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1. Introduction

In 1986, Hughes et al [1] discovered a superthreebrane with worldvolume dimension

d = 4 in D = 6 spacetime. Their superthreebrane action was a generalization of the

Green-Schwarz action for superstrings in that it exhibited spacetime supersymmetry and

worldvolume fermionic κ-symmetry. Shortly afterwards, Bergshoeff, Sezgin and Townsend

[2] found corresponding actions for other values of d and D, called super “p-branes” where

p = d− 1 is the number of spatial dimensions of the worldvolume. Moreover, Duff, Howe,

Inami and Stelle [3] showed how the action for a super (p−1)-brane in (D−1) dimensions

could be derived from that of a p-brane in D dimensions by the process of simultaneous

dimensional reduction. A complete classification of all supersymmetric extended objects,

incorporating all of the previous observations, was then attempted by Achucarro, Evans,

Townsend and Wiltshire [4]. Their results, which we shall discuss in section 2, can be

summarized by the “brane-scan” of Figure 1. According to this classification, Type II

p-branes, i.e those with N = 2 spacetime supersymmetry, do not exist for p > 1.

Recently, however, it has been discovered that, in D = 10, super p-branes exist not

only for Type IIA and IIB strings (p = 1) but also for Type IIA and IIB fivebranes (p = 5)

[5] and Type IIB threebranes (p = 3) [6]. The no-go theorem is circumvented because in

addition to the superspace coordinates XM and θα there are also higher spin fields on the

world volume: vectors or antisymmetric tensors. This raises the question: are there other

Type II super p-branes, and if so, for what p and D? The purpose of the present paper

will be to attempt to classify these new supersymmetric extended objects.

We begin in section 3 by asking what new points on the brane-scan are permitted by

bose-fermi matching alone. There are surprisingly few: p = 3, 4, . . .9 in D = 10; p = 3, 4, 5

in D = 6 and p = 3 in D = 4. The much harder task is to narrow down these possibilities

to objects that actually exist. One obvious handicap is that, unlike the p-branes discussed

by Achucarro et al [4], no-one has yet succeeded in writing down the action for these new

Type II p-branes. The existence of the p = 3 and p = 5 objects mentioned above was

established indirectly: by showing that they emerge as soliton solutions of either Type

IIA or Type IIB supergravity. The nature of the worldvolume fields is then established by

studying the zero modes of the soliton. In particular, a super p-brane requires that the
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soliton solution preserves some unbroken supersymmetry and hence that the zero modes

form a supermultiplet. Although we know of no general proof that all supersymmetric

extended objects correspond to a soliton, this is true of all those on the old brane-scan

and thus seems a good guide to constructing the new one. Following this route we shall

conclude that of all the possible D = 10 Type II super p-branes permitted by bose-fermi

matching alone, only those with p = 0 (Type IIA), p = 1 (Type IIA and IIB), p = 3

(Type IIB), p = 4 (Type IIA) p = 5 (Type IIA and IIB) and p = 6 (Type IIA) actually

exist. [The reader may wonder why there seems to be a gap at p = 2. Indeed, duality

would seem to demand that in D = 10 a Type IIA superfourbrane should imply a Type

IIA supermembrane. This object does indeed exist but it should not be counted as a new

theory since vectors are dual to scalars in d = 3 and so its worldvolume action is simply

obtained by dualizing one of the 11 XM of the D = 11 supermembrane.] Our results thus

confirm the conjecture of Horowitz and Strominger [8] that super Type II p-brane solitons

in D = 10 exist for all 0 ≤ p ≤ 6. Moreover, we find that no new fundamental Type II p-

branes emerge in D < 10.

2. The old brane-scan

As the p-brane moves through spacetime, its trajectory is described by the functions

XM (ξ) where XM are the spacetime coordinates (M = 0, 1, . . . , D − 1) and ξi are the

worldvolume coordinates (i = 0, 1, . . . , d− 1). It is often convenient to make the so-called

“static gauge choice” by making the D = d+ (D − d) split

XM (ξ) = (Xµ(ξ), Ym(ξ)) (2.1)

where µ = 0, 1, . . . , d− 1 and m = d, . . . , D − 1, and then setting

Xµ(ξ) = ξµ (2.2)

Thus the only physical worldvolume degrees of freedom are given by the (D − d) Y m(ξ).

So the number of on-shell bosonic degrees of freedom is

NB = D − d (2.3)
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To describe the super p-brane we augment the D bosonic coordinatesXM (ξ) with anticom-

muting fermionic coordinates θα(ξ). Depending on D, this spinor could be Dirac, Weyl,

Majorana or Majorana-Weyl. The fermionic κ-symmetry means that half of the spinor

degrees of freedom are redundant and may be eliminated by a physical gauge choice. The

net result is that the theory exhibits a d-dimensional worldvolume supersymmetry where

the number of fermionic generators is exactly half of the generators in the original space-

time supersymmetry. This partial breaking of supersymmetry is a key idea. Let M be the

number of real components of the minimal spinor and N the number of supersymmetries

in D spacetime dimensions and let m and n be the corresponding quantities in d worldvol-

ume dimensions. Let us first consider d > 2. Since κ- symmetry always halves the number

of fermionic degrees of freedom and going on-shell halves it again, the number of on-shell

fermionic degrees of freedom is

NF =
1

2
mn =

1

4
MN (2.4)

Worldvolume supersymmetry demands NB = NF and hence

D − d =
1

2
mn =

1

4
MN (2.5)

A list of dimensions, number of real components of the minimal spinor and possible super-

symmetries is given in Table 1, from which we see that there are only 8 solutions to (2.5)

all with N = 1, as shown in Fig. 1. We note in particular that Dmax = 11 since M ≥ 64

for D ≥ 12 and hence (2.5) cannot be satisfied. Similarly dmax = 6 since m ≥ 16 for

d ≥ 7. The case d = 2 is special because of the ability to treat left and right moving modes

independently. If we require the sum of both left and right moving bosons and fermions

to be equal, then we again find the condition (2.5). This provides a further 4 solutions all

with N = 2, corresponding to Type II superstrings in D = 3, 4, 6 and 10 (or 8 solutions in

all if we treat Type IIA and Type IIB separately. The gauge-fixed Type IIB superstring

will display (8, 8) supersymmetry on the worldsheet and the Type IIA will display (16,

0), the opposite [5] of what one might naively expect). If we require only left (or right)

matching, then (2.5) is replaced by
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D − 2 = n =
1

2
MN (2.6)

which allows another 4 solutions in D = 3, 4, 6 and 10, all with N = 1. The gauge-fixed

theory will display (8,0) worldsheet supersymmetry. The heterotic string falls into this

category. The results are also shown in Fig. 1.

An equivalent way to arrive at the above conclusions is to list all scalar supermultiplets

in d ≥ 2 dimensions and to interpret the dimension of the target space, D, by

D − d = number of scalars (2.7)

A useful reference is Strathdee [9] who provides an exhaustive classification of all unitary

representations of supersymmetry with maximum spin 2. In particular, we can understand

dmax = 6 from this point of view since this is the upper limit for scalar supermultiplets.

In summary, according to the above classification, Type II p-branes do not exist for p > 1.

Dimension Minimal Spinor Supersymmetry

(D or d) (M or m) (N or n)

11 32 1

10 16 2, 1

9 16 2, 1

8 16 2, 1

7 16 2, 1

6 8 4, 3, 2, 1

5 8 4, 3, 2, 1

4 4 8, . . ., 1

3 2 16, . . ., 1

2 1 32, . . ., 1

Table 1. Minimal spinor components and supersymmetries.
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3. Bose-fermi matching: a necessary condition

Given that the gauge-fixed theories display worldvolume supersymmetry, and given

that we now wish to include the possibility of vector (and/or antisymmetric tensor) fields,

it is a relatively straightforward exercise to repeat the bose-fermi matching conditions for

vector (and/or antisymmetric tensor) supermultiplets. Once again, we may proceed in one

of two ways. First, given that a worldvolume vector has (d − 2) degrees of freedom, the

scalar multiplet condition (2.5) gets replaced by

D − 2 =
1

2
mn =

1

4
MN (3.1)

Alternatively, we may simply list all the supermultiplets in Strathdee’s classification and

once again interpret D via (2.7). The results are shown in Fig. 2.

Several comments are now in order:

1) Vector supermultiplets exist only for 4 ≤ d ≤ 10 [9]. In d = 3 vectors have only

1 degree of freedom and are dual to scalars. So these multiplets will already have

been included as scalar multiplets in section 2. In d = 2, vectors have no degrees of

freedom.

2) The number of scalars in a vector supermultiplet is such that, from (2.7), D = 4, 6 or

10 only, in accordance with (3.1).

3) Repeating the analysis for antisymmetric tensors does not introduce any new points

on the scan. For example in d = 6 there is a chiral (2, 0) tensor supermultiplet, with

a second rank tensor whose field strength is self dual: (B−
µν , λ

I , φ[IJ ]), I = 1, . . . , 4,

corresponding to the Type IIA fivebrane and a non-chiral (1, 1) vector multiplet

(Bµ, χ
I , AJ

I , ξ), I = 1, 2, corresponding to the Type IIB fivebrane [5]. Both occupy

the (d = 6, D = 10) slot in Fig. 2.

4) We emphasize that Fig. 2 merely tells us what is allowed by bose/fermi matching.

We must now try to establish which of these possibilities actually exists.

4. p-brane solutions

All of the circles on the brane-scan are known to correspond to soliton solutions of

an underlying supersymmetric field theory [1, 7, 10, 11, 12, 13, 14]. As for the crosses,
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supersymmetric soliton solutions of both Type IIA and Type IIB supergravity have been

found for the case (d = 6, D = 10) [5] and of Type IIB for (d = 4, D = 10) [6]. What

about the others? In this section we shall exhibit the solutions and then in section 5 ask

whether they are supersymmetric.

To this end, consider the following generic D = 10 action

I10(d) =
1

2κ2

∫

d10x
√−g

(

R − 1

2
(∂φ)2 − 1

2(d+ 1)!
e−αφF 2

d+1

)

(4.1)

This describes the interaction of an antisymmetric tensor potential of rank d, AM1M2...Md

(M = 0, 1, . . .9), interacting with gravity gMN , and the dilaton φ, where the rank (d+ 1)

field strength Fd+1 is given by

Fd+1 = dAd (4.2)

and the constant α is given by

α =
(4− d)

2
(−1)d . (4.3)

To solve the corresponding field equations, we follow [12, 13] and make an ansatz corre-

sponding to the most general d/(10− d) split invariant under Pd ×SO(10− d) where Pd is

the d-dimensional Poincaré group. (The black (d−1) branes discussed in section 5 exhibit

Pd invariance only in the mass = charge limit [8], so this ansatz will automatically single

out these extreme cases.) We split the indices

xM = (xµ, ym) (4.4)

where µ = 0, 1, . . . (d− 1) and m = d, d+ 1, . . .9 and write the line-element as

ds2 = e2Aηµνdx
µdxν + e2Bδmndy

mdyn (4.5)

and the d-form gauge field as

A01...d = −eC (4.6)
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All other components of AM1...Md
are set to zero. Pd invariance then requires that the

arbitrary functions A, B, C depend only on ym; SO(10− d) invariance requires that this

dependence be only through r =
√
δmnymyn. Similarly our ansatz for the dilaton is

φ = φ(r) (4.7)

Substituting these ansatze into the field equations leads to the following solutions,

assuming that gMN tends asymptotnally to ηMN :

A =
d̃

16
C

B =
−d
16

C

φ =
α

2
C

(4.8)

where, for simplicity, we have set the vev of the dilaton equal to zero. C is given by

e−C = 1 +
kd

rd̃
d̃ > 0 (4.9)

where kd is a constant. Here we have introduced d̃, the dimension of the extended object

dual to the (d− 1)-brane in D = 10,

d̃ = 8− d (4.10)

We shall refer to these solutions as “elementary (d − 1)-branes”. They are characterized

by a non-vanishing electric Noether charge

ed =
1√
2κ

∫

Sd̃+1

e−αφ∗F =
1√
2κ

d̃Ωd̃+1kd (4.11)

where Sd̃+1 is the (d̃ + 1) sphere surrounding the elementary (d − 1) brane, and Ωd̃+1 is

volume of the unit Sd̃+1. Strictly speaking, these configurations display δ(r) singularities

and fail to solve the field equations at r = 0 unless we augment the action (4.1) by the

action for the (d− 1)-brane source. We need not dwell on this here; a full discussion may

be found in [15].
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However, we can also find non-singular “solitonic (d̃ − 1)-brane” solutions which are

characterized by a non-vanishing topological magnetic charge

gd̃ =
1√
2κ

∫

Sd+1

F (4.12)

satisfying the Dirac quantization condition

edgd̃ = 2πn n = integer (4.13)

To obtain these solutions we now make an ansatz invariant under Pd̃ ×SO(10− d̃). Hence

we write (4.4) and (4.5) as before where now µ = 0, 1 . . . (d̃−1) and m = d̃, d̃+1, . . . 9. The

ansatz for the antisymmetric tensor, however, will be made on the field strength rather

than the potential.

1√
2κ

Fd+1 = gd̃εd+1/Ωd+1 (4.14)

where εd+1 is the volume form on Sd+1. Since this is a harmonic form, F can no longer be

written globally as the curl of A, but it satisfies the Bianchi identities. It is now not difficult

to show that all the fields equations are satisfied simply by making the replacements d→ d̃

and hence α(d) → α(d̃) = −α(d) in (4.8-10).

One may now consider the theory “dual” to (4.1) for which the roles of antisymmetric

tensor field equations and Bianchi identities (and hence electric and magnetic charges) are

interchanged. The action is given by

Ĩ10(d̃) =
1

2κ2

∫

d10x
√−g

(

R − 1

2
(∂φ)2 − 1

2(d̃+ 1)!
eαφF̃ 2

d̃+1

)

(4.15)

where the rank (d̃+ 1) field strength F̃ is the curl of a d̃-form potential

F̃d̃+1 = dÃd̃ (4.16)

and is related to F via

F̃d̃+1 = e−αφ∗Fd+1 (4.17)
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α is the same constant appearing in (4.1) but occurs with the opposite sign. It should be

clear that the system Ĩ10(d̃) admits the same elementary and solitonic solutions as I10(d)

provided we everywhere make the replacement d→ d̃ and hence α(d) → α(d̃) = −α(d). In
the dual theory, therefore, the roles of elementary and solitonic solutions are interchanged.

Now let us return to the question of supersymmetry. First of all, the generic action

(4.1) correctly describes the bosonic sector of the 3-form field strength version of N = 1,

D = 10 supergravity, the field theory limit of the superstring. We simply set d = 2

and hence d̃ = 6 and α = 1. The resulting elementary solution (4.8-9) is the Dabholkar

et al string [10] and the soliton solution is the Duff-Lu fivebrane [13]. The action (4.1)

also describes the bosonic sector of the 7-form field strength version of N = 1, D = 10

supergravity. We simply set d = 6 and hence d̃ = 2 and α = −1. The resulting elementary

solution (4.8-9) is the Duff-Lu fivebrane [13], and the soliton solution is the Dabholkar et

al [10] string. As shown in [10,13], both the string and the fivebrane break one half of the

spacetime supersymmetries.

d d̃ α(d) A B φ

1 7 −3/2 7C/16 −C/16 −3C/4

2 6 1 3C/8 −C/8 C/2

3 5 −1/2 5C/16 −3C/16 −C/4
4 4 0 C/4 −C/4 0

5 3 1/2 3C/16 −5C/16 C/4

6 2 −1 C/8 −3C/8 −C/2
7 1 3/2 C/16 −7/16 3C/4

Table 2. The functions A, B and φ in terms of C as demanded by supersymmetry.

Now let us turn to D = 10 Type IIA supergravity, whose bosonic action is given by
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I10(IIA) =
1

2κ2

∫

d10x
√
−g
[

R − 1

2
(∂φ)2 − 1

2.3!
e−φF3

2

− 1

2.2!
e3φ/2F2

2 − 1

2.4!
eφ/2F ′

4
2

]

− 1

8κ2

∫

F4 ∧ F4 ∧A2

(4.18)

where

F ′
4 = dA3 + κ−1A1 ∧ F3 (4.19)

From (4.3) we see that the kinetic terms for gravity, dilaton and antisymmetric tensors

are also correctly described by the generic action I10(d) with d = 1, 2, 3 (i.e d̃ = 7, 6, 5).

Both the elementary string (d = 2) and fivebrane (d = 6) solutions of N = 1 supergravity

described above continue to provide solutions to Type IIA supergravity, as may be seen

by setting F2 = F4 = 0. [This observation is not as obvious as it may seem in the case

of the elementary fivebranes or solitonic strings, however, since it assumes that one may

dualize F3. Now the Type IIA action follows by dimensional reduction from the action

of D = 11 supergravity which contains F4. There exists no dual of this action in which

F4 is replaced by F7 essentially because A3 appears explicitly in the Chern-Simons term

F4∧F4∧A3 [16]. Since F4 and F3 in D = 10 originate from F4 in D = 11, this means that

we cannot simultaneously dualize F3 and F4 but one may do either separately.† By partial

integration one may choose to have no explicit A3 dependence in the Chern-Simons term of

(4.18) or no explicity A2 dependence, but not both.] Furthermore, by setting F2 = F3 = 0

we find elementary membrane (d = 3) and solitonic fourbrane (d̃ = 5) solutions, and then

by dualizing F4, elementary fourbrane (d = 5) and solitonic membrane (d̃ = 3) solutions.

Finally, by setting F3 = F4 = 0, we find elementary particle (d = 1) and solitonic sixbrane

(d̃ = 7) solutions and then by dualizing F2, elementary sixbrane (d = 7) and solitonic

particle (d̃ = 1) solutions.

Next we consider Type IIB supergravity in D = 10 whose bosonic sector consists of

the graviton gMN , a complex scalar φ, a complex 2-form A2 (i.e with d = 2 or, by duality

† We are grateful to H. Nishino for this observation.
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d = 6) and a real 4-form A4 (i.e with d = 4 which in D = 10 is self-dual). Because of this

self-duality of the 5-form field strength F5, there exists no covariant action principle of the

kind (4.15) and, strictly speaking, our previous analysis ceases to apply. Nevertheless we

can apply the same logic to the equations of motion and we find that the solution again

falls into the generic category (4.8-9). First of all, by truncation it is easy to see that the

same string (d = 2) and fivebrane (d = 6) solutions of N = 1 supergravity continue to

solve the field equations of Type IIB. On the other hand, if we set to zero F3 and solve

the self-duality condition F5 = −∗F5 then we find the special case of (4.8) with d = d̃ = 4

and hence α = 0 and φ = 0. This is the self-dual superthreebrane [6].

All of the above elementary solutions saturate a Bogomoln’yi bound between the mass

per unit p-volume Md and the electric charge

Md =
1√
2

| ed | (4.20)

It follows that the solitonic solutions obey

Md̃ =
1√
2

| gd̃ | (4.21)

We shall refer to these equations as the “mass = charge” conditions.

5. Supersymmetry

Horowitz and Strominger [8] have exhibited a two-parameter family of solutions ofD =

10 Type IIA and Type IIB supergravity with event horizons for d = 1, 2, 3, 4, 5, 6, 7: the

“black p-branes”. In some respects, these solutions resemble the Reissner-Nordstrom black-

hole solutions of general relativity which are known to admit unbroken supersymmetry in

the extreme mass = charge limit. Horowitz and Strominger then conjectured that, in this

limit, their black p-branes would also be supersymmetric and hence that there exist Type

II super (d−1) branes for all these values of d. As we shall now demonstrate, this is indeed

the case.

We begin by making the same ansatz as in section 4, namely (4.5-7) but this time

substitute into the supersymmetry transformation rules rather than the field equations,
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and demand unbroken supersymmetry. This reduces the four unknown functions A, B, C

and φ to one. We then compare the results with the known solutions.

For Type IIA supergravity with vanishing fermion background, the gravitino trans-

formation rule is

δψM = Dmε+
1

64
e3φ/4(ΓM

M1M2 − 14δM
M1ΓM2)Γ11εFM1M2

+
1

96
e−φ/2(ΓM

M1M2M3 − 9δM
M1ΓM2M3)Γ11εFM1M2M3

+
i

256
eφ/4(ΓM

M1M2M3M4 − 20

3
δM

M1ΓM2M3M4)εFM1M2M3M4

(5.1)

and the dilatino rule is

δλ =
1

4

√
2 DMφΓ

MΓ11ε+
3

16

1√
2
e3φ/4ΓM1M2εFM1M2

+
1

24

i√
2
e−φ/2ΓM1M2M3εFM1M2M3

− 1

192

i√
2
eφ/4ΓM1M2M3M4εFM1M2M3M4

(5.2)

where ΓM are the D = 10 Dirac matrices, where the covariant derivative is given by

DM = ∂M +
1

4
ωMABΓ

AB (5.3)

with ωMAB the Lorentz spin connection, where

ΓM1M2...Mn = Γ[M1ΓM2 . . .ΓMn] (5.4)

and where

Γ11 = iΓ0Γ1 . . .Γ9 (5.5)

Similarly the Type IIB rules are

δψM = DMε+
i

4× 480
ΓM1M2M3M4ΓMεFM1M2M3M4

+
1

96
(ΓM

M1M2M3 − 9δM
M1ΓM2M3)ε∗FM1M2M3

(5.6)
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and

δλ = iΓMε∗PM − 1

24
iΓM1M2M3εFM1M2M3

where

PM = ∂Mφ/(1− φ∗φ). (5.7)

In the Type IIB case, ε is chiral

Γ11ε = ε (5.8)

The requirement of unbroken supersymmetry is that there exist Killing spinors ε for

which both δψM and δλ vanish. Substituting our ansatze into the transformation rules

we find that for every 1 ≤ d ≤ 7 there exist field configurations which break exactly half

the supersymmetries. This is just what one expects for supersymmetric extended object

solutions [1,7,10,11,12,13] and is intimately related to the κ-symmetry discussed in section

2 and the Bogomoln’yi bounds of section 4. The corresponding values of A, B and φ in

terms of C are given in Table 2. The important observation, from (4.8), is that the values

required by supersymmetry also solve the field equations. Thus in addition to the D = 10

super (d−1) branes already known to exist for d = 2 (Heterotic, Type IIA and Type IIB),

d = 4 (Type IIB only) and d = 6 (Heterotic, Type IIA and Type IIB), we have established

the existence of a Type IIA superparticle (d = 1), a Type IIA supermembrane (d = 3), a

Type IIA superfourbrane (d = 5) and a Type IIA supersixbrane (d = 7).

One may now repeat the D = 10 analysis of sections 4 and 5 for N = 2 supergravities

in D < 10. Here we simply state the results. Details will be discussed elsewhere [17]. We

find supersymmetric solitons for all 1 ≤ d̃ ≤ 7 where d̃ = D−2−d, as shown in Fig. 3. At

first sight, this seems to contradict Fig. 2 since solutions appear where no supermultiplet

is allowed. The resolution is simply that only the cases d = 1, 3, 4, 5, 6 and 7 in D = 10

are fundamental. All the others are obtained by simply dimensional reduction of these or

the D = 11 supermembrane, and are thus described by the same gauge-fixed action. In
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summary the new brane-scan including (fundamental) Type II super p-branes is given in

Fig. 4.

6. Conclusions

We have classified all supersymmetric extended objects that correspond to solitons

of a Poincaré supersymmetric field theory in the usual spacetime signature which break

half the spacetime supersymmetries, as shown in Fig. 4. We cannot at the present time

rigorously rule out the existence of other super p-branes, denoted by the points in Fig.

2 not appearing in Fig. 4, which do not correspond to solitons. However, we regard

their existence as unlikely. (Nor can we rule out the possibility of other super p-branes

described by non-Poincaré supersymmetries in other signatures as discussed in [18] e.g a

(2,2) worldvolume in a (10,2) spacetime). Further progress would require that we construct

the spacetime Green-Schwarz supersymmetric and κ-symmetric actions for these new Type

II p-branes and, to date, this has not been done. All we know is that, in a physical gauge,

the worldvolume theory corresponding to the zero modes of the soliton is described by

vector or antisymmetric tensor supermultiplet as in Table 3.

d = 7 Type IIA (Aµ, λ, 3φ) n = 1

d = 6 Type IIA (B−
µν , λ

I , φ[IJ ]) I = 1, . . . , 4 (n+, n−) = (2, 0)

Type IIB (Bµ, χ
I , AI

J , ξ) I = 1, 2 (n+, n−) = (1, 1)

d = 5 Type IIA (Aµ, λ
I , φ[IJ ]|) I = 1, . . . , 4 n = 2

d = 4 Type IIB (Bµ, χ
I , φ[IJ ]) I = 1, . . . , 4 n = 4

d = 3 Type IIA (χI , φI) I = 1, . . . , 8 n = 8

d = 2 Type IIA (λL
I , φL

I) I = 1, . . . , 16 (n+, n−) = (16, 0)

Type IIB (χI
L, φL

I), (χI
R, φ

I
R) I = 1, . . . , 8 (n+, n−) = (8, 8)

Table 3: Gauge-fixed theories on the worldvolume, corresponding to the zero modes of the

soliton, are described by the above supermultiplets.

The case of the Type IIA membrane in D = 10 is particularly interesting. It emerges

as an elementary solution of the usual formulation of Type IIA supergravity with a 4-

form field strength or else as a soliton solution of the dual formulation with a 6-form field
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strength. Indeed, this solution is dual to the D = 10 superfourbrane solution. However,

its zero-modes are on-shell equivalent to those of the D = 11 supermembrane and so

does not occupy a separate slot on the brane-scan of Fig. 3. The reason is because in

d = 3 the worldvolume vector has only 1 degree of freedom and is dual (in the three

dimensional sense) to a scalar. Indeed, this provides the exception to the rule that we do

not have an explicit expression for the Type II p-brane Green-Schwarz actions for p > 1.

Its action is obtained by making a 10+1 split of the Green-Schwarz action for the D = 11

supermembrane coordinates X̂M̂ = (XM , X10) where M̂ = 0, 1, . . .10 and M = 0, 1, . . .9,

and then dualizing the X10. Perhaps the most bizarre aspect of all this is that an object

living in eleven dimensions should emerge as a soliton of a ten dimensional theory!

Of course, one might ask why the D = 7 membrane occupies a separate slot since it too

can be viewed as a spacetime dimensional reduction of the D = 11 membrane. The answer

is that when we reach D = 7 the multiplet becomes reducible and we can thus perform a

consistent truncation to a smaller theory with half the supersymmetries. Similar remarks

apply to the membranes in D = 5 and 4, and indeed to all the circles appearing on the

brane-scan.

In our classification, we have also omitted supersymmetric solitons which break more

than half the supersymmetries since these solutions presumably admit no κ-symmetric

Green-Schwarz action (at least, not of the kind presently known). Examples of this are

provided by the D = 10 octonionic string of Harvey and Strominger [19], (which breaks

7/8), and the D = 11 extreme black fourbrane and extreme black sixbrane of Güven [20]

(which break 3/4 and 7/8, respectively).

Finally, we ask what are the implications of our results for the idea of “duality”, in

the sense that one theory is simply providing a dual description of the same physics of

another theory [21] with the weak-coupling regime of one being the strong-coupling of

the other [11]? At the classical level discussed in this paper, we see that supersymmetry

has narrowed down the possibilities to just four, all in D = 10, namely particle/sixbrane

duality (Type IIA only), string/fivebrane duality (Heterotic, Type IIA or Type IIB), mem-

brane/fourbrane duality (Type IIA only) and threebrane self-duality (Type IIB only). The

implications for quantum duality will be discussed elsewhere.
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