ = ǫ × η will be

given by γ5 ǫ = ±ǫ, and for the case γ5 ǫ = +ǫ we have

η = g P
[
(K − f)1/2 η1 + (K + f)1/2 η2

]
, (52)

where K is given by (19), P is given by

P ≡ −sin 1

2
θ

2a b2

[
(K cos 1

2
φ− i f sin 1

2
φ) Γ01 + (K cos 1

2
φ+ i f sin 1

2
φ) Γ02

]

+cos 1

2
θ (cos 1

2
φ+ sin 1

2
φΓ12) , (53)

and the constant 8-component spinors η1 and η2 are uniquely specified (up to scale) by the

projections

(Γ0 − Γ3456) η2 = 0 , (Γ34 + Γ56 − 2Γ012) η2 = 0 ,

4η1 = (Γ135 − Γ146 + Γ236 + Γ245) η2 . (54)

Here the explicit indices 1 and 2 on the Dirac matrices refer to the two directions on the S2

fibres, as in (3), whilst the indices 3, 4, 5 and 6 refer to the directions in the S4 base. The

index 0 refers to the radial direction. For the case when γ5 ǫ = −ǫ, the associated spinor η

in the transverse space will be given again by (52), but now with f sent to −f in (52) and

in (53).

12



The dependence of the overall prefactor g on the coordinates of the transverse space

is not determined by δψ̂µ = 0 in the world-volume directions. (We have, however, made

a convenient choice of θ and φ dependent overall factors, in anticipation of subsequent

results.)

From the radial component δψ̂0 = 0 in the transverse space, we can again determine the

radial dependence of the function g, finding

g =
ĝ

H b a1/2
, (55)

where ĝ depends only on the angular coordinates of the transverse space. Examination of

δψ̂A = 0 in the S2 directions then implies that ĝ is independent of these two coordinates.

Finally, the components in the S4 directions determine that ĝ has the dependence associated

with the singlet fermion zero-mode in the Yang-Mills instanton background (as in [29]).

We have seen that again, the first-order system of equations for this 3-brane in the

background of the R
3 bundle over S4 have turned out to be precisely the integrability

conditions for the existence of a Killing spinor. There are in total four real solutions,

implying N = 1 supersymmetry on the world-volume of the M3-brane. As in the previous

example, if the field strength in the solution is taken to zero, by setting the constant c = 0,

the Killing spinor reduces to the standard one in the vacuum of four-dimensional Minkowski

spacetime times the Ricci-flat metric on the R
3 bundle over S4.

5 Dual formulations and phase transitions

In a standard massive BPS p-brane solution, the charge Q arises as a constant prefactor

in the field strength supporting the solution, and Q also appears linearly in the harmonic

function H in the p-brane metric. By contrast, in our massless M3-brane solutions the

analogous constant c that arises as the prefactor in the expressions for the 4-form field

appears quadratically in the metrics (25) and (44). This means that the metrics would

continue to be real if we were to send c −→ i c. The same would also be true of the reduced

metrics in D = 7 that formed the starting-points of our derivations in sections 2 and 3.

Of course sending c −→ i c would imply that the 4-form field strength would become

imaginary. However, it should be recalled that our original 7-dimensional starting point was

in the Euclidean-signatured theory obtained by dimensional reduction on the world-volume

of the M3-brane. In Euclidean signature, if the 4-form field strength F(4) is dualised to a

3-form F(3), then its kinetic term in the D = 7 Lagrangian will undergo the replacement

− 1

48
e
√

8/5φ F 2
(4) −→ + 1

12
e−

√
8/5φ F 2

(3) . (56)
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This change of sign of the kinetic term, which is generic to all dualisations in Euclidean

signature, indicates that we could achieve the same effect as sending c −→ i c by instead

using a real 3-form field in D = 7, but with the canonical − 1

12
e−

√
8/5 φ F 2

(3) kinetic term

instead of the sign-reversed one in (56) that arose by dualising the 4-form.

The upshot of the above discussion is that we can obtain real solutions in D = 7 that

are just like those in sections 2 and 3, but for the opposite sign of c2. These will be solutions

of the equations coming from the seven-dimensional Lagrangian

e−1 L̃7 = R− 1

2
(∂φ)2 − 1

12
e
−
√

8
5
φ
F 2

(3) . (57)

The expression for F(3) for each solution will be given by F(3) = −i ∗F(4), where F(4) is the

corresponding expression given in section 2 or 3. The i factor in this relation between F(3)

and F(4) is precisely removed by the i factor that we acquire upon sending c −→ i c.

A difference now arises when we consider the higher-dimensional origin of the seven-

dimensional Lagrangian. We viewed (8) in sections 2 and 3 as coming from the Kaluza-

Klein reduction of D = 11 supergravity on the world-volume of the M3-brane. Instead, we

should now view (57) as coming from the Kaluza-Klein reduction of type IIA, type IIB or

type I supergravity on the world-volume of a 2-brane. In other words, we obtain the 3-form

in D = 7 as the direct world-volume reduction of a 3-form in D = 10. Accordingly, we can

then lift the D = 7 solutions of sections 2 and 3, after sending c −→ i c, to real solutions

of ten-dimensional supergravity. Thus there is a phase transition from one type of brane to

another, when we change the modulus parameter c of the solution from real to imaginary.

For the case of the S2 bundle over S4 in section 2, we find that the corresponding

massless 2-brane solution in D = 10 is given by

ds210 = H−3/2 dxµ dxµ + 2H−9/2 U−1 dr2 + 1

2
r2H3/2 U DµiDµi + r2H3/2 dΩ2

4 , (58)

where

U = 1− ℓ4

r4
, H =

(
1− c2

2r12 U2

)1/6
. (59)

For the S3 bundle over S3 of section 3, the corresponding massless 2-brane solution in

D = 10 is given by

ds210 = H−3/2 dxµ dxµ + 12H13/2 U−1 dr2 + 4

3
r2H1/2 U ν2i + r2H1/2 Σ2

i , (60)

where

U ≡ 1− ℓ3

r3
, H =

(
1 +

c2

r12 U3

)−1/6
. (61)
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We have written the solutions that come from reducing the NS-NS 3-form of the ten-

dimensional supergravity. Of course in the case of type IIB we could instead use the R-R

3-form, in which case the lifted solutions in D = 10 would simply be the S-duals of those

we have just presented.

One can also, of course, further lift the above configurations, if viewed as solutions of

type IIA supergravity, to D = 11. For the case corresponding to the S2 bundle over S4 we

then find

ds211 = H−2 dxµ dxµ +H4 dz2 + 2H−5 U−1 dr2 + 1

2
r2H U DµiDµi + r2H dΩ2

4 , (62)

where z is the eleventh coordinate, and U and H are again given by (59). For the case

corresponding to the S3 bundle over S3, we find

ds211 = H−2 dxµ dxµ +H4 dz2 + 12H6 U−1 dr2 + 4

3
r2 U ν2i + r2 Σ2

i , (63)

where U and H are given by (61).

6 D = 7 3-brane and S2-wrapped M5-brane

It is of interest also to study more general 3-brane configurations in M-theory. Another

natural candidate is an M5-brane wrapped around a supersymmetric 2-cycle. M5-branes

wrapped on supersymmetric cycles have been discussed previously [30, 31]. Typically, they

admit solutions of the form AdSd ×H7−d, where Hn denotes the n-dimensional hyperbolic

space. In this section, we shall consider an M5-brane wrapped around a 2-sphere. The

solution can be obtained by looking first at gauged supergravity in D = 7.

6.1 D = 7 AdS7 3-brane

Consider the D = 7, N = 2 gauged supergravity, whose bosonic Lagrangian is

L7 = R∗1l− 1

2
∗dφ ∧ dφ− U ∗1l− 1

2
e
− 4√

10
φ∗F(4) ∧ F(4)

−1

2
e

2√
10

φ∗F(2) ∧ F(2) +
1

2
F i

(2) ∧ F i
(2) ∧A(3) − 1

2
√
2
g F(4) ∧ A(3) . (64)

where F(4) = dA(3) and U is the scalar potential in the D = 7 gauged supergravity,

U = g2 (1
4
e

8
√

10
φ − 2e

3
√

10
φ − 2e

− 2
√

10
φ
) . (65)

In addition, the 4-form satisfies the first-order odd-dimensional self-duality equation

e
− 4√

10
φ ∗F(4) = − 1√

2
g A(3) +

1

2
ω(3) . (66)
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Here, we have ω(3) ≡ Ai
(1) ∧F i

(2) − 1

6
g ǫijkA

i
(1) ∧Aj

(1) ∧Ak
(1). Domain wall and AdS7 black hole

solutions in this theory have been constructed [32, 33, 34], which can be viewed after lifting

back to M-theory as distributed or rotating M5-branes respectively.

Here we consider a 3-brane configuration, which is supported by one component of the

SU(2) Yang-Mills gauge fields. We take the ansatz to be

ds27 = e2A dxµ ∧ dxµ + e2B (dr2 + dΩ2
2) , (67)

F 3
(2) = λΩ2 , F(4) = 0 . (68)

The resulting equations of motion can be derived from the Lagrangian L = T − V , where

T = −12Ȧ2 − 16Ȧ Ḃ − 2Ḃ2 + 1

2
φ̇2 ,

V = e8A+2B(2− e2B U − 1

2
λ2 e

−2B+
2

√

10
φ
) , (69)

together with the constraint T + V = 0. Here the dot denotes a derivative with respect to

η, defined by dη = e8A+2B dr.

We find that V can be derived from a superpotential W , provided that g λ = 1. It is

given by

W = 2
√
2 g e

4A+2B− 1√
10

φ
+

√
2 g−1 e

4A+
1√
10

φ
+ 1√

2
g e

4A+2B+
4√
10

φ
. (70)

The associated first-order equations, after setting g = 1 without loss of generality, are given

by

a′

a
= −b2 f4 − 4b2

f
+ 2f ,

b′

b
= −b2 f4 − 4b2

f
− 8f ,

f ′

f
= 4b2 f4 − 4b2

f
+ 2f , (71)

where a = eA, b = eB , f = e
1√
10

φ
, and a prime here denotes a derivative with respect to ρ,

which is defined by dρ = 1

10
√
2
e−B dr.

It is not clear how to solve these first-order equations analytically, but the general

behaviour of the solutions to the gradient flow can nevertheless be analysed in terms of a

phase-plane diagram. From (71), we can plot the 2-dimensional vector (b′, f ′), and it shows

that the solution flows from (b → ∞, f → 1) to (b → 0, f → ∞). (See figure 1. Note that

f is always non-negative.)
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Figure 1. The flow defined by the 2-vector (b′, f ′). The abscissa is b and the ordinate is f .

It suffices to analyse the solution in the regions (b → ∞, f → 1) and (b → 0, f → ∞).

Consider first the behaviour when f → 1. In this case, the approximate form of the solution

is

a2 ∼ 1

10ρ
+

6

5
+

181ρ

30
+ · · · , b2 ∼ 1

10ρ
− 4

5
+

11ρ

15
+ · · · ,

f ∼ 1− 2ρ+ ρ2(638
21

+ 40 log ρ)− 1120ρ3 log ρ+ · · · , (72)

up to the first few orders in ρ. It is easy to see that r ∼ √
ρ → 0, and so the metric

approaches

ds27 ∼
1

r2
(dxµ dxµ + dΩ2

2 + dr2) . (73)

Since r tends to zero here, this describes the large-distance asymptotic region.

Now consider the behaviour when f → ∞, with b approaching zero. In this case, we

have

a2 ∼ (1− ρ)1/7 ∼ b2 , f ∼ 1

2
(1− ρ)−2/7 . (74)
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with ρ tending to 1 from below. The metric then has the form

ds27 = (r − r0)
2/15 (dxµ dxµ + dΩ2

2 + dr2) . (75)

Since r −→ r0 in this case, it clearly corresponds to the region at small proper distance.

The solution at r = 0 would be singular, but it is also a horizon

We can dimensionally reduce the solution on dΩ2
2, to obtain a domain wall in D = 5, of

the form

ds25 = e2C(dxµ dxµ + dr2) . (76)

The radial coordinate r runs from r = 0, which is the AdS5 horizon, to r = r0, which is a

null singularity. The conformal factor in these two regions is given by

r → 0 : e2C ∼ 1

r10/3
, V ∼ 35

4r2

r → r0 : e2C ∼ (r − r0)
2/9 , V ∼ 1

12(r − r0)2
. (77)

Thus the system has a discrete spectrum, indicating confinement.

6.2 Lifting to S2-wrapped M5-brane

The consistent S4 reduction of eleven-dimensional supergravity was obtained in [35, 36, 37].

Using the explicit reduction ansatz given in [36], we can lift the above solution to give an

S2-wrapped M5-brane in D = 11, with

ds211 = ∆1/3
(
a2 dxµ dxµ + b2 (dr2 + dΩ2

2)
)
+ 2f−1/3 ∆1/3 dξ2 + 1

2
∆−2/3 f cos2 ξ (σ2 + dΩ̃2

2) ,

A(3) = 1√
2
sin ξ σ

(
Ω̃(2) − Ω(2) +

1

2
cos2 ξ∆−1 f4 Ω̃(2)

)
. (78)

Here

∆ = f4 sin2 ξ + f−1 cos2 ξ , dσ = Ω(2) + Ω̃(2) . (79)

In the asymptotic region at large proper distance, the metric becomes

ds211 ∼
1

r2
(dxµ dxµ + dΩ2

2 + dr2) + 2dξ2 + 1

2
cos2 ξ(σ2 + dΩ̃2

2) , (80)

where r → 0. Note that the 4-form field strength F(4) = dA(3) has a term

F(4) =
1

2
√
2
∆−1f4 cos3(ξ) dξ ∧ σ ∧ Ω̃2 + · · · , (81)

implying that this 3-brane configuration has non-vanishing M5-brane charge.
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6.3 General solutions

Although we have not obtained the general solution explicitly, we can nevertheless show that

the first-order equations (71) can be reduced to a single non-linear first-order differential

equation. Defining X ≡ b/f , Y ≡ b f4, and dt = 5fdρ, we have

a′

a
= 1

5
(−X Y − 4X2 + 2) ,

X ′

X
= −X Y − 2 ,

Y ′

Y
= 3X Y − 4X2 . (82)

The first equation gives a, once X and Y have been found using the remaining equations.

The second equation may be solved for Y , and substituted into the third. This gives

XX ′′ +X ′2 + 4X3X ′ + 10X X ′ + 8X4 + 12X2 = 0 . (83)

Now let v ≡ X ′, so that X ′′ = v′ = dv/dX dX/dρ = v dv/dX, and hence (83) becomes

v X
dv

dX
+ v2 + 4v X3 + 10v X + 8X4 + 12X2 = 0 . (84)

A further change of variable from v to w, defined by w ≡ 1

2
v X, then gives

X−1w
dw

dX
+ 2wX2 + 5w + 2X4 + 3X2 = 0 . (85)

Finally, we let z ≡ X2 + 5

2
. This transforms (85) into

w
dw

dz
+ z w + 1

2
(z − 1)(2z − 5) = 0 . (86)

This is a particular case of Abel’s equation, but unfortunately it appears to be difficult to

obtain the solution in closed form.

6.4 Non-abelian solutions in D = 7 supergravity

So far we have made use only of a U(1) subgroup of the SU(2) gauge fiends. It is possible

also to turn on the full SU(2) gauge fields, with the ansatz

A1
(1) = v sin θ dφ , A2

(1) = −v dθ , A3
(1) = cos θ dφ , (87)

where v is a function of r, and (θ, φ) are the coordinates on the 2-spheres foliating the

transverse 3-space. (This ansatz was used, for example, in [38].) The Hamiltonian H =

T + V for this case is given by

T = −12A′2 − 16A′B′ − 2B′2 + 1

2
φ′

2
+ e

−2B+
2

√

10
φ
v′

2
,

V = e8A+2B
(
2− e2B U − 1

2
e
−2B+

2
√

10
φ
(v2 − 1)2

)
, (88)
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where U is the scalar potential in D = 7 gauged supergravity, as given in (65).

We have not found a superpotential for this system. The earlier U(1) result corresponds

to v = 0. There is a singular scaling limit in which the first two terms in the scalar potential

U in (65) vanish, and then the theory can be viewed as the S3 reduction of N = 1, D = 10

supergravity [39]. A supersymmetric 3-brane with SU(2) Yang-Mills fields does then exist,

and it is non-singular [40]. The solution is the lifting to D = 10 of the SU(2) black hole

constructed in [38]. The superpotential for this system was obtained in [27].

7 Conclusions

In the context of four-dimensional field theories, it is of considerable interest to construct 3-

brane configurations in M-theory. One class of such solutions has been obtained by wrapping

M5-branes on a certain supersymmetric two cycles, such as Riemannian surfaces [30]. These

solutions are deformations of an AdS5×H2×S4 vacuum, where H2 is the hyperbolic plane.

In this paper, we have constructed two new types of 3-brane configuration. In the first

type, we exploit the fact that the transverse space of the 3-brane in D = 11 is seven-

dimensional, and that there exist non-trivial seven-dimensional Ricci-flat manifolds with

G2 holonomy. It has been proposed that compactifications of M-theory on G2 are related

to N = 1, D = 4 Yang-Mills theory [8, 9, 10]. Three explicit complete non-compact

manifolds of G2 holonomy are currently known [16, 17], and they can be used to smooth

out the singularities of compact G2 orbifolds. Each of them admits a harmonic 4-form

[18, 19], which suggests the possibility of turning on the 4-form field strength of D = 11

supergravity in solutions that correspond to deformations of four-dimensional Minkowski

space times a Ricci-flat G2 manifold. We have indeed managed to obtain exact solutions of

this type, which can be viewed as 3-branes in M-theory.

The general solutions contain two continuous parameters; ℓ, which measures the size of

the gravitional instanton, and c, which measures the strength of the 4-form. The solutions

are massless, and carry no 4-form charge. In common with all other known massless brane

solutions, there are naked singularities at short distance. At large distance the solution

approaches the product of four-dimensional Minkowski spacetime and the original Ricci-

flat G2 manifold. The solution can be viewed as a supergravitional monopole, involving

both the metric and the 4-form in the supergravity multiplet.

We obtained the solutions by deriving first-order equations from a superpotential, and

we showed that these are precisely the integrability conditions for the existence of a Killing
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spinor. Thus the two M3-brane solutions that we have constructed in this paper are super-

symmetric.

It is interesting to observe that although the harmonic 4-forms in the undeformed man-

ifolds of G2 holonomy, on the R
3 bundle over S4 and the R

4 bundle over S3, have quite

different properties (the former being L2 normalisable whilst the latter is not), the cor-

responding deformed 3-brane solutions in sections 2 and 3 have very similar qualitative

behaviour. In contrast, the properties of the metrics for the fractional D2-brane [19] and

NS-NS 2-brane [18], which make use of these same two Ricci-flat metrics, are significantly

different.

We also obtained M3-brane solutions of a different kind, by lifting 3-brane solutions in

D = 7 gauged supergravity back to D = 11. They carry magnetic 4-form charge, and can

be viewed as M5-branes wrapped on S2.
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Note added

In an earlier version of this paper it was claimed that the M3-brane solutions were not

supersymmetric, but instead were “pseudo-supersymmetric” with respect to a modified

D = 11 supersymmetry transformation rule. This incorrect conclusion resulted from a

systematic error in a computer program that we used for calculating the Killing spinors.

We are grateful to Jim Liu for calculations that encouraged us to recheck the computer

programs and discover the error.

References

[1] J. Maldacena, The large N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200.

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-

critical string theory, Phys. Lett. B428 (1998) 105, hep-th/9802109.

21

http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109


[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)

253, hep-th/980215.
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