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Spin(7) holonomy gives a supersymmetric vacuum in three or two dimensions. Do α′ cor-

rections to the Einstein equations disturb this statement? Explicitly analyzing the leading

correction, we show that the metric of M can be adjusted to maintain supersymmetry.

Beyond leading order, a general argument based on low energy effective field theory in

spacetime implies that this is true exactly (not just to all finite orders in α′). A more

elaborate field theory argument that includes the massive Kaluza-Klein modes matches

the structure found in explicit calculations. In M-theory compactification on a manifold

M of G2 or Spin(7) holonomy, similar results hold to all orders in the inverse radius of M

— but not exactly. The classical moduli space of G2 metrics on a manifold M is known to

be locally a Lagrangian submanifold of H3(M,R)⊕H4(M,R). We show that this remains

valid to all orders in the α′ or inverse radius expansion.
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1 Introduction

Let M be a compact seven-manifold of G2 holonomy. Compactification on M gives a

classical solution of ten-dimensional supergravity, with unbroken supersymmetry in three

dimensions. Is the analogous statement true in string theory, allowing for α′ corrections?

Differently put, corresponding to a classical solution of Einstein’s equations with G2 holon-

omy, is there a superconformally invariant two-dimensional σ-model with target M?

To be more precise, we consider the question in the context of Type II superstring

theory (or somewhat similarly, the heterotic string with the spin connection embedded in

the gauge group). Then the question is whether there is a family of σ-models (without

torsion) with target M and (1, 1) superconformal symmetry, depending on the moduli

of the classical G2 metric. The question arises because [1] the α′ expansion in σ-model

perturbation theory generates corrections to the Einstein equations and to the conditions

for supersymmetry. A “yes” answer means that the classical metric of G2 holonomy can

be modified to compensate for these corrections.

This natural question appears not to have been addressed in the literature. A some-

what different question has been answered [2]: if such a σ-model exists, what is its chiral

algebra? The answer involves an interesting extension of the N = 1 superconformal algebra

in two dimensions. Also, the leading α′ correction has been analyzed in some examples [3].

Explicit formulas were found showing that the leading correction does not destroy space-

time supersymmetry in these examples.1

In the context of compactification on a six-dimensional Calabi-Yau manifold X, there

is a superficially similar question: can a classical metric of SU(3) holonomy be corrected

to compensate for the modifications of Einstein’s equations that arise in σ-model pertur-

bation theory and so to maintain spacetime supersymmetry? This question has a nice

answer from the point of view of the two-dimensional σ-model. One uses the fact that (in

a σ-model without torsion2) the condition for (2, 2) worldsheet supersymmetry, without

assuming conformal invariance, is that the target space X should be Kahler. Moreover, it is

possible to regularize the σ-model preserving (2, 2) supersymmetry. Hence in analyzing the

renormalization group flow on the metric of X that is induced by σ-model corrections, one

can consider only flows in the space of Kahler metrics. At one-loop order, one meets the

classical Einstein equations, and this is where the Calabi-Yau condition comes in. What

about the higher order corrections? They actually give a flow in the space of Kahler poten-

tials (that is, a flow that keeps fixed the Kahler class of the target space metric). Once one

knows this, one can easily argue [5] that the metric of X can be corrected order by order

in σ-model perturbation theory (and even exactly) to maintain superconformal invariance

and therefore spacetime supersymmetry.3

1The examples in question are explicit, complete but non-compact manifolds of G2 holonomy. In the

present paper, we phrase our statements in terms of compact manifolds of exceptional holonomy to avoid

some analytical details, but one expects our main results to carry over to a large class of complete but not

compact examples.
2There are more general (2, 2) models with torsion [4], but we need not consider them here.
3As a statement about worldsheet superconformal invariance, this argument actually works for Calabi-

Yau n-folds for any n.
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Unfortunately, we have not been able to generalize this argument for a manifold M

of G2 holonomy. Roughly, to do this one would want a global or “off-shell” version of

the chiral algebra that was described in [2]. In other words, one would want to identify

part of this structure (analogous to global (2, 2) supersymmetry in the Calabi-Yau case)

that can be preserved in the presence of a suitable regulator, so that it is valid in σ-

model perturbation theory. For example, it might be that with some regularization, the

renormalization group flow of the σ-model with target M takes place only in the space

of metrics that can be derived from a (not necessarily torsion-free4) G2-structure derived

from a closed three-form φ with a fixed cohomology class. This would be analogous to the

fact that in the Calabi-Yau case, the flow (with a regularization that preserves global (2, 2)

supersymmetry) takes place only in the space of Kahler forms with a fixed cohomology

class. Given such a statement, perhaps one could imitate the argument in [5]. But we have

been unable to find such a statement.

In the Calabi-Yau case, an alternative argument uses elementary properties of the

spacetime effective action to show that α′ corrections do not destroy spacetime supersym-

metry. A version of the argument5 appropriate to the heterotic string, in which Calabi-Yau

compactification preserves N = 1 supersymmetry in spacetime, proceeds as follows [6]. To

disturb N = 1 supersymmetry, one must generate a correction either to the spacetime

superpotential or to the Fayet-Iliopoulos (FI) D-terms. Simple arguments based on scaling

and holomorphy show that at string tree level, α′ corrections cannot generate either of

these effects.6 Similar reasoning applies to Type II superstring theory on a Calabi-Yau

manifold. In this case, one has N = 2 supersymmetry in spacetime, which can only be

disturbed by FI terms (there is no analog of the superpotential), and after disposing of

these terms, one learns that spacetime supersymmetry is unbroken in the full quantum

string theory.

In Type II superstring theory on a manifold of G2 holonomy, a similar argument based

on holomorphy of the spacetime effective action shows that σ-model corrections cannot

disturb spacetime supersymmetry. Such a model has N = 2 supersymmetry in three-

dimensional spacetime, which is similar toN = 1 in four dimensions, and a priori spacetime

supersymmetry might be disturbed by a correction to the superpotential or by FI D-terms.

Holomorphy ensures that α′ corrections cannot correct the spacetime superpotential: the

superpotential is a function of chiral superfields whose imaginary parts are RR fields or

axion-like modes from the NS-NS sector, all of which decouple at zero momentum in σ-

model perturbation theory. And since the gauge fields of Type II superstring theory on a G2

4A G2-structure on a seven-manifold M is a three-form φ that obeys mild inequalities which ensure that

the formula (A.9) does define a Riemannian metric. The G2-structure is said to be torsion-free (and in this

case M is called a G2 manifold) if the metric has G2 holonomy.
5This argument is not restricted to the case of embedding the spin connection in the gauge group; it

applies to the larger class of supersymmetric heterotic string compactifications described in [6].
6For similar reasons, string loop corrections cannot generate a superpotential [7, 8], although they can

generate the FI terms at one-loop order [9]. Nonperturbatively in the string coupling, spacetime instantons

can and typically do generate a nonperturbative superpotential in these models. Nonperturbatively in α′,

the same is true of worldsheet instantons in the general class of models mentioned in footnote 5, though

not in models constructed via the standard embedding of the spin connection in the gauge group.
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manifold arise from the RR sector, their FI terms would actually violate a symmetry of σ-

model perturbation theory (the symmetry (−1)FL that counts left-moving fermions mod 2).

The reason for the present paper is that although we consider the argument in the

last paragraph to be satisfactory, we wanted to understand what happens more explicitly.

We begin in section 2.1 by considering the first non-trivial α′ correction to the Einstein

equations and the conditions for unbroken supersymmetry in Type II compactification on

a G2 manifold. We show explicitly that the metric can always be corrected to maintain

spacetime supersymmetry in this order. We find that the same will be true in higher orders

if a certain four-form α and five-form β (which can be computed order by order in α′) are

always exact. We do not know how to show this directly from σ-model considerations.

However, we show that the spacetime arguments mentioned in the last paragraph amount

to predicting the exactness of a certain four-form and five-form. We expect these to coincide

with the α and β that come from σ-model perturbation theory.

An obvious question is to consider instead compactification on an eight-manifold of

Spin(7) holonomy. In section 3, we show explicitly that once again in this case, the leading

α′ correction to the supersymmetry transformations can be compensated by adjusting the

metric to maintain spacetime supersymmetry. Simple arguments based on the spacetime

effective action predict that this result must persist in higher orders. For example, Type

IIA compactification on a Spin(7) manifold gives a model with (1, 1) supersymmetry in

two dimensions. In this model, the symmetry (−1)FL acts as a discrete R-symmetry

that — when combined with the decoupling of RR fields of zero momentum in σ-model

perturbation theory — ensures that α′ corrections cannot break spacetime supersymmetry.

We elaborate on such arguments in section 3.3.

These questions have some obvious further generalizations. One can consider M-theory

compactifications to four or three dimensions on a G2 or Spin(7) manifold M . The analog

of the α′ expansion is an expansion in powers of 1/r, with r the radius of M . In each of

these cases, supersymmetry is maintained to all finite orders7 in 1/r. On a G2 manifold,

holomorphy of the superpotential together with decoupling of the C-field at zero momentum

leads to essentially the same argument as in the case of Type II superstring theory on a

G2 manifold. On a Spin(7) manifold, as explained in section 3, one makes much the

same argument as in the Type IIA case, using a reflection symmetry in the non-compact

directions instead of its string theory reduction, which is (−1)FL .

Finally, one can ask about the heterotic string on a manifold of G2 or Spin(7) holon-

omy. There are in the supergravity limit many supersymmetric compactifications that are

not obtained by simply embedding the spin connection in the gauge group in the usual

fashion.8 Replacing Type II superstrings by the heterotic string reduces the spacetime su-

7In the G2 case, nonperturbatively in 1/r, instantons derived from wrapped M2-branes generate a

spacetime superpotential [18] that triggers supersymmetry breaking.
8Instead, the gauge field obeys an appropriate equation associated to spacetime supersymmetry. On a

G2 manifold, this equation is π7(F ) = 0, where F is the Yang-Mills field strength and π7 is the projector

onto two-forms that transform in the 7 of G2. On a Spin(7) manifold, the equation is again π7(F ) = 0,

or alternatively ⋆F + Φ ∧ F = 0, where ⋆ is the Hodge star and Φ is the covariantly constant four-form,

suitably normalized. These are the analogs of the hermitian Yang-Mills (or Donaldson-Uhlenbeck-Yau)

equation that was employed in [6].
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persymmetry, and an argument based on holomorphy is not available. Moreover, there is

no useful R-symmetry. So we expect that in this class of heterotic string compactifications,

α′ corrections do spoil spacetime supersymmetry.

2 G2 holonomy manifolds

2.1 Preliminaries

We consider Type II (either IIA or IIB) string theory in a spacetime of the form R
2,1×M ,

whereM is a compact seven-dimensional manifold. We will not turn on fluxes,9 and we wish

to preserve a minimal amount of supersymmetry in three dimensions. The condition for

finding a supersymmetry generator leaving the vacuum invariant imposes strong constraints

on spacetime.10 For example, within supergravity it requires the existence of a covariantly

constant spinor η on M . This implies that M is Ricci-flat, the three-form

φabc = iηTΓabcη, (2.1)

and the dual four-form ψ = ⋆φ are covariantly constant, and the holonomy group of M

is G2. Such a spacetime solves the Einstein equations, and moreover the string theory

beta-functions vanish on such a solution, up to three-loop order.

However, the four-loop correction to the beta-function for the metric does not vanish,

in general, for a G2-holonomy space. We would like to show that, as in the Calabi-Yau case,

we can always find a globally-defined α′-dependent metric, which is close to the Ricci-flat

metric, and which solves the equations to all orders in α′.

Locally, the moduli of the G2 metric on M are given by the cohomology class of the

three-form φ. This cohomology class takes values in a certain cone C ⊂ H3(M,R), which

in general is not well-understood. The analysis of this paper holds for any choice of the

cohomology class of φ, within the cone C.

2.2 Leading order correction

Since in ten-dimensions the supersymmetry algebra only closes on-shell, a correction to the

equations of motion will, in general, lead to corrections to the supersymmetry variations.

To parametrize these corrections, it is useful to recall that in seven dimensions, the spinor

representation is a real representation of dimension 8. Suppose we have a nowhere-vanishing

spinor field η on M , which we can normalize so that ηT η = 1. Let Γa, a = 1, . . . , 7 be the

Dirac matrices, obeying {Γa,Γb} = δab. One cannot choose the Γa to be real, but one can

choose them to be purely imaginary (so that the SO(7) generators Γab =
1
2 [Γa,Γb] are real)

and we will do so. Any other real spinor ψ can then be expanded in the basis {η, iΓaη},
a = 1, . . . , 7. Explicitly

ψ = η
(
ηTψ

)
+ Γaη

(
ηTΓaψ

)
. (2.2)

9For some analysis including G-flux at the classical level, see [10].
10In what follows, indices M,N, . . . , µ, ν, . . . and a, b, . . . are tangent to the ten-, three- and seven-

dimensional spaces, respectively.
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In particular, by expanding in this basis, we can encode any possible corrections to the

transformation law of the ten-dimensional gravitino under spacetime supersymmetry in

terms of two tensors Aa and Ba
b:

δψa = ζ ⊗
(
Daη +Aaη + iB b

a Γbη
)
. (2.3)

Here ζ is a three-dimensional spinor, which we can take to be constant (in looking for

Lorentz-invariant solutions in three dimensions). To order α′3, the corrections to the su-

persymmetry transformation were presented in ref. [3]:

Aa = 0,

Ba
b =

c

2
α′3φacd∇cZdb,

(2.4)

where Zab is the symmetric tensor built out of three Riemann tensors

Zab =
1

32g
ǫac1···c6ǫbd1···d6Rc1c2d1d2Rc3c4d3d4Rc5c6d5d6 , (2.5)

c is a constant, and g = det gab.

Given the α′-corrected supersymmetry transformations, next we construct a supersym-

metric solution perturbatively in α′. Henceforth we label quantities of the corrected space

with primes while unprimed quantities are unperturbed. So the α′-corrected internal space

is denoted by M ′. To preserve supersymmetry we must find a globally-defined spinor η′ on

M ′ which equals η to leading order in α′ and obeys the appropriate α′-deformed equation.

Since A,B are already O(α′3), the vanishing of the variation (2.3) to order α′3 becomes

D′
aη

′ +Aaη + iB b
a Γbη = 0. (2.6)

If we are given such an η′, even just defined locally, it is possible to construct a tensor

φ′abc = iη′TΓ′
abcη

′, (2.7)

(defining what is called a G2-structure that may have torsion) and an associated metric11

g′ab. We also have

ψ′
abcd = η′TΓ′

abcdη
′, (2.8)

or equivalently ψ′ = ⋆′φ′, where the Hodge star is constructed from g′ab.

Eq. (2.6) can be converted into conditions on φ′ and ψ′ by taking derivatives of eqs. (2.7)

and (2.8). We define the four-form α and five-form β

α = dφ′,

β = dψ′,
(2.9)

which are explicitly given by

αabcd = 8A[aφbcd] − 8B e
[a ψbcd]e,

βabcde = 10A[aψbcde] − 40B[abφcde].
(2.10)

11Here g′ is defined in terms of φ′ by the formula (A.9).
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This establishes a connection between Aa and Ba
b and failure of φ′ and ψ′ to be closed

(and thus to the torsion forms defined in proposition 1 of ref. [11]).

With a view to the generalization beyond order α′3, we have written the correction in

eq. (2.6) in terms of Aa and Ba
b. So far these tensors could be anything. However, from

eqs. (2.9) and (2.10) we see that a necessary condition on Aa and Ba
b for the existence of

a G2-structure space M ′ close to M is that the forms α and β are exact. As we show next

this condition is also sufficient. To order α′3, we can use the explicit expressions above to

show that α = dχ and β = dξ, with

χabc = −cφabcZ + 3cφ d
[ab Zc]d,

ξabcd = −4cψ e
[abc Zd]e,

(2.11)

where Z = Za
a. Thus α and β are exact to order α′3.

2.2.1 Existence of a solution

Our task is now to find a globally-defined G2-structure φ
′ (and its associated metric g′ and

four-form ψ′) which is close to φ, i.e.

φ′ = φ+ δφ, (2.12)

and solves the equations

dφ′ = α,

dψ′ = β,
(2.13)

for given exact forms α = dχ and β = dξ.

We can satisfy the first equation by12

φ′ = φ+ χ+ db, (2.14)

for some two-form b. What about the second one? To leading order in fluctuations the

dual four-form ψ′ = ⋆′φ′ satisfies

dψ′ = d ⋆

(
4

3
π1 + π7 − π27

)
(χ+ db) . (2.15)

Here π1, π7, π27 are the projections of three-forms onto ∧3
1,∧3

7 and ∧3
27 respectively (these

are the subspaces of ∧3 that transform in the indicated representations of G2; see the

appendix for concrete expressions). Deformations of G2-structures have been studied in

the literature (see, for example, [12–14]), and the tools developed in that context are useful

in what follows. All we need to know to derive eq. (2.15) is described in the appendix.

Besides the explicit δφ appearing in φ′, there is also implicit δφ dependence in ⋆′ since the

metric is a functional of φ′. Taking this fact into account one easily derives eq. (2.15).

12The possibility of adding to φ′ a closed but not exact three-form is not really interesting here, because

this could be absorbed in shifting the cohomology class of the starting three-form φ. As remarked at the

end of section 2.1, this cohomology class is arbitrary (within a certain cone). So the form given in (2.14) is

essentially the most general.
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We get from (2.15) an equation for b, which can be written as

d†
(
π27 − π7 −

4

3
π1

)
db = d†ρ, ρ = − ⋆ ξ −

(
π27 − π7 −

4

3
π1

)
χ. (2.16)

Here d† = − ⋆d⋆ in acting on three-forms in seven dimensions.

To proceed further, we decompose b into irreducible representations of G2. The space

of two-forms decomposes as ∧2 = ∧2
7 ⊕ ∧2

14, where 7 and 14 are the representations of

G2 of the indicated dimension. Actually, the component of b in ∧2
7 does not contribute

to the right hand side of eq. (2.15), as is shown in eq. (A.31) of the appendix. Hence we

can assume that b ∈ ∧2
14. The reason that the part of b in ∧2

7 does not contribute to the

equation for unbroken supersymmetry is that for b ∈ ∧2
7, db is the change in φ generated

by an infinitesimal diffeomorphism. Indeed, a general section of ∧2
7 is bab = φab

cvc for some

vector field vc, and the corresponding change in the metric is δgab = 2∇(avb), which is the

first-order change in the metric generated by v.

It is also true that d†ρ ∈ ∧2
14. This elementary but somewhat tricky fact is explained

in the appendix (see also eq. (2.51) for another point of view).

We want to show that equation (2.16) has a solution for b. To do this, first let ∆ =

d†d + dd† be the Hodge-de Rham Laplacian, and observe that it is possible to solve the

equations

∆b = d†ρ, d†b = 0. (2.17)

Indeed, standard Hodge theory says that a two-form b obeying these equations always exists

for any three-form ρ on any compact manifold, since d†ρ is orthogonal to the harmonic

two-forms. Moreover, on a G2 manifold, ∆ preserves the decomposition ∧2 = ∧2
14 ⊕∧2

7, so

a solution exists with b ∈ ∧2
14. We can write the first equation in (2.17) as

d† (π27 + π7 + π1) db = d†ρ, (2.18)

since ∧3 = ∧3
27⊕∧3

7⊕∧3
1. But actually, the π1 and π7 terms do not contribute in eq. (2.18).

π1 does not contribute because for any b ∈ ∧2
14, π1db = 0; this is because the representation

1 of G2 does not appear in the decomposition of 7⊗ 14, so it does not appear in the first

derivatives of b. Also, if d†b = 0, one has π7(db) = 0; this is because the 7 of G2 appears

only once in the decomposition of 7⊗14, so there is essentially only one way to form linear

combinations of the first derivatives of b transforming as the 7 of G2, and hence π7(db)

is linear in d†b ∈ ∧1 = ∧1
7. Since the π1 and π7 terms do not contribute, eq. (2.18) is

equivalent to eq. (2.16), which we wished to solve.

2.3 All orders in α
′

Next we describe the generalization to arbitrary orders in α′. We are given supersymmetry

transformations

δψa = ζ ⊗
(
D′

aη
′ +Aaη

′ + iBa
bΓ′

bη
′
)
. (2.19)

Here A,B are functionals of φ′:

Aa = Aa[φ
′], Ba

b = Ba
b[φ′]. (2.20)

– 8 –
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This time we include all orders in the derivative expansion. So

B[φ′] =
∞∑

n=3

Bn[φ
′], (2.21)

where each Bn[φ
′] is a local covariant expression (or functional) constructed out of13 φ′

and its associated metric g′, Riemann tensor R′, and covariant derivatives ∇′, and where

Bn[φ
′] contains 2n + 1 explicit derivatives (with each Riemann tensor counting two and

each covariant derivative counting one). There is a similar expansion for Aa.

We can then construct φ′ and its dual ψ′ = ⋆′φ′

φ′ = η′TΓ′
abcη

′,

ψ′ = η′TΓ′
abcdη

′,
(2.22)

and use the condition for unbroken supersymmetry to compute

dφ′ = α[φ′],

dψ′ = β[φ′].
(2.23)

Explicitly

αabcd = 8A[aφ
′
bcd] − 8B e

[a ψ
′
bcd]e,

βabcde = 10A[aψ
′
bcde] − 40B[abφ

′
cde].

(2.24)

Next we wish to construct the supersymmetric background perturbatively in α′. We

denote the order n term of φ′ by φn. We proceed by induction. In our previous analysis,

we constructed φ3 explicitly. We assume the G2-structure is known up to order n − 1 in

α′. We denote this G2-structure by

φ̃ = φ+

n−1∑

k=3

φk, (2.25)

and we construct the order n contribution to φ′ as a small perturbation around φ̃

φ′ = φ̃+ δφ, (2.26)

where δφ = φn. This deformation of φ̃ leads to a deformation of ψ′

ψ′ = ψ̃ + δψ, (2.27)

where ψ̃ = ⋆̃φ̃ and

δψ = ⋆̃

(
4

3
π̃1 + π̃7 − π̃27

)
δφ, (2.28)

13In the α′ or 1/r expansion, the effective action and (therefore) the supersymmetry transformations are

constructed in terms of g′ without reference to φ′, so actually B can be constructed from the metric g′ and

its derivatives, without reference to φ′. (Note that g′ can be expressed in terms of φ′ via (A.9), but not the

other way around. In the tangent space at any point, g′ has SO(7) symmetry and φ′ reduces the symmetry

to G2.) To leading order, the expression for B in terms of the metric was given in [3].
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where ⋆̃ and π̃ are the Hodge dual and projection operators with respect to the G2-structure

φ̃. We will label the term of order n in α′ of any quantity by |n and from the above we see

that the order n of ψ′ is

ψ′ |n= ⋆̃φ̃ |n + ⋆

(
4

3
π1 + π7 − π27

)
φn, (2.29)

Note that φ̃ includes terms only up to order n − 1 but ⋆̃ and ψ̃ can, in general, receive

contributions of any order since they are non-linear functionals of φ̃.

Let us suppose that the dependence of Aa and Ba
b on φ′ is such that order by order

in α′ the forms α and β are exact. (In section 2.4, we interpret this statement in terms of

effective field theory.) Then there exist globally-defined χn and ξn with

α[φ′] |n = dχn,

β[φ′] |n = dξn.
(2.30)

Note that since α and β are already order (α′)3 explicitly, we can view χn and ξn as being

functionals of φ̃; they do not depend on φn.

By setting

φn = χn + dbn, (2.31)

we solve the part of the first equation in eq. (2.23) that is of the order n in α′. The second

equation in (2.23) turns into a partial differential equation for bn. Indeed, we take the

exterior derivative of (2.29) and set dψ′ |n= dξn, so

dξn = d(⋆̃φ̃) |n +d

[
⋆

(
4

3
π1 + π7 − π27

)]
(χn + dbn). (2.32)

This can be recast in the form

∆bn = d†ρn, d†bn = 0, (2.33)

with

⋆ ρn = ξn − ⋆

(
4

3
π1 + π7 − π27

)
χn − ⋆̃φ̃ |n . (2.34)

In complete analogy to the leading order case, any piece bn ∈ ∧2
7 drops out of eq. (2.33).

Taking bn ∈ ∧2
14, we obtain eq. (2.33) after choosing the gauge d†bn = 0. The source is

co-exact, and satisfies π7(d
†ρn) = 0 (this is shown in appendix A.1.5), and the remaining

steps follow word by word the reasoning we used to leading order in α′.

2.4 Interpretation in three- or four-dimensional field theory

2.4.1 Superfields

We aim here to interpret the above results in the effective field theory that arises by

compactification of Type IIA or Type IIB superstring theory on a G2 manifold M . This is

a theory with N = 2 supersymmetry (four supercharges) in three dimensions. In studying

this theory, we will go beyond low energy effective field theory and include Kaluza-Klein
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harmonics in a way that preserves three-dimensional supersymmetry. We should warn

the reader that more work is needed to fully justify the way we do this. Our analysis is

somewhat speculative.

We will make the analysis for Type IIA and leave the analogous story for Type IIB

for the future. Rather than the α′ expansion of Type IIA on R
3 ×M , we can in a similar

way study the 1/r expansion of M-theory on R
4 ×M (here r is the radius of M). It is not

completely trivial that the analysis is the same for Type IIA and for M-theory, because

in general N = 2 theories in three dimensions, there can be supersymmetric interactions

(Chern-Simons couplings of vector multiplets, for instance) that do not arise by classical

dimensional reduction from four dimensions. If these were important, the Type IIA and M-

theory analyses would be essentially different. However, the supersymmetric interactions

that will be relevant are the most basic ones related to superpotentials and Kahler potentials

for chiral superfields, and these are possible in four dimensions.

Hence at the general level of the following discussion, the constraints on the α′ expan-

sion of Type IIA are the same as those on the 1/r expansion of M-theory and the structure

we will find applies to each. Our analysis is limited to finite orders in α′ or 1/r because we

assume locality alongM , which nonperturbatively in α′ is violated by worldsheet instantons

(Type IIA), and nonperturbatively in 1/r is violated by M2-brane instantons (M-theory).

What happens nonperturbatively in 1/r is quite different from what happens nonpertur-

batively in α′. In M-theory, the M2-brane instantons violate a certain shift symmetry

(adding a harmonic form to the C-field) and generate a spacetime superpotential [18] that

destabilizes the R
4 ×M compactification. In Type IIA, the worldsheet instantons respect

the relevant shift symmetry14 and a simple argument given in the introduction shows that,

to all finite orders in the string coupling constant gst, the R
3×M compactification remains

supersymmetric.15 In particular, setting gst = 0, one expects an exact superconformal field

theory describing G2 compactification. The more detailed analysis we give here, which

aims to explain what we have found in sections 2.1–2.3, assumes locality along M and so

is valid only to all finite orders in α′.

Exploiting three- or four-dimensional supersymmetry as well as locality along M , we

will try to describe Type IIA or M-theory compactification onM in terms of three- or four-

dimensional superfields that are also functions, or forms, alongM . This part of the analysis

will be more transparent in the M-theory language. Once we have identified the relevant

superfields, we will phrase our discussion in terms of the α′ (rather than 1/r) expansion.

The bosonic fields of eleven-dimensional supergravity consist of the metric tensor16

gMN and the three-form field CMNP . In compactification on M , these fields will give the

propagating bosonic modes of four-dimensional supermultiplets. We can see what these

supermultiplets must be as follows:

(1) The part gµν(x; y) of the metric tensor (here x is a coordinate along R4 and y alongM)

gives fields of spin 2 or 0 on R
4 that are scalar functions on M . Clearly, the Kaluza-

14They violate a different shift symmetry involving the B-field of the NS sector.
15Nonperturbatively in gst, this stability is lost because of D2-brane instantons, which are analogs of

M2-brane instantons in M-theory.
16See footnote 10 for index conventions.
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Klein expansion of M-theory on R
4×M contains massive spin 2 supermultiplets. We

will not try to understand these multiplets here, though this will have to be part of

a full understanding.

(2) There are two sources of spin 1 fields along R
4 that will be the bosonic parts of vector

multiplets. From the C-field, we get the components Cµab(x; y), which we interpret

as the bosonic part of a vector multiplet Vab that is a two-form alongM (and a vector

multiplet in R
4). Similarly, the components gµ

a of the eleven-dimensional metric give

vector multiplets V̂ a that comprise a vector field along M .

(3) Taking advantage of the fact that M-theory on R
4×M is invariant under a reflection of

R
4 combined with a sign change of C, spin zero fields in this theory can be classified as

scalars or pseudoscalars. Pseudoscalars come from the part Cabc(x; y) of the C-field,

which gives us a pseudoscalar field on R
4 that is a three-form on M . Scalars come

from the part gab of the metric and also from the part Cµνa of the C-field (here one

must recall that a two-form on R
4, such as Cµνa, is dual to a field of spin 0). We expect

all these fields to combine to the propagating modes of a field Ĉabc that will be a chiral

superfield on R
4 and a three-form onM . The bottom component of Ĉabc is a complex

field of spin 0 that we will call Cabc. We expand Cabc(x; y) = φ̂abc(x; y) + iCabc(x; y),

where the imaginary part is the pseudoscalar field Cabc, and the real part φ̂abc is

constructed from gab and (the dual of) Cµνa. Concerning this last point, we note

that in expansion around a metric of G2 holonomy, a three-form Cabc transforms as

1⊕7⊕27, while a perturbation in the metric gab transforms as 1⊕27, and the dual of17

Cµνa transforms as 7. So the pieces are there for the scalar and pseudoscalar fields to

combine properly into the complex three-form Cabc. The reason that we denote the

real part of Cabc as φ̂ is that in the classical limit (1/r → 0 or α′ → 0), expanding

around a metric of G2 holonomy, φ̂ will coincide with the covariantly constant three-

form φ associated to the G2 metric. Thus φ̂ will be an α′-corrected version of φ. φ̂ will

be the analog in our present analysis of the α′-corrected three-form that was called

φ′ in section 2.2. The relation between φ′ and φ̂ will be the subject of section 2.4.4.

We can use the chiral multiplets and vector multiplets that have just been introduced

to describe M-theory on R
4 ×M , to all finite orders in 1/r, in a way that exhibits super-

symmetry (and locality) along R
4 and locality alongM . The same set of superfields can be

used to similarly describe Type IIA on R
3×M . Rather than always repeating ourselves, we

formulate the following statements in terms of Type IIA. In what follows, the goal will be

to describe possible supersymmetric vacua. In such a vacuum, the fields are independent of

x. So we can drop the dependence of the fields on x (that is, on R
3 or R4) and concentrate

on the dependence on y.

17The dual of Cµνa is even under C → −C accompanied by a reflection of one coordinate in R
4, so φ̂abc is

even under this symmetry while Cabc is odd. Hence the Kahler potential that we introduce later is invariant

under φ̂ → φ̂, C → −C.
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2.4.2 Conditions for unbroken supersymmetry

In general, in a globally supersymmetric four-dimensional theory of chiral multiplets Φ

and vector multiplets Vζ , or a three-dimensional theory of such multiplets with no Chern-

Simons couplings for the vector multiplets,18 the condition for unbroken supersymmetry is

δW = 0 = Dζ , where δW is the variation of the spacetime superpotential W (Φ), and Dζ

are the auxiliary fields in the vector multiplets Vζ . After coupling to supergravity, to get

unbroken supersymmetry in Minkowski spacetime, one additionally needs W = 0.

In the present context, we can easily make explicit the conditions W = δW = 0. W

will have to be a holomorphic function of the three-form field C. It must be constructed

without use of a metric on M (since the metric is a function of the real part of C and

thus is a non-holomorphic function of C). So up to a constant multiple, the superpotential

must be

W =

∫

M

C ∧ dC. (2.35)

The condition δW = 0 is thus simply

dC = 0. (2.36)

In more detail, this is

G = 0, (2.37)

where G = dC is the field strength of the three-form field C (or more precisely the part of

this field strength that is a four-form along M), and

dφ̂ = 0. (2.38)

Thus in contrast to section 2.2 where the α′-corrected three-form φ′ did not obey dφ′ = 0,

here there will be no α′ correction to the statement dφ̂ = 0. The further conditionW = 0 is

automatic if C is a globally-defined three-form (for then dC = 0 implies that
∫
C ∧ dC = 0);

since φ̂ is certainly globally-defined, this is true if the C-field is topologically trivial.

To learn more, we will have to impose the second condition for unbroken supersym-

metry, which is the vanishing of the auxiliary fields Dζ . As explained above, the theory of

interest has two kinds of vector multiplets, namely a two-form Vab and a vector field V̂ a.

The symmetry gauged by V̂ a is the group of diffeomorphisms of M . On the other hand,

the two-form Vab gauges the group of C-field gauge transformations C → C + dΛ, φ̂ → φ̂,

where Λ is an arbitrary two-form on M . Thus the transformation is

δC = idΛ. (2.39)

Clearly, Vab is odd under C → −C, while V̂ a is even. It turns out that the corresponding

auxiliary field DV and D
V̂

transform oppositely to V and V̂ (this is because the Kahler

form that we analyze below is odd under C → −C), so DV is even and D
V̂

is odd. DV

18In the present context, the symmetry of Type IIA on R
3 ×M under a reflection of R3 (together with

a reversal of orientation of the string worldsheet) ensures that Chern-Simons couplings are not possible for

the vector multiplets Vab and V̂a.
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and D
V̂

are gauge-invariant local functionals of C, so they are really depend on C only

through G = dC. Eq. (2.37) tells us that G = 0 in a supersymmetric vacuum, and once we

set G = 0, D
V̂

will automatically vanish, since it is odd in G. So the additional condition

for unbroken supersymmetry that we are looking for will be DV = 0.

In general, consider any theory with four supercharges with chiral multiplets Ĉ =

C + . . . that parametrize a Kahler manifold X , and with vector multiplets Vζ generating a

group G of symmetries of X . On-shell, the corresponding auxiliary fields Dζ are functions

Dζ(C, C) on X and together these functions comprise the “moment map” for the action of

G on X . In general, these functions transform in the representation of G that is dual to

the adjoint representation. In the present context, we take G to be the group of C-field

gauge transformations, so a generator of G is a two-form Λ, as in eq. (2.39). Hence, the

auxiliary field will be a five-form D(C, C) which, order by order in the α′ expansion, will

be constructed locally from C, C, and their derivatives.

But actually, the group G does not act faithfully on C: the C-field gauge transformation

generated by a closed two-form Λ is trivial. Hence D(C, C) takes values in the dual to the

space of two-forms modulo closed ones. In seven dimensions, the dual of two-forms mod

closed ones is the space of exact five-forms, and therefore D(C, C) will be exact, as we find

explicitly below.

In our problem, the Kahler manifold X parametrized by the C’s is simply the space

of complex-valued three-forms on M . We must discuss the Kahler metric on X , since

in general the moment map depends on the Kahler metric. The Kahler metric ds2 is

determined in the usual fashion by a Kahler potential K(C, C):

ds2 =

∫

M×M

δC(y)⊗ δC(y′) δ2K

δC(y)δC(y) . (2.40)

(We will write δ for a variation on the infinite-dimensional space X , and d for the exterior

derivative on M .) Though we have written the metric as an integral over M ×M , this

integral actually collapses, order by order in the α′ expansion, to an integral over a single

copy of M . The reason for this is that the functional K is local order by order in α′ (that

is, it is the integral over M of a local function of C, φ̂, and their derivatives up to a finite

order), so that the second variation δ2K/δC(y)δC(y′) is a sum of terms proportional to

δ(y, y′) and its derivatives. This ensures that the integral on the right hand side of (2.40)

collapses, order by order, to a local integral over M .

Type IIA superstring theory has a symmetry (−1)FL that ensures that K is an even

function of C. Also, the Kahler metric of X does not depend on the orientation19 of M ,

since Type IIA superstring theory on R
3 ×M is invariant under simultaneous reversal of

R
3 and M . The Kahler potential K of X is not uniquely determined, since one is free to

make a Kahler transformation K → K + f + f , where f is a holomorphic function on X .

But since the Kahler metric of X is gauge-invariant, K can be chosen to be gauge-invariant

and thus to depend on C only via G = dC. (The fact that K does not depend on the

orientation of M excludes a term
∫
M
C ∧ dC in K.)

19As explained in footnote 24 of the appendix, a G2 manifold does not have a preferred orientation.
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The fact that K depends on C only via G = dC will ensure that the C-dependent

terms in K do not contribute to the functions D(C, C). To explain this, we will expand K

in powers of G, keeping the quadratic term (there is no linear term as K is even in C). It

will be clear from the derivation that terms in K that are higher than quadratic in G will

not contribute to D(C, C) at G = 0, and actually we will see that also the quadratic terms

do not contribute. Thus we write

K = 4K0(φ̂) +

∫

M×M

G(y) ∧G(y′) ∧K1(y, y
′) + . . . . (2.41)

(The factor of 4 is for later convenience.) Here K1(y, y
′) is a three-form in each variable.

As in (2.40), we write the second term here as an integral over M × M , but order by

order in α′, it actually collapses to an integral over a single copy of M , since K1(y, y
′) is

proportional to δ(y, y′) and its derivatives up to a finite order. The Kahler metric derived

from (2.41) is

ds2 =

∫

M×M

δC(y)⊗ δC(y′) δ2K0

δφ̂(y)δφ̂(y′)
+

1

2

∫

M×M

dδC(y) ∧ dδC(y′) ∧K1(y, y
′) +O(G).

(2.42)

We omit terms proportional to G as we will be setting G = 0. The corresponding Kahler

form is

ω =

∫

M×M

δφ̂(y) ∧ δC(y′) δ2K0

δφ̂(y)δφ̂(y′)
+

1

2

∫

M×M

dδφ̂(y) ∧ dδC(y′) ∧K1(y, y
′). (2.43)

In general, given a vector field V ζ acting on a Kahler manifold X with Kahler form ω,

the corresponding D-auxiliary field Dζ is characterized (up to an additive constant which

is known as the Fayet-Ilioupoulos D-term) by the relation δDζ = ιV ζω, where ιV ζ is the

operation of contraction with respect to V ζ . To implement this in the present context, we

let V Λ be the vector field that generates the C-field gauge transformation δC = dΛ, for

some two-form Λ. The contraction ιV Λω is evaluated by replacing δC in the formula for ω

by −dΛ (there is a minus sign because ιV Λ anticommutes with δφ̂). When we do this, the

K1 term does not contribute because dδC(y′) is replaced by d2Λ(y′) = 0. So

ιV Λω = −
∫

M×M

δφ̂(y) ∧ dΛ(y′) ∧ δ2K0

δφ̂(y)δφ̂(y′)
. (2.44)

We are now supposed to set this equal to δDΛ. Clearly the desired relation δDΛ = ιV Λω is

satisfied by20

DΛ =

∫

M

Λ ∧ dδK0

δφ̂
. (2.45)

The condition that DΛ = 0 for all Λ is that D = 0, where

D = dψ̂, (2.46)

20Diffeomorphism invariance does not allow us to add an FI term to this formula. An FI term would be a

contribution to DΛ that is constant, that is independent of φ̂. But there is no diffeomorphism-invariant way

to construct a five-form contribution to DΛ if it is not allowed to depend on the only field in the problem,

namely φ̂.
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with

ψ̂ =
δK0

δφ̂
. (2.47)

Clearly, the five-form D is always exact, even when it does not vanish. We expect that D

corresponds to the exact five-form β that was found in sections 2.2 and 2.3. The conditions

for unbroken supersymmetry are δW = D = 0, or in other words dφ̂ = dψ̂ = 0.

In the classical limit α′ → 0, K0 is [18–20] a multiple of log V (M), where21 V (M) is

the volume of M (computed using the metric (A.9), where in the classical limit, we need

not distinguish φ̂ from φ). With K0 a constant multiple of log V (M), ψ̂ as defined in (2.47)

is a multiple of ψ = ⋆φ, where ⋆ is the Hodge star defined using the metric (A.9). So the

conditions δW = D = 0 give the expected results 0 = dφ = d ⋆ φ, which characterize G2

holonomy at the classical level. In our framework, K0 and therefore the function ψ̂(φ̂) will

receive corrections order by order in α′, and these give the corrections to G2 holonomy.

As for what metric should be used to describe M , taking into account the α′ corrections,

this question does not have a unique answer. One can simply use eq. (A.9) to define a

metric g on M , using φ̂ instead of φ. With α′ corrections included, this metric will not

have G2 holonomy, since although there is a closed four-form ψ̂, it is not simply ⋆
φ̂
φ̂ (where

⋆
φ̂
is defined using the metric g). Since this metric does not have G2 holonomy, it is not

really distinguished. One can just as well modify eq. (A.9) by adding α′ corrections in the

relation between g and φ̂.

2.4.3 Diffeomorphism invariance and expansion in powers of α′

In this analysis, we have made no use of the second set of vector multiplets V̂ a, which gauge

the diffeomorphisms of M . Their D auxiliary fields trivially vanish once we set G = 0,

so the vanishing of these fields gives no additional constraint. However, the existence of

this gauge symmetry means that the functional K0(φ̂) is diffeomorphism-invariant. Let

us determine the implications of this. Let va be a vector field on M that generates an

infinitesimal diffeomorphism. The transformation of a general three-form φ̂ generated by

this vector field is δφ̂ = (ιvd+ dιv)φ̂, where ιv is the operation of contraction with v. If we

restrict ourselves to the case that dφ̂ = 0, then

δφ̂ = dιvφ̂. (2.48)

Diffeomorphism invariance of K0 means that (if dφ̂ = 0) K0 is invariant under this trans-

formation, so

0 =

∫

M

dιvφ̂ ∧ δK0

δφ
=

∫

M

dιvφ̂ ∧ ψ̂. (2.49)

After integrating by parts, and recalling that dψ̂ is the exact five-form D, we learn that

for any vector field v on M ,

0 =

∫

W

ιvφ̂ ∧D. (2.50)

Now recall that any φ̂ that obeys some mild inequalities such that the formula (A.9)

defines a Riemannian metric g gives a reduction of the structure group of the tangent

21See also [21] for properties of this volume functional.
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bundle of M to G2; this is known as a G2-structure on M . In particular, if φ̂ arises in

α′ perturbation theory starting with the covariantly constant three-form φ of a classical

metric of G2 holonomy, then certainly the relevant inequalities are obeyed and φ̂ does define

a G2-structure. This means that it determines a decomposition of the space of two-forms

on M as ∧2 = ∧2
7 ⊕ ∧2

14, with corresponding projection operators π7 and π14. Since ιvφ̂ is

an arbitrary section of ∧2
7, eq. (2.50) is equivalent to the identity

π7(D) = 0 (2.51)

which holds whenver dφ̂ = 0.

Let us now make a few remarks about solving the equations dφ̂ = dψ̂ = 0 in an

expansion in powers of α′. K0 has an expansion in powers of α′ with the leading term

being the classical expression K0,cl and the first correction being of order (α′)3:

K0 = K0,cl +
∞∑

n=3

(α′)nK0,n. (2.52)

Correspondingly we expand φ̂ in a series in α′. The classical term is the covariantly constant

three-form φ of a classical metric of G2 holonomy. The corrections must preserve the fact

that dφ̂ = 0, and (for the same reason as in footnote 12) we may as well assume that the

corrections do not change the cohomology class of φ̂. Therefore we assume that the series

takes the form

φ̂ = φ+
∞∑

n=3

(α′)ndbn, (2.53)

with two-forms bn. In this expansion, we can assume that bn ∈ ∧2
14 for the same reason as in

section 2.2.1. Indeed, we are only interested in the solution of the equations dφ̂ = dψ̂ = 0

up to diffeomorphism. In each order in the expansion, an infinitesimal diffeomorphism

(with a generator of order (α′)n) can shift π7(bn) in an arbitrary fashion, and therefore

in solving the equations we can assume that π7(bn) = 0. The equation dψ̂ = 0, where

ψ̂ = δK0/δφ̂ and K0 has the expansion (2.52), can then be expanded in powers of α′. In

order (α′)n, with n ≥ 3, we get a linear equation for bn that has the structure explored in

sections 2.2.1–2.3. This equation has an essentially unique solution for the same reasons

as described there.

2.4.4 The relation between the two expansions

The expansion that we have just described is very similar to the expansion that we described

starting in section 2.2, but there is one notable difference. In section 2.2, the quantum-

corrected G2-structure was described by a three-form φ′ that did not obey dφ′ = 0; see

eqs. (2.9) and (2.10) for explicit formulas in lowest order. By contrast, in the present

analysis, the equation dφ̂ = 0 is exact and only the equation d⋆φ̂ = 0 receives α′ corrections.

Reexamining the formulas of section 2.2, we see that at least in leading order, although

dφ′ 6= 0, one has d(φ′ − χ) = 0 where χ is a locally-defined function of φ′ (this is shown

in eq. (2.11), where to the given order, φ can be replaced by φ′). Hence, although the
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three-form φ′ that determines the α′-corrected metric is not closed, it fails to be closed by

a term that could be removed by a local change of variables, that is by the addition to

φ′(y) at a point y ∈ M of a function of φ′(y) and its derivatives up to finite order. It is

logical to think that φ′ − χ in section 2.2 corresponds to φ̂ in our present analysis.

We suggest that the relation between φ′ and φ̂ can be regarded as the relation between

two different regularizations of the supersymmetric σ-model with target M . In section 2.2,

we used formulas that arise if one computes the effective action of ten-dimensional super-

string theory on a general ten-manifold Z and then specializes to Z = R
3 ×M . These

formulas have ten-dimensional Poincaré covariance and (order by order in α′) locality, but

they do not have manifest spacetime supersymmetry. The standard regularizations of the

σ-model preserve Poincaré covariance and locality and lead to such formulas. We will call

such a regularization a 10-dimensional regularization.

By contrast, in section 2.4.1, we asked for a formalism that preserves three-dimensional

covariance and locality and supersymmetry and seven-dimensional covariance and locality,

but we did not assume ten-dimensional covariance. If there is a regularization of the σ-

model compatible with these requirements, it is a different one than is customarily used

in ten dimensions. In such a regularization, one would expect φ̂ (since it is part of the

superfield C) to be the natural variable, rather than φ′. We will call this a 3×7-dimensional

supersymmetric regularization.

Two reasonable regularizations differ, order by order in perturbation theory, by a

local change of variables. Thus, the variable φ̂ used in a hypothetical 3 × 7-dimensional

supersymmetric regularization would be expected to differ by a local change of variables

from the variable φ′ used in a standard 10-dimensional regularization. This is the structure

that we have found explicitly in the first non-trivial order, and this encourages us to think

that a 3×7-dimensional supersymmetric regularization might exist, though we do not know

how to construct one.

The significance might be as follows. As we recalled in the introduction, in the case of

compactification of Type II superstring theory on a Calabi-Yau manifold, there is a nice

σ-model argument [5] showing that supersymmetry is unbroken order by order in α′. We

believe that a 3 × 7-dimensional supersymmetric regularization, if it exists, might lead to

a similar argument for G2 manifolds. All this may have an analog for the problem we

study in section 3: a 2 × 8-dimensional supersymmetric regularization might provide a

good framework for understanding α′ corrections to compactification on an eight-manifold

of Spin(7) holonomy.

2.4.5 Some properties of the moduli space

Here we will describe an interesting consequence of the relation (2.47) between ψ̂ and φ̂.

This consequence can be deduced with no knowledge of the functional K0 except

its classical limit for α′ → 0, which ensures that the moduli space of superconformal σ-

models with target M goes over for α′ → 0 so the corresponding classical moduli space of

G2 metrics.

Since φ̂ is closed, its cohomology class [φ̂] defines an element of H3(M,R). Likewise,

ψ̂ has a cohomology class [ψ̂] ∈ H4(M,R). In the classical limit, these go over to the
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cohomology classes of the familiar covariantly constant forms φ and ψ = ⋆φ. Let M0

be the moduli space of G2 metrics on M , modulo topologically trivial diffeomorphisms.

(This is a rough analog of the Teichmuller space of a Riemann surface.) The classical

moduli space M0 is conical (since a G2 metric can be rescaled by a positive constant). The

corresponding moduli space M of superconformally invariant σ-models with target M is

not conical. However, the fact that a classical G2 metric can be deformed order by order

in α′ to give a superconformally-invariant σ-model, and that this deformation is unique up

to a reparametrization of the variables in the σ-model, ensures that M looks like M0 near

infinity. This ensures that M inherits some properties of M0 (at least in the large volume

region), so we will first state some general properties of M0.

We define a map ̺ : M → Q = H3(M,R)⊕H4(M,R) that takes a point in M to the

point [φ̂]⊕ [ψ̂] ∈ Q. This definition makes sense both in the classical theory at α′ = 0 and

(at least to all orders in α′) in the quantum-corrected theory. A basic result about classical

G2 manifolds is that if we set α′ = 0, the map ̺ is locally an embedding. Moreover, in

the classical theory, ̺(M) is middle-dimensional in Q and can be parametrized locally by

[φ̂] (with [ψ̂] regarded as a function of [φ̂]), as stated in Theorem 10.4.4 of [16]. All these

statements, which are basic facts in the theory of classical G2 manifolds, are stable under

arbitrary small perturbations of the map ̺ : M → H3(M,R) ×H4(M,R). So since these

statements hold for the classical moduli space M0, and given that M is asymptotic to M0

at infinity, they also hold for M, at least for sufficiently large volume. (The definition we

have given of the map ̺ : M → H3(M,R) ⊕ H4(M,R) is only valid to all finite orders

in α′, but we expect a natural such map to exist in general. Perhaps it can be defined in

superconformal field theory. We expect the map ̺ to be everywhere an immersion of a

middle-dimensional submanifold, but the assertion that ̺(M) can be parametrized locally

by [φ̂] may be valid only near large volume.)

Now we come to a more delicate statement that does depend on the relation (2.47).

For α′ = 0, this statement is Proposition 10.4.5 in [16]. For a closed three-form φ̂ and

closed four-form ψ̂, the integral
∫
M
ψ̂ ∧ φ̂ depends only on the cohomology classes [φ̂] and

[ψ̂]. We can use this integral to define a symplectic form ̟ on Q = H3(M,R)⊕H4(M,R):

̟ =

∫

M

δφ̂ ∧ δψ̂. (2.54)

The claim is that ̺(M) is a Lagrangian submanifold of Q (which means that ̟ vanishes

when restricted to ̺(M)). We will explain this argument very explicitly. We pick a basis

of H3(M,R) and a dual basis of H4(M,R) and let φ̂λ and ψ̂λ be the components of [φ̂]

and [ψ̂] with respect to these bases. (For legibility of the following formulas, we prefer to

write φ̂λ and ψ̂λ rather than [φ̂]λ and [ψ̂]λ.) In these variables,

̟ =
∑

λ

dφ̂λ ∧ dψ̂λ. (2.55)

(After reducing to the finite set of variables φ̂λ and ψ̂λ, we write the exterior derivative as

d rather than δ.) Once we restrict to M, φ̂ is uniquely determined by is cohomology class

[φ̂], so K0(φ̂) can be regarded as a function of [φ̂] and hence of its components φ̂λ, and
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eq. (2.47) tells us that along M,

ψ̂λ =
∂K0

∂φ̂λ
. (2.56)

It follows that

dψ̂λ =
∑

ν

dφ̂ν
∂2K0

∂φ̂λ∂φ̂ν
, (2.57)

and hence when restricted to M,

̟ =
∑

λ,ν

dφ̂λ ∧ dφ̂ν ∂2K0

∂φ̂λ∂φ̂ν
= 0, (2.58)

where we use the fact that ∂2K0/∂φ̂
λ∂φ̂ν is symmetric in λ and ν. This shows that ̺(M)

is Lagrangian in Q.

We expect this conclusion to be valid exactly, not just to all finite orders in α′. The

claim that K0 is a local functional of φ̂ is valid only to all finite orders in α′, but in the

exact theory, we expect that there is a Kahler potential on the space X that can be used

as input to this analysis, leading to the same conclusion.

3 Spin(7) holonomy manifolds

In this section, we consider Type II superstring theory on a spacetime of the form R
1,1×M ,

where M is a compact eight-dimensional manifold. At the classical level, the condition for

such a compactification to preserve supersymmetry on R
1,1, in the absence of fluxes,22 is

that the holonomy group of M should be Spin(7) (or a subgroup thereof). If the holonomy

group is precisely Spin(7), which is the case we will concentrate on, then compactification

on M preserves (1, 1) supersymmetry on R
1,1 (Type IIA) or (0, 2) supersymmetry (Type

IIB). Our goal is to investigate α′ corrections to such compactifications.

An eight-manifold of Spin(7) holonomy admits a covariantly constant spinor field η

of negative chirality, which we normalize (up to sign) by setting ηT η = 1. Spin(7) and

G2 geometries share many common features when described in terms of the covariantly

constant spinor so we will be brief and collect technical details in the appendix. We will

have to explain, however, a few key differences between the two cases.

For any η of negative chirality, the four-form

Φabcd = ηTΓabcdη, (3.1)

is anti-selfdual. If η is covariantly constant, then Φ also covariantly constant and in par-

ticular is closed and co-closed, dΦ = d ⋆ Φ = 0.

22For some results on the case with G-flux included at the classical level (in the M-theory context and

with M restricted to have holonomy SU(4) ⊂ Spin(7)), see [22]. See [23] for an analysis of the analogous

conditions for Spin(7).
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3.1 Leading order correction

As in the G2-holonomy case, to describe corrections of order α′3 to the supersymmetry

transformations, we expand in a basis of real, antichiral spinors. The negative chirality

spinors of SO(8) decompose under Spin(7) as 1⊕ 7, and the two-forms transform as 28 =

7⊕ 21. So we can take a basis of negative chirality spinors given by η and cabΓabη, where

cab is an antisymmetric tensor transforming in the 7. Hence the condition to have an

unbroken supersymmetry with α′3 corrections included must take the form of the existence

of a spinor η′ = η +O((α′)3) satisfying

D′
aη

′ = Aaη + C bc
a Γbcη, (3.2)

where Aa and C
bc

a are real tensors onM , proportional to (α′)3, that are locally constructed

from Φ. Note that C bc
a transforms in the 8 ⊗ 7 ∼= 8 ⊕ 48 of Spin(7). Eq. (3.2) is readily

seen to imply that the one-form A = Aady
a is A = 1

2d log(η
′T η′), and hence if we rescale η′

so that η′T η′ = 1 (this may not be the natural normalization for other purposes), it obeys

eq. (3.2) with Aa = 0. Actually, the standard formulas for the (α′)3 correction do have

Aa = 0.

We define a corrected four-form

Φ′
abcd = η′TΓ′

abcdη
′. (3.3)

The α′-corrected condition (3.2) for unbroken supersymmetry is equivalent to the condition

dΦ′ = γ (3.4)

for Φ′, where we define

γabcde = −80C fg

[a gb|f |Φcde]g. (3.5)

Note that both the 8 and 48 pieces of C appear in γ. These are known as the torsion

classes of the Spin(7)-structure, and their data is equivalent to that contained in C bc
a .

At leading order, from [15] we have

Ca
bc = −cα

′3

4
Φ qrs
a ∇qZ

bc
rs . (3.6)

Here c is a constant, and Zabcd is given by

Zabcd =
1

64g
ǫabe1···e6ǫcdf1···f6Re1e2f1f2Re3e4f3f4Re5e6f5f6 . (3.7)

From here we find γ = dχ with

χabcd = 8cΦ e
[abc Zd]e − 12cΦ ef

[ab Zcd]ef . (3.8)

So γ is exact. As we describe next, this cohomology condition on γ is necessary and

sufficient for the existence of a Spin(7)-structure on M that is close to the classical one

and obeys the α′-corrected condition for supersymmetry, to this order.
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Before trying to solve the eq. (3.4) for unbroken supersymmetry, we must understand

an important difference between aG2-structure on a seven-manifold and a Spin(7)-structure

on an eight-manifold. At a given point p in a seven-manifold, any three-form φ that obeys

some inequalities is invariant under a G2 subgroup of the group GL(7,R) that acts on the

tangent space at p. (These inequalities amount to saying that a metric can be defined by the

formula of eq. (A.9).) If φ obeys the relevant inequalities, we say it defines a G2-structure

at p. A three-form φ on a seven-manifoldM that obeys the relevant conditions everywhere

on M is said to define a G2-structure on M ; if φ has this property, then any three-form

φ′ that is sufficiently close to φ does as well. Matters are different in one dimension more.

At a given point p in an eight-manifold M , a generic four-form Φ′ is not invariant under a

Spin(7) subgroup of the group GL(8,R) that acts on the tangent space at p. Φ′ has Spin(7)

symmetry if and only if there is an orientation-preserving element of GL(8,R) that maps

Φ′ to a standard fiducial four-form Φ0. Following ref. [16], section 10.5, we write ApM for

the space of four-forms that obey this condition at a point p ∈M , and AM for the space of

four-forms that obey the condition for all p ∈ M . From this description, clearly GL(8,R)

acts transitively on ApM , with the stabilizer group of a point being Spin(7). So there

is a one-to-one correspondence between ApM and the coset GL(8,R)/Spin(7). Counting

dimensions, we have

| GL(8,R)/Spin(7) |= 43 < 70 =

(
8

3

)
=
∣∣∧4T ⋆

pM
∣∣ . (3.9)

So ApM is not an open subset of the space ∧4 of all four-forms at p; it is of codimension

70 − 43 = 27. Under a Spin(7) subgroup of GL(8,R), ∧4 decomposes as 1 ⊕ 7 ⊕ 35 ⊕ 27.

If Φ defines a Spin(7)-structure, then a deformation of Φ in the 1 represents a rescaling

of Φ, preserving in each tangent space the Spin(7) subgroup of GL(8,R) that leaves Φ

fixed. A deformation in the 7 ⊕ 35 represents a rotation of that Spin(7) subgroup inside

GL(8,R). But a deformation of Φ that is in the 27 cannot be interpreted as a deformation

of the Spin(7)-structure. Thus the tangent space to ApM at the point corresponding to

Φ decomposes as 1 ⊕ 7 ⊕ 35, and the condition that a deformation δΦ of Φ represents a

deformation of the Spin(7)-structure of M is that

π27(δΦ) = 0 (3.10)

or equivalently

δΦ ∈ ∧4
1 ⊕ ∧4

7 ⊕ ∧4
35. (3.11)

Explicitly, the meaning of the condition (3.11) on δΦ is the following. Comparing the

definition of the unperturbed four-form Φ in eq. (3.1) to the definition of the perturbed four-

form Φ′ in eq. (3.3), we see that the perturbation Φ′ has two sources: (i) the perturbation

from η to η′; and (ii) the perturbation in the gamma matrices that appear in Γ′
abcd in

eq. (3.3). Since we have set η′T η′ = 1, the perturbation η′ − η transforms in the 7. The

perturbation in the gamma matrices arise because of a perturbation in the metric g of M .

The metric is a symmetric second rank tensor gab; perturbations of gab about a metric of
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Spin(7) holonomy transform as 1 ⊕ 35. Altogether, then, first order perturbations of Φ

should transform as 1⊕ 7⊕ 35, with no contribution transforming as 27.

Now we expand

Φ′ = Φ+ δΦ, (3.12)

and try to pick δΦ to satisfy d(δΦ) = γ and also π27(δΦ) = 0. If π27(χ) = 0, we would

simply take Φ′ = Φ + χ, and this would give the deformed Spin(7)-structure. However,

π27(χ) 6= 0 and therefore a more elaborate discussion is required. We will try

Φ′ = Φ+ (1− π27) (χ+ dc) , (3.13)

for some three-form c. By construction we have π27(Φ
′) = 0, so it remains only to show

that we can find some globally-defined c such that dΦ′ = γ, or

dπ27dc = −dπ27χ. (3.14)

The decomposition of the space of three-forms under Spin(7) is ∧3 = ∧3
8 ⊕ ∧3

48. A c ∈ ∧3
8

corresponds to the change in Φ induced by an infinitesimal diffeomorphism. It does not

contribute to eq. (3.14) since 8⊗ 8 ∼= 1⊕ 7⊕ 21⊕ 35, so that π27dc = 0 for c ∈ ∧3
8. So we

restrict to c ∈ ∧3
48. Similarly the source −dπ27χ is also in ∧5

48 (dually to the decomposition

of ∧3, one has ∧5 = ∧5
8 ⊕∧5

48; since 8 does not appear in the decomposition of 8⊗ 27, one

has dπ27χ ∈ ∧5
48). Because of the decomposition ∧4 = ∧4

1 ⊕ ∧4
7 ⊕ ∧4

27 ⊕ ∧4
35, we have on

four-forms 1 = π1 + π7 + π27 + π35, so

d (π1 + π7 + π27 + π35) dc = 0. (3.15)

Hence the equation (3.14) that we are trying to solve is equivalent to

d (π1 + π7 − π27 + π35) dc = 2dπ27χ. (3.16)

For c ∈ ∧3
48, π1(dc) = 0, since 1 does not appear in the decomposition of 8⊗ 48. So we can

reverse the sign of the π1 term in eq. (3.16). We will show that we can solve eq. (3.16) while

also requiring that c is coclosed, d†c = 0. If this condition is satisfied, then π7(dc) = 0;

indeed, 7 occurs only once in the decomposition of 8⊗48, so it occurs only once in the first

derivatives of c, and this contribution is a multiple of d†c. So if d†c = 0, we can reverse the

sign of the π7(dc) term in eq. (3.16). At this point, we use the fact that (since ∧4
+ = 35

and ∧4
− = 1 ⊕ 7 ⊕ 27) the Hodge ⋆ operator on four-forms is ⋆ = −π1 − π7 − π27 + π35.

Given this, the equations that we have to satisfy can be written d†dc = −2d†π27χ, d
†c = 0,

or equivalently

∆c = −2d†π27χ, d†c = 0, (3.17)

where ∆ = d†d+dd† is the Hodge-de Rham Laplacian. By the general theory of the Hodge-

de Rham Laplacian, since the source is orthogonal to the kernel of ∆, these equations have

a solution (unique up to the possibility of adding a harmonic three-form to c), and the

solution can be taken to lie in ∧3
48 because the Hodge-de Rham Laplacian respects the

decomposition ∧3 = ∧3
8 ⊕ ∧3

48 and the source lies in ∧3
48.
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3.2 All orders in α
′

To extend this result to all orders in α′, we proceed as in section 2.2. We expand

Φ′ = Φ+
∞∑

k=3

(α′)kΦk. (3.18)

As in the G2 case, a solution will only exist, in a given order in the expansion, if a certain

closed form is actually exact. In this case, in order (α′)k, the condition that we will have

to satisfy is dΦk = γ[Φ′]|k, where γ[Φ′]|k is a functional constructed locally from the lower

terms in the expansion for Φ′. Clearly a solution can only exist if γ[Φ′]|k is exact, say

γ[Φ′]|k = dχk for some χk. In this case, we require

dΦk = dχk, (3.19)

with also a constraint that ensures that Φ′ ∈ AM . If the constraint were simply that

π27Φk = 0, then the problem of finding Φk would be isomorphic to the problem already

solved in leading order in section 3.1, with a different source on the right hand side. Ac-

tually, AM is a nonlinear space and the constraint Φ′ ∈ AM is nonlinear in Φ′. As a

result the appropriate condition on Φk is not that π27Φk = 0, but that π27(Φk) is a certain

nonlinear function Θk of the Φn, n < k. After writing Φk = Φ′
k + Θk where π27(Φ

′
k) = 0,

eq. (3.19) becomes

dΦ′
k = d(χk −Θk), (3.20)

and now the problem is indeed isomorphic to the one that we have already studied.

3.3 Interpretation in two- or three-dimensional field theory

Here we will rather briefly interpret the results of sections 3.1 and 3.2 in the language of

supersymmetric field theory in two or three dimensions. As in our discussion of the G2

case in section 2.4, it will take more work to fully justify our proposal.

We can consider Type IIA superstring theory compactified to two dimensions on a

Spin(7) manifold M , giving a two-dimensional theory with (1, 1) supersymmetry, or Type

IIB compactified on M , giving a two-dimensional theory with (0, 2) supersymmetry. As

in section 2.4, we will focus on the Type IIA case, and we also observe that Type IIA

compactification on M to two-dimensions is similar to M-theory compactification on M

to three-dimensions, with the α′ expansion replaced by the 1/r expansion. In M-theory,

compactification on a Spin(7) manifold gives a three-dimensional theory with N = 1 su-

persymmetry (two supercharges). Our discussion applies to each of these cases.

Two-dimensional theories with (1, 1) supersymmetry and three-dimensional theories

with N = 1 supersymmetric can be conveniently formulated in terms of a superspace with

two or three bosonic coordinates xµ and two fermionic coordinates θα, α = 1, 2. The

superfields that will be important in our analysis are unconstrained functions Λ(xµ, θα) on

superspace (these are often called scalar superfields, but we will be more precise in our

terminology below). For the purposes of finding supersymmetric vacuum states, the most

important supersymmetric interaction is the superpotential. This is a function W (Λ) such

that the condition for a supersymmetric vacuum is dW = 0.
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In either Type IIA or M-theory compactification on a Spin(7) manifold, there is a

discrete symmetry τ under which the superpotential is odd. In Type IIA, one can take

τ to be the operation (−1)FL that reverses the sign of left-moving worldsheet fermions.

In M-theory, one can take τ to be a reflection of one of the uncompactified directions

accompanied by a sign change of the three-form field C. There are therefore two kinds of

superfield: we call Λ a scalar superfield if its bottom component is even under τ , and a

pseudoscalar superfield if its bottom component is odd under τ .

We will only analyze supersymmetric vacua that are τ -invariant (this means that we

omit vacua with fluxes of the field G = dC, as have been studied in [22]). Let SI be

the scalar superfields and TJ the pseudoscalar superfields. Since the superpotential is odd

under τ , it can be expanded in powers of the T ’s with only odd order terms appearing:

W =
∑

I

TIFI(SJ) +O(T 3). (3.21)

Here the FI are in general completely arbitrary functions of the SJ . In a globally supersym-

metric theory, the τ -invariant supersymmetric states correspond to solutions of dW = 0

with also T = 0. Clearly the necessary condition is simply that

FI(SJ) = 0 (3.22)

for all I. After coupling to supergravity, one also wants W = 0 to get a supersymmetric

vacuum in Minkowski spacetime; clearly in a theory of this kind, this is an immediate

consequence of setting T = 0.

In M-theory on R
3×M (or similarly in Type IIA on R

2×M), the obvious pseudoscalar

fields are obtained by taking all indices of the three-form field C to be tangent to M . This

gives us a field Cabc(x, y), which as in section 2.4 we regard as a pseudoscalar field on

R
3 that is also a three-form on M . We expect Cabc(x, y) to be the bottom component

of a superfield that we will, for brevity, also call Cabc. We will assume that to describe

the theory in a way that has manifest covariance, locality and supersymmetry along R
3

or R
2 and manifest covariance and locality along M , we should also introduce a scalar

superfield23 Φ̂ that is a four-form on M constrained to take values in AM .

Because of the usual gauge-invariance C → C + dΛ for a two-form Λ on M , the

superpotential W depends on C only through its field strength G = dC, where here we

consider only the part of G that is a four-form on M (and a pseudoscalar function on R
3).

We expand the superpotential in powers of G; as in the last paragraph only odd powers

appear and only the linear term is important for understanding supersymmetric vacua at

G = 0. Thus the general form of the superpotential is

W =

∫

M

G ∧ P (Φ̂) +O(G3) (3.23)

23How is Φ̂ constructed in terms of the usual degrees of freedom of supergravity? As explained in

section 3.1, a perturbation in Φ̂ can be decomposed under Spin(7) as 1⊕7⊕35, while a perturbation in the

metric g of M can be decomposed as 1⊕35. What is the proper interpretation of the 7 contribution in Φ̂? In

section 2.4.1, it was suggested that the answer to the analogous question for G2 (in the M-theory case) arises

from scalar fields obtained by dualizing Cµνa. For Spin(7) an analog is to consider scalar fields obtained

by dualizing Cµab, which transforms as 7⊕ 21. The 7 would hypothetically complete the construction of Φ̂

and the 21 would represent additional fields that would be included in a more complete description.
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where to any finite order in α′, P is a local functional of Φ̂. The condition for a critical

point at G = 0 is simply

dP (Φ̂) = 0. (3.24)

In the classical limit α′ → 0, we must have simply P (Φ̂) = Φ̂, so that eq. (3.24) reduces

to the classical condition dΦ̂ = 0 which (with the constraint that Φ̂ is valued in AM) is

equivalent to Spin(7) holonomy. But now we can easily go to higher orders. When we

expand

Φ̂ = Φ +
∞∑

k=3

(α′)kΦk, (3.25)

the equation (3.24) will give, in each order, an equation of the general form

dΦk = dχk (3.26)

where χk is a nonlinear function of the Φn for n < k. There will also be a constraint that

determines π27(Φk) in terms of the previous Φn’s. As we have seen, it is always possible to

solve conditions of this form. The main point is that the supersymmetric structure implies

that the five-forms that were called γ[Φ′]|k in section 3.2 are always exact. In fact, they

are always dχk, where χk is a local function of the Φn’s with n < k.

A Background on manifolds of exceptional holonomy

In this appendix we review some facts which have been used in the main body of the paper.

These facts are collected for the convenience of the reader.

Before getting into details on G2 or Spin(7), recall that the standard inner product of

forms is defined by

〈χ, ξ〉 = 1

p!

∫
ddx

√
gχa1···apξa1···ap . (A.1)

This inner product respects the decomposition of forms intoG2 and Spin(7) representations,

so for distinct irreducible representations r and s

〈πr(χ), πs(ξ)〉 = 0. (A.2)

We use d† = (−1)p(d+1−p) ⋆ d⋆ for the adjoint of the exterior derivative acting on p-forms.

With this definition,

〈χ, dξ〉 =
〈
d†χ, ξ

〉
. (A.3)

A.1 G2

A.1.1 Spinor conventions

We use a basis in which the gamma matrices Γa are purely imaginary antisymmetric matri-

ces satisfying {Γa,Γb} = 2gab. The Clifford algebra is spanned by real symmetric matrices

{1, iΓabc} and real anti-symmetric matrices {iΓa,Γab}. The eight spinors {η, iΓaη}, are a

basis. The completeness of this basis says

ΓaηηTΓa + ηηT = 1. (A.4)
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Moreover, in 7d we impose

1

7!

∑

a1,...,a7

εa1...a7Γ
a1...a7 = −i, (A.5)

where the Levi-Civita symbol εa1...a7 is a tensor.

Define

φabc = iηTΓabcη, ψabcd =
1

3!
εabcdklmφ

klm = ηTΓabcdη. (A.6)

Any real spinor can be expanded in the above basis. In particular

Γabη = −iφ c
ab Γcη,

iΓabcη = φabcη − iψ k
abc Γkη.

(A.7)

Using (A.4) one derives some useful identities

φab
kφcdk = 2ga[cgd]b − ψabcd,

ψabckφ
dek = 6δ

[d
[aφbc]

e],

ψabc
kψdef

k = −9δ
[d
[aψbc]

ef ] + 6δdef[abc] − φabcφ
def ,

(A.8)

together with additional identities obtained by contraction.

A.1.2 Metric

Given a G2-structure φ the above relations can be used to obtain

gab = − 1

144
ǫijklmnpφaijφbklφmnp. (A.9)

Given a G2-structure φ this can be used as the defining equation for the metric gab. Indeed,

the epsilon tensor takes values24 ±1/
√
g and so taking the determinant of eq.(A.9) we can

solve for g in terms of φ and this in turn lets us write the metric gab in terms of φ only. We

can then consider φ to be the fundamental object from which the metric, Riemann tensor,

covariant derivatives and ψ = ⋆φ are obtained.

A.1.3 Decomposition of differential forms into irreducible representations of

G2

Using the fact that the tangent and cotangent spaces at points of M transform as the

fundamental seven-dimensional representation of G2, one can derive the transformations

of p-forms (living in ∧p ∼= ∧p(T ∗M)),

∧1 ∼= ∧1
7,

∧2 ∼= ∧2
7 ⊕ ∧2

14,

∧3 ∼= ∧3
1 ⊕ ∧3

7 ⊕ ∧3
27.

(A.10)

We also have ∧7−p ∼= ∧p. We list the projections

24Given a choice of φ, the sign of the epsilon tensor or equivalently the orientation of M is determined

to make the metric defined in (A.9) positive. However, without changing the metric, we could reverse the

sign of φ and also the orientation of M . Thus a G2 manifold does not have a preferred orientation.
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⊲ for ∧2 ∼= ∧2
7 ⊕ ∧2

14

(π7α)ab =
1

3
αab −

1

6
ψ cd
ab αcd,

(π14α)ab =
2

3
αab +

1

6
ψ cd
ab αcd.

(A.11)

⊲ for ∧3 ∼= ∧3
1 ⊕ ∧3

7 ⊕ ∧3
27

(π1β)abc =
1

42
φabcφ

defβdef ,

(π7β)abc =
1

4
βabc −

3

8
ψ de
[ab βc]de −

1

24
φabcφ

defβdef ,

(π27β)abc =
3

4
βabc +

3

8
ψ de
[ab βc]de +

1

56
φabcφ

defβdef .

(A.12)

A.1.4 Deformations of G2-structures

The deformed structure φ′ = φ+δφ will give rise to deformations in the metric, g′ = g+δg,

and the four-form, ψ′ = ψ + δψ. Plugging these into the contraction

φa
cdφbcd = 6gab, (A.13)

one can derive that to first order in the deformation δφ we have

δgab = − 1

18
gabφ

cdeδφcde +
1

2
φ cd
(a δφb)cd, (A.14)

and using this metric to construct the Hodge star we get

δψabcd = −1

9
ψabcdφ

efgδφefg −
1

3
φ[abcψ

efg

d] δφefg − 6φ e
[ab δφcd]e. (A.15)

In both of these expressions, indices are raised with the undeformed metric gab.

In terms of the pieces of δφ which transform in different representations of G2 (the copy

of G2 which leaves the original φ invariant), we can rewrite these first order deformations as

δgab = φ cd
(a

(
1

9
π1(δφ) +

1

2
π27(δφ)

)

b)cd

, (A.16)

δψ =
4

3
⋆ π1(δφ) + ⋆π7(δφ)− ⋆π27(δφ). (A.17)

A.1.5 The torsion forms

Given a G2-structure φ
′, its exterior derivative dφ′ is a four-form and the exterior derivative

of the dual dψ′ = d ⋆′ φ′ is a five-form. These forms can be decomposed into irreducible

representations of G2. Following proposition 1 of ref. [11], we write

dφ′ = τ0ψ
′ + 3τ1 ∧ φ′ + ⋆′τ3,

dψ′ = 4τ̃1 ∧ ψ′ + ⋆′τ2,
(A.18)
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where τ3 ∈ ∧3
27 and τ2 ∈ ∧2

14. It was mentioned in ref. [11] that the projections of dφ′ and

dψ′ onto ∧4
7 and ∧5

7 are closely related and in particular τ̃1 = τ1. The basic reason is that

for any given G2-structure the following identity holds (eq. (3.8) of ref. [11])

(dψ′)abcdeψ
′bcde = 4(dφ′)abcdφ

′bcd; (A.19)

this can be shown using the definition ψ′ = ⋆′φ′. Here we note a consequence of this

result which we use in the main body of the paper. If we consider a perturbation about

a G2 holonomy space with G2-structure φ by setting φ′ = φ + δφ, then to first order in

fluctuations eq. (A.19) becomes

(dψ′)abcdeψ
bcde = 4(dφ′)abcdφ

bcd =

[
d ⋆

(
4

3
π1 + π7 − π27

)
δφ

]

abcde

ψbcde. (A.20)

In section 2.2.1, to first order in α′, we solve the conditions dφ′ = dχ and dψ′ = dξ for

globally-defined χ and ξ. In this case eq. (A.20) implies

(dξ)abcdeψ
bcde =

[
d ⋆

(
4

3
π1 + π7 − π27

)
χ

]

abcde

ψbcde. (A.21)

This is equivalent to the vanishing of the ∧2
7 projection of d†ρ, which is defined in eq. (2.16).

A similar argument can be used to show that d†ρn ∈ ∧2
14 in section 2.3. In this case

we take

φ′ = φ+
n−1∑

i=3

φi + φn = φ̃+ δφ. (A.22)

So φ̃ is the G2-structure up to order n− 1 in α′. We consider a small perturbation of order

n around this G2-structure δφ = φn . Then

ψ′ = ψ̃ + δψ, (A.23)

where ψ̃ = ⋆̃φ̃. Note that φ̃ is at most of order n while ψ′ could, in principle, receive

contributions to all orders in α′ since it it a non-linear functional of φ̃. So

ψ′ |n= ⋆̃φ̃ |n +δψ |n . (A.24)

If we then expand eq. (A.19) about φ̃ and use the fact that (A.19) is valid with primed

quantities substituted by tilde quantities we derive

[d(δψ)]abcde ψ
bcde |n= 4 [d(δφ)]abcd φ

bcd |n, (A.25)

at order n in α′. According to (A.24)

d(δψ) |n= dψ′ |n −d(⋆̃φ̃) |n . (A.26)

Now, locally we can always solve (2.19) to find η′ such that the associated forms φ′ and ψ′

satisfy (2.30), but a priori we may not be able to extend η′ to a global solution. Note that
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the local solution for φ′ can always be written in the form χn+dbn, where now bn may not

be globally defined. By substituting this local solution for ψ′ above, we obtain
(
dξn − d(⋆̃φ̃) |n

)
abcde

ψbcde = 4 (dχn)abcd φ
bcd, (A.27)

which is equivalent to the vanishes of the 7 part of the source d†ρn. Finally, since bn can

be shown to drop out of this relation completely, the result will hold true for any valid

solution.

A.1.6 Some useful identities

If M is a G2 holonomy manifold, a few useful properties can be derived. Defining

(L · λ)abc = ψ d
abc λd, λ ∈ ∧1, (A.28)

we have

d†L · λ = (2π7 − π14) dλ. (A.29)

For any two-forms

π7(db) = −1

4
L · d†b, b ∈ ∧2

14, (A.30)

and

d†
(
4

3
π1 + π7 − π27

)
dα = 0, α ∈ ∧2

7. (A.31)

Another useful identity is

π1(db) = 0, ∀b ∈ ∧2
14. (A.32)

A.2 Spin(7)

A.2.1 Spinor conventions

For an eight-manifold with Spin(7)-structure, we have a nowhere-vanishing real spinor η.

We will choose conventions in which η is antichiral,

Γ9η = −η, (A.33)

where

Γ9 =
1√
g
Γ1Γ2 · · ·Γ8, (A.34)

and Γi are pure imaginary antisymmetric 16 × 16 gamma matrices for SO(8). We can

normalize η so that

ηT η = 1, (A.35)

and we also have properties

Γaηη
TΓa = Π+, ηηT − 1

8
Γabηη

TΓab = Π−, (A.36)

where

Π± =
1

2
(116×16 ± Γ9) . (A.37)
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Define

Φabcd = ηTΓabcdη. (A.38)

Note that since √
g

4!
ǫabcdefghΓ

efgh = Γ9Γabcd, (A.39)

we have ⋆Φ = −Φ. We can also derive

ΦabcgΦdefg = 6δ
[a
[dδ

b
eδ

c]
f ] − 9δ

[a
[dΦ

bc]
ef ], (A.40)

and its contractions.

A.2.2 Decomposition of differential forms into irreducible representations of

Spin(7)

Under Spin(7), the spaces of differential forms decompose as

∧0 ∼= ∧0
1,

∧1 ∼= ∧1
8,

∧2 ∼= ∧2
7 ⊕ ∧2

21,

∧3 ∼= ∧3
8 ⊕ ∧3

48,

∧4 ∼= ∧4
1 ⊕ ∧4

7 ⊕ ∧4
27 ⊕ ∧4

35,

(A.41)

and ∧8−n ∼= ∧n. We list the projections

⊲ for ∧2 ∼= ∧2
7 ⊕ ∧2

21, we have

(π7α)ab =
1

4
αab −

1

8
Φ cd
ab αcd,

(π21α)ab =
3

4
αab +

1

8
Φ cd
ab αcd.

(A.42)

⊲ for ∧3 ∼= ∧3
8 ⊕ ∧3

48,

(π8β)abc =
1

7
βabc −

3

14
Φ de
[ab βc]de,

(π48β)abc =
6

7
βabc +

3

14
Φ de
[ab βc]de.

(A.43)

⊲ and for ∧4 ∼= ∧4
1 ⊕ ∧4

7 ⊕ ∧4
27 ⊕ ∧4

35,

(π1γ)abcd =
1

336
ΦabcdΦ

efghγefgh,

(π7γ)abcd =
1

8
γabcd −

3

16
Φ ef

[ab γcd]ef − 1

48
Φ e
[abc Φ fgh

d] γefgh,

(π27γ)abcd =
3

8
γabcd +

15

16
Φ ef

[ab γcd]ef +
1

56
ΦabcdΦ

efghγefgh −
1

16
Φ e
[abc Φ fgh

d] γefgh,

(π35γ)abcd =
1

2
γabcd −

3

4
Φ ef

[ab γcd]ef − 1

48
ΦabcdΦ

efghγefgh +
1

12
Φ e
[abc Φ fgh

d] γefgh.

(A.44)

The space of four-forms decomposes into self-dual forms ∧4
+ and anti-self-dual forms ∧4

−

∧4
+
∼= ∧4

35, ∧4
−
∼= ∧4

1 ⊕ ∧4
7 ⊕ ∧4

27. (A.45)
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A.2.3 Deformations of Spin(7)-structures

The metric of a Spin(7)-structure has been derived in ref. [17]. Here we require the result

for the deformations of the metric. The deformed structure Φ′ = Φ+ δΦ will give rise to a

metric deformation

δgab = − 1

112
gabΦ

cdefδΦcdef +
1

12
Φ cde
(a δΦb)cde

= Φ cde
(a

(
1

21
π1(δΦ) +

1

12
π35(δΦ)

)

b)cde

.
(A.46)

With this metric, (A.40) continues to hold (at leading order) with Φ replaced by Φ′ and g

by g′.

A.2.4 The L operator

On a Spin(7) manifold we define a map L : ∧p → ∧p+2 by

(Lω)a1...ap+2
= Φ[a1a2a3

pωa4...ap+2]p. (A.47)

On forms in irreducible representations of G2, L does not change the representation. More-

over, L is invertible on its image. This leads to the isomorphisms

∧1
8
∼= ∧3

8
∼= ∧5

8
∼= ∧7

8, ∧2
7
∼= ∧4

7
∼= ∧6

7, ∧3
48

∼= ∧5
48. (A.48)

The kernel is

L(∧2
21) = 0, L(∧4

1 ⊕ ∧4
27 ⊕ ∧4

35) = 0, L(∧5
48) = 0, L(∧p) = 0, p ≥ 6. (A.49)

There are potentially three ways of constructing a (p + 1)-form by differentiating a

p-form ω; we can make dω, d†Lω, or Ld†ω. If ω transforms in an irreducible representation

r, then each of these must transform in representations contained in the product 8 ⊗ r.

If some given irreducible representation s only occurs once in the decomposition of 8⊗ r,

then it means that the forms πs(dω), πs(d
†Lω), and πs(Ld

†ω) must all be proportional to

each other. We use this to derive some useful identities:

⊲ if ω ∈ ∧1
8, we find the identities

π7(dω) =
1

3
π7d

†(Lω), π21(dω) = −π21d†(Lω). (A.50)

⊲ for ω ∈ ∧2
7

Ld†ω =
7

3
π8(dω) = −7

4
π8(d

†Lω), (A.51)

and

π48(dω) = π48(d
†Lω), π48(Ld

†ω) = 0. (A.52)
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⊲ for ω ∈ ∧2
21, we have d†Lω = 0 (since Lω = 0) and

Ld†ω = −7π8(dω), (A.53)

and

π48(Ld
†ω) = 0. (A.54)

⊲ similar relations can be derived for higher degree forms. The only other facts we will

need are that π27(dω) = 0 for ω ∈ ∧3
8 and for ω ∈ ∧3

48, we have π1(dω) = 0 and

Ld†ω = −4π7(dω). (A.55)

Starting with the standard Hodge decomposition, the above identities can be used to

derive the following decompositions

⊲ for any α ∈ ∧2
21, there exists a one-form σ and a co-closed three-form ρ ∈ ∧2

21 such

that

α = π21(dσ) + ρ. (A.56)

⊲ for any ξ ∈ ∧3
48, there exists a two-form µ and co-closed three-form ν ∈ ∧3

48 such that

ξ = π48(dµ) + ν. (A.57)
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