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ABSTRACT: We obtain the pp-waves of D =5 and D = 4 gauged supergravities supported
by U(1)? and U(1)* gauge field strengths respectively. We show that generically these
solutions preserve 1/4 of the supersymmetry, but supernumerary supersymmetry can arise
for appropriately constrained harmonic functions associated with the pp-waves. In partic-
ular it implies that the solutions are independent of the light-cone coordinate x+. We also

obtain the pp-waves in the Freedman-Schwarz model.
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1. Introduction

The subject of pp-waves and their applications have been studied extensively. In particular,
superstring theory is exactly solvable [l on the backgrounds of the maximal supersymmet-
ric pp-waves of type IIB [J] and M-theory [[]. This provides a rare example where the
AdS/CFT duality [[]-] can be tested [] beyond the supergravity approximation.

When the integration constants associated with these solutions are left arbitrary the
pp-waves generically preserve half of the supersymmetry. Additional supersymmetry (su-
pernumerary supersymmetry) beyond the % can arise when the harmonic function is con-
strained appropriately. For a discussion of pp-waves and their supersymmetry in M-theory
and type IIB see [§-[J.

PP-waves on AdS background have also been studied. The purely gravitational AdS

pp-wave is given by

ds® = €29 (—4dxTdx™ + H(dxt)? + dz2) + dp? (1.1)

where the cosmological constant is related to the gauge coupling constant g as A = —g?

and H = H(z",p, 2,) is a harmonic function on the space of z, and p. The integration
constants of H are therefore allowed to have an arbitrary dependence on z+. If H = 0
the metric describes pure AdS spacetime. The pp-wave with the dependence H(p) was
constructed in four dimensions by Kaigorodov [[4] and its higher dimensional counterparts
were obtained in [[5]. Generalisations of the Kaigorodov metric to inhomogeneous solutions

were obtained in [l -[I§].



The superimposing of a pp-wave on AdS spacetime can be viewed as performing an
infinite boost on the boundary conformal field theory [, [[J]. These solutions generi-
cally preserve 1/4 of the maximum supersymmetry allowed by the AdS spacetime [[[§, [[9].
The purely gravitational AdS pp-waves have in fact been shown to admit supernumerary
supersymmetries [] for appropriately constrained H.

AdS pp-waves can also be supported by a field strength. Their supersymmetry has
been studied in [P0-P3. See also [P4]. In the case of charged pp-waves of minimum
gauged supergravities in D = 4 and D = 5, it was shown [, BJ] that supernumerary
supersymmetry can arise again for appropriately constrained harmonic functions. For pp-
waves with 3 supersymmetry in D = 3 see [P]].

In this paper we shall investigate pp-waves on AdS background further by studying
the pp-waves of D = 5 and D = 4 gauged supergravities supported respectively by U(1)3
and U(1)* gauge fields. We present a detailed analysis of the supersymmetry of these
solutions. In particular, we show that supernumerary supersymmetry can arise beyond the
usual i. We also study the pp-waves of the Freedman-Schwarz model. The supersymmetry
enhancement obtained in this paper forces the solutions to be independent of the light-cone
coordinate zT.

The paper is organised as follows. The pp-waves of gauged supergravities in five and
four dimensions are studied in sections [ and [J respectively. We investigate the pp-waves of
the Freedman-Schwarz model in section [|. In sections [j and fj we study the supersymmetry
of the solutions in six and seven dimensions, respectively.

2. PP-waves in five dimensions

Our first example treats D = 5 gauged supergravity truncated to the U(1)? subgroup of
SO(6). The bosonic sector of this truncated theory is described by the lagrangian 2]

_ 1, _
e s =R— §(a¢)2 +4g® > X - ZX +7 MNPQ%%F2 A3 (2.0)
7

where J = (1, p2), and we write

X; = e 209 X1XoX3=1,

)

and the field strengths are defined as F},, = dA(l) The equations of motion are
1y = o 4, —1, 1 -2 i i P i
Ryy = §aMSD ) aN@_gg gun ZXZ +§ Z X; FyupFy G(F(Q)) gun |,
i i

(2

1
V(X 2FMY) = 4eNPQRSFJ Frs, i#j#k#i,

L, 1
O Z a; X; “(Fg)° — 2g° Z axX; b (2.3)



The supersymmetry transformations for the fermions are given by
(5\I’M = [VM——QZAM—{— gFMZX 8(I’MI‘AB 3FABFM)ZX;1F,§B €,
7

65: = [——Iﬂwa]w + FAB Z(ZZ lF,ZB — —gza@ 7 . (24)

2.1 The solution

We use the following pp-wave metric ansatz
dsp = e*(—4datde™ + H(dzt)? + dz2) + e*Bdr? a=12,...,D -3, (2.5)

in arbitrary dimensions. The functions A and B depend on r only while H depends on
xT, 2z, and r coordinates. If we set H = 0 the pp-waves reduce to AdS-domain wall
solutions [27]. It is natural to choose the following vielbein basis

1
et =etdat, e =eA <—2dw + §Hdm+> . et =etdz, e =eBar (2.6)

such that we have ds? = 2eTe™ 4 e%® + e"¢”. The vielbein components of the spin
connections are
1
w_, = Ale ™ Bet | Wig = 56_A8QH et
1
Wiy = Ale Be™ + §H/67BeJr . wer = Ale™Be?, (2.7)

where the prime denotes the derivative with respect to r. Note that for the metric in this
basis we have ny_ =1 and 44 = n__ = 0. The derivatives are always with respect to the
curved metric. The vielbein components of the Ricci tensor in D-dimensions are given by

_ 1 —2B " / / / 1 —2A _ 1
Ry =—5e U{+H«D—UA—BH—56 2;%%H_—§DH
Ry =—e2BA"+A((D-1)A -B")], Rup=Ri duw,
Ry = —(D—=1)e 2P [A" + A(A' - B)]. (28)

It is straightforward to verify that in five dimensions the following

52
> = (gr)? [H HyHs]'/?, Hi=1+ —2,
1
2B _ - 1/3
_ . X;= H Y[HHyH3)"/3,
‘ (gr)? [HyHyH3)?/3 ' o)
Al =g 'S(1— H Y dat (2.9)

satisfy the equations of motion with H(xz,r, z,) obeying the equation
H" 4+ (4A' = BYH' + ¢~ AB§:66H+ *“§:§#H2 . (2.10)

Here the S; are functions of z 1.



2.2 Standard supersymmetry

The Killing spinor equations following from the fermionic transformations are given by
L A-B 1 1 A—B ry/
3+—|—§Ae F++§HP_ (Fr—i—l)—ze HFTF_—
1 i _
— (O HT 1+ 0,H )T — (Z S:(1— Hj; 1)) (T, 4+ 1)+

+7(ZSZ-€2H )r I T_|e=0,
[0- — Al BT _( ]

. .
Ou+ AP0, +1) - 6%( S{2H; )r I,T_|e=0,
1 —1 i —3A 2r7—1 _
+§<¥Hi )Fr+3—rge (Zsu] )r, e=0,
[ie?’A(ZauHil)(Fr +1) +9( Y auSiZH T e = 0,
% %
[ie3A<Za2,~H;1> (T, +1) + g<Za2iSi€?Hi_1>Fr T |e=0,  (211)
7 7

where we have I’i =T2 =0and {I';,['_} = 2. To arrive at these equations we have
made use of the solution (R.9). The above Killing spinor equations have the solution

e = r'/? [Hi HoH3) Y2 (2.12)

where € is a constant spinor satisfying (I', +1)eg = 0 and I'_¢y = 0. The solution therefore
preserves i of the supersymmetry. The Killing spinor for the i supersymmetry exist for

arbitrary solutions to eq.(R.10).

2.3 Supernumerary supersymmetry

To investigate the supernumerary supersymmetry we use the less restrictive projection
condition
(T, +1De=ifT_¢, (2.13)

where the function f = f(x*,r, z,) is to be determined. Making use of this projection in
the Killing spinor equations they become

i 1
[m +% (A’ A=By_ —M> LyTo 5 (2fM - r2eA~BHNT_—
—Z(alH]_“l + 82HI‘2)F} e=20,

[8a+1

1
5 (A’eABf— ﬁM> rar_} e=0, 0.e=0,



6r

[egAfZabiHil —gZabiSiE?Hill I'_e =0, b=1,2,
% 7

where M = ), SZ[?H; ! We analyse these equations by calculating the integrability

0y + — (fZH +2ge” 3AM)11 1 ZHi_l]e:O, (2.14)

conditions [0y ,dy]e = 0 among them. The integrability [0, ,d;]e = 0 yields a solution for
f with the requirement 9, f = 0. We have

1
324 €

where the function U is in general complex. From the integrability [0y ,d,]e = 0 we obtain

f= e BI(M + 32U (z)), (2.15)

an equation for U after imposing some restrictions on the pp-wave function H(z™", 7, z,).
The result is

0, H =0, 0u,0pH =0 for a#b,

dU 1
it U2+ 50a0.H =0,  a=1,2. (2.16)
The equation for U then requires 0101 H = 0202 H. Investigating the pair of equations given
in the last line of eqs. (B-14) we find that they are satisfied provided that the functions S;
and U satisfy two equations among them. We present the solutions in terms of S3 and U.

They are given by
S= 2 (SG-B-B), S=G(SG-G-8U). @)

In order to analyse the final integrability [0; ,J,]e = 0 we need to make use of the solution
for H. Taking into account the conditions on H given above the solution is given by

1 1
g H(xr,z,) = 5094(2% +25) + §|Eijk| Kijp(zt,r),
S2p4 N 1
(=)0 =)+ 6) 206 = 6)2(6 - 6)*

(bg* + )& — B)(E — &) + 252020 — 2 — () -

Kijk(x-i_a"") = — X

—2S204(02 — 3) — 252402 — eg)] In(r2 + £2)

where b = b(z") and ¢ = ¢(z"). Then [0, ,9,]e = 0 yields an equation for S3 given by

; dSs

d drt+
We proceed next by making use of the information that S;, b and ¢ are real functions.
Egs. (B.17) implies that U must also be real. This has the consequence in eq. (.14) that U
and ¢ must be constants with ¢ being given by ¢ = —2U?. Egs. (R.1§) and (R.17) in turn
implies that S; and b must also be constants. Eliminating U from egs. (R.17) and setting
S; = p; we obtain

—(203) 2 [bgt + ¢ 3+ 2U(U (02 + £3) — 202(2S5+ U))| = 0. (2.18)

€iji il (03 — £3) = 0. (2.19)



Without loss of generality we solve for p; in terms of the other two charges. The function
H which gives 1/2 supersymmetric pp-wave is given by

pal3 (62 = 03) — pual3(03 — £3)
(65— 63) ’
C 2(u2l3 — p3l3) (2t3 — psls — 3(ua — p3) 305 + 1 (k2ll — p3t3))
PG ’

_ 2(p2l3 — pst3)?
(65—63)2 7
1
Heleied)-
(n2l3 — pal3)r? + (p2 — p3) 0303

= — . 2.20
d 92 (03 — 03)r3[H Ho Hs)'/2 (2.20)

We next calculate the Killing spinor. The projected Killing spinor equations become

1 1
(_C)l/Q(iFJr — - - ZC(Z1F1 + )| e=0,

0

22 ]
[aa B 2;\/5(_6)1/2 Farf— e=0, 0-e=0,
_iep L g
lar 2f r- GTZi:Hi e=0. (2:21)

The Killing spinor is easily obtained, given by
— /2 v i 1/2 ) < i )
e =r/°|H HoHs3]12 [ 1+ c 2101+ 2z0l) ) (14 =fT_ | n,
[ 1412 3] ( 2\/5( ) ( 1+1 2 2) 2f n

U Y Y (2.22)

det 22

Solving for n we have

€ = T1/2[H1H2H3]T12 <1 + 2\1/5(—0)1/2(er1 + ZQFQ)P_> <1 + %fll) X

1 (=) /%
X [1—5 <1—e\/§( )2 +> r+r_] €, (2.23)

where €y is a constant spinor satisfying (I', + 1)eg = 0. The solution thus preserve % of
the supersymmetry. Note that if we set p;¢7 = u (which is consistent with eq. (R.19)) we
obtain b = ¢ = 0.

To conclude, demanding supernumerary supersymmetry puts very strong restrictions
on the pp-waves with the functions S, b and ¢ (and U) which initially all being functions of
T reduce now to constants. This is not the case for minimal gauged supergravity where

supernumerary supersymmetry does allow the various functions to have 1 dependence.



3. PP-waves in four dimensions

In this section we consider a subsector of the SO(8) gauged supergravity where the bosonic
fields comprises the metric, four commuting U(1) gauge potentials and three dilatons. The
lagrangian describing this set of fields is [Rg

_ 1. 1 PP
e 'Ly =R— 5(8@)2 -7 S OXTHFL) -V, (3.1)

where (,5 - (9017 Y2, @3)7 and

1o =
X, = e 2%%, X1 XoX3X4 =1,
a; = (1,1,1), ao = (1,—1,—1), as = (—1,1,—1), as = (—1,—1,1). (3.2)

The field strengths are defined as F(i2) = dAfl) and the potential is given by

3
V = —44? Z X X; = —8¢ Z cosh ¢; . (3.3)
1

1<j 1=

The N = 8 supersymmetry transformations in this bosonic background were also presented
in [2§]. They are given by

4 , C i ; 1 ;
SV = Ve 4> [_ig Qi Al + gQinleﬁBTABFM + ZngFM] e,
J
o 1 '
N = | 5TV = oo ST P 41V Y Fip o | ) (3.4)
k

k,m

where we have rewritten them by introducing complex fermions Wi, = Wi +iWi  etc

and made the substitutions g — 1/2¢ and Afl) — —ﬁAfl) . Note that ¢ # j in the spin

1/2 transformations. The three dilatons are given by the following identifications

p1=0¢2 =9,  p=¢P =9,  p3=¢" =09, (3.5)

and note also that ¢ = ¢*. The function fijx is defined as

|E’ljk| for iajak#la
fijk = dj, for i=1, (3.6)
b for j=1,

and the matrix 2 is given by

1 1 1 1

111 1-1-1
Q= 3.7
211-1 1-1 (37)

1-1-1 1



3.1 The solution

The four charge pp-wave is given by

where
52
e = (gr)* [H HoHsHy)'? Ho—1+ _2 |
1
"= = H- 1/4
= 5 XZ = H ‘\HiH-H-H, ’

’ (gT)Q [H1H2H3H4]1/2 i [ 1412113 4]

Ay = g0 s 59

and S; = S;(zT). The function H(x™,r, z) satisfies the equation

H" + (3A' — B)H' + ¢ 24P)p,0,.H + e 44 ZSQE4H 2= (3.10)

The solution to this equation is similar to the solution in D = 5. The four charged pp-wave
can be specialised to one, two and three active charges respectively.
3.2 Supersymmetry

The N = 8 supersymmetry have four different sectors. We begin by analysing the Killing
spinor equations for the sector ). The supersymmetry transformations are given by

4
oWy, = Ve +>° [ —gAL, + 6X LRI, TAPT,, + gX Lyl e

N7 = [ 001~ DO Ey 4 X5 Fy = X E X Fl) +
+ %g()ﬁ + X9 — X3 — X4)} e,
I = [%Makm - ﬁrA%XleiB = Xy i+ X Ry — XTF) +
+ %Q(Xl - Xo+ X3 — X4)} e,
N = | D0 — LT = X - X5 + X )+
+ %g(Xl —Xo— X3+ X4)} e (3.11)

The Killing spinor equations are readily written down and take the form

1 1 1 1
[m + §A’6A_B <r+ + 5HF) T, +1) - ZH'eA_B L L A

_%(Zi;si(l —H;U)(H—i—l) +ﬁ(;%>prnp_}m o,



[0- — AeABr_ (T, + D]e® =0,

1 .
0.+ ZAAP I, +1) - ﬁ ( ZMi)FZ I, T | v =0,
)

1 —1 1 9y — e
37"+4_r(ZHi )Tr+2-ge (ZMi)r_ €M =0,
(a 1

. 1 _ |
ig(X1+Xo— X3 —Xy)(T +1)+ T_Qe A(Ml + My — Mz — My)T,. T eV =0,

1 -
ig(X1 — Xo + X3 — Xg)(I'y + 1) + ﬁeiA(Ml — Mo+ Mz — MY, T_| eV =0,

. 1 ]
ig(X1 — Xo = X5+ Xa)(Ty + 1) + e AMy — Mg — Mz + M)T, T_| eV =0,

(3.12)

where we have defined M; = S,[?H Z._l. These equations have the solution
e = r[Hy HyHyHy)'/® €, (3.13)
where 68) is a constant spinor satisfying (I, + 1)6(01) =0= F_e(ol). Thus % of the super-

symmetry of the e sector is preserved (standard supersymmetry). It is easy to see that
the same amount of supersymmetry is preserved simultaneously in the other sectors. The
pp-wave therefore preserves overall i of the N' = 8 supersymmetry.

Now let us examine whether the solution admits supernumerary supersymmetry. We

again make use of the ansatz
(T, +1)eM =if T, (3.14)

A similar analysis of the integrability conditions among the projected Killing spinor equa-
tions as in five dimensions shows that the functions S;(z"), U(z™), b(x*) and c(z™) must
again be constants. In D = 4 there are now two conditions that must be satisfied among
the charges for there to be supernumerary supersymmetry. Hence the pp-wave solution
will depend on just two charge parameters. The constraints among the charges are given
by

CR03(65 — 63) ( — pa) = L303(63 — €7) (2 — p3)
(65 — 63) (a0} — pal3) = (07 — ) (25 — p3l3) , (3.15)

where we have set S; = p;. Solving for p; and ps in terms of the other two charges the
function H is given by

 psl3(02 = 03) — pali (02 = 13)
o= 20— 43) ’
_ 2Apsls — patd)

9o (03 — £3)?
_ 8(psld — pati)?
(53— 7

a=1,2,

(13363 + 03 + 03 — 50%) — a3 (63 + 03 — 503 + 7)),




1
H = 5022_f127

P (1303 — pal3)r? + (s — pa) 303 (3.16)
' g3 (03 — (3)r4[H, HyHyHy)' /2 |

The projected Killing spinor equations are given by

[3 - %(—C)W(im — fi)l- — iczrz r_} e =0,

[az - ﬁ(—c)lﬂ T, r] D=0, 0.V =0,

i, 1 -1 ) _
lar_iflr‘_EZHi ]e =0. (3.17)
(2
The solution for the Killing spinor is

¢V = r[HHyHs Hy)'/® <1 - ﬁ(—c)lﬂzrzr) <1 + ;fl r) X

1 i (—e)Y/
x [1 = <1 _ v 2”) T, r] e, (3.18)

(1)
0

where €, is a constant spinor satisfying (I, + 1)561) = 0. The pp-wave with H given

above therefore preserves % of the supersymmetry of the ¢ sector. Consider next the

%1) =g ni (1 — H;l)dx+. To preserve %

supersymmetry in the four respective sectors then requires the sign choices:

remaining sectors. For this we use the ansatz A

= N2= N3= 14
B 72 73 —T4 (3.19)
= —TN2= T"NN3= —T4
M= —TN2= —N3= T4.

NSO R

Because of the difference in signs the four charge solution will preserve % of the supersym-

metry of just one sector and % of the supersymmetry of each of the remaining sectors.
Although we have focused on solutions with four active charges one can easily also

analyse the supersymmetry of solutions with one, two or three active charges. In the

table [l we present the overall amount of the N' = 8 supersymmetry preserved in the

various cases.

No. of active Standard Enhanced
charges supersymmetry supersymmetry
i R ERE TR B
2 NI T
; I eirbed-3
i I v hed-s

Table 1: Amount of N = 8 supersymmetry preserved by 1,2,3 and 4 active charged pp-waves.

,10,



4. PP-waves in the Freedman-Schwarz model
The lagrangian describing the bosonic sector of the Freedman-Schwarz model is [R9]
1 1
L4 = R+l— 5 #do Ado — 5ew sdx A dx + 4(g? + g3)e? x1 —

1 _ 1
—5e P (#FG) NFG) + G AGE) — X (Fo) NFG) + Gl AGY), (40)

D) @)
where
1 b
F(a2) = dA?I) n Egleabcfl(l) A Afl) ) a=1,2,3,
1 b
Gé) = dB(al) — EQQGGJ)CB(I) A B(cl) . (42)

The supersymmetry transformations for the fermions are given by

1 1 1
oWy = |:VJM - _QIQ?A?M - _9204ng1 — —e? I'sOux +

V2 V2 4
+Le*%¢(oﬂFa —iT5a5GY ) TAPT 41 39(gy — igoDs)T
8v2 1Y 4B 509014 M 26 g1 —1g2Ll5)L | €,
i . 1 1 .
o\ = [ﬁ(am— ie? D50, x)TM + G 29(afF%, +il503G%, )[4 —
—iv2e29(g1 +igaTs) e, (4.3)

where I's = i['gI'1I'sI'3 such that I’% = 1. The of and o are two sets Pauli matrices. The
gravitino, the dilatino and the (Majorana) spinor e carry a suppressed indice which runs
from one to four. In the following we turn off two of the fields F},, and G¢,, each. For a

vanishing axion (y = 0) the pp-wave in this theory is given by

ds® = (gr)?(—4dztdz™ + H(dz)* + dz?) + dr?,
1 1 2¢2 | 242
H= o2 bQ_CH(gV")_%S;;‘gpiz’
2 (97) 29 29195 (9r)
¢ = —2In(gr),

Ay = g7 S1@ M) ((gr) 2 = 1)da™, By =g5 ' Sa(a™)((gr) > — 1)dat, (4.4)

where g = (g7 + g3)'/?

spinor equations are given by

. Now lets look at the supersymmetry of this solution. The Killing

V2

1 1
—ZczeI’, - ZQTH/FrF— —iAT_ F+FT:|E =0,

[&r + %g <I‘Jr + %HI‘) Iy +a) (S1+ S2)((gr) 2 —1)—

[0- — gD (T +a)le =0,

1
[az + §gFZ(FT +a)+iAT, T FT] e=0,

— 11 —



iA 1 .
Or +— —+ (g1 —igol'5)I's| € = 0,
2gr

[(Ty +a) +2ig 'T_AT,] e = 0, (4.5)

where .
9251 —ig1521'5

a 2V29192(g% + 93)1/2r2

It follows from these equations that to obtain the usual % supersymmetry for the pp-wave
we need surprisingly to impose g551 = ¢3S . The Killing spinor can then be obtained and
it is given by

a=g g1 +1igoTs) and (4.6)

e = vE/SiHSIET 1 (4.7)

where ¢y is a constant spinor satisfying the projections (I', + a)egg = 0 = T'_¢g. To

investigate the supernumerary supersymmetry we use the projection condition
(T +a)e=ifT'_e€. (4.8)

The projected Killing spinor equations are given by

i . 1 - 1
0y + %(Sl + So) +ily <§gf —aA> r.-— ZczI’ZI’,—

1
o g S192 ~ 520105 + (AS - Lagrr_ ]
[8z+lfz<gf—aA> :|€_0 7620’
[& + % <glA + - ) } _
[f — 27 'aA] T (49)

Here @ and A are just @ and A but with I's replaced by —I's. We analyse these projected
equations by calculating the integrability conditions among them. The condition [0, , J,]e =
0 requires 0, f = 0 and yields a solution for f given by

f=2¢"'ah +297'U(zT). (4.10)

The integrability [0y ,d.]e = 0 provides an equation for U(z™) which is given by
i—— —2U? — ~¢c=0. (4.11)

From the last line of eqs. (.9) we have f —2g~!aA = 0. This equation forces U in the
solution for f to vanish. From the equation for U we must in turn set ¢ = 0. Considering
next the integrability condition [0y ,0,]e = 0 we first note that

cr? —4b

1
2Af — H=—
f=qe 8(gr)?

(g1 —igol's) . (4.12)

- 12 —



It follows that the functions S; and S must be constants. We need furthermore also to
set b = 0 (as well as imposing ¢g35; = ¢?S3). Letting S; = y; the projected Killing spinor

equations become
i
Oy + — + e=0, 0_e =0, 0,e =0,
|: + \/i(ul /1'2):| z

i g1 —igel's , 1
Op ————— """ FfT_——|e=0. 4.13
|: T 9 (g% +g§)1/2f 27":| € ( )

The Killing spinor solution is

e (utp)et 1/2[ i g1 —igal's ]

e=e V2 r/N+ a5 T o, (4.14)
2 (g7 +93)'2

where € is a constant spinor. Inserting the Killing spinor in the projection condition ([L.§)

and using
251

V203001 + g3) /2

we obtain (I', + a)eg = 0. Thus, the pp-wave preserves % of the supersymmetry with H

(4.15)

given by
2 :U’% ( )
H=-f*=——1 __ 4.16
291 (g7 + g3)r

5. PP-waves in six dimensions

In this section we investigate the supersymmetry of pp-waves in Romans theory [B{]. We
use the conventions of [B1]. We consider a subsector of the theory by truncating out the
2-form potential and the U(1) potential. The lagrangian describing the remaining fields is
given by

1 1 4 1
e 'L=R- 5(89@)2 -3 2(F&)? + 4g° <X2 + §X*2 - §X6> : (5.1)

_1
where X = ¢~ 2v2” and FG = dA{,) — \/59 €abcA(1) N AG.
We have here set g1 = g = —v/2¢ in BIl. The supersymmetry transformations are

1 1 .
oW = |:DM + Zg <X + gX_?)) FM:| € — 6\/—(PMFAB QFABFM)X_lFABZJEj7

o\ = MO — —g(X - X_g)} € FABX_lFABijEJ’ (5.2)

[2f 2_8—\/5

where D,e; = V€ — %gAMijej. We obtain the pp-wave with two of the SU(2) fields
turned off. The solution is given by

2A 4/3 771/2 52
€ :(gr)/Hl ) H1_1+_25

1
623 = 7( )2H3/2 s 6\/74'0 g Hl 9
gr 1

,13,



ALy = g7 S (@) - By dat

and the pp-wave function H(z™",r, 2,) satisfies the equation

45204

a7 = 0.
g2r6(gr)4 /3 HE

H" + (5A" = BYH' + ¢ >N "0,0,H +

The Killing spinor equations are given by

1 _ 1 1 4 1
{aﬁ A B<r+ + 5Hr>(n +1) = 3T PH' T T — o Ea:aaHFaF—

(5.3)
(5.4)
e =20,
e =20,
e=20,
e =0.(5.5)

i _ i 502
——S(1—H YT, +1 =, T, T _|e=0,
\/5 1( 1 )( + )+4\/§7"2H1 + :|6
[0_ — A PT_(I, +1)]
1 B i S2 |
Oy + —AA B (T, +1) — = p T, T
|: 2 ¢ ( ) 4\/§T2H1 ]
o, + 02 + 472 3i Slff(gr)l/?’
TU12rH T 42 ¢?riHY T
i S 1
r,+1)+———T,T_
V‘”+ﬂWWm _

It is clear from these equations that the pp-waves preserve % of the supersymmetry but

there is no supernumerary supersymmetry.

6. PP-waves in seven dimensions

In this section we consider gauged D = 7, N' = 2 supergravity where we retain only the
metric, two U(1) gauge potentials and two scalars. The other fields are consistently set to

zero. This reduced set of fields are described by the lagrangian
1 1¢ ‘
e 'L=R-(0¢) - - ZX'_Z(F(Zz))2 -V,

2 4 4 !
=1

. 2 2
X@' = eiéaiw, C_il - <\/§, g) ’ 62 = <_\/§? \/g> ’

1
V= §gZ(X1_4X2_4 —8X1 Xy —4X; X2 —4X 72X, ).

where

The supersymmetry transformations are given by

1, _ 1 5
(W)M = vM + Z(Xl IFJ&INFIQ + X2 1F]%INF34)FN + ZQXI 2‘X2 2 FM +
1 _ 1
5 (X108 X1 + X5 Oy Xo)Do T 4 S (A} Tra + A5 Taa) e

- 14 —
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(6.2)



1 1
o\ = [—§(3X116MX1 +2X,5 10, Xo)TM — —X TFL T2 T 4 —g( X, X12X22)} €

16 4

1
Sho = [—g(lelaMxl + 33X, 10y Xo)TM — 1—6X TF2 T2 gy + n

For more details see [B]. The domain wall solution is given by

1
100 = X7,

€2
A = (gr)[HYPH\Hy)'®, Hy=1+ 5
1
2B _ _ py-1lrgl/2 2/5
e = s X, = H; [H HlHQ] s (64)
(gr)2[Hy*Hy /s 0
where Hy = 1+ ¢3/r?. The ansatz for the 1-form potential is
Al =g¢7'8(1—H Y dat (6.5)
and the function H (27,7, 2,) satisfy the equation
H" + (64" — B')H' 4 ¢ 2(A=B) Za O H + 29104 252541{— (6.6)
The Killing spinor equations are given by
o + L a-s S Lar_ (T, +1)— LAy r,I_— E ZaaHrar_ +
4rHy 2 4 4 -
1 _
#5(5100 = Byl + Sa(1 — Hy YPar) (1, + 1) e = 0,
A-B ]
- — r-(Ir,+1 =
[3 27°Hoe (T + ) e=0,
oA-B
(T +1 =
|:a +47"H0 a( r+ )_6 0,
o, — — ©h + L ige*M(slz?H*lrlz + Spl2H,; T3 )T _| e = 0
" 9y107 2 4rHy " 2r L 22 T30 ’

[9(63 — HH ' X1 (T, + 1) + S13H e AT I, T ] e = 0,
(963 — 3)Hy ' Xo(Ty + 1) + Sol3Hy e A T3y T, T_] e = 0.

(6.7)

It is clear from these equations that the pp-waves have 1/4 supersymmetry but no super-

numerary supersymmetry.
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