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ABSTRACT

We show that six-dimensional supergravity coupled to tensor and Yang-Mills multiplets

admits not one but two different theories as global limits, one of which was previously

thought not to arise as a global limit and the other of which is new. The new theory has

the virtue that it admits a global anti-self-dual string solution obtained as the limit of the

curved-space gauge dyonic string, and can, in particular, describe tensionless strings. We

speculate that this global model can also represent the worldvolume theory of coincident

branes. We also discuss the Bogomol’nyi bounds of the gauge dyonic string and show

that, contrary to expectations, zero eigenvalues of the Bogomol’nyi matrix do not lead to

enhanced supersymmetry and that negative tension does not necessarily imply a naked

singularity.
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1 Introduction

This paper is devoted to certain properties of the six-dimensional gauge dyonic string [1]

and in particular to its global limit in which it becomes anti-self dual. An important special

case corresponds to the tensionless string, which has been the subject of much interest lately

[2,3,4,5,6,7,8,9,10,11,12,13,1], especially in the context of phase transitions [14,11,1,15].1

This global limit is particularly interesting because one might then expect to be able to

find an anti-self-dual string solution by directly solving the global supersymmetric theory

in six-dimensions [11] describing an anti-self-dual tensor multiplet coupled to Yang-Mills.

However, an apparently paradoxical claim was made in [18] that no such global limit exists.

Here we resolve the paradox, and show that not only does the limit exist but that there

are in fact two different limits, each giving different globally supersymmetric theories. One

of these is the theory constructed in [18], which we shall refer to as the “BSS theory”.

The other flat-space theory, which for reasons described below we shall refer to as the

“interacting theory”, appears to be new, and admits an anti-self-dual string solution which

can indeed be obtained as the flat-space limit of the dyonic string of the supergravity theory.

A surprising feature of the BSS theory constructed in [18] is that there is an asymmetry in

the interactions between the Yang-Mills multiplet and the anti-self-dual tensor multiplet. In

particular, the Yang-Mills multiplet satisfies free equations of motion, whereas the equations

of motion for the tensor multiplet do involve couplings to the Yang-Mills fields. By contrast,

the interactions in the “interacting” theory obtained in the present paper here are more

symmetrical, in that they occur in all the equations of motion. Interestingly, however, the

additional interaction terms of the new theory cancel in the special case of its anti-self-dual

string solution, and so the same configuration is also a solution of the BSS theory. Curiously,

however, it is not tensionless in that theory, and indeed the BSS theory is inappropriate for

describing any tensionless string solution.

Another intriguing aspect of the gauge dyonic string concerns the counter-intuitive re-

lations between its Bogomol’nyi bound, unbroken supersymmetry and its singularity struc-

ture [1]. We confirm:

(1) The dyonic string continues to preserve just half of the supersymmetry even in the

tensionless limit, notwithstanding the standard Bogomol’nyi argument that a BPS state

1But note that, contrary to some claims in the literature, the tensionless string corresponds to the

(quasi)-anti-self-dual limit of the dyonic string of [16], where the string couples dominantly to the 3-form

field strength of the tensor matter multiplet, and not the self-dual string of [17] where the string couples

only to the 3-form field strength of the gravity multiplet.
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with vanishing central charge leads to completely unbroken supersymmetry.

(2) A solution with negative tension can be completely non-singular, contrary to the

folk-wisdom that negative mass necessarily implies naked singularities.

Finally, six dimensional global models are also important as fivebrane worldvolume

theories [19, 20, 21, 18] and as the worlvolume theories of coincident higher-dimensional

branes with six dimensions in common [25, 24]. We speculate that the interacting anti-

self-dual-tensor Yang-Mills system is indeed such a worldvolume theory. Hence the global

gauge anti-self-dual string, and in particular the tensionless string, may also be regarded as

a string on the worldvolume. In the case of the tensionless string, in the limit as the size

ρ of the Yang-Mills instanton shrinks to zero, one recovers the global limit of the neutral

tensionless string [16, 1] which is also a solution of the (2, 0) theory that resides on the

worldvolume of the M -theory fivebrane. It is curious, therefore, that we find in this limit

that the tension really is zero, as opposed to the infinite tension of the string solution of

the free (2, 0) theory [22,23].

2 N = 1 supergravity and the gauge dyonic string

The low-energy D = 6 N = (1, 0) supergravity is generated by a pair of symplectic

Majorana-Weyl spinors ǫ transforming in the 2 of Sp(2). This theory has the unusual

feature in that the antisymmetric tensor breaks up into self-dual and anti-self-dual com-

ponents. The basic supergravity theory consists of the graviton multiplet (gµν , ψµ, B
+
µν)

coupled to nT tensor multiplets (B−
µν , χ, φ). When nT = 1, corresponding to the heterotic

string compactified on K3, these multiplets may be combined, yielding a single ordinary

antisymmetric tensor Bµν .

We are interested, however, in the general case with nT tensor multiplets coupled to an

arbitrary number of vector multiplets (Aµ, λ). Due to the presence of chiral antisymmetric

tensor fields, there is no manifestly covariant Lagrangian formulation of this theory. Never-

theless, the equations of motion may be constructed, and were studied in [26,27]. With nT

tensor multiplets, there are nT scalars parametrizing the coset SO(1, nT )/SO(nT ). This

may be described in terms of a (nT +1)× (nT +1) vielbein transforming as vectors of both

SO(1, nT ) and SO(nT ). Following the conventions of [27], the vielbein may be decomposed

as

V =

[

V+

V−

]

=

[

v0 vM

xm0 xmM

]

, (2.1)

satisfying the condition V −1 = ηV T η where η is the SO(1, nT ) metric, η = diag(1,−InT
).
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Below, we use indices r, s, . . . = {0,M} to denote SO(1, nT ) vector indices. The composite

SO(nT ) connection is then given by

S[mn]
µ = (∂µV−ηV

T
− )[mn]

= −xm0∂µx
n
0 + xmM∂µx

n
M , (2.2)

so that the fully covariant derivative acting on SO(nT ) vectors is given by Dµ = ∇µ + Sµ.

To describe the combined supergravity plus tensor system, we introduce (nT + 1) anti-

symmetric tensors Bµν transforming as a vector of SO(1, nT ). In the presence of Yang-Mills

fields, the three-form field strengths pick up a Chern-Simons coupling

H = dB + c ω3 , (2.3)

where ω3 = AdA + 2
3A

3, so that dH = c trF 2. The constants c form a (nT + 1) × nV

matrix where nV is the number of vector multiplets2. Note that this coupling of the vector

and tensor multiplets is dictated by supersymmetry and encompasses both tree-level and

one-loop Yang-Mills corrections. Furthermore, the supersymmetry guarantees that there

are no higher-loop corrections. The vielbein is then used to transform the field strengths

H into their chiral components H = vrHr and Km = xmrHr so that the (anti-)self-duality

conditions for the tensors become H = ∗H and Km = − ∗Km.

With the above conventions, the bosonic equations of motion are

Gµν ≡ Rµν − 1
2gµνR = Tµν

DµP
mµ = −

√
2
3 HµνρK

mµνρ − 1√
2
xmrc

r tr (FµνF
µν)

dH = −√
2PmKm + vrc

r trF 2

(dδmn + Smn)Kn = −√
2PmH + xmrc

r trF 2

vrc
rDµFµν = √

2Pmµxmrc
rFµν +Hνρσvrc

rF ρσ +Km
νρσx

m
rc

rF ρσ , (2.4)

where

Pm
µ = 1√

2
(∂µV+ηV

T
− )m

= 1√
2
(xm0∂µv0 − xmM∂µvM ) , (2.5)

and S and P are the 1-forms, S = Sµdx
µ, P = Pµdx

µ. The symmetric stress tensor is given

by

Tµν = HµρσHν
ρσ+Km

µρσK
mρσ
ν +2[Pm

µ P
m
ν − 1

2gµνP
m
ρ P

mρ]+4vrc
r tr [FµλFν

λ− 1
4gµνFλσF

λσ] .

(2.6)
2For non-abelian gauge fields, instead of having nV independent quantities, there is a single set of c’s for

each factor of the gauge group.
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For the antisymmetric tensors, Eqn. (2.4) along with the (anti-)self-duality constraint may

be viewed as the equivalent of the combined Bianchi identities and equations of motion.

Finally, the fermionic equations of motion are

γµνρ∇νψρ = −Hµνργνψρ +
i
2K

mµνργνρχ
m − i√

2
Pm
ν γ

νγµχm − 1√
2
γστγµvrc

r trFστλ

γµ∇µχ
m = i

2K
mµνργµνψρ +

1
12Hµνργ

µνρχm + i√
2
Pm
ν γ

µγνψµ − i√
2
γµνxmrc

r trFµνλ

vrc
rγµDµλ = 1√

2
Pm
µ γ

µxmrc
rλ− 1

2
√
2
vrc

rFλτγ
µγλτψµ − i

2
√
2
xmrc

rFµνγ
µνχm

− 1
12K

m
µνρx

m
rc

rγµνρλ . (2.7)

In order to examine the Bogomol’nyi bound, we need the supersymmetry variations for

the fermionic fields:

δψµ = [∇µ + 1
4Hµνργ

νρ]ǫ

δχm = i[ 1√
2
γµPm

µ + 1
12K

m
µνργ

µνρ]ǫ

δλ = − 1
2
√
2
Fµνγ

µνǫ (2.8)

(given to lowest order). For completeness, the bosonic fields transform according to

δeµ
a = −iǫγaψµ

δBr
µν = ηrsǫ[ivsγ[µψν] − 1

2x
m
sγµνχ

m] + 2cr trA[µδAν]

δvr = xmrǫχ
m

δAµ = − i√
2
ǫγµλ . (2.9)

Careful examination of Eqns. (2.8) and (2.9) reveals the intricate interplay between terms

of various chiralities necessary to maintain D = 6 N = (1, 0) supersymmetry. In particular,

ǫ is a chiral spinor satisfying P+ǫ = 0 where P± = 1
2 (1 ± γ7) is the chirality projection in

six dimensions. As a consequence, H and K satisfy the identities

(Hµνλγ
µνλ)ǫ = 0

(Km
µνλγ

µνλγα)ǫ = 0 , (2.10)

which prove to be useful in manipulating Nester’s form below.

2.1 The gauge dyonic string solution

It was shown in [1] that the equations of motion (2.4) admit a gauge dyonic string solution

carrying both self-dual and anti-self-dual tensor charges. Under an appropriate SO(nT )
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rotation, the latter charge can be put in a single tensor component, so that we may focus

on the theory with nT = 1. In this case, corresponding to a compactified heterotic string,

the self-dual and anti-self-dual three-forms in the graviton and tensor multiplets respectively

may be combined together according to

H = 1
2e

−φ(∗H +H) , K = 1
2e

−φ(∗H −H) , (2.11)

where we have chosen a vielbein

V =

[

cosh φ sinhφ

sinhφ coshφ

]

. (2.12)

For a simple gauge group, we pick the coupling vector c to be

c =
α′

16

[

v + ṽ

−v + ṽ

]

, (2.13)

so that theH Bianchi identity and equation of motion, given in Eqn. (2.4), may be rewritten

as

dH = 1
8α

′ v trF ∧ F d(e−2φ ∗ H) = 1
8α

′ ṽ trF ∧ F . (2.14)

The gauge dyonic string is built around a single self-dual SU(2) Yang-Mills instanton

in transverse space, and is given in terms of three parameters, which are the electric and

magnetic charges Q and P carried by the string, and ρ which is the scale parameter of the

instanton. Splitting the six-dimensional space into longitudinal µ, ν = 0, 1 and transverse

m,n, . . . = 2, 3, 4, 5 components, the gauge dyonic string solution is given by [1]

ds2 = e2Aηµνdx
µdxν + e−2Adymdym

Hmnp =
1
2ǫmnpq∂qH1 Hµνm = 1

2ǫµν∂mH
−1
2

e−φ =
√

H2/H1 e−2A =
√

H1H2 , (2.15)

where ǫ01 = 1, ǫ2345 = 1. The functions H1 and H2 are

H1 = eφ0 +
P (2ρ2 + r2)

(ρ2 + r2)2
, H2 = e−φ0 +

Q(2ρ2 + r2)

(ρ2 + r2)2
, (2.16)

and are determined by the effect of the instanton source

F a =
2ρ2

(ρ2 + r2)2
ηamndy

m ∧ dyn , (2.17)

on the three-form tensor according to (2.14). (Note that tr (F 2) = 2F a
mn F

amn.) In partic-

ular, the charges are thus given by Q = 2α′ṽ and P = 2α′v. The mass per unit length of

the dyonic string is given by

2πα′2m = Pe−φ0 +Qeφ0 . (2.18)
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This expression for the mass, and its relation to the Bogomol’nyi bound, will be examined

in detail in the following section.

In the ρ→ 0 limit, we recover the neutral dyonic string obtained in [16].

3 The Bogomol’nyi bound in six dimensions

It is well known that the six-dimensional N = (1, 0) supersymmetry algebra admits a single

real string-like central charge, putting a lower bound on the tension of the six-dimensional

string. Thus the tensionless string only arises in the limit of vanishing central charge. Before

focusing on the tensionless string, we examine the Bogomol’nyi mass bound in general and

determine the conditions for which it is satisfied.

For a string-like field configuration in six dimensions, we may construct the supercharge

per unit length of the string from the behavior of the gravitino at infinity [28]

Qǫ =

∫

∂M
ǫγµνλψλdΣ

µν , (3.1)

where M is the four-dimensional space transverse to the string. We note that in writing

the supercharge in terms of the gravitino, this expression holds only up to the equations of

motion. It is for this reason that, unlike in the global case, saturation of the Bogomol’nyi

bound alone is insufficient to guarantee that the bosonic background solves the supergravity

equations of motion.

Using Nester’s procedure [29, 28, 30], we may take the anticommutator of two super-

charges to get

{Qǫ, Qǫ′} = δǫQǫ′ =

∫

∂M
NµνdΣµν , (3.2)

where

Nµν = ǫ′γµνλδǫψλ = ǫ′γµνλ[∇λ +
1
4Hλρσγ

ρσ]ǫ (3.3)

is a generalized Nester’s form. Appealing to the supersymmetry algebra, we then see that

the mass and central charge per unit length of the six-dimensional string is encoded in the

surface integral of Nµν . For a string in the 0-1 direction, the ADM mass per unit length

M of the string is given by the asymptotic behavior of the metric

ds2 = (1− GM

2r2
+ · · ·)[−dt2 + dz2] + (1 +

GM

2r2
+ · · ·)dyidyi , (3.4)

where r2 = yiyi is the transverse radial distance from the string. Using this definition of

the ADM mass, the surface integral of Nester’s form becomes
∫

∂M
NµνdΣµν = 2π2 ǫ′†[

GM

2
− Zγ0γ1]ǫ , (3.5)

6



where the real string-like central charge Z is given by the self dual H charge

∫

∂M
H = 2π2Z . (3.6)

This reinforces the close relation between the central charges of a supergravity theory and

the bosonic charges of the fields in the graviton multiplet.

From the point of view of the supersymmetry algebra, the left hand side of Eqn. (3.2) is

non-negative for identical (commuting) spinors ǫ′ = ǫ. Since γ0γ1 has eigenvalues ±1, this

gives rise to the Bogomol’nyi bound

GM ≥ 2|Z| , (3.7)

with saturation of the bound corresponding to (partially) unbroken supersymmetry. How-

ever an issue has arisen over the necessary conditions for this bound to apply. In particular,

it has been noted that the gauge dyonic string [1] may have a tensionless limit without

naked singularities when the instanton size in the gauge solution is sufficiently large. Cor-

responding to Eqn. (3.7), this tensionless string has vanishing central charge and is hence

quasi-anti-self-dual. Nevertheless, examination of the Killing spinor equations indicates

that it still breaks exactly half of the supersymmetries, in contrast to the expectation that

M = 0 yields completely unbroken supersymmetry. In terms of singular four-dimensional

solutions, this breakdown of the Bogomol’nyi argument has also been discussed in [31,32].

In order to address the issue of where the Bogomol’nyi expression may break down,

we take a closer look at the Witten-Nester proof of the positive energy theorem [33, 29].

Following [28], the charges at infinity may be related to the divergence of Nester’s form:

∫

∂M
NµνdΣµν =

∫

M
∇µN

µνdΣν . (3.8)

Proof of the Bogomol’nyi bound is then a matter of reexpressing this divergence in a man-

ifestly non-negative form. Straightforward but tedious manipulations allow the divergence

of Nester’s form to be rewritten in terms of the supersymmetry variations of the fermionic

fields given in Eqn. (2.8). Starting with

∇µN
µν = δǫ′ψµγ

µνρδǫψρ − 1
2ǫ

′Gν
σγ

σǫ

+1
4ǫ

′γµνργβγ(∇µHρβγ)ǫ+
1
16ǫ

′γβγγµνργλσHµβγHρλσǫ , (3.9)

it is apparent that the H equations of motion must enter the calculation. Working through

these equations then gives the final result

∇µN
µν = δǫ′ψµγ

µνρδǫψρ + δǫ′χγ
νδǫχ+ vrc

r tr δǫ′λγ
νδǫλ− 1

2ǫ
′[Gνσ − T νσ]γσǫ

7



− 1
12ǫ

′γµργνγβγ [∂[µHρβγ] +
√
2Pm

[µK
m
ρβγ] − 3

2vrc
r trF[µρFβγ]]ǫ

+1
2ǫ

′[∇αH
ανσ −

√
2Pm

α K
mανσ − 1

4ǫ
νσαβγδvrc

rFαβFγδ ]γσǫ . (3.10)

We wish to point out that this is an exact expression, where only kinematics has been used

in rewriting the divergence. The last two lines are related to the self-dual H equation of

motion (in Bianchi identity and divergence form respectively), and hence vanish on-shell.

In addition to the expected terms, this divergence has the unusual feature in that the full

stress tensor Tµν arising from the supersymmetry manipulations is modified by the inclusion

of an antisymmetric contribution

Tµν = Tµν + T ′
µν

= Tµν − 2vrc
r tr [FµαFν

α − 1
4gµνFαβF

αβ − 1
8ǫµναβγδF

αβF γδ] , (3.11)

where Tµν , given in (2.6), is the symmetric stress tensor appearing in Einstein’s equation.

In particular, this antisymmetric component, which arises as a consequence of the N =

(1, 0) supersymmetry algebra in six dimensions [34], is related to the fact that the classical

equations of motion, Eqns. (2.4), are actually inconsistent in such a manner as to cancel the

effects of the gauge anomalies when loop corrections are taken into account [35, 36]. As a

result, the equations violate Bose symmetry in a way that would be impossible if they were

derivable from a Lagrangian. There exists a Lagrangian, at least in the case nT = 1, which

automatically leads to Bose symmetric equations but which lacks gauge invariance [14]. As

discussed in [35,36], these two formulations are related to the difference between consistent

and covariant anomalies. It is interesting to note, however, that the gauge dyonic string

solves both sets of equations, since the Bose non-symmetric terms vanish in this background.

We are now in a position to examine the conditions under which the Bogomol’nyi bound,

Eqn. (3.7), may hold. Based on the rewriting of the Bogomol’nyi equation in terms of a

volume integral, it is apparent that the mass bound will hold provided the divergence

∇µN
µν is positive semi-definite over the entire transverse space M. This gives rise to the

following three conditions: i) the supergravity equations of motion must be satisfied3, ii)

Witten’s condition must hold globally so the gravitino variation is non-negative, and iii)

the Yang-Mills contributions from both the gaugino variation and the correction T ′
µν to

the stress tensor must be non-negative. While the first condition is straightforward, the

other two require further explanation. Witten’s condition [33] is essentially a spatial Dirac

3Only Einstein’s equation and the H equation of motion are relevant for the Bogomol’nyi calculation.

Note that when we refer to Einstein’s equation, we do not include the correction T
′
µν which is accounted for

separately.
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equation, γiδǫψi = 0, where i = 1, . . . , 5. While this condition may be satisfied for a well

behaved background, it is also important to ensure that such spinors are normalizable on

all of M so that the divergence integral is well defined. In particular, this normalizability

condition apparently breaks down in the presence of naked singularities, as we subsequently

verify for the gauge dyonic string solution. This leads us to believe that Witten’s condition

is essentially equivalent to demanding that the background contains no naked singularities.

We now turn to the conditions that need to be imposed on the Yang-Mills fields. Look-

ing at the gaugino variation in Eqn. (3.10), it is natural to impose the condition that all

components of the nV dimensional vector vrc
r are to be non-negative. Since the nT scalars

encoded in the vielbein vr act as gauge coupling constants, this condition simply states

that the Yang-Mills fields must have the correct sign kinetic terms. Starting from a weakly

coupled point in moduli space, it is apparent that the only way to generate a wrong sign

term is to pass through infinite coupling. Since this corresponds to a phase transition [14],

driven by tensionless strings [13,11,1], it indicates that the Bogomol’nyi results need to be

applied with care when discussing the strong coupling dynamics of six dimensional strings.

Since the Yang-Mills fields lead to a modification of the stress tensor, it is also necessary

to require that T ′
µν enters non-negatively into the divergence of Nester’s form. For a string-

like geometry in the 0-1 direction, this condition is equivalent to demanding that −T ′
00 ≥

|T ′
01| ≥ 0, which is automatically satisfied for gauge fields living only in transverse space

(again provided vrc
r is non-negative). To see this, note that for µ, ν = 0, 1 we may write

T ′
µν = 1

2vrc
r tr [gµνFmnF

mn + ǫµνFmn ∗4 Fmn] , (3.12)

and use the instanton argument, tr (F ± ∗4F )2 ≥ 0, to show that the T ′ conditions are

satisfied. Therefore as long as the Yang-Mills fields vanish in the longitudinal directions of

the string-like solution, no further condition is necessary. It is perhaps not coincidental that

this vanishing of the gauge fields on the string also renders unimportant the inconsistency

of the classical equations of motion.

3.1 Supersymmetry of the gauge dyonic string

It is instructive to see how the Bogomol’nyi equation breaks down in the various limits of

the gauge dyonic string. For this string background, given by (2.15), the supersymmetry

variations of the fermions, (2.8), become

δψµ = −γn∂nAγµP+
2 ǫ

δψm = γn∂nAγmP+
2 ǫ+ eA/2∂m(e−A/2ǫ)

9



δχ = −iγn∂nφP+
2 ǫ

δλ = − 1

2
√
2
Fmnγ

mnP+
2 ǫ , (3.13)

where P+
2 = 1

2(1 + γ01) is a projection onto the chiral two-dimensional world-sheet of the

string-like solution (overlined symbols indicate tangent-space indices). This indicates, as

noted in [1], that the Killing spinor equations are solved for spinors ǫ satisfying

P+
2 ǫ = 0 , ǫ = eA/2ǫ0 . (3.14)

On the other hand, the fermion zero modes are given by spinors ǫ surviving the projection,

namely P+
2 ǫ = ǫ. Note that for the zero modes there is no further condition on ǫ.

Based on the above supersymmetry variations, we may explicitly calculate the divergence

of Nester’s expression. Since this expression obviously vanishes for Killing spinors, we only

concern ourselves with the fermion zero modes. For simplicity in working with the derivative

term entering δψm, we assume a simple scaling so that ǫ is given by

ǫ = eαAǫ0 , P+
2 ǫ = ǫ , (3.15)

where ǫ0 is a constant spinor. Working out the divergence then gives
∫

M
∇µN

µνdΣν = 2π2 ǫ†0ǫ0

∫

e2(α−
1

2
)A[4(α − 1

2)∂mA∂mA+ 2∂m∂mA]r
3dr

= 2π2 ǫ†0ǫ0
1

α− 1
2

∫

r3dr∂m∂me
2(α− 1

2
)A , (3.16)

where the last line holds for α 6= 1
2 and is in fact a total derivative, which is not surprising

considering the origin of this expression. Substituting in the explicit function A(r), we then

find

2π2 ǫ†0ǫ0[
GM

2
− Z] =

∫

M
∇µN

µνdΣν = 2π2 ǫ†0ǫ0[Pe
−φ0 +Qeφ0 ] , (3.17)

which is independent of α as expected. Combining this with [GM
2 + Z] = 0 appropriate to

Killing spinors then gives an explicit derivation of the Bogomol’nyi bound,

GM = −2Z = Pe−φ0 +Qeφ0 , (3.18)

for the gauge dyonic string.

So far we have not addressed the issue of what conditions are necessary to ensure the

validity of the Bogomol’nyi bound. While the equations of motion are satisfied by construc-

tion, both Witten’s condition and the positivity of the gauge function are not guaranteed.

Examining first Witten’s condition, we find

γiδǫψi = γn∂nA[α− 1
2 −P+

2 ]ǫ . (3.19)
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Therefore, for Killing spinors, we choose α = 1
2 as noted previously in order to satisfy

Witten’s condition. On the other hand, we must choose α = 3
2 for the case of the fermion

zero modes. Provided there are no naked singularities, this value of α gives rise to a well-

behaved integral, so that there is no problem satisfying Witten’s condition. However this

is no longer the case whenever there are naked singularities. To see this, we note that such

naked singularities develop whenever 2Pe−φ0 ≤ −ρ2 or 2Qeφ0 ≤ −ρ2 so that e−2A vanishes

for some r2 ≥ 0 [1]. Convergence of the volume integral near the singularity then requires

α < −3
2 (or α < −1

2 for the case Pe−φ0 = Qeφ0) which clearly indicates the incompatibility

of Witten’s condition with normalizable fermion zero modes whenever naked singularities

are present.

Note that for any value of the mass given by Eqn. (3.18), it is always possible to avoid

naked singularities in the gauge dyonic string by choosing a sufficiently large instanton

size ρ. Therefore evasion of the Bogomol’nyi bound, Eqn. (3.7), is possible even without

singularities. Whenever M < 0 we may see that the breakdown in Bogomol’nyi occurs

because the Yang-Mills couplings have the wrong sign (this is already obvious because M

itself is related to the gauge coupling at infinity). A quick check shows that this breakdown

is also present for the tensionless (M = 0) quasi-anti-self-dual string where there is an exact

cancellation between the contributions from the graviton and tensor multiplet fields and

the wrong sign Yang-Mills fields. As shown below, this cancellation continues to hold when

examining the energy integral for the tensionless string in the flat-space limit.

4 The flat-space limit

If the charges P and Q are such that P = Qe2φ0 , the anti-self-dual 3-form field strength and

the dilaton decouple, i.e. Km
µνρ = 0, φ = φ0. In other words, the matter multiplet decouples

in this case, and we recover the self-dual string of [17]. On the other hand if P = −Qe2φ0 ,

the dyonic string becomes massless, as can be seen from (2.18). At first sight, one might

think that in this case the self-dual 3-form Hµνρ and the metric of the gravity multiplet

would be decoupled. However, this is not in fact what happens. This can easily be seen

from the fact that the metric (2.15) does not become flat: indeed the 1/r2 terms cancel

asymptotically, as they must since the solution is now massless, but the metric still has

non-vanishing asymptotic deviations from Minkowski spacetime of order 1/r4. Similarly,

the self-dual 3-form Hµνρ falls off as 1/r4. On the other hand, the fields Km
µνρ and φ− φ0

fall off as 1/r2 at large r. For this reason, the dyonic string in this limit should more
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appropriately be called quasi-anti-self-dual [1], rather than anti-self-dual. However, the

solution becomes anti-self-dual asymptotically, since the self-dual part of the 3-form falls

off faster by a factor of 1/r2.

The above discussion suggests that it should be possible to take the flat-space limit of

the N = (1, 0) supergravity theory, and the quasi-anti-self-dual solution, where Newton’s

constant is set to zero. In fact, as we shall show below, there are actually two distinct limits

that can be taken, yielding two inequivalent flat-space theories. To show this, we shall first

construct the flat-space limit of the more general N = 1 supergravity coupled to an arbitrary

number of anti-self-dual fields Km
µνρ. To do this, it is convenient to re-introduce Newton’s

constant κ in the supergravity theory, by rescaling the fields of the tensor multiplet in the

following manner:

V =

[

v0 vM

xm0 xmM

]

−→
[

v0 κvM

κxm0 xmM

]

, (4.1)

BM
µν −→ κBM

µν ,

χm −→ κχm ,

while the fields of the Yang-Mills multiplet have not been rescaled, the coupling constants

cr are naturally dimensionless in the global limit, and hence must be rescaled according to

cr −→ κ cr . (4.2)

Note that Pm
µ → κPm

µ under the rescalings. As a result of this rescaling, the equations of

motion for the supergravity fields become

Gµν −HµρσHν
ρσ = κ2[Km

µρσK
mρσ
ν + 2(Pm

µ P
m
ν − 1

2gµνP
m
ρ P

mρ)

+κ[4(v0c
0 + κvMc

M ) tr (FµλFν
λ − 1

4gµνFλσF
λσ)]

dH = −κ2
√
2PmKm + κ(v0c

0 + κvMc
M ) trF 2

γµνρ∇νψρ +Hµνργνψρ = κ2[ i2K
mµνργνρχ

m − i√
2
Pm
ν γ

µγνχm]

−κ[ 1√
2
γστγµ(v0c

0 + κvMc
M ) trFστλ] , (4.3)

where now H = v0H0 + κ2vMHM , indicating that in the limit κ → 0 we may consistently

set the gravity fields to their flat-space backgrounds,

gµν → ηµν , B0
µν → 0, ψµ → 0 . (4.4)

Note that the terms proportional to c0 (the coupling of Yang-Mills to the self-dual H) enter

at O(κ). This suggests the possibility that two different limits can arise; one where c0/κ is
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held fixed, and the other where c0 is non-vanishing and held fixed, as κ goes to zero. This

may be made more transparent by examining the Yang-Mills equation of motion

Dµ[(v0c
0 + κvMc

M )Fµν ] = Hνρσ(v0c
0 + κvMc

M )F ρσ + κKm
νρσ(κx

m
0c

0 + xmMc
M )F ρσ ,

(4.5)

from which we see that the O(κ0) terms survive only in the second limit, whilst the equation

is of order κ in the first limit. Before proceeding with the flat-space limits, we note that the

constrained vielbein matrix V simplifies greatly in the κ → 0 limit, and the nT degrees of

freedom can be parametrized by scalar fields φm defined by δmMvM = xm0 = φm. The other

components of V simply become v0 = 1 and xmM = δmM . The two flat-space limits arise as

follows:

Flat-space limit with c0/κ fixed:

In this limit, it is natural to define c̃0 = c0/κ before taking the flat-space limit. We

see that there are now no κ-independent terms in (4.5), and we obtain a Yang-Mills equa-

tion that includes interactions with the anti-self-dual matter multiplets. We find that the

complete set of flat-space equations is

✷φm = cm tr (FµνF
µν) ,

∂µKm
µνρ = −1

4c
m ǫµνραβγ tr (FµαF βγ) ,

γµ∂µχ
m = − i√

2
cm tr (Fµνγ

µνλ) ,

Dµ[(c̃0 + cm φm)Fµν ] = cm F ρσKm
νρσ , (4.6)

(c̃0 + cmφm)γµDµλ = −1
2c

m(∂µφ
m)γµλ− i

2
√
2
cm Fµνγ

µνχm − 1
12c

mKm
µνργ

µνρλ .

Note that the anti-self-dual field strengths are given by

Km = dBm + cm ω3 , (4.7)

where ω3 = AdA + 2
3A

3. The supersymmetry transformation rules in this flat-space limit

become

δφm = ǭχm , δAµ = − i√
2
ǭγµλ , δBm

µν = 1
2 ǭγµνχ

m + 2cm tr (A[µδAν]) ,

δλ = − 1
2
√
2
Fµνγ

µνǫ , δχm = − i
2∂µφ

m γµǫ+ i
12K

m
µνρ γ

µνρǫ . (4.8)

The energy-momentum tensor for this flat-space theory may be obtained simply by

applying the same limiting procedure to the right-hand side of the Einstein equation of
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the original supergravity theory, given in (4.3). By this means we obtain the flat-space

expression

Tµν = Km
µρσK

m
ν

ρσ+∂µφ
m ∂νφ

m− 1
2ηµν (∂φ

m)2+4(c̃0+ cm φm) tr (Fµλ Fν
λ− 1

4ηµν Fλσ F
λσ) .

(4.9)

This is the theory that we refer to as the “interacting theory”. It is interesting to note

that the bosonic equations of motion of (4.6) can be derived from the Lagrangian

L = −(∂φm)2 − 1
3K

2 − 2(c̃0 + cm φm) tr (F 2)− 2cm ∗(Bm ∧ tr (F ∧ F )) , (4.10)

where K is taken to be unconstrained, with its anti-self-duality being imposed only after

having obtained the equations of motion.

Flat-space limit with c0 held fixed:

The situation is different when c0 is non-vanishing and is held fixed when κ goes to

zero. As can be seen from (4.5), the leading-order terms in the Yang-Mills equation are

now independent of κ, and in fact there are now no interactions with the anti-self-dual

multiplets in the κ→ 0 limit. All equations of motion, and supersymmetry transformation

rules, remain the same as in the previous c0 ∼ κ limit with the exception of the Yang-Mills

equations and the gaugino equation, which are now source-free and given by

Dµ Fµν = 0 ,

γµDµ λ = 0 . (4.11)

Note however that the energy-momentum tensor, again obtained from the right-hand side

of the Einstein equation in (4.3) by applying the limiting procedure, is now simply given by

Tµν = 4c0 tr (Fµλ Fν
λ − 1

4ηµν Fλσ F
λσ) . (4.12)

In the case of a single self-dual tensor multiplet, this is the theory that we refer to as the

“BSS theory”.

A word of explanation is in order here. Firstly, it should be noted that this energy-

momentum tensor arose as a term of order κ in the Einstein equation, rather than the

usual order κ2 for matter fields. Consequently the Yang-Mills contribution dominates the

O(κ2) contributions from the tensor multiplets, and so they are absent in this flat-space

limit. Indeed, it is evident that if one were to add “standard” contributions for the fields of

the tensor multiplets, one would find that the resulting energy-momentum tensor was not

conserved upon using the equations of motion. Effectively the tensor multiplets describe
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“test fields” in a Yang-Mills background, whose energy-momentum tensor is negligible in

comparison to that of the Yang-Mills field. For the same reason, they do not affect the

Yang-Mills equation. The energy-momentum tensor (4.12) would cease to be appropriate

in a configuration where the Yang-Mills field was zero, since now the previously-neglected

matter contributions would become important. This rather pathological feature of the

BSS theory is reflected also in the fact that it cannot be described by an analogue of the

Lagrangian (4.10), owing to the inherent asymmetry between the occurrence of interaction

terms in the matter and Yang-Mills equations.

A number of further comments are also in order. Firstly, it should be emphasised that

the higher-order fermi terms are not included in the equations of motion and supersymmetry

transformation rules (4.6) and (4.8); they were not included in [26,27], and indeed they have

only recently been computed [37]. (See also [36, 38].) Nevertheless, one can see on general

grounds that the inclusion of the higher-order terms in the supergravity theory will not

present any obstacle in the taking of the two inequivalent flat-space limits. Alternatively,

the higher-order completion of the supersymmetry transformations may be determined in

either of the flat-space theories by demanding the closure of the supersymmetry algebra on

the fermi fields. For the interacting theory the supersymmetry transformation rules for the

bosons remain unchanged, while the complete transformation rules for the fermions are

δχm = − i
2 [∂µφ

mγµ − 1
6K

m
µνργ

µνρ]ǫ− 1
2c

m tr [γµλ(ǫγ
µλ)] , (4.13)

δλ = − 1
2
√
2
Fµνγ

µνǫ+
cm

(c̃0 + cnφn)
[− 1

2(χ
mλ)ǫ− 1

4(χ
mǫ)λ+ 1

8(χ
mγµνǫ)γ

µνλ] ,

and agree with the flat-space limit of the transformations in the supergravity theory [37]. On

the other hand, in the BSS theory the gaugino variation remains unmodified, and only δχm

picks up a higher-order correction (identical to that of the interacting theory). Note that it

is straightforward to see that this must be the case, since the lowest-order transformation for

the Yang-Mills multiplet, (4.8), already closes on the source-free gaugino equation of motion,

(4.11). So in fact we see that the only difference in the supersymmetry transformation rules

in the two flat-space limits is in the higher-order terms in the gaugino variation, consistent

with the difference in the equations of motion for the Yang-Mills multiplet between the two

limits.

The complete gaugino transformation rule in the interacting theory is somewhat unusual,

in that it contains a possibly singular denominator, (c̃0 + cnφn) (which was also noted in

[36,37]). As in the supergravity situation, this singular denominator is just a manifestation

of the strong coupling singularity already present in the lowest-order Yang-Mills equations.
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This form of the denominator also shows up in the complete equations of motion, given for

the fermi fields in the interacting theory by4

γµ∂µχ
m = − i√

2
cm tr (Fµνγ

µνλ) +
icmcn

(c̃0 + cpφp)
tr [ 32(χ

nλ)λ− 1
4 (χ

nγµνλ)γ
µνλ] ,

(c̃0 + cmφm)γµDµλ = −1
2c

m(∂µφ
m)γµλ− i

2
√
2
cm Fµνγ

µνχm − 1
12c

mKm
µνργ

µνρλ

−i cmcn

(c̃0 + cpφp)
[ 34(λχ

m)χn − 1
8(λγµνχ

m)γµνχn]

+iαcmcm′ tr ′[(λγµλ
′)γµλ′] , (4.14)

where the primes in the last line indicate the quantities involved in the trace. (Recall that

there can be different cm constants for each factor in a semi-simple group.) Note that α is

an arbitrary parameter that is not fixed by the supersymmetry algebra [37], and appears

to be related to the gauge anomaly (see [37] for a more complete discussion).

We also note that the flat-space limit when c0 is non-vanishing and held fixed, if we

specialise to the case where there is only a single anti-self-dual multiplet, coincides with

the BSS theory, constructed in [18]. It was argued in [18] that this theory could not be

obtained as a κ→ 0 limit of the supergravity theory, on the grounds that the Chern-Simons

form ω enters the 3-form field strengths in (2.3) with a factor of κ (after restoring Newton’s

constant, as in (4.2)), and thus it would disappear in the flat-space limit. However, while

this is indeed the case for the self-dual field of the gravity multiplet, the potentials Bm
µν

for the anti-self-dual matter fields also acquire factors of κ, with the net result that the

Chern-Simons terms are of the same order, and hence they survive in the κ → 0 limit,

as we saw in (4.7) above. The non-standard dimensions of the energy-momentum tensor

(4.12) is a reflection of the need for a dimensionful free parameter, which was also seen

in [18]. Finally, we remark that the more general flat-space theory we obtained in the limit

where c0 ∼ κ, does not conflict with the results in [18] which found only the free Yang-

Mills equations (4.11), since in [18] it was assumed that the kinetic term for the Yang-Mills

multiplet was described by the standard superspace free action. Note also that the BSS

theory can be obtained from the interacting flat-space theory by taking k to zero after

making the following rescalings of the fields of the interacting theory:

φm → k φm , Bm
µν → k Bm

µν , χm → k χm , (4.15)

together with the rescaling cm → k cm. Thus the interacting flat-space theory encompasses

the BSS theory as a singular limiting case.
4While these equations of motion were obtained by taking the flat-space limit of [37], they equally well

follow from closure of the supersymmetry algebra, (4.13).
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Let us now consider the flat-space limit of the quasi-anti-self-dual dyonic string solution

(2.15) of the supergravity theory. This solution is massless, and hence from (2.18) it follows

that the magnetic charge is related to the electric charge by P = −Qe2φ0 . Consequently,

the parameters c0 = (Q+ P )/32 and c1 = (Q− P )/32 are given by

c0 = − 1
16Qe

φ0 sinhφ0 , c1 = 1
16Qe

φ0 coshφ0 . (4.16)

In the flat-space limit, where in particular φ was rescaled by κ, we see that c0 = − 1
16Qκφ0

prior to sending κ to zero, and hence we are in the regime of the “interacting theory”,

corresponding to the first of the two limits discussed above. We find that the flat-space

solution is given by

φ = φ0 −
Q(2ρ2 + r2)

(ρ2 + r2)2

Kmnp = −1
2ǫmnpq∂qφ , Kµνm = −1

2ǫµν∂mφ ,

F a =
2ρ2

(ρ2 + r2)2
ηamn dy

m ∧ dyn . (4.17)

Note that φ0 no longer has physical significance as a coupling constant, and it can be

eliminated by making a constant shift of φ.

Since this solution has been obtained as the flat-space limit of a tensionless string, we

expect that it should have vanishing energy. This might at first sight seem surprising, since

it is described by a non-trivial field configuration. However, a straightforward calculation

of T00 given by (4.9) yields

T00 = K2
00 +

1
2(∂φ)

2 + 1
16Q (φ− φ0) tr (F

2) ,

=
4Q2 r2 (3ρ2 + r2)2

(ρ2 + r2)6
− 24Q2 ρ4 (2ρ2 + r2)

(ρ2 + r2)6
, (4.18)

where the first term in the second line comes from the (equal) contributions from K and φ,

and the second term comes from F . It is easily verified that while T00 itself is non-vanishing,

the integral
∫∞
0 T00 r

3 dr is equal to zero. Clearly the Yang-Mills field is giving a negative

contribution to the energy, in precisely such a way that the total energy is zero. This is

the flat-space analogue of the cancellation that occurs in the supergravity theory, with its

associated subtleties in the Bogomol’nyi analysis, which we discussed at the end of section 3.

It should be emphasised that the vanishing energy of the flat-space tensionless string

occurs for arbitrary scale size ρ of the Yang-Mills instanton. However, if we consider instead

the neutral tensionless string, which can be achieved by setting ρ = 0 so that the instanton

is not present, then the expression (4.18) becomes T00 = 4Q2/r6, whose integral over the
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transverse space diverges at the core of the string. Thus the Yang-Mills instanton in the

gauge-dyonic string can be viewed as a regulator for the total energy.

There are also massive string solutions to the interacting flat-space theory, which can

also be obtained as flat-space limits of the curved-space gauge dyonic string. They arise

by taking the ADM mass, as given by (2.18), to be non-zero and of the form m0 κ. Upon

taking the κ→ 0 flat-space limit, this gives a solution of the same form as (4.17), but with

φ shifted by the constant m0. From (4.18), this gives an extra term in T00 which gives rise

to an energy m0 per unit length for the flat-space string.

It is interesting to note that while the flat-space limit of the tensionless string always

results in the c0 ∼ κ limit of the interacting theory, the final solution itself, as given in

(4.17), also satisfies the equations of motion of the BSS theory, where c0 is held fixed in

the flat-space limit5. To see this, we note that for a bosonic background, only the Yang-

Mills equation differs between the two flat-space theories. In particular, both Yang-Mills

equations may be expressed as DµFµν = Jν , where the current is

Jµ = [cmFµν∂
νφm + cmF ρσKm

µρσ ]/[c̃
0 + cnφn] , (4.19)

for the first theory, and vanishes for the latter. Because of the form of the solution, (4.17), we

see that Jµ identically vanishes, and hence the background is indeed a solution to both flat-

space limits. Furthermore, examination of the BPS conditions arising from (4.8) indicates

that Jµ = 0 for any string-like background preserving half of the supersymmetries. It

should be remarked, however, that when interpreted as a solution to the c0 fixed flat-space

limit, the string no longer has vanishing energy per unit length, since in this case the stress

tensor (4.12) has only a positive contribution from the Yang-Mills instanton. Thus only

the interacting theory from the first flat-space limit, (4.6), provides a suitable description

of the tensionless string in flat space.

Finally, we note that by taking the divergence of (4.19), we obtain

DµJµ = 1
8c

mcm′ǫµνρσηλF
µν tr ′F ρσ′F ηλ′/[c̃0 + cnφn] , (4.20)

indicating that the current is not conserved classically. Thus the inconsistency of the su-

pergravity theory, which we discussed in section 3, survives in the “interacting” flat-space

limit. Nevertheless since, as for the gauge dyonic string in curved space, Jµ vanishes iden-

tically for the global gauge string, this classical inconsistency does not spoil the solution.

5The solution (4.17) has also been obtained in the BSS theory by directly solving its first-order BPS

equations [39].
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On the other hand, since the BSS theory is free of this inconsistency it is possible that such

a classical inconsistency, necessary for anomaly cancellation in the quantum theory, is an

integral part of a fully interacting theory.

We have not paid much attention in this paper to the question of gravitational anomalies

which is always an important issue when dealing with chiral theories. In particular, we

have for simplicity ignored the presence of hypermultiplets. A coupled supergravity-matter

theory which is initailly free of gravitational anomalies theory will not remain so when the

gravity multiplet is switched off because the contributions from the gravitino and self-dual

2-form, necessary for the anomaly cancellation, are no longer present. Naively, of course,

one could argue that gravitational anomalies are no longer of any concern in the flat space

limit. However, it may be that subtleties arise when one tries to take the global limit of a

worldvolume theory which relies for its anomaly freedom on anomaly inflow from the bulk.

This is deserving of further study.

In conclusion, we note that six-dimensional global models are also important as five-

brane worldvolume theories [19, 20, 21, 18]. In the absence of Yang-Mills fields, the (1, 0)

multiplet is the only one available to describe the worldvolume theory of the D = 7, N = 1

fivebrane solution found in [40]. Six-dimensional global models also arise from configura-

tions of higher-dimensional branes with six worldvolume dimensions in common. Indeed,

the brane configurations yielding (1, 0) theories with tensor multiplets, vector multiplets

and hypermultiplets have been identified in [24,25], although no field equations were writ-

ten down. Here we speculate further that the interacting anti-self-dual-tensor Yang-Mills

system given in this paper (together with hypermultiplets where necessary) is the appro-

priate one to describe these global models. The global gauge anti-self-dual string, and in

particular the tensionless string, could then be regarded as strings on the worldvolume.

Note added

Global D = 6, (1, 0) models of the type discussed in this paper have recently been shown

to arise from configurations of NS fivebranes, Dirichlet sixbranes and eightbranes [41]
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