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ABSTRACT

We present new anti-de Sitter black hole solutions of gauged N = 8, SO(8) supergravity,
which is the massless sector of the AdS4×S7 vacuum of M-theory. By focusing on the U(1)4

Cartan subgroup, we find non-extremal 1, 2, 3 and 4 charge solutions. In the extremal limit,
they may preserve up to 1/2, 1/4, 1/8 and 1/8 of the supersymmetry, respectively. In the
limit of vanishing SO(8) coupling constant, the solutions reduce to the familiar black holes of
the M4×T 7 vacuum, but have very different interpretation since there are no winding states
on S7 and no U -duality. In contrast to the T 7 compactification, moreover, we find no static
multi-center solutions. Also in contrast, the S7 fields appear “already dualized” so that the 4
charges may be all electric or all magnetic rather than 2 electric and 2 magnetic. Curiously,
however, the magnetic solutions preserve no supersymmetries. We conjecture that a subset
of the extreme electric black holes preserving 1/2 the supersymmetry may be identified with
the S7 Kaluza-Klein spectrum, with the non-abelian SO(8) quantum numbers provided by
the fermionic zero modes.
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1 Introduction

The correspondence between anti-de Sitter space and conformal field theories on its boundary
[1, 2, 3, 4] has revived an interest in gauged extended supergravities which arise as the
massless sector of the Kaluza-Klein compactifications of D = 11 supergravity, such as AdS4×
S7 and AdS7 × S4 or Type IIB supergravity, such as AdS5 × S5 [5]. Gauged N = 8
D = 4 supergravity [6, 7], which is the massless sector of the S7 compactification, has also
featured in a recent cosmological context with attempts to reconcile an open universe with
inflation [8, 9, 10, 11]. Although this Kaluza-Klein compactification was the subject of much
investigation in the past [12], relatively little effort has been devoted to the issue of black
hole solutions of the gauged N = 8 theory3. This is the subject of the present paper.

Although both are maximally symmetric, the S7 compactification differs from the T 7 in
several important respects. First of all, the global SO(8) is promoted to a gauge symmetry.
Secondly, the underlying supersymmetry algebra is no longer Poincare but rather AdS4 and
the Lagrangian has a non-vanishing cosmological constant Λ proportional to the square of
the gauge coupling constant g:

GΛ ∼ −g2, (1.1)

where G is Newton’s constant. Consequently, we shall be seeking black hole solutions that
are asymptotically AdS rather than Minkowski. We also face the difference that the gauge
group is non-abelian. By focusing on the U(1)4 Cartan subgroup, we find non-extremal 1, 2,
3 and 4 charge solutions. In the extremal limit they may preserve up to 1/2, 1/4, 1/8 and 1/8
of the supersymmetry, respectively. In the limit of vanishing SO(8) coupling constant, the
solutions reduce to the familiar black holes of the M4 × T 7 vacuum, but have very different
interpretation since there are no winding states on S7 and no U -duality. In contrast to the
T 7 compactification, moreover, we find no static multi-center solutions. Also in contrast, the
S7 fields appear “already dualized” so that the 4 charges may be all electric or all magnetic
rather than 2 electric and 2 magnetic. Curiously, however, the magnetic solutions preserve
no supersymmetries.

Previous papers [16, 17, 18] have explored the possibility that the BPS spectrum of
toroidally compactified string and M theory, and in particular the Kaluza-Klein modes, could
be identified with extreme black hole solutions of the low-energy supergravity theory. It was
found that this identification was consistent not only with the mass and charge spectrum [16]
but also with the spins and supermultiplet structure [19, 20, 21] and with the dipole moments
and gyromagnetic ratios [22]. In a similar spirit, we here conjecture that a subset of the AdS
electric black hole solutions preserving half the supersymmetry may be identified with the S7

Kaluza-Klein spectrum [23, 24, 12] with the non-abelian SO(8) quantum numbers provided
by the fermionic zero modes.

3BPS black holes arising in the SU(2)×SU(2) version of gauged (N = 4, D = 4) supergravity, which is the
massless sector of the S3×S3 compactification of (N = 1, D = 10) supergravity, have recently been discussed
in [13]. Our solutions will be significantly different from these. In particular ours are asymptotically AdS
while those of [13] are asymptotically neither AdS nor Minkowski. Additionally, both BPS and non-BPS
black hole solutions in gauged (N = 2, D = 5) supergravity were examined in [14] and [15] respectively.
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2 N = 8 gauged supergravity

We follow the conventions of [6, 7], and denote the fields of the massless N = 8 supergravity
multiplet by (eα

µ, ψ
i
µ, A

[IJ ]
µ , χ[ijk],V[ij]

[IJ ]), where i, j are SU(8) indices and I, J are SO(8)
indices. The 70 real scalar degrees of freedom are represented by the 56-bein

V =
(

uij
IJ vijKL

vklIJ ukl
KL

)

, (2.1)

transforming under local SU(8) and rigid E7. In the gauged supergravity theory, the 28
vectors AIJ

µ transform in the adjoint of SO(8), with resulting non-abelian field strengths
F IJ

µν = 2(∂[µA
IJ
ν] − gAIK

[µ A
KJ
ν] ). We also define the fully SO(8)× SU(8) covariant derivative

as, for example, Dµϕi
I = ∇µϕi

I − 1
2
Bj

µ iϕj
I − gAIJ

µ ϕi
J . Here Bi

µ j is a composite SU(8)
connection, defined along with the scalar kinetic terms Aijkl

µ according to the condition

DµVV−1 = − 1

2
√

2

(

0 Aijkl
µ

Aµ ijkl 0

)

. (2.2)

Note that here Dµ is the fully covariant derivative, so that Bi
µ j is defined indirectly by the

vanishing of the diagonal blocks in (2.2).
While the complete gauged N = 8 Lagrangian is rather involved [7], the bosonic part is

fairly standard, and may be written as

L =
1

2κ2

√−g
[

R − 1

2 · 4!
Aijkl

µ Aµ
ijkl −

1

4
(F+

µν IJ(2SIJ,KL − δIJ
KL)F+µν

KL + h.c.)− V
]

, (2.3)

where SIJ,KL is defined in terms of the scalars through the condition (uij
IJ + vijIJ)SIJ,KL =

uij
KL, and F+

µν is the self-dual part of Fµν . Finally, the potential arises from the SO(8)
gauging, and is given by

V = −2g2[3
4
|A1

ij |2 − 1
24
|A2 i

jkl|2], (2.4)

where Aij
1 = 4

21
Tk

ikj and A2 i
jkl = −4

3
Ti

[jkl] and Ti
jkl is the T -tensor of [7]:

Ti
jkl = (ukl

IJ + vklIJ)(uim
JKujm

KI − vimJKv
jmKI). (2.5)

In a purely bosonic background, the supersymmetry transformations of the fermions are
given by

1
2
δψi

µ = Dµǫ
i + 1√

2
[1
4
F

− ij
νλ γνλ − gAij

1 ]γµǫj ,

δχijk = −1
2
Aijkl

µ γµǫl + [3
2
γµνF

− [ij
µν δ

k]
l − 2gA2 l

ijk]ǫl, (2.6)

where Dµǫ
i = ∇µǫ

i + 1
2
Bi

µ jǫ
j . Note that the gauge fields enter the supersymmetry trans-

formations with scalar factors, since (to lowest order) F µν is defined through Fµν
IJ =

(uij
IJ + vijIJ)F µν

ij .
In the case of ungauged N = 8 supergravity, black holes are completely characterized

by 28 electric and 28 magnetic charges under the U(1) gauge fields. In the present case,
however, the gauge group is non-abelian, and hence the situation is less clear. In order to
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proceed, we work in an abelian truncation of the gauged N = 8 theory by focusing only
on the U(1)4 Cartan subgroup of SO(8). In particular, we choose the Cartan generators to
correspond to adjacent index pairs:

{A12
µ , A34

µ , A56
µ , A78

µ }, (2.7)

and set the remaining gauge fields to zero. Note that while in principle it is important to
check that this provides a consistent truncation, in practice as long as the supersymmetry
variations (at least partially) vanish the state is essentially ensured to be BPS.

For the scalars, we work in symmetric gauge [25, 26] where the 56-bein may be written
as

V = exp

{

− 1

2
√

2

(

0 φijkl

φmnpq 0

)

}

, (2.8)

with φijkl self-dual. Let us denote SO(8) index pairs {12, 34, 56, 78} by (α) where α =
1, . . . , 4. Specializing to real scalars, we are lead to the following ansatz:

φijkl = φijkl =
√

2[φ(12)(ǫ(12) + ǫ(34)) + φ(13)(ǫ(13) + ǫ(24)) + φ(14)(ǫ(14) + ǫ(23))]ijkl, (2.9)

where numbers in parentheses correspond to appropriate index pairs so that e.g. ǫ
(13)
ijkl = ±1

whenever {i, j, k, l} corresponds to a permutation of {1, 2, 5, 6}. This ansatz is of course self-
dual by construction. Thus we have reduced the original 70 (real) scalar degrees of freedom
to just three in this specialization. For this case, using the definition (2.2), we find that the
SU(8) connection and scalar kinetic terms become4

Bµ
i
j = −2gAij

µ , Aµ
ijkl = ∂µφ

ijkl. (2.10)

When restricted to the abelian U(1) gauge fields, and with the scalar ansatz (2.9), the
bosonic lagrangian, (2.3), may be rewritten as

L =
1

2κ2

√−g
[

R− 1
2

(

(∂µφ
(12))2 + (∂µφ

(13))2 + (∂µφ
(14))2

)

− V (2.11)

−2
(

e−λ1(F (1)
µν )2 + e−λ2(F (2)

µν )2 + e−λ3(F (3)
µν )2 + e−λ4(F (4)

µν )2
)]

,

where the scalar combinations {λ} are given by

λ1 = −φ(12) − φ(13) − φ(14),

λ2 = −φ(12) + φ(13) + φ(14),

λ3 = φ(12) − φ(13) + φ(14),

λ4 = φ(12) + φ(13) − φ(14), (2.12)

and the scalar potential is

V = −4g2
(

coshφ(12) + coshφ(13) + coshφ(14)
)

. (2.13)

4Note that SU(8) and SO(8) indices are indistinguishable here. This is a consequence of specializing to
a particular gauge choice for the scalars.
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Note that the {λ} are not all independent as λ1 + λ2 + λ3 + λ4 = 0. The U(1) gauge fields
in (2.11) are essentially the SO(8) triality rotated combinations













F (1)
µν

F (2)
µν

F (3)
µν

F (4)
µν













=
1

4











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1





















F 12
µν

F 34
µν

F 56
µν

F 78
µν











≡ 1

2
Ω











F 12
µν

F 34
µν

F 56
µν

F 78
µν











. (2.14)

For later convenience we have defined the matrix Ω, which satisfies Ω = ΩT and Ω2 = I.
Several comments are in order here. The first is that, save for the potential, (2.13),

and numerical factors in the definition of the scalars, the truncated bosonic action (2.11)
is identical to that of a closed string compactified on T 2 with “diagonal” scalars5. While
on the one hand this may not be too surprising, since supersymmetry must necessarily
constrain the couplings between the scalars and vectors, on the other hand it is somewhat
remarkable since the four U(1) fields have rather different interpretations in the two cases:
as the Cartan generators of SO(8) for the gauged supergravity, and as two Kaluza-Klein and
two winding gauge fields for the T 2 compactification. Following up on this correspondence,
the second point is that we have a priori constrained the three scalars φ(12), φ(13) and φ(14)

to be real. We believe that allowing the scalars to be complex in (2.9) would in fact lead to a
complete correspondence between (2.11) and the general T 2 compactified effective lagrangian
with three complex scalars. Nevertheless, this brings up the issue that the additional scalar
degrees of freedom do play a role in terms of giving rise to additional conditions on the
bosonic solutions in order to maintain a consistent truncation. Finally, it is important to
realize that when g 6= 0 the potential (2.13) may not be ignored, and fixes the asymptotic
scalar values to vanish, φ(12)

∞ = φ(13)
∞ = φ(14)

∞ = 0, with corresponding negative energy density
V∞ = −12g2.

A slight notational complication arises in expressing the supersymmetry variations (2.6)
in terms of explicit field components (as opposed to fully SO(8) invariant quantities). As
above, we denote SO(8) index pairs {12, 34, 56, 78} by (α) where α = 1, . . . , 4, in which case
the single SO(8) index i = 1, . . . , 8 may be replaced by the combination i(α) with the latter
i taking on either 1 or 2 corresponding to the first or the second of the pair (α). In this case
the gravitino variation may be written as

δψ
i(α)
µ = ∇µǫ

i(α) − 2gΩαβA
(β)
µ ǫijǫ

j(α) +
g

4
√

2

(

eλ1/2 + eλ2/2 + eλ3/2 + eλ4/2
)

γµǫi(α)

+
1

2
√

2
Ωαβe

−λβ/2F
(β)
νλ γ

νλγµǫ
ijǫj(α)

, (2.15)

where the sum over β is implied. For the spin-1/2 fermions and the Cartan ansatz, we
find immediately that δχijk vanishes unless exactly two indices belong in the same pair (α).
Writing the first two indices as paired, we find

δχ(α)i(β) = − 1√
2
γµ∂µφ

(αβ)ǫijǫj(β)
− gΣαβγΩγδe

λδ/2ǫijǫ
j(β) + Ωαδe

−λδ/2F (δ)
µν γ

µνǫi(β), (2.16)

5Note that to make the actual correspondence, two of the gauge fields (say F (2) and F (4)) need to be
dualized to provide a consistent identification with the string dilaton (in this case φ(13)). Of course the
choice of fields to dualize is only determined up to string-string-string triality [19].
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provided (α) 6= (β). The tensor Σαβγ selects out a particular (γ) depending on (αβ), and is
defined by

Σαβγ =











|ǫαβγ |, for α, β 6= 1
δβγ , for α = 1
δαγ , for β = 1.

(2.17)

3 The a =
√

3 black hole in gauged supergravity

In the previous section we have described a truncation of gauged N = 8 supergravity to its
abelian U(1)4 sector. The resulting lagrangian and corresponding fermion supersymmetry
may be further simplified by focusing on single-charge black hole solutions. In particular, we
take φ(12) = φ(13) = φ(14) ≡ φ with corresponding F (1)

µν ≡ Fµν non-vanishing. The resulting
lagrangian then becomes

L =
1

2κ2

√−g
[

R− 3

2
∂µφ∂

µφ− 2e3φFµνF
µν + 12g2 cosh φ

]

+ . . . , (3.1)

where the dots refer to fields that will be set equal to zero in our solution. Note that a
scaling φ→ φ/

√
3 may be performed to normalize the scalar kinetic term canonically, which

also demonstrates the correspondence to the conventional a =
√

3 definition, where a is the
scalar-Maxwell parameter appearing in eaφFµνF

µν .
For the single-charge solution, it is straightforward to see that the supersymmetry trans-

formations, (2.15) and (2.16), essentially take on multiple identical copies, one for each dif-
ferent (α) value. It is thus sufficient to focus on a single supersymmetry parameter, e.g. ǫi(1) ,
instead of the more general ǫi(α). Note that this also demonstrates how such a solution can
be interpreted in an N = 2 or N = 4 context. The resulting supersymmetry variations are

1
2
δψi

µ = ∇µǫ
i − gAµǫijǫ

j +
g

4
√

2

(

e−3φ/2 + 3eφ/2
)

+
1

4
√

2
e3φ/2Fνλγ

νλγµǫ
ijǫj ,

δχi = − 1√
2
γµ∂µφǫ

ijǫj −
g

2

(

e−3φ/2 − eφ/2
)

ǫijǫ
j +

1

2
e3φ/2Fµνγ

µνǫi, (3.2)

where we have dropped unnecessary SO(8) index-pair symbols.
Using the well known a =

√
3 black hole solution as a guide, we now consider a spherically

symmetric electric black hole ansatz. Before describing the black hole in gauged supergravity,
we first observe that when g = 0 the above lagrangian (3.1) admits an ordinary a =

√
3

(electric) black hole solution [16]:

ds2 = −H−1/2dt2 +H1/2(dr2 + r2dΩ2), (3.3)

where H = 1 +Q/r, and with the scalar and gauge field given (in the above normalization)
by

e2(φ−φ∞) = H, A0 =
η

2
√

2
e−3φ∞/2H−1 (3.4)

(η = ±1 sets the actual sign of the charge). Furthermore, we recall that it was demonstrated
in [27, 14, 15] that extreme black hole solutions generally have simple extensions to the case
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of non-zero gauging, and in fact generally retain their supersymmetry properties. Following
[14, 15], we thus take the metric ansatz

ds2 = −e2Afdt2 + e−2A(
dr2

f
+ r2dΩ2), (3.5)

corresponding to an AdS generalization of (3.3). Note in particular that the vacuum AdS
solution is given by the choice f = 1 + 2g2r2 with A = 0.

With the metric (3.5) the gauge equation of motion becomes ∂r(e
−2A+3φr2∂rA0) = 0 and

is unaffected by both g and the function f . This suggests that the harmonic function ansatz,
(3.4), simply carries over to the g 6= 0 case, with the only additional constraint that φ∞ = 0.
Turning to the supersymmetry variation, δχi, we find, using (3.4), that

δχi = − 1

2
√

2

∂rH

H
ǫijγr

[

ǫj + f−1/2(ηγ0ǫjkǫ
k +
√

2grH1/2γrǫ
j)

]

, (3.6)

so that the natural half-supersymmetry projection is given by

P ij
η = 1

2
[δij + f−1/2(ηγ0ǫij +

√
2grH1/2γrδ

ij)] (3.7)

(acting on real spinors ǫi = ǫi) provided f = 1 + 2g2r2H . Using this expression for f , it
is now straightforward to check that all bosonic equations of motion arising from (3.1) are
satisfied. To summarize, the single-charge black hole solution in gauged supergravity is given
by

ds2 = −H−1/2fdt2 +H1/2(
dr2

f
+ r2dΩ2),

e2φ = H, A0 =
η

2
√

2
H−1, (3.8)

where

H = 1 +
Q

r
, f = 1 + 2g2r2H. (3.9)

We now turn to an examination of the supersymmetry properties of this solution. In
addition to δχi given above:

δχi =
Q√
2r2

H−1ǫijγrPηǫj , (3.10)

the gravitino variations in the background (3.8) are given by

1
2
δψi

0 = ∂0ǫ
i +

gη

2
√

2
ǫijǫ

j +
g√
2
H−1f 1/2(1 +H)γ0Pηǫi +

Q

4r2
H−3/2fγ0rPηǫ

i,

1
2
δψi

r = (∂r −
Q

8r2
H−1)ǫi +

g

2
√

2
H−1/2f−1/2(1 +H)γrǫi +

Q

4r2
H−1Pηǫ

i,

1
2
δψi

θ = ∂θǫ
i − η

2
γ0θrǫijǫj + (1− Q

4r
H−1)f 1/2γθrPηǫ

i,

1
2
δψi

φ = ∂φǫ
i − η

2
sin θγ0φrǫijǫj +

1

2
cos θγφθǫ

i + (1− Q

4r
H−1)f 1/2 sin θγφrPηǫ

i. (3.11)
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For Killing spinors, Pηǫi = 0, we may follow the construction of [27, 14, 15], to obtain

ǫ = e
−

gηt

2
√

2
ǫijH−1/8

[

√

f 1/2 + 1−
√

f 1/2 − 1γr

]

e−
1
2
γ

θre−
1
2
γ

φθ(1− ηγ0ǫ
ij)ǫ0, (3.12)

so that this solution in fact preserves exactly half of the supersymmetries. Note that substi-

tuting ǫ0 = 1√
2
(1−γr)ǫ̃0 and using the identity

√

f 1/2 + 1±
√

f 1/2 − 1 =
√

2(f 1/2 ± (f − 1)1/2)

indicates that (3.12) may be rewritten equivalently as

ǫ = e
−

gηt

2
√

2
ǫijH−1/8

[

√

f 1/2 + (f − 1)1/2 − η
√

f 1/2 − (f − 1)1/2γ0ǫ
ij

]

e
η
2
γ
0θr

ǫije−
1
2
γ

φθ(1− γr)ǫ̃0,

(3.13)
which is the form that appears in [27]. Although we have focused on N = 8 in the present
case, this Killing spinor construction is general, and also applies in the N = 2 and N = 4
truncations of the full N = 8 theory.

When written in the form (3.12), the above Killing spinors resemble a supersymmetry
projected version of the corresponding Killing spinors in pure Anti-de Sitter space6:

ǫ(AdS) =
[

√

f 1/2 + 1−
√

f 1/2 − 1γr

]

e−
1
2
γ

θre−
1
2
γ

φθe
−

gt
√

2
γ
0ǫ0. (3.14)

Additionally, the Killing spinors may be contrasted with those arising in the ungauged theory.
Taking g → 0, we find

ǫ(g = 0) = H−1/8e−
1
2
γ

θre−
1
2
γ

φθ(1− ηγ0ǫ
ij)ǫ0, (3.15)

which satisfies the well known Killing spinor condition P 0
η ǫ(g = 0) ≡ 1

2
(1+ ηγ0ǫ

ij)ǫ(g = 0) =
0. An added consequence of this simple structure in the g → 0 case is that the fermion
zero modes are easily constructed solely by changing the sign of the projection in (3.15).
Such zero modes are immediately orthogonal to the Killing spinors and furthermore satisfy
the supergauge condition γµδψi

µ = 0 [28, 29]. Unfortunately this situation is not as clear
when g 6= 0; this is mainly due to complications arising from the nature of the projection
(3.7) in the gauged supergravity. For this reason, although it is manifest that this black
hole preserves exactly half of the supersymmetries, its supermultiplet structure arising from
the fermion zero mode construction [29, 22] is less well understood. On the other hand, the
fact that it preserves half the supersymmetry presumably means that it belongs to the short
maximum spin 2 supermultiplet.

4 Multiple charge black holes

Returning to the complete simplified N = 8 lagrangian (2.11) we note that, in the absence of
the scalar potential, this admits well known supersymmetric black hole solutions with up to
four charges. Since the single charge solution has a straightforward generalization for g 6= 0,
as shown above, one may wonder whether this is also true for the four charge solution. A

6Some of the difference in the t-dependent terms may be eliminated by a suitable gauge transformation.
This issue also arises in the next section when considering the multiple charge black hole.
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careful examination of the equations of motion arising from (2.11) shows that this is in fact
the case. In contrast to the usual form of the action arising from T 2 compactification of the
closed string (which may be written in either S, T or U form [19]), in which a dilaton scalar is
singled out, the Lagrangian (2.11) treats all three scalars and four gauge fields symmetrically.
In practice, this indicates that we are interested in a four electric charge black hole solution.
We find

ds2 = −(H1H2H3H4)
−1/2fdt2 + (H1H2H3H4)

1/2(
dr2

f
+ r2dΩ2),

e2φ(12)

=
H1H2

H3H4
, e2φ(13)

=
H1H3

H2H4
, e2φ(14)

=
H1H4

H2H3
,

A
(α)
0 =

ηα

2
√

2
H−1

α , (4.1)

where

Hα = 1 +
Qα

r
, f = 1 + 2g2r2(H1H2H3H4). (4.2)

From the decomposition of the N = 8 spinor parameter ǫi into the four ǫi(α)
where

α = 1, . . . , 4, we see that the N = 8 supersymmetry variations, (2.15) and (2.16), break up
into four sets, involving separate ± signs in the combination of the field strengths. Focusing
on a single set of variations, we find

1
2
δψ

i(1)
µ = ∇µǫ

i(1) − g(A(1)
µ + A(2)

µ + A(3)
µ + A(4)

µ )ǫijǫ
j(1)

+
g

4
√

2

(

eλ1/2 + eλ2/2 + eλ3/2 + eλ4/2
)

γµǫi(1)

+
1

4
√

2

(

e−λ1/2F
(1)
νλ + e−λ2/2F

(2)
νλ + e−λ3/2F

(3)
νλ + e−λ4/2F

(4)
νλ

)

γνλγµǫ
ijǫj(1) ,

δ(2χ(3)i(1)) = −
√

2γµ∂µφ
(13)ǫijǫj(1) − g

(

(eλ1/2 + eλ3/2)− (eλ2/2 + eλ4/2)
)

ǫijǫ
j(1)

+
(

(e−λ1/2F (1)
µν + e−λ3/2F (3)

µν )− (e−λ2/2F (2)
µν + e−λ4/2F (4)

µν )
)

γµνǫi(1) ,

δ(χ(2)i(1) + χ(4)i(1)) = − 1√
2
γµ∂µ(φ(12) + φ(14))ǫijǫj(1) − g

(

eλ1/2 − eλ3/2
)

ǫijǫ
j(1)

+
(

e−λ1/2F (1)
µν − e−λ3/2F (3)

µν

)

γµνǫi(1) ,

δ(χ(2)i(1) − χ(4)i(1)) = − 1√
2
γµ∂µ(φ(12) − φ(14))ǫijǫj(1) − g

(

eλ2/2 − eλ4/2
)

ǫijǫ
j(1)

+
(

e−λ2/2F (2)
µν − e−λ4/2F (4)

µν

)

γµνǫi(1) . (4.3)

The choice of the particular linear combinations of the spin-1/2 supersymmetry variations
used above is motivated by the correspondence to the N = 4 theory arising from T 2 com-
pactification:

2χ(3) ←→ λ (dilatino)

χ(2) ± χ(4) ←→ χ̃1,2 (gauginos)

φ(13) ←→ η (dilaton)

φ(12), φ(14) ←→ ρ, σ (internal T 2 metric). (4.4)
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For the four-charge solution (4.1), we find that preserving supersymmetry (in the ǫi(1)
sector) demands a particular choice of signs for the charges, η1 = η2 = η3 = η4 (= η), in
which case we find

δ(2χ(3)i(1)) = −
√

2ǫijγr∂r log
H1H3

H2H4
Pηǫj(1),

δ(χ(2)i(1) + χ(4)i(1)) = −
√

2ǫijγr∂r log
H1

H3
Pηǫj(1) ,

δ(χ(2)i(1) − χ(4)i(1)) = −
√

2ǫijγr∂r log
H2

H4
Pηǫj(1) , (4.5)

where
P ij

η = 1
2
[δij + f−1/2(ηγ0ǫij +

√
2grH1/2γrδ

ij)], (4.6)

with H = H1H2H3H4. For the four charge solution the gravitino variations are

1
2
δψ

i(1)
0 = ∂0ǫ

i(1) − gη√
2
ǫijǫ

j(1) +
g√
2
f 1/2(2 + r∂r logH)γ0Pηǫi(1) −

1

4
H−1/2f∂r logHγ0rPηǫ

i(1) ,

1
2
δψ

i(1)
r = (∂r +

1

8
∂r logH)ǫi(1) +

g

2
√

2
H1/2f−1/2(2 + r∂r logH)γrǫi(1) −

1

4
∂r logHPηǫ

i(1) ,

1
2
δψ

i(1)
θ = ∂θǫ

i(1) − η

2
γ0θrǫijǫj(1) +

1

4
f 1/2(4 + r∂r logH)γθrPηǫ

i(1) , (4.7)

1
2
δψ

i(1)
φ = ∂φǫ

i(1) − η

2
sin θγ0φrǫijǫj(1) +

1

2
cos θγφθǫ

i(1) +
1

4
f 1/2(4 + r∂r logH) sin θγφrPηǫ

i(1) .

In certain cases we have used the identity r∂rHα = 1−Hα [which holds for Hα given in (4.2)]

when combining some of the factors in 1
2
δψ

i(1)
µ to form the half-supersymmetry projection

terms.
We see that the Killing spinor equations, 1

2
δψ

i(1)
µ = 0 with Pηǫi(1) = 0, are practically

identical with those that arise from the single charge case, (3.11). Thus the Killing spinors
are similar to those of (3.12) and have the form

ǫ(1) = e
gηt
√

2
ǫijH−1/8

[

√

f 1/2 + 1−
√

f 1/2 − 1γr

]

e
η
2
γ
0θr

ǫij

e−
1
2
γ

φθ(1− ηγ0ǫ
ij)ǫ

(1)
0 . (4.8)

Until now we have only considered the first out of four sets of N = 8 supersymmetries,
namely those parametrized by ǫi(1) . Naturally the form of the other three sets of variations
are constrained by N = 8 supersymmetry, and differ only by the relative choices of signs
between the four Cartan gauge fields. Preservation of (half) supersymmetry in each of the
four sectors demands the following sign choices:

1 : η1 = η2 = η3 = η4

2 : η1 = η2 = −η3 = −η4

3 : η1 = −η2 = η3 = −η4

4 : η1 = −η2 = −η3 = η4. (4.9)

It is not coincidental that these signs match those of Ω defined in (2.14). Because of the
necessary difference in signs above, this indicates that in general, when all four charges
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are active, supersymmetry cannot be partially preserved in all sectors simultaneously. For
one through four active charges, we find overall that 1/2, 1/4, 1/8 and 1/8 of the N = 8
supersymmetry can be preserved, in complete agreement with standard results [30, 31].
When all charges are equal, the solution may be obtained from a single scalar, single Maxwell
field truncation with scalar-Maxwell parameter a =

√
3, 1, 1/

√
3, 0 just as in the case of non-

gauged supergravity [16, 20, 21, 19]. Of course, one can also choose the charges so that fewer
or even no supersymmetries are preserved, even though the black holes are still extremal
[16].

In the case of ungauged supergravity, on the basis of these mass and charge assignments,
it was further suggested [16, 20, 21, 19] that we interpret these four values of a as 1-, 2-, 3-
and 4-particle bound states with zero binding energy. For example, the Reissner-Nordstrom
(a = 0) black hole combines four (a =

√
3) black holes: an electric Kaluza-Klein black

hole, a magnetic Kaluza-Klein black hole, an electric winding black hole and a magnetic
winding black hole. This zero-binding-energy bound-state conjecture can, in fact, be verified
in the classical black hole picture by finding explicit 4-centered black hole solutions which
coincide with the a =

√
3, 1, 1/

√
3, 0 solutions as we bring 1, 2, 3, 4 centers together and take

the remaining 3, 2, 1, 0 centers out to infinity [20]. Such a construction is possible because
of the appearance of four independent harmonic functions [32]. Moreover, this provides
a novel realization of the no-force condition in that the charge carried by each black hole
corresponds to a different U(1). Thus the gravitational attraction cannot be cancelled by
an electromagnetic repulsion but rather by a subtle repulsion due to scalar exchange. This
phenomenon was also observed in [33]. In the above, for purposes of illustration, the special
case has been chosen where all non-zero charges are equal to unity but it is easily generalized
to the case of different electric charges Q1, P2, Q3, P4 where the interpretation is that of a
(Q1 + P2 +Q3 + P4)-particle bound state with zero binding energy [34].

It is tempting to generalize this bound state picture to the black holes of the gauged
supergravity discussed in the present paper. One interesting difference from the non-gauged
supergravity case, however, is that we find no static multi-center solutions. While the present
solution is again based on four harmonic functions, (4.2), they are however not strictly
independent as they must all share the same center7. This is to be expected on physical
grounds: the presence of a negative cosmological constant ensures that only single center
solutions will be static.

5 The non-extremal solution

While we are mainly interested in the properties of supersymmetric black holes, we note
that there is a straightforward generalization of the above solutions to the non-extremal
case. In the ungauged case, the extremal solution can be “blackened” by the incorporation
of a universal function f = 1− k/r modifying the standard p-brane metric of the form [35]

ds2 = −e2Afdt2 + e2B(
dr2

f
+ r2dΩ2). (5.1)

7Examination of the equations of motion indicates that the obstruction to finding multi-center solutions
arises not from the gauge equation, but rather from the scalar and Einstein equations.
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Subsequently, it was shown in [15] that this prescription generalizes in the straightforward
manner to AdS black hole solutions as well. In particular, note that the four-charge black
hole metric of (4.1) has the identical form as the non-extremal metric (5.1) and hence appears
compatible with the “blackening” procedure.

As the manipulations of the equations of motion arising from (2.11) are not particularly
illuminating, we only present the result here. The essential feature of the non-extremal black
hole solution is a merging of the AdS function f = 1 + 2g2r2(H1H2H3H4) of (4.2) with the
non-extremal function f = 1− k/r to arrive at

f = 1− k

r
+ 2g2r2(H1H2H3H4). (5.2)

In addition, there is a charge rescaling so that the physical electric charges are no longer
related to the mass. Introducing µα (α = 1, . . . , 4) to parametrize the four charges, we may
write

Hα = 1 +
k sinh2 µα

r
, A

(α)
0 =

ηα

2
√

2
cothµαH

−1
α , (5.3)

so that

F
(α)
0r = − ηα

2
√

2
H−2

α

k coshµα sinh µα

r2
. (5.4)

Note that the extremal limit is approached by letting k → 0 and µα → ∞ with Qα ≡
k sinh2 µα fixed.

Spacetime properties of the above black holes depend on the number of active charges
(n = 0, . . . , 4). For n = 0 the solution reduces to the Schwarzschild-anti-de Sitter black
hole with a single horizon protecting the singularity at r = 0. On the other hand, the BPS
solutions (k = 0) for n = 1, 2, 3 all have singular horizons at r = 0 (with zero area) as
appropriate for extremal black holes. Somewhat surprisingly, though, the four-charge BPS
black hole has no horizon, and so strictly speaking is a naked singularity8. In all cases,
the existence of a regular horizon demands k > kmin where kmin is a function of the active
charges. This is in fact similar to the five dimensional case considered in [14, 15].

6 Magnetic black holes

We have seen that the N = 8 gauged supergravity naturally admits a four-electric-charge
black hole solution. In fact it turns out that this solution is easily generalized to give
magnetically charged black holes; although the full theory involves non-abelian SO(8) gauge
fields, the U(1)4 truncation of (2.11) gives rise to bosonic equations of motion that are
symmetric under the electric-magnetic duality

F (α) → e−λα ∗ F (α), λα → −λα. (6.1)

8For four identical charges, the solution (4.1) reduces to the Reissner-Nordstrom-anti-de Sitter black
hole whose properties were studied in [27]. That Einstein-Maxwell theory with a cosmological constant is
a consistent truncation of D = 11 supergravity, and hence that D = 11 supergravity has the Reissner-
Nordstrom-anti-de Sitter black hole as a solution, has been known for some time [36, 37].
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The resulting four magnetic charge solution has the form

ds2 = −(H1H2H3H4)
−1/2fdt2 + (H1H2H3H4)

1/2(
dr2

f
+ r2dΩ2),

e2φ(12)

=
H3H4

H1H2
, e2φ(13)

=
H2H4

H1H3
, e2φ(14)

=
H2H3

H1H4
,

Hα = 1 +
k sinh2 µα

r
, f = 1− k

r
+ 2g2r2(H1H2H3H4),

F
(α)
θφ =

ηα

2
√

2
k coshµα sinh µα sin θ. (6.2)

While the extremal limit is once again reached by taking k → 0 and µα → ∞ with
Pα ≡ k sinh2 µα fixed, the resulting extremal black hole is in fact not supersymmetric when-
ever g 6= 0! In the case of the magnetic Reissner-Nordstrom black hole, this phenomenon was
previously found in [27]. (Note, however, that it is possible to obtain magnetic black holes
that do preserve some supersymmetry if one allows for event horizons with non-spherical
topologies [38]) To see that (6.2) admits no Killing spinors, we note that while the scalar
potential (2.13) is symmetric under φ(αβ) → −φ(αβ), the scalar related terms in the super-
symmetry variations (2.15) and (2.16) are not. In particular, focusing on δχ, we find for
example

δ(2χ(3)i(1)) =
1√
2
ǫijγr

{

∂r log
H1H3

H2H4
[δjk − iηf−1/2γ0γ

5ǫjk]

+∂r((H1 +H3)− (H2 +H4))[
√

2grf−1/2γrδ
jk]

}

ǫk(1)
(6.3)

(where η ≡ η1 = η2 = η3 = η4), indicating explicitly that the g-dependent term on the last
line has a different structure than the others. This is in contrast with (4.5) for the electric
solution where all terms combine to give the projection operator (4.6). Additionally, note
that the matrices [iγ0γ

5ǫij ] and [γrδ
ij ] now commute, while previously, for the electric black

hole, they had anticommuted in the absence of γ5.
For both of the above reasons, we see that whenever g 6= 0 none of the supersymmetry

variations vanish, and hence the magnetic solution is non-BPS (regardless of the choice of
signs of the magnetic charges). In the g → 0 limit, on the other hand, the last line of (6.3)
drops out, and we are left with

δ(2χ3i(1)) =
√

2ǫijγr∂r log
H1H3

H2H4
P̃ηǫj(1), (6.4)

where P̃ ij
η = 1

2
[δij−iηγ0γ

5ǫij ] is the projection appropriate to a magnetically charged solution.
Thus, in the absence of gauging, there is a direct correspondence between the supersymmetry
properties of the electric and the magnetic black holes. However the gauged supergravity
theory (in the abelian truncation) is apparently no longer invariant under electric-magnetic
duality.
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7 Kaluza-Klein states as black holes

For ungauged N = 8 supergravity, the supersymmetry algebra admits 4 central charges
Z1, Z2, Z3, Z4. States fall into 5 categories according as they are annihilated by 4 ≥ q ≥ 0
supersymmetry generators. q also counts the number of Z’s that obey the bound M = Zmax.
Non-rotating black holes (in the sense of vanishing bosonic Kerr angular momentum L) be-
long to superspin L = 0 supermultiplets [21, 19]. Starting with a spin J = 0 member, the
rest of the black hole multiplet may then be filled out using the fermionic zero-modes [29, 22].
The spin will run from J = 0 up to J = (8 − q)/2. For gauged supergravity, the algebra is
different with no central charges but the same multiplet shortening phenomenon still occurs
[39, 12]. So we can be confident that the above black holes preserving 4, 2, 1, 0 supersymme-
tries will belong to supermultiplets with maximum spins 2, 3, 7/2, 4 9. Unfortunately, as far
as we know, the analogue of the M = Zmax condition has never been been spelled out in the
literature. It is presumably some relation between the AdS quantum numbers (E0, s) and
the SO(8) Casimirs.

It seems entirely consistent, therefore, to identify a subset of the maximum spin 2 black
hole supermultiplets with the S7 Kaluza-Klein spectrum, in analogy with the black hole
Kaluza-Klein correspondence of ungauged supergravity [16, 17]. The subset in question
will correspond to electric black holes whose mass is quantized in units of the inverse S7

radius. However, this raises the puzzle of how the black holes carrying only U(1) charges
can be identified with the Kaluza-Klein particles carrying non-trivial SO(8) representations.
Although we have not demonstrated this explicitly, it seems reasonable to suppose that it is
the fermion zero modes that provide the non-trivial SO(8) quantum numbers just as they
provide the non-trivial spin. The fact that these nonabelian charges arise from fermionic hair

also nicely circumvents the usual no-hair theorems of classical relativity. In this connection,
it would be interesting to repeat the gyromagnetic ratio calculations of [22] and verify that
the fermionic hair again yields a gyromagnetic ratio equal to 1, as demanded by Kaluza-Klein
reasoning.

It is furthermore tempting, in analogy with the ungauged case, to identify the 2, 3 and
4 charge solutions as 2, 3 and 4-particle bound states of the singly charged solution [19, 20].
However, although the quantum number assignments are consistent with this, we do not
have multi-center solutions in the AdS case. Such a bound state interpretation would, of
course, lead to states of arbitrarily high spin.

Another difference between the S7 and the T 7 compactifications is that the g → 0 limit
of the gauged supergravity does not directly coincide with the massless sector of the T 7

compactification. They differ by various dualizations. Thus it was possible, for example, to
find 4-charge solutions with all charges electric as opposed to the 2-electric and 2-magnetic
charges of the ungauged theory. Moreover, whereas 2 charges are Kaluza-Klein modes and
2 are winding modes in the Type IIA string theory context, there is no T or U-duality
associated with the S7 compactification.

One might also generalize the purely electric and purely magnetic solutions of this paper
to dyonic black hole solutions of gauged N = 8 supergravity. Neither magnetic nor dyonic
black holes have any Kaluza-Klein interpretation and do not appear in the spectrum of the

9The maximum spin 5/2 solutions are (mysteriously?) absent just as for ungauged supergravity.
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S7 compactification of D = 11 supergravity. It would be interesting to provide their M-
theory interpretation and to determine their role in the AdS/CFT correspondence. Might
they be related to a Goddard-Nuyts-Olive [40] non-abelian duality, for example? Since,
in the g → 0 limit, we recover the black holes which were previously identified with the
T 7 spectrum, moreover, it seems possible that M-theory can interpolate between the two
topologies. Perhaps the D = 11 supermembrane, which interpolates between AdS7×S7 and
flat spacetime [41, 42, 43], plays an important part in this.
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