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1. Introduction

The subject of pp-waves and their applications have been studied extensively. In particular,

superstring theory is exactly solvable [1] on the backgrounds of the maximal supersymmet-

ric pp-waves of type IIB [2] and M-theory [3]. This provides a rare example where the

AdS/CFT duality [4 – 6] can be tested [7] beyond the supergravity approximation.

When the integration constants associated with these solutions are left arbitrary the

pp-waves generically preserve half of the supersymmetry. Additional supersymmetry (su-

pernumerary supersymmetry) beyond the 1
2 can arise when the harmonic function is con-

strained appropriately. For a discussion of pp-waves and their supersymmetry in M-theory

and type IIB see [8 – 13].

PP-waves on AdS background have also been studied. The purely gravitational AdS

pp-wave is given by

ds2 = e2gρ(−4dx+dx− + H(dx+)2 + dz2
a) + dρ2 , (1.1)

where the cosmological constant is related to the gauge coupling constant g as Λ = −g2

and H = H(x+, ρ, za) is a harmonic function on the space of za and ρ . The integration

constants of H are therefore allowed to have an arbitrary dependence on x+. If H = 0

the metric describes pure AdS spacetime. The pp-wave with the dependence H(ρ) was

constructed in four dimensions by Kaigorodov [14] and its higher dimensional counterparts

were obtained in [15]. Generalisations of the Kaigorodov metric to inhomogeneous solutions

were obtained in [16 – 18].

– 1 –



J
H
E
P
0
9
(
2
0
0
5
)
0
2
5

The superimposing of a pp-wave on AdS spacetime can be viewed as performing an

infinite boost on the boundary conformal field theory [15, 19]. These solutions generi-

cally preserve 1/4 of the maximum supersymmetry allowed by the AdS spacetime [15, 19].

The purely gravitational AdS pp-waves have in fact been shown to admit supernumerary

supersymmetries [20] for appropriately constrained H.

AdS pp-waves can also be supported by a field strength. Their supersymmetry has

been studied in [20 – 23]. See also [24]. In the case of charged pp-waves of minimum

gauged supergravities in D = 4 and D = 5, it was shown [23, 20] that supernumerary

supersymmetry can arise again for appropriately constrained harmonic functions. For pp-

waves with 1
2 supersymmetry in D = 3 see [25].

In this paper we shall investigate pp-waves on AdS background further by studying

the pp-waves of D = 5 and D = 4 gauged supergravities supported respectively by U(1)3

and U(1)4 gauge fields. We present a detailed analysis of the supersymmetry of these

solutions. In particular, we show that supernumerary supersymmetry can arise beyond the

usual 1
4 . We also study the pp-waves of the Freedman-Schwarz model. The supersymmetry

enhancement obtained in this paper forces the solutions to be independent of the light-cone

coordinate x+.

The paper is organised as follows. The pp-waves of gauged supergravities in five and

four dimensions are studied in sections 2 and 3 respectively. We investigate the pp-waves of

the Freedman-Schwarz model in section 4. In sections 5 and 6 we study the supersymmetry

of the solutions in six and seven dimensions, respectively.

2. PP-waves in five dimensions

Our first example treats D = 5 gauged supergravity truncated to the U(1)3 subgroup of

SO(6). The bosonic sector of this truncated theory is described by the lagrangian [26]

e−1L5 = R − 1

2
(∂~ϕ)2 + 4g2

∑

i

X−1
i − 1

4

∑

i

X−2
i (F i

(2))
2 +

1

4
εMNPQRF 1

MNF 2
PQA3

R , (2.1)

where ~ϕ = (ϕ1, ϕ2), and we write

Xi = e−
1
2
~ai·~ϕ , X1X2X3 = 1 ,

~a1 =

(

2√
6
,
√

2

)

, ~a2 =

(

2√
6
,−

√
2

)

, ~a3 =

(

− 4√
6
, 0

)

, (2.2)

and the field strengths are defined as F i
(2) = dAi

(1). The equations of motion are

RMN =
1

2
∂M ~ϕ · ∂N ~ϕ− 4

3
g2gMN

∑

i

X−1
i +

1

2

∑

i

X−2
i

(

F i
MP F i P

N − 1

6
(F i

(2))
2gMN

)

,

∇M(X−2
i F MN

i ) =
1

4
εNPQRSF j

PQF k
RS , i 6= j 6= k 6= i ,

¤~ϕ =
1

4

∑

i

~aiX
−2
i (F i

(2))
2 − 2g2

∑

i

~aiX
−1
i . (2.3)

– 2 –
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The supersymmetry transformations for the fermions are given by

δΨM =

[

∇M − i

2
g

∑

i

Ai
M +

1

6
g ΓM

∑

i

Xi −
i

48
(ΓMΓAB − 3ΓABΓM)

∑

i

X−1
i F i

AB

]

ε ,

δ~λ =

[

− i

4
ΓM∂M ~ϕ +

1

16
ΓAB

∑

i

~aiX
−1
i F i

AB − i

4
g

∑

i

~aiXi

]

ε . (2.4)

2.1 The solution

We use the following pp-wave metric ansatz

dsD = e2A(−4dx+dx− + H(dx+)2 + dz2
a) + e2Bdr2 , a = 1, 2, . . . ,D − 3 , (2.5)

in arbitrary dimensions. The functions A and B depend on r only while H depends on

x+, za and r coordinates. If we set H = 0 the pp-waves reduce to AdS-domain wall

solutions [27]. It is natural to choose the following vielbein basis

e+ = eAdx+ , e− = eA

(

−2dx− +
1

2
Hdx+

)

, ea = eAdza , er = eBdr (2.6)

such that we have ds2 = 2e+e− + eaea + erer . The vielbein components of the spin

connections are

ω−r = A′e−Be+ , ω+a =
1

2
e−A∂aH e+ ,

ω+r = A′e−Be− +
1

2
H ′e−Be+ , ωar = A′e−Bea , (2.7)

where the prime denotes the derivative with respect to r. Note that for the metric in this

basis we have η+− = 1 and η++ = η−− = 0. The derivatives are always with respect to the

curved metric. The vielbein components of the Ricci tensor in D-dimensions are given by

R++ = −1

2
e−2B

[

H ′′ + H ′((D − 1)A′ − B′)] − 1

2
e−2A

∑

a

∂a∂aH = −1

2
¤H ,

R+− = −e−2B [A′′ + A′((D − 1)A′ − B′)] , Rab = R+− δab ,

Rrr = −(D − 1)e−2B [A′′ + A′(A′ − B′)] . (2.8)

It is straightforward to verify that in five dimensions the following

e2A = (gr)2 [H1H2H3]
1/3 , Hi = 1 +

`2
i

r2
,

e2B =
1

(gr)2 [H1H2H3]2/3
, Xi = H−1

i [H1H2H3]
1/3 ,

Ai
(1) = g−1Si(1 − H−1

i ) dx+ (2.9)

satisfy the equations of motion with H(x+, r, za) obeying the equation

H ′′ + (4A′ − B′)H ′ + e−2(A−B)
∑

a

∂a∂aH +
4g2

r2
e−6A

∑

i

S2
i `4

i H
−2
i = 0 . (2.10)

Here the Si are functions of x+.

– 3 –
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2.2 Standard supersymmetry

The Killing spinor equations following from the fermionic transformations are given by

[

∂+ +
1

2
A′eA−B

(

Γ+ +
1

2
HΓ−

)

(Γr + 1) − 1

4
eA−BH ′ Γr Γ−−

−1

4
(∂1H Γ1 + ∂2H Γ2)Γ− − i

2

(

∑

i

Si(1 − H−1
i )

)

(Γr + 1)+

+
i

6r2

(

∑

i

Si`
2
i H

−1
i

)

Γr Γ+ Γ−

]

ε = 0 ,

[

∂− − A′eA−B Γ−(Γr + 1)
]

ε = 0 ,
[

∂a +
1

2
A′eA−B Γa(Γr + 1) − i

6r2

(

∑

i

Si`
2
i H

−1
i

)

Γa Γr Γ−

]

ε = 0 ,

[

∂r +
1

6r

(

∑

i

H−1
i

)

Γr +
i

3r
ge−3A

(

∑

i

Si`
2
i H

−1
i

)

Γ−

]

ε = 0 ,

[

ie3A
(

∑

i

a1iH
−1
i

)

(Γr + 1) + g
(

∑

i

a1iSi`
2
i H

−1
i

)

Γr Γ−

]

ε = 0 ,

[

ie3A
(

∑

i

a2iH
−1
i

)

(Γr + 1) + g
(

∑

i

a2iSi`
2
i H

−1
i

)

Γr Γ−

]

ε = 0 , (2.11)

where we have Γ2
+ = Γ2

− = 0 and {Γ+ ,Γ−} = 2. To arrive at these equations we have

made use of the solution (2.9). The above Killing spinor equations have the solution

ε = r1/2 [H1H2H3]
1/12ε0 (2.12)

where ε0 is a constant spinor satisfying (Γr +1)ε0 = 0 and Γ−ε0 = 0. The solution therefore

preserves 1
4 of the supersymmetry. The Killing spinor for the 1

4 supersymmetry exist for

arbitrary solutions to eq.(2.10).

2.3 Supernumerary supersymmetry

To investigate the supernumerary supersymmetry we use the less restrictive projection

condition

(Γr + 1)ε = if Γ−ε , (2.13)

where the function f = f(x+, r, za) is to be determined. Making use of this projection in

the Killing spinor equations they become

[

∂+ +
i

2

(

A′eA−Bf − 1

3r2
M

)

Γ+ Γ− +
1

4r2
(2fM− r2eA−BH ′)Γ−−

−1

4
(∂1H Γ1 + ∂2H Γ2)Γ−

]

ε = 0 ,

[

∂a +
i

2

(

A′eA−Bf − 1

3r2
M

)

Γa Γ−

]

ε = 0 , ∂−ε = 0 ,

– 4 –
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[

∂r +
i

6r

(

f
∑

i

H−1
i + 2ge−3AM

)

Γ− − 1

6r

∑

i

H−1
i

]

ε = 0 , (2.14)

[

e3Af
∑

i

abiH
−1
i − g

∑

i

abiSi`
2
i H

−1
i

]

Γ−ε = 0 , b = 1, 2 ,

where M ≡ ∑

i Si`
2
i H

−1
i . We analyse these equations by calculating the integrability

conditions [∂M , ∂N ]ε = 0 among them. The integrability [∂a , ∂r]ε = 0 yields a solution for

f with the requirement ∂af = 0. We have

f =
1

3r2A′ e−(A−B)(M + 3r2U(x+)) , (2.15)

where the function U is in general complex. From the integrability [∂+ , ∂a]ε = 0 we obtain

an equation for U after imposing some restrictions on the pp-wave function H(x+, r, za).

The result is

∂aH
′ = 0 , ∂a∂bH = 0 for a 6= b ,

i
dU

dx+
+ U2 +

1

2
∂a∂aH = 0 , a = 1, 2 . (2.16)

The equation for U then requires ∂1∂1H = ∂2∂2H. Investigating the pair of equations given

in the last line of eqs. (2.14) we find that they are satisfied provided that the functions Si

and U satisfy two equations among them. We present the solutions in terms of S3 and U .

They are given by

S1 = `−2
1

(

S3`
2
3 − (`2

1 − `2
3)U

)

, S2 = `−2
2

(

S3`
2
3 − (`2

2 − `2
3)U

)

. (2.17)

In order to analyse the final integrability [∂+ , ∂r]ε = 0 we need to make use of the solution

for H. Taking into account the conditions on H given above the solution is given by

g4H(x+, r, za) =
1

2
c g4(z2

1 + z2
2) +

1

2
|εijk|Kijk(x

+, r) ,

Kijk(x
+, r) = − S2

i `4
i

(`2
i − `2

j)(`
2
i − `2

k)(r
2 + `2

i )
+

1

2(`2
i − `2

j)
2(`2

i − `2
k)

2
×

×
[

(bg4 + c `2
i )(`

2
i − `2

j)(`
2
i − `2

k) + 2S2
i `4

i (2`
2
i − `2

j − `2
k) −

− 2S2
j `4

j (`
2
i − `2

k) − 2S2
k`4

k(`
2
i − `2

j)
]

ln(r2 + `2
i ) ,

where b = b(x+) and c = c(x+). Then [∂+ , ∂r]ε = 0 yields an equation for S3 given by

i
dS3

dx+
− (2`3)

−2[bg4 + c `2
3 + 2U(U(`2

1 + `2
2) − 2`2

3(2S3 + U))] = 0 . (2.18)

We proceed next by making use of the information that Si, b and c are real functions.

Eqs. (2.17) implies that U must also be real. This has the consequence in eq. (2.16) that U

and c must be constants with c being given by c = −2U2 . Eqs. (2.18) and (2.17) in turn

implies that Si and b must also be constants. Eliminating U from eqs. (2.17) and setting

Si = µi we obtain

εijk µi`
2
i (`

2
j − `2

k) = 0 . (2.19)

– 5 –
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Without loss of generality we solve for µ1 in terms of the other two charges. The function

H which gives 1/2 supersymmetric pp-wave is given by

µ1 =
µ2`

2
2(`

2
1 − `2

3) − µ3`
2
3(`

2
1 − `2

2)

`2
1(`

2
2 − `2

3)
,

b = −2(µ2`
2
2 − µ3`

2
3)

(

µ2`
4
2 − µ3`

4
3 − 3(µ2 − µ3)`

2
2`

2
3 + `2

1(µ2`
2
2 − µ3`

2
3)

)

g4(`2
2 − `2

3)
2

,

c = −2(µ2`
2
2 − µ3`

2
3)

2

(`2
2 − `2

3)
2

,

H =
1

2
c (z2

1 + z2
2) − f2 ,

f = −(µ2`
2
2 − µ3`

2
3)r

2 + (µ2 − µ3)`
2
2`

2
3

g2(`2
2 − `2

3)r
3[H1H2H3]1/2

. (2.20)

We next calculate the Killing spinor. The projected Killing spinor equations become

[

∂+ − 1

2
√

2
(−c)1/2(i Γ+ − f)Γ− − 1

4
c (z1Γ1 + z2Γ2)Γ−

]

ε = 0 ,

[

∂a − i

2
√

2
(−c)1/2 Γa Γ−

]

ε = 0 , ∂−ε = 0 ,

[

∂r −
i

2
f ′ Γ− − 1

6r

∑

i

H−1
i

]

ε = 0 . (2.21)

The Killing spinor is easily obtained, given by

ε = r1/2[H1H2H3]
1
12

(

1 +
i

2
√

2
(−c)1/2(z1Γ1 + z2Γ2)Γ−

)(

1 +
i

2
f Γ−

)

η ,

dη

dx+
=

i

2
√

2
(−c)1/2 Γ+ Γ− η . (2.22)

Solving for η we have

ε = r1/2[H1H2H3]
1
12

(

1 +
i

2
√

2
(−c)1/2(z1Γ1 + z2Γ2)Γ−

)(

1 +
i

2
f Γ−

)

×

×
[

1 − 1

2

(

1 − e
i

√

2
(−c)1/2x+

)

Γ+ Γ−

]

ε0 , (2.23)

where ε0 is a constant spinor satisfying (Γr + 1)ε0 = 0 . The solution thus preserve 1
2 of

the supersymmetry. Note that if we set µi`
2
i = µ (which is consistent with eq. (2.19)) we

obtain b = c = 0.

To conclude, demanding supernumerary supersymmetry puts very strong restrictions

on the pp-waves with the functions S, b and c (and U) which initially all being functions of

x+ reduce now to constants. This is not the case for minimal gauged supergravity where

supernumerary supersymmetry does allow the various functions to have x+ dependence.

– 6 –
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3. PP-waves in four dimensions

In this section we consider a subsector of the SO(8) gauged supergravity where the bosonic

fields comprises the metric, four commuting U(1) gauge potentials and three dilatons. The

lagrangian describing this set of fields is [28]

e−1L4 = R − 1

2
(∂~ϕ)2 − 1

4

∑

i

X−2
i (F i

(2))
2 − V , (3.1)

where ~ϕ = (ϕ1, ϕ2, ϕ3), and

Xi = e−
1
2
~ai·~ϕ , X1X2X3X4 = 1 ,

~a1 = (1, 1, 1) , ~a2 = (1,−1,−1) , ~a3 = (−1, 1,−1) , ~a3 = (−1,−1, 1) . (3.2)

The field strengths are defined as F i
(2) = dAi

(1) and the potential is given by

V = −4g2
∑

i< j

XiXj = −8g2
3

∑

i=1

cosh ϕi . (3.3)

The N = 8 supersymmetry transformations in this bosonic background were also presented

in [28]. They are given by

δΨi
M = ∇Mε(i) +

∑

j

[

−ig ΩijA
j
M +

i

8
ΩijX

−1
j F j

ABΓABΓM +
1

4
gXjΓM

]

ε(i) ,

δλij =





i√
2
ΓM∂Mφij − 1

2
√

2

∑

k

ΩjkX
−1
k F k

ABΓAB + i
√

2g
∑

k,m

fijkΩkmXm



 ε(i) , (3.4)

where we have rewritten them by introducing complex fermions Ψi
M = Ψi

1M + iΨi
2M , etc

and made the substitutions g →
√

2g and Ai
(1) → − 1

2
√

2
Ai

(1) . Note that i 6= j in the spin

1/2 transformations. The three dilatons are given by the following identifications

ϕ1 = φ12 = φ34 , ϕ2 = φ13 = φ24 , ϕ3 = φ14 = φ23 , (3.5)

and note also that φij = φji. The function fijk is defined as

fijk =











|εijk| for i, j, k 6= 1 ,

δjk for i = 1 ,

δik for j = 1 ,

(3.6)

and the matrix Ω is given by

Ω =
1

2











1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1











. (3.7)

– 7 –
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3.1 The solution

The four charge pp-wave is given by

ds2
4 = e2A(−4dx+dx− + H(dx+)2 + dz2) + e2Bdr2 , (3.8)

where

e2A = (gr)4 [H1H2H3H4]
1/2 , Hi = 1 +

`2
i

r2
,

e2B =
1

(gr)2 [H1H2H3H4]1/2
, Xi = H−1

i [H1H2H3H4]
1/4 ,

Ai
(1) = g−1Si(1 − H−1

i ) dx+ (3.9)

and Si = Si(x
+). The function H(x+, r, z) satisfies the equation

H ′′ + (3A′ − B′)H ′ + e−2(A−B)∂z∂zH +
4g2

r2
e−4A

∑

i

S2
i `4

i H
−2
i = 0 . (3.10)

The solution to this equation is similar to the solution in D = 5. The four charged pp-wave

can be specialised to one, two and three active charges respectively.

3.2 Supersymmetry

The N = 8 supersymmetry have four different sectors. We begin by analysing the Killing

spinor equations for the sector ε(1). The supersymmetry transformations are given by

δΨ1
M = ∇Mε(1) +

4
∑

i=1

[

− i

2
gAi

M +
i

16
X−1

i F i
ABΓABΓM +

1

4
gXiΓM

]

ε(1),

δλ12 =

[

i√
2
ΓM∂Mϕ1 −

1

4
√

2
ΓAB(X−1

1 F 1
AB + X−1

2 F 2
AB − X−1

3 F 3
AB − X−1

4 F 4
AB) +

+
i√
2
g(X1 + X2 − X3 − X4)

]

ε(1) ,

δλ13 =

[

i√
2
ΓM∂Mϕ2 −

1

4
√

2
ΓAB(X−1

1 F 1
AB − X−1

2 F 2
AB + X−1

3 F 3
AB − X−1

4 F 4
AB) +

+
i√
2
g(X1 − X2 + X3 − X4)

]

ε(1) ,

δλ14 =

[

i√
2
ΓM∂Mϕ3 −

1

4
√

2
ΓAB(X−1

1 F 1
AB − X−1

2 F 2
AB − X−1

3 F 3
AB + X−1

4 F 4
AB) +

+
i√
2
g(X1 − X2 − X3 + X4)

]

ε(1) . (3.11)

The Killing spinor equations are readily written down and take the form
[

∂+ +
1

2
A′eA−B

(

Γ+ +
1

2
HΓ−

)

(Γr + 1) − 1

4
H ′eA−B Γr Γ− − 1

4
∂zH Γz Γ−−

− i

2

(

4
∑

i=1

Si(1 − H−1
i )

)

(Γr + 1) +
i

4r2

(

∑

i

Mi

)

Γr Γ+ Γ−

]

ε(1) = 0 ,
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[

∂− − A′eA−B Γ−(Γr + 1)
]

ε(1) = 0 ,
[

∂z +
1

2
A′eA−B Γz(Γr + 1) − i

4r2

(

∑

i

Mi

)

Γz Γr Γ−

]

ε(1) = 0 ,

[

∂r +
1

4r

(

∑

i

H−1
i

)

Γr +
i

4r
ge−2A

(

∑

i

Mi

)

Γ−

]

ε(1) = 0 ,

[

ig(X1 + X2 − X3 − X4)(Γr + 1) +
1

r2
e−A(M1 + M2 −M3 −M4)Γr Γ−

]

ε(1) = 0 ,

[

ig(X1 − X2 + X3 − X4)(Γr + 1) +
1

r2
e−A(M1 −M2 + M3 −M4)Γr Γ−

]

ε(1) = 0 ,

[

ig(X1 − X2 − X3 + X4)(Γr + 1) +
1

r2
e−A(M1 −M2 −M3 + M4)Γr Γ−

]

ε(1) = 0 ,

(3.12)

where we have defined Mi ≡ Si`
2
i H

−1
i . These equations have the solution

ε(1) = r[H1H2H3H4]
1/8 ε(1)

0 , (3.13)

where ε(1)

0 is a constant spinor satisfying (Γr + 1)ε(1)

0 = 0 = Γ−ε(1)

0 . Thus 1
4 of the super-

symmetry of the ε(1) sector is preserved (standard supersymmetry). It is easy to see that

the same amount of supersymmetry is preserved simultaneously in the other sectors. The

pp-wave therefore preserves overall 1
4 of the N = 8 supersymmetry.

Now let us examine whether the solution admits supernumerary supersymmetry. We

again make use of the ansatz

(Γr + 1)ε(1) = if1 Γ−ε(1) . (3.14)

A similar analysis of the integrability conditions among the projected Killing spinor equa-

tions as in five dimensions shows that the functions Si(x
+), U(x+), b(x+) and c(x+) must

again be constants. In D = 4 there are now two conditions that must be satisfied among

the charges for there to be supernumerary supersymmetry. Hence the pp-wave solution

will depend on just two charge parameters. The constraints among the charges are given

by

`2
1`

2
4(`

2
2 − `2

3)(µ1 − µ4) = `2
2`

2
3(`

2
1 − `2

4)(µ2 − µ3) ,

(`2
2 − `2

3)(µ1`
2
1 − µ4`

2
4) = (`2

1 − `2
4)(µ2`

2
2 − µ3`

2
3) , (3.15)

where we have set Si = µi. Solving for µ1 and µ2 in terms of the other two charges the

function H is given by

µα =
µ3`

2
3(`

2
α − `2

4) − µ4`
2
4(`

2
α − `2

3)

`2
α(`2

3 − `2
4)

, α = 1, 2 ,

b = −2(µ3`
2
3 − µ4`

2
4)

g6(`2
3 − `2

4)
2

[

µ3`
2
3(`

2
1 + `2

2 + `2
3 − 5`2

4) − µ4`
2
4(`

2
1 + `2

2 − 5`2
3 + `2

4)
]

,

c = −8(µ3`
2
3 − µ4`

2
4)

2

(`2
3 − `2

4)
2

,

– 9 –
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H =
1

2
c z2 − f2

1 ,

f1 = −(µ3`
2
3 − µ4`

2
4)r

2 + (µ3 − µ4)`
2
3`

2
4

g3(`2
3 − `2

4)r
4[H1H2H3H4]1/2

. (3.16)

The projected Killing spinor equations are given by

[

∂+ − 1

2
√

2
(−c)1/2(i Γ+ − f1)Γ− − 1

4
c zΓz Γ−

]

ε(1) = 0 ,

[

∂z −
i

2
√

2
(−c)1/2 Γz Γ−

]

ε(1) = 0 , ∂−ε(1) = 0 ,

[

∂r −
i

2
f ′
1 Γ− − 1

4r

∑

i

H−1
i

]

ε(1) = 0 . (3.17)

The solution for the Killing spinor is

ε(1) = r[H1H2H3H4]
1/8

(

1 +
i

2
√

2
(−c)1/2z Γz Γ−

)(

1 +
i

2
f1 Γ−

)

×

×
[

1 − 1

2

(

1 − e
i

√

2
(−c)1/2x+

)

Γ+ Γ−

]

ε(1)

0 , (3.18)

where ε(1)

0 is a constant spinor satisfying (Γr + 1)ε(1)

0 = 0 . The pp-wave with H given

above therefore preserves 1
2 of the supersymmetry of the ε(1) sector. Consider next the

remaining sectors. For this we use the ansatz Ai
(1) = g−1ηi µi(1−H−1

i )dx+. To preserve 1
2

supersymmetry in the four respective sectors then requires the sign choices:

1 : η1 = η2 = η3 = η4

2 : η1 = η2 = −η3 = −η4

3 : η1 = −η2 = η3 = −η4

4 : η1 = −η2 = −η3 = η4 .

(3.19)

Because of the difference in signs the four charge solution will preserve 1
2 of the supersym-

metry of just one sector and 1
4 of the supersymmetry of each of the remaining sectors.

Although we have focused on solutions with four active charges one can easily also

analyse the supersymmetry of solutions with one, two or three active charges. In the

table 1 we present the overall amount of the N = 8 supersymmetry preserved in the

various cases.

No. of active Standard Enhanced

charges supersymmetry supersymmetry

1 1
4

1
8 + 1

8 + 1
8 + 1

8 = 1
2

2 1
4

1
8 + 1

8 + 1
16 + 1

16 = 3
8

3 1
4

1
8 + 1

16 + 1
16 + 1

16 = 5
16

4 1
4

1
8 + 1

16 + 1
16 + 1

16 = 5
16

Table 1: Amount of N = 8 supersymmetry preserved by 1,2,3 and 4 active charged pp-waves.
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4. PP-waves in the Freedman-Schwarz model

The lagrangian describing the bosonic sector of the Freedman-Schwarz model is [29]

L4 = R ∗1l − 1

2
∗dφ ∧ dφ − 1

2
e2φ ∗dχ ∧ dχ + 4(g2

1 + g2
2)e

φ ∗1l −

− 1

2
e−φ

(

∗F a
(2) ∧ F a

(2) + ∗Ga
(2) ∧ Ga

(2)

)

− 1

2
χ
(

F a
(2) ∧ F a

(2) + Ga
(2) ∧ Ga

(2)

)

, (4.1)

where

F a
(2) = dAa

(1) −
1√
2
g1εabcA

b
(1) ∧ Ac

(1) , a = 1, 2, 3,

Ga
(2) = dBa

(1) −
1√
2
g2εabcB

b
(1) ∧ Bc

(1) . (4.2)

The supersymmetry transformations for the fermions are given by

δΨM =

[

∇M − i√
2
g1α

a
1A

a
M − i√

2
g2α

a
2B

a
M − i

4
eφ Γ5∂Mχ +

+
i

8
√

2
e−

1
2
φ(αa

1F
a
AB − i Γ5α

a
2G

a
AB)ΓABΓM +

1

2
e

1
2
φ(g1 − ig2Γ5)ΓM

]

ε ,

δλ =

[

i√
2
(∂Mφ − ieφ Γ5∂Mχ)ΓM +

1

4
e−

1
2
φ(αa

1F
a
AB + iΓ5α

a
2G

a
AB)ΓAB −

− i
√

2 e
1
2
φ(g1 + ig2Γ5)

]

ε , (4.3)

where Γ5 = iΓ0Γ1Γ2Γ3 such that Γ2
5 = 1. The αa

1 and αa
2 are two sets Pauli matrices. The

gravitino, the dilatino and the (Majorana) spinor ε carry a suppressed indice which runs

from one to four. In the following we turn off two of the fields F a
MN and Ga

MN each. For a

vanishing axion (χ = 0) the pp-wave in this theory is given by

ds2 = (gr)2(−4dx+dx− + H(dx+)2 + dz2) + dr2 ,

H =
1

2
c z2 − b

(gr)2
− c ln(gr)

2g2
− g2

2S
2
1 + g2

1S
2
2

2g2
1g2

2(gr)4
,

φ = −2 ln(gr) ,

A(1) = g−1
1 S1(x

+)
(

(gr)−2 − 1
)

dx+ , B(1) = g−1
2 S2(x

+)
(

(gr)−2 − 1
)

dx+ , (4.4)

where g = (g2
1 + g2

2)1/2. Now lets look at the supersymmetry of this solution. The Killing

spinor equations are given by

[

∂+ +
1

2
g

(

Γ+ +
1

2
HΓ−

)

(Γr + a) − i√
2
(S1 + S2)

(

(gr)−2 − 1
)

−

−1

4
c zΓz Γ− − 1

4
grH ′ Γr Γ− − iΛΓ− Γ+ Γr

]

ε = 0 ,

[∂− − gΓ−(Γr + a)] ε = 0 ,
[

∂z +
1

2
gΓz(Γr + a) + iΛΓz Γ− Γr

]

ε = 0 ,
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[

∂r +
iΛ

gr
Γ− +

1

2gr
(g1 − ig2Γ5)Γr

]

ε = 0 ,

[

(Γr + a) + 2ig−1Γ− ΛΓr

]

ε = 0 , (4.5)

where

a = g−1(g1 + ig2Γ5) and Λ =
g2S1 − ig1S2Γ5

2
√

2g1g2(g2
1 + g2

2)
1/2r2

. (4.6)

It follows from these equations that to obtain the usual 1
4 supersymmetry for the pp-wave

we need surprisingly to impose g2
2S1 = g2

1S2 . The Killing spinor can then be obtained and

it is given by

ε = e
− i

√

2

R

(S1+S2)dx+

r1/2ε0 , (4.7)

where ε0 is a constant spinor satisfying the projections (Γr + a)ε0 = 0 = Γ−ε0 . To

investigate the supernumerary supersymmetry we use the projection condition

(Γr + a)ε = if Γ−ε . (4.8)

The projected Killing spinor equations are given by

[

∂+ +
i√
2
(S1 + S2) + iΓ+

(

1

2
gf − āΛ̄

)

Γ− − 1

4
c z Γz Γ−−

− 1

2
√

2g1g2g2r2
(S1g

2
2 − S2g

2
1)Γ5 + (2Λf − 1

4
a grH ′)Γ−

]

ε = 0 ,

[

∂z + iΓz

(

1

2
gf − āΛ̄

)

Γ−

]

ε = 0 , ∂−ε = 0 ,

[

∂r +
i

r

(

g−1Λ +
1

2
āf

)

Γ− − 1

2r

]

ε = 0 ,

[

f − 2g−1āΛ̄
]

Γ−ε = 0 . (4.9)

Here ā and Λ̄ are just a and Λ but with Γ5 replaced by −Γ5. We analyse these projected

equations by calculating the integrability conditions among them. The condition [∂z , ∂r]ε =

0 requires ∂zf = 0 and yields a solution for f given by

f = 2g−1āΛ̄ + 2g−1U(x+) . (4.10)

The integrability [∂+ , ∂z]ε = 0 provides an equation for U(x+) which is given by

i
dU

dx+
− 2U2 − 1

4
c = 0 . (4.11)

From the last line of eqs. (4.9) we have f − 2g−1āΛ̄ = 0. This equation forces U in the

solution for f to vanish. From the equation for U we must in turn set c = 0. Considering

next the integrability condition [∂+ , ∂r]ε = 0 we first note that

2Λf − 1

4
a grH ′ =

c r2 − 4b

8(gr)2
(g1 − ig2Γ5) . (4.12)
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It follows that the functions S1 and S2 must be constants. We need furthermore also to

set b = 0 (as well as imposing g2
2S1 = g2

1S2). Letting Si = µi the projected Killing spinor

equations become
[

∂+ +
i√
2
(µ1 + µ2)

]

ε = 0 , ∂−ε = 0 , ∂zε = 0 ,

[

∂r −
i

2

g1 − ig2Γ5

(g2
1 + g2

2)
1/2

f ′ Γ− − 1

2r

]

ε = 0 . (4.13)

The Killing spinor solution is

ε = e
− i

√

2
(µ1+µ2)x+

r1/2
[

1 +
i

2

g1 − ig2Γ5

(g2
1 + g2

2)
1/2

f Γ−
]

ε0 , (4.14)

where ε0 is a constant spinor. Inserting the Killing spinor in the projection condition (4.8)

and using

f =
µ1√

2g2
1(g

2
1 + g2

2)
1/2 r2

(4.15)

we obtain (Γr + a)ε0 = 0. Thus, the pp-wave preserves 1
2 of the supersymmetry with H

given by

H = −f2 = − µ2
1

2g4
1(g2

1 + g2
2)r

4
. (4.16)

5. PP-waves in six dimensions

In this section we investigate the supersymmetry of pp-waves in Romans theory [30]. We

use the conventions of [31]. We consider a subsector of the theory by truncating out the

2-form potential and the U(1) potential. The lagrangian describing the remaining fields is

given by

e−1L = R − 1

2
(∂ϕ)2 − 1

4
X−2(F a

(2))
2 + 4g2

(

X2 +
4

3
X−2 − 1

9
X−6

)

, (5.1)

where X = e
− 1

2
√

2
ϕ

and F a
(2) = dAa

(1) − 1√
2
g εabcA

b
(1) ∧ Ac

(1).

We have here set g1 = g2 = −
√

2g in [31]. The supersymmetry transformations are

δΨMi =

[

DM +
1

4
g

(

X +
1

3
X−3

)

ΓM

]

εi −
i

16
√

2
(ΓMΓAB − 2ΓABΓM)X−1FABi

jεj ,

δλi =

[

− 1

2
√

2
ΓM∂Mϕ − 1

2
g(X − X−3)

]

εi −
i

8
√

2
ΓABX−1FABi

jεj , (5.2)

where DMεi = ∇Mεi − i√
2
gAMi

jεj . We obtain the pp-wave with two of the SU(2) fields

turned off. The solution is given by

e2A = (gr)4/3H
1/2
1 , H1 = 1 +

`2
1

r2
,

e2B =
1

(gr)2H
3/2
1

, e
√

2ϕ = H1 ,

– 13 –
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A1
(1) = g−1S1(x

+)(1 − H−1
1 ) dx+ , (5.3)

and the pp-wave function H(x+, r, za) satisfies the equation

H ′′ + (5A′ − B′)H ′ + e−2(A−B)
∑

a

∂a∂aH +
4S2

1`4
1

g2r6(gr)4/3H4
1

= 0 . (5.4)

The Killing spinor equations are given by

[

∂++
1

2
A′eA−B

(

Γ+ +
1

2
HΓ−

)

(Γr + 1) − 1

4
eA−BH ′ Γr Γ− − 1

4

∑

a

∂aH Γa Γ−−

− i√
2
S1(1 − H−1

1 )(Γr + 1) +
i

4
√

2

S1`
2
1

r2H1
Γr Γ+ Γ−

]

ε = 0 ,

[

∂− − A′eA−B Γ−(Γr + 1)
]

ε = 0 ,
[

∂a +
1

2
A′eA−B Γa(Γr + 1) − i

4
√

2

S1`
2
1

r2H1
Γa Γr Γ−

]

ε = 0 ,

[

∂r +
`2
1 + 4r2

12r3H1
Γr +

3i

4
√

2

S1`
2
1(gr)1/3

g2r4H2
1

Γ−

]

ε = 0 ,

[

g(Γr + 1) +
i√
2

S1

(gr)2/3H1
Γr Γ−

]

ε = 0 . (5.5)

It is clear from these equations that the pp-waves preserve 1
4 of the supersymmetry but

there is no supernumerary supersymmetry.

6. PP-waves in seven dimensions

In this section we consider gauged D = 7,N = 2 supergravity where we retain only the

metric, two U(1) gauge potentials and two scalars. The other fields are consistently set to

zero. This reduced set of fields are described by the lagrangian

e−1L = R − 1

2
(∂~ϕ)2 − 1

4

2
∑

i=1

X−2
i (F i

(2))
2 − V , (6.1)

where

Xi = e−
1
2
~ai·~ϕ , ~a1 =

(

√
2,

√

2

5

)

, ~a2 =

(

−
√

2,

√

2

5

)

,

V =
1

2
g2(X−4

1 X−4
2 − 8X1X2 − 4X−1

1 X−2
2 − 4X−2

1 X−1
2 ) . (6.2)

The supersymmetry transformations are given by

δψM =

[

∇M +
1

4
(X−1

1 F 1
MNΓ12 + X−1

2 F 2
MNΓ34)Γ

N +
1

4
gX−2

1 X−2
2 ΓM +

+
1

4
(X−1

1 ∂NX1 + X−1
2 ∂NX2)ΓMΓN +

1

2
g(A1

MΓ12 + A2
MΓ34)

]

ε , (6.3)
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δλ1 =

[

−1

8
(3X−1

1 ∂MX1 + 2X−1
2 ∂MX2)Γ

M− 1

16
X−1

1 F 1
ABΓAB Γ12 +

1

4
g(X1 − X−2

1 X−2
2 )

]

ε ,

δλ2 =

[

−1

8
(2X−1

1 ∂MX1 + 3X−1
2 ∂MX2)Γ

M− 1

16
X−1

2 F 2
ABΓAB Γ34 +

1

4
g(X2 − X−2

1 X−2
2 )

]

ε .

For more details see [32]. The domain wall solution is given by

e2A = (gr)[H
1/2
0 H1H2]

1/5 , Hi = 1 +
`2
i

r2
,

e2B =
1

(gr)2[H
1/2
0 H1H2]4/5

, Xi = H−1
i [H

1/2
0 H1H2]

2/5 , (6.4)

where H0 = 1 + `2
0/r

2. The ansatz for the 1-form potential is

Ai
(1) = g−1Si(1 − H−1

i ) dx+ (6.5)

and the function H(x+, r, za) satisfy the equation

H ′′ + (6A′ − B′)H ′ + e−2(A−B)
∑

a

∂a∂aH +
4g2

r2
e−10A

∑

i

S2
i `4

i H
−2
i = 0 . (6.6)

The Killing spinor equations are given by

[

∂+ +
1

4rH0
eA−B

(

Γ+ +
1

2
HΓ−

)

(Γr + 1) − 1

4
eA−BH ′ Γr Γ− − 1

4

∑

a

∂aH Γa Γ− +

+
1

2

(

S1(1 − H−1
1 )Γ12 + S2(1 − H−1

2 )Γ34

)

(Γr + 1)

]

ε = 0 ,

[

∂− − 1

2rH0
eA−B Γ−(Γr + 1)

]

ε = 0 ,

[

∂a +
1

4rH0
eA−B Γa(Γr + 1)

]

ε = 0 ,

[

∂r −
1

2
√

10
ϕ′

2 +
1

4rH0
Γr −

1

2r
ge−5A(S1`

2
1H

−1
1 Γ12 + S2`

2
2H

−1
2 Γ34)Γ−

]

ε = 0 ,

[

g(`2
0 − `2

1)H
−1
0 X1(Γr + 1) + S1`

2
1H

−1
1 e−A Γ12 Γr Γ−

]

ε = 0 ,
[

g(`2
0 − `2

2)H
−1
0 X2(Γr + 1) + S2`

2
2H

−1
2 e−A Γ34 Γr Γ−

]

ε = 0 .

(6.7)

It is clear from these equations that the pp-waves have 1/4 supersymmetry but no super-

numerary supersymmetry.
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