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The MEG inverse problem refers to the reconstruction of the
neural activity of the brain from magnetoencephalography (MEG)
measurements. We propose a two-way regularization (TWR) method
to solve the MEG inverse problem under the assumptions that only
a small number of locations in space are responsible for the mea-
sured signals (focality), and each source time course is smooth in time
(smoothness). The focality and smoothness of the reconstructed sig-
nals are ensured respectively by imposing a sparsity-inducing penalty
and a roughness penalty in the data fitting criterion. A two-stage al-
gorithm is developed for fast computation, where a raw estimate of
the source time course is obtained in the first stage and then refined in
the second stage by the two-way regularization. The proposed method
is shown to be effective on both synthetic and real-world examples.

1. Introduction. Magnetoencephalography (MEG) is a noninvasive neu-
rophysiological technique that measures the magnetic field generated by neu-
ral activity of the brain using a collection of sensors outside the scalp [Pa-
panicolaou (1995)]. When information is being processed at some regions of
the brain, small currents will flow in the neural system, producing a small
electric field, which in turn produces an orthogonally oriented small mag-
netic field according to Maxwell’s Equations. The MEG inverse problem
refers to recovering neural activity by means of measurements of the mag-
netic field. The neural activities are usually represented by magnetic dipoles,
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which are closed circulations of electric currents, that is, loops with some
constant current flowing through. Each dipole has a position, an orienta-
tion, and a magnitude. The inverse problem then becomes determining the
position, orientation, and magnitude (or amplitude) of the dipoles.

One challenge of the MEG inverse problem is that it does not have
a unique solution and so it is ill-posed [von Helmholtz (1853); Nunez (1981);
Sarvas (1987)]. As early as in the 19th century, von Helmholtz demonstrated
theoretically that general inverse problems, such as those aiming at identify-
ing the sources of electromagnetic fields outside a volume conductor, have an
infinite number of solutions [von Helmholtz (1853)]. Hence, to derive a prac-
tically meaningful solution from the infinitely many mathematically correct
solutions, one has to introduce constraints to the solution and/or use prior
knowledge about the brain activity.

Existing approaches for the MEG inverse problem can be grouped into
two major classes that differ in how they impose constraints on the source
signals. Within the first class, the dipole fitting [Scherg and Von Cramon
(1986); Hämäläinen et al. (1993); Yamazaki et al. (2000); Jun et al. (2005)]
and scanning methods [Sorrentino et al. (2009); Schmidt (1986); Mosher,
Lewis and Leahy (1992); Veen and Buckley (1988); VanVeen et al. (1997);
Dogandžić and Nehorai (2000)] assume that there exist a limited number
of dipoles as point sources of the magnetic field in the brain. By constrain-
ing the number of sources, the locations of these dipoles are estimated by
least squares fitting [Lu and Kaufman (2003)] or iterative computing [Bail-
let et al. (2001)]. Dipole orientations and amplitudes can be effectively esti-
mated within these locations. However, estimating the source locations in-
volves solving a difficult nonlinear optimization problem which has multiple
local optima [Darvas et al. (2004)].

Our proposed method belongs to the second class, which contains vari-
ous imaging methods. Different from the first class, imaging methods assume
that there are a large number of potential dipole locations evenly distributed
all over the cortex. By dividing the cortical region into a fine grid and at-
taching a dipole at each grid, imaging methods model the orientations and
magnitudes for all the potential dipoles simultaneously. Dipoles with nonzero
magnitudes are identified as the source dipoles. Imaging methods are based
on the theory that the primary sources can be represented as linear com-
binations of neuron activities [Barlow (1994)]. One can express the inverse
problem using a linear model

Y=XB+E,(1)

where Y is an n× s matrix containing MEG time courses measured by n
sensors at s time points, recording the amplitudes of the magnetic field.
Without loss of generality, it is assumed that the s measurements for each
time course are sampled at the same evenly-spaced time points. The known
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n× p design matrix X links the source signals to the sensor measurements,
and is computed using a boundary element model prior to application of
Model (1) [Mosher, Leahy and Lewis (1999)]. The p× s matrix B represents
the unknown dipole activities in the form of p unobservable source time
courses. The n× s matrix E contains some additive noise. The amplitudes
and orientations of the signal for each dipole at a time point can be decom-
posed into three components in the x, y, z coordinate system. Therefore, p
represents the total number of the dipole components, and it is three times
that of the number of grid cells. In a typical MEG study, s is usually from
a few hundred to a few thousand, n is a few hundred, but p is as large as
over 10,000, and so p≫ n.

Defining the matrix Frobenius norm as ‖B‖F =
√

tr(BTB). To recover B,
one can solve a penalized least squares problem

min
B
{‖Y−XB‖2F + λpen(B)},(2)

where pen(·) is a penalty function that promotes certain desirable properties
on B.

In the literature of MEG source reconstruction, spatial focality and tem-
poral smoothness are two valid assumptions. That is, the source signals
are smooth in time, and only a small number of compact areas are re-
sponsible for the recordings [Bolstad, Veen and Nowak (2009)]. Many of
the imaging methods focus on either the first assumption or the second.
Earlier methods using the smoothness assumption usually adopt the L2-
norm penalty, pen(B) = ‖WB‖2F for certain weighting matrix W. The sim-
plest such method is the minimum norm estimate (MNE) [Hämäläinen and
Ilmoniemi (1994)] which uses W = I. The LORETA methods [Pascual-
Marqui, Michel and Lehmann (1994); Pascual-Marqui (2002)] set W to be
the discrete spatial Laplacian operator. Two advantages of the L2-penalty
based methods are the computational efficiency and the less-spiky property
in the time domain. Nevertheless, the L2-penalty lowers the spatial resolu-
tion and causes the well-known “blurring effect” in the spatial domain. Uti-
lizing the L2-penalty, the FOCUSS method [Gorodnitsky and Rao (1997)]
reduces the blurring effect by reinforcing the strong signals while weaken-
ing the weak ones using an iterative algorithm to update W. However, it is
noticed that FOCUSS is very sensitive to noise [Ou, Hämäläinen and Gol-
land (2009)]. Many hierarchical Bayesian approaches induce the temporal
smoothness by employing smoothing priors which penalize discontinuities
[see, e.g., Baillet and Garnero (1997); Daunizeau et al. (2006); Nummenmaa
et al. (2007a)].

An alternative penalty is the L1-norm, pen(B) = |B|=
∑p

i

∑s
j |bij |, which

promotes the focality of the recovered signals. Related work includes the
minimum current estimate (MCE) [Matsuura and Okabe (1995); Uutela,
Hämäläinen and Somersalo (1999); Lin et al. (2006)] and the sparse source
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imaging method [Ding and He (2008)]. In contrast to the L2-penalty, the
L1-penalty causes “spiky” discontinuities of the recovered signals in both
temporal and spatial domains. Bayesian methods developed by Baillet and
Garnero (1997), Friston et al. (2008), Nummenmaa et al. (2007b) take into
account the spatial focality by employing anatomic sparse priors. However,
these methods have similar problems as methods based on the L1-penalty.

To prevent the spiky property from the L1-penalty and the blurry prop-
erty from the L2-penalty, some Ll-norm methods with 0< l < 1 and 1< l < 2
have been introduced [Auranen et al. (2005); Jeffs, Leahy and Singh (1987)].
However, the optimization problems associated with Ll-penalties are more
difficult to solve than with L1 and L2 penalties.

More recently, some spatio-temporal regularization methods have been
proposed, which take into account both the smoothness and focality proper-
ties by combining basis representation with penalization. The L1L2-regulari-
zation discussed by Ou, Hämäläinen and Golland (2009) first projects B

onto a temporal basis and then imposes the L1-penalty on the spatial do-
main and the L2-penalty on the temporal domain. The event sparse penalty
procedure [Bolstad, Veen and Nowak (2009)] divides the brain surface into
several patches based on its anatomic features and uses temporal basis func-
tions to represent source time courses within each patch. One drawback of
both methods is that it is not straightforward to choose the basis. Both
methods have some shortcomings. The former makes the assumption that
the source temporal basis can be extracted perfectly from the MEG record-
ings. The latter utilizes comprehensive prior information of the experiment
task and the brain geometry. In addition, the use of basis representation can
potentially cause information loss, since information orthogonal to the basis
set can not be recovered after the projection to the basis set is done.

The goal of this paper is to develop an innovative two-way regularization
method (TWR) for solving the MEG inverse problem that promotes both
spatial focality and temporal smoothness of the reconstructed signals. The
proposed method is a two-stage procedure. The first stage produces a raw es-
timate of B using a fast minimum norm algorithm. The second stage refines
the raw estimate in a penalized least squares matrix decomposition frame-
work. A sparsity-inducing penalty and a roughness penalty are employed to
encourage spatial focality and temporal smoothness, respectively.

The proposed TWR has three major advantages over the existing meth-
ods. First, TWR regularizes in both spatial and temporal domains, and
simultaneously takes into account both focality and smoothness properties.
Hence, it should be superior to one-way regularization methods (e.g., MNE
and MCE). Second, unlike some aforementioned spatio-temporal methods,
TWR does not rely on the choice of basis functions. Hence, it avoids the in-
formation loss due to basis approximation. Third, the two-stage procedure is
computationally efficient. The advantages of our method are well illustrated
in the empirical studies, which show clearly that TWR outperforms one-way
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regularization methods that focus either on the focality or the smoothness
alone, and some existing two-way spatio-temporal methods as well.

Two-way regularization techniques for matrix reconstruction have been
studied in other contexts. Huang, Shen and Buja (2009) present a two-way
regularized singular value decomposition for analyzing two-way functional
data that imposes separate roughness penalties on the two domains. Witten,
Tibshirani and Hastie (2009) and Lee et al. (2010) develop sparse singular
value decomposition methods that impose separate sparsity-inducing penal-
ties on the two domains. However, to the best of our knowledge, a two-way
regularization with the sparsity penalty on one domain and the roughness
penalty on the other domain of the data matrix has not appeared in the
literature. This paper provides a novel application of the two-way regular-
ization method in solving the highly ill-posed MEG inverse problem, where
different types of penalties are naturally used to meet the dual requirements
of spatial focality and temporal smoothness on the unknown source signals.

The rest of the paper is organized as follows. Section 2 presents the details
of the TWR methodology including the computational algorithm. Through
a synthetic example, Section 3 shows advantages of the TWR over some
existing methods for solving the MEG inverse problem. Section 4 applies
the TWR to a real-world MEG source reconstruction problem. Section 5
concludes the paper with some discussion about an alternative one-step
approach and related complications.

2. Methodology. We propose a two-way regularization (TWR) method
to regularize the recovered signals in both spatial and temporal domains.
We adopt a penalized least squares formulation that uses suitable penalty
functions to ensure the spatial focality and the temporal smoothness of the
recovered signals. TWR is implemented in a two-stage procedure where the
first stage produces a rough estimate of the source signals and the second
stage refines the initial rough estimate using regularization.

2.1. Stage 1. The goal of Stage 1 is to obtain a rough estimate of the
location and the shape of the source signals. At this stage, source information
in the data is retained as much as possible. It is natural to obtain such
a rough estimate by solving the following minimization problem:

min
B
‖Y−XB‖2F .(3)

Note that the forward operator X contains the information of positions
and orientations of the dipoles, and how they are represented at the sensor
level. This information can be decomposed by applying a singular value
decomposition (SVD) to X, that is, X = UDVT , where U ∈ R

n×n is an
orthogonal matrix and V ∈R

p×n is a thin (since p≫ n) orthonomal matrix,
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such that UTU =UUT = I and VTV = I. Then the objective function in
the optimization problem (3) becomes

‖Y−UDVTB‖2F = ‖UTY−DVTB‖2F .

Let Ỹ=UTY and C=VTB. The minimization problem (3) is equivalent
to

min
B
‖Ỹ−DC‖2F .(4)

Let ỹT
i and cTi be the ith row of Ỹ and the ith row of C, respectively.

Since D is a diagonal matrix, the minimization problem (4) can be obtained
by separately solving for each i,

min
ci
{‖ỹi − dici‖

2},

where di is the ith diagonal element inD. This problem has a unique solution
ĉi = ỹi/di. Then the estimated matrix Ĉ with ĉTi in the ith row can be
obtained. Thus, a rough estimate of B can be obtained by solving

Ĉ=VTB.(5)

Note that Ĉ is n× s, V is p× n, and B is p× s. Since p≫ n and p≫ s,
equation (5) does not have a unique solution for B. Any solution of (5) can be

written as B† =VĈ+V⊥F, where V⊥ is a p× (p−n) orthonormal matrix
whose columns are orthogonal to the columns of V and F is a (p− n)× s

matrix. We pick the minimum norm solution, which is B̂=VĈ. In fact, B̂
solves the following optimization problem:

min
B
‖B‖2F subject to ‖Y−XB‖F = 0.

We can see this by noticing that ‖B†‖2F = ‖VĈ‖2F + ‖V⊥F‖2F ≥ ‖B̂‖
2
F and

the equality holds when F is a matrix of zeros.
We call this B̂ the raw estimate. Note that the raw estimate can only

recover information that lies in the column space of V, and thus any infor-
mation orthogonal to the columns of V is lost. Since the columns of V are
the right singular vectors of X, the column space of V is equivalent to the
row space of X. This information loss can also be understood by viewing the
forward operator X as a filter that maps the source B to the space of the
observations, Y, and so the information in the columns of B that is orthog-
onal to the rows of X can not be recovered. Since all imaging methods are
based on Model (1), information loss is a common problem to these meth-
ods. This is the limitation of the MEG technology. Fortunately, according
to our experience, most important information still remains in many real-
world applications, as we will see in our real data example. Note that the
methods that require basis representation may cause additional information
loss, since any information in the columns of B that is orthogonal to the
basis chosen will also be lost.
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2.2. Stage 2. It is obvious that the raw estimate, B̂, can be noisy. The
purpose of Stage 2 is to polish the raw estimate by incorporating the smooth-
ness and focality assumptions. The polished solution from this stage is de-
noted as B̃. As we will see in the simulation study in Section 3, the shapes
of the time courses in the rows of B̂ are noisy but usually follow the shapes
of the true curves, and B̂ may suggest a broader range of active regions. In
a penalized least squares framework, we apply a roughness penalty to smooth
the recovered time courses and apply a sparsity-inducing L1 penalty to refine
the active regions.

In order to apply two penalty functions to B, we first use the two-
way structure of the raw estimate and decompose it into spatial-only and
temporal-only components. Specifically, we write B̂ as

B̂=AGT ,(6)

where the matrix G ∈Rs×q (q ≤ s) contains only the temporal features of B̂,
and A ∈Rp×q can be treated as the spatial coefficients. When q < s, the de-
composition (6) suggests a reduced-rank representation of B̂. Our empirical
studies, however, suggest that any reduced-rank representation would lead
to information loss and thus the full rank model is needed in practice. We
shall focus on the full rank model (q = s) for the rest of the paper. For
identification purposes, we require that G is an orthogonal matrix, that is,
GTG=GGT = I.

Note that when the full rank model is used, the reconstruction error of
using AGT to represent B̂, ‖B̂ −AGT ‖2F , is exactly zero. We propose to
introduce focality and smoothness requirements on A and G respectively
at the cost of allowing some errors in reconstructing B̂. In particular, we
consider the following penalized least squares problem:

min
A,G
{‖B̂−AGT ‖2F + µ1 pen1(A) + µ2 pen2(G)},(7)

where pen1(A) and pen2(G) are appropriate penalty functions, and µ1

and µ2 are the corresponding penalty parameters.
To ensure the spatial focality of the recovered source signals, we employ

a sparsity-inducing penalty on A so that the estimated A is a sparse matrix,
that is, a large proportion of its entries are zero. Note that if a row of A
has all zero entries, then the corresponding row of B̂ has all zero entries,
indicating no signal or an inactive location. Although other choices are pos-
sible, we use the L1 penalty pen1(A) = |A| =

∑p
i=1

∑q
j=1 |aij | to serve our

purpose. On the other hand, to induce smoothness to the time course of the
recovered source signals, we apply a roughness penalty to the columns of G
so that each column of G is a smooth function of time. Let g= (g1, . . . , gs)

T

represent a generic vector representing a column of G. One choice of the
roughness penalty is the squared second order difference penalty, defined as



8 TIAN, HUANG, SHEN AND LI

pen(g) =
∑s−1

l=2 (gl−1−2gl+ gl+1)
2. This penalty is a quadratic form and can

be written as gTΩg for a nonnegative definite roughness penalty matrix, Ω.
The overall penalty on G is the summation of the penalty on each column,
pen2(G) = tr(GTΩG) =

∑s
j=1 g

T
j Ωgj . Using the penalties defined above,

the penalized least squares problem (7) becomes

min
A,G
{‖B̂−AGT ‖2F + µ1|A|+ µ2 tr(G

TΩG)}.(8)

2.3. Algorithm. We propose an iterative algorithm to solve (8) that al-
ternates the optimization with respect to A and G. The algorithm starts
with setting the initial G to be the orthonormal matrix of the right singular
vectors from the SVD of B̂. That is, let B̂ = LTRT , where L and R are
orthonormal matrices, and we set the initial G=R.

Fix G, update A. When G is fixed as Ĝ, the roughness penalty term
in the objective function (8) is irrelevant to the optimization of A. Thus,
updating A reduces to solving the problem

min
A
{‖B̂−AĜT ‖2F + µ1|A|}.(9)

This is similar to one step of the iterative algorithm for the sparse principal
component analysis as formulated by Shen and Huang (2008). Express AĜT

as a summation of a serial of rank-one terms

AĜT =

s
∑

j=1

ajĝ
T
j ,(10)

where aj and ĝj are the jth column of A and Ĝ, respectively. Since simul-
taneous extracting of all the rank-one terms is computationally expensive,
we propose to obtain them sequentially.

For the first rank-one term (j = 1), we solve for fixed ĝ1

min
a1

{‖B̂− a1ĝ
T
1 ‖

2
F + µ1|a1|}.(11)

This problem has a closed-from solution which is given below. For the sake
of notational simplicity, we drop the subscripts for now and express the
objective function of (11) as

‖B̂− aĝT ‖2F + µ1|a|
(12)

=

p
∑

i=1

{

a2i

s
∑

l=1

ĝ2l − 2ai

s
∑

l=1

b̂ilĝl +
s
∑

l=1

b2il + µ1|ai|

}

,

where b̂il is the (i, l)th element in B̂, and ai, i= 1, . . . , p, are the elements
of the vector a. The minimization of (12) is equivalent to independently
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solving p optimization problems

min
ai

(

a2i

s
∑

l=1

g2l − 2ai

s
∑

l=1

b̂ilgl + µ1|ai|

)

, i= 1, . . . , p.(13)

According to Lemma 2 of Shen and Huang (2008), the minimizer of each
objective function in (13) is the soft thresholding rule

âi = sign(ri)(|ri| − λ)+,(14)

where ri =
∑s

l=1 b̂ilĝl/
∑s

l=1 ĝ
2
l , and λ= µ1/(2

∑s
l=1 ĝ

2
l ). The p-vector a that

minimizes (12) is â= (â1, . . . , âp)
T .

After the first rank-one term â1ĝ
T
1 is obtained, we find the second rank-

one term by solving the following minimization problem, while fixing ĝ2:

min
a2

{‖(B̂− â1ĝ
T
1 )− a2ĝ

T
2 ‖

2
F + µ1|a2|}.

This is the same problem as (11) except that the B̂ in (11) is replaced by the

residual B̂res,1 = B̂− â1ĝ
T
1 from the rank-one approximation. The rest of the

rank-one terms, âlĝ
T
l , l= 3, . . . , s, can be obtained sequentially in a similar

manner by using the residuals from the lower-rank approximations.
Fix A, update G. When A is fixed as Â, the L1 penalty term in (8)

becomes constant and thus is irrelevant to the optimization with respect
to G. The update of G then solves the following problem:

min
G
{‖B̂− ÂGT ‖2F + µ2 tr(G

TΩG)}.(15)

Since directly solving this problem is complicated, we solve for the columns
of G sequentially. To obtain the first column of G, we solve the problem

min
g1

{‖B̂− â1g
T
1 ‖

2
F + µ2g

T
1 Ωg1},(16)

which has the solution ĝ1 = (âT1 â1I+ µ2Ω)−1B̂T â1. Let Ω=PΛPT be the
eigen-decomposition. Then

ĝ1 =P(âT1 â1I+ µ2Λ)−1PT B̂T â1.

To obtain an update of g2, we solve the problem

min
g2

{‖(B̂− â1ĝ
T
1 )− â2g

T
2 ‖

2
F + µ2g

T
2 Ωg2},(17)

which has the solution

ĝ2 = (âT2 â2I+ µ2Ω)−1(B̂− â1ĝ
T
1 )

T â2
(18)

=P(âT2 â2I+ µ2Λ)−1PT B̂T
res,1â2,

where again B̂res,1 = B̂− â1ĝ
T
1 is the residual from the rank-one approxima-

tion. The rest of ĝl, l= 3, . . . , s, can be obtained similarly using the residuals
from the corresponding lower rank approximations. When all columns of Ĝ
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are obtained, we orthonormalize the columns of Ĝ by taking the QR decom-
position of Ĝ and assigning the Q matrix to Ĝ.

The iterative TWR procedure, including Stage 1 and Stage 2, is summa-
rized in Algorithm 1.

We consider the algorithm has converged if the Frobenius norm of the
relative difference between the current solution and the previous solution
is smaller than a prespecified threshold value. In our implementation, we
declare convergence when ‖B̃i − B̃i−1‖F /‖B̃i‖F ≤ 10−6. Based on our em-
pirical studies, only a few iterations are needed to reach convergence; 15
iterations are usually sufficient for our numerical examples in Sections 3
and 4.

2.4. Tuning parameters. There are two tuning parameters in the TWR
algorithm: the focality parameter, µ1, and the roughness penalty parame-
ter, µ2. The choice of µ1 and µ2 can be done using the cross-validation (CV)
techniques and the generalized cross-validation, respectively.

To select µ1, we can utilize the leave-one-out CV that minimizes the
leave-one-out CV score defined as

CV(µ1) =
1

n

n
∑

i=1

‖Yi −XiÂ−iĜ
T
−i‖

2
F ,(19)

where Yi is the ith row of Y corresponding to the ith time course, Xi is
the ith row of X, and Â−i and Ĝ−i are the estimates of A and G using
all observations except the ith time course. However, practical application
of the CV has some difficulties. The gradient-based optimization is not fea-
sible for minimizing the CV score since it is not a smooth function of µ1,
a consequence of using the L1 penalty. In addition, direct computation of
the CV score is costly because of the usual large scale of the real problem.
In a typical MEG study, n is over 200, s is a few hundred, and p can be over
15,000. In order to reduce the computational cost, we propose to use the
K-fold cross-validation. Specifically, we divide the rows of Y and X into K
about equally sized parts and leave out one part each time for validation,
and use the rest of the parts for estimating A and G. The K-fold CV score
is defined as

CV(µ1) =
1

K

K
∑

k=1

‖Y(k) −X(k)Â−(k)Ĝ
T
−(k)‖

2
F ,(20)

where Y(k) contains the kth part of the rows of Y, X(k) contains the cor-

responding rows of X, and Â−(k) and Ĝ−(k) are the estimates of A and G

using all observations except the kth part of time courses that are left out
for validation. We used K = 5 in our implementation. To further speed up
the algorithm, we restrict our search only in a moderate-sized set of discrete
candidate values for µ1. Such restrictive search is satisfactory, since we find
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Algorithm 1: The TWR algorithm

Input: X, Y, µ1, µ2, q
Output: B̃
begin

Stage 1:
Obtain the SVD of X: X=UDVT , D= diag(d1, . . . , dn)
Ỹ←UTY, Ỹ = (ỹT1 , . . . , ỹ

T
n )

T

for i← 1 to n do
ĉi← ỹi/di

Ĉ← [ĉT1 , . . . , ĉ
T
n ]

T

B̂←VĈ

Stage 2:
Obtain the SVD of B̂: B̂= LTRT

Initialization: Ĝ←R, Ĝ= (ĝjl)
Obtain eigen-decomposition of Ω: Ω=PΛPT

repeat
Update A:
B̂res← B̂, B̂res = (b̂res,il)
â0ĝ

T
0 ← 0 ∈R

p×s

for j← 1 to q do

B̂res← B̂res − âj−1ĝ
T
j−1

λj←
µ1

2
∑s

l=1 ĝ
2
jl

for i← 1 to p do

rij←
∑s

l=1 b̂res,ilĝjl∑s
l=1 ĝ

2
jl

âij← sign(rij)(|rij | − λj)+

Â← (âij)
Update G:
B̂res← B̂

â0ĝ
T
0 ← 0 ∈R

p×s

for j← 1 to q do

B̂res← B̂res − âj−1ĝ
T
j−1

ĝj ←P(âTj âjI+ µ2Λ)−1PT B̂T
resâj

Ĝ← (ĝ1, . . . , ĝq)

Obtain QR decomposition of Ĝ: Ĝ=QR

Ĝ←Q

until convergence of B̃← ÂĜT

end
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that the results are usually not very sensitive to mild changes of µ1 (see
Sections 3 and 4) and thus fine tuning of µ1 is not necessary. We used 10
different values evenly-spaced between 0 and 1 for µ1 in our simulations and
the real-world MEG example; the search range may need to be changed for
different problems.

To select µ2, note that given Â, the update of q columns of Ĝ can be
obtained by solving q separate penalized regression problems. For the jth
column, the regression has B̂T

res,j−1âj as the input, where B̂res,j−1 = B̂ −
∑j−1

l=1 âlĝ
T
l , ĝj as the output, and the hat matrix of the regression is Sj =

P(âTj âjI+µ2Λ)−1PT , according to equation (18). Theoretically, µ2 can take
different values for different ĝj ’s, but we decide to use a common µ2 for all
the ĝj ’s based on computational efficiency consideration. The advantage of
this strategy is that there is only one optimization problem to solve for
choosing the tuning parameter when updating Ĝ. Then, the overall GCV
criterion is the average of all individual GCV criteria:

GCV(µ2) =
1

s

s
∑

j=1

‖B̂T
res,j−1âj−1− ĝj‖

2

{1− (1/s) tr(Sj)}2
,(21)

where B̂res,0 = B̂, and tr(Sj) =
∑p

l=1 1/{â
2
lj +µ2λl}. The GCV optimization

is nested in the iterations because it is defined conditioning on the current
value of Â. Since the GCV criterion is a smooth function of µ2, the op-
timization can be done using a combination of golden section search and
successive parabolic interpolation [Brent (1973)].

2.5. One-way regularization. By separately setting one of the penalty
parameters in (8) to be zero, one can obtain two different one-way regular-
ization methods: tOWR and sOWR, as explained below. These two one-way
regularization methods will be used as a comparison to TWR to demonstrate
the need for two-way regularization.

Letting µ1 = 0 leads to a method that emphasizes temporal smoothness
of the recovered signals, which is referred to as tOWR (temporal one-way
regularization), and is related to the functional PCA [Huang, Shen and Buja
(2008)]. The corresponding optimization problem becomes

min
A,G
{‖B̂−AGT ‖2F + µ2 tr(GΩGT )}.(22)

A modified version of Algorithm 1 can be applied for computation, with the
“Update A” step in the algorithm simplified to Â= B̂T Ĝ.

Letting µ2 = 0 leads to a method that encourages spatial sparsity of the
recovered signals, which is referred to as sOWR (spatial one-way regulariza-
tion) and is related to the sparse principal component analysis of Shen and
Huang (2008). In this case, the optimization problem (8) reduces to

min
A,G
{‖B̂−AGT ‖2F + µ1|A|}.(23)
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Fig. 1. Simulated source and sensor data.

Again, a modified version of Algorithm 1 is applicable, but with the “Up-
date G” step simplified to Ĝ= B̂T Â.

3. Synthetic example. In this section we illustrate the proposed TWR
method using a synthetic example that mimics human brain activities. Both
the source and the forward operator are created based on real-world MEG
studies.

3.1. Data generation. We generated the forward operator,X, from a human
subject head boundary element model using the MNE software (available at:
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php).
The X matrix is a 248 × 15,360 matrix, corresponding to a MEG device
with 248 valid channels. To mimic real-world scenarios and ensure enough
difficulty of the problem, we located two source areas on the left and the
right hemispheres, respectively. The sources were generated from two sine-
exponential functions [Bolstad, Veen and Nowak (2009)] and are shown in
Figure 1(a). The black solid and the red dashed curves are source signals
located at the left motor and the right visual cortical areas, respectively.
As we can see, the sources reach their energy peaks at 25 ms and 58 ms,
respectively. The synthetic MEG time courses were generated using equa-
tion (1) and were obtained using a sampling frequency 355 Hz with a dura-
tion of 200 seconds [see Figure 1(b)]. By mimicking the real MEG data after
preprocessing, that is, denoising and smoothing, the signal-to-noise ratio,
SNR= ‖XB‖2F /‖E‖

2
F , is set to be 5dB.

3.2. Comparison criteria. We compare TWR with eight different meth-
ods that can be put into two categories as given below.

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
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• One-way regularization:
– The L2-based MNE method [Mosher, Leahy and Lewis (1999)]
– The L1-based MCE method [Matsuura and Okabe (1995)]
– sOWR (i.e., spatial sparsity only)
– tOWR (i.e., temporal smoothness only)

• Two-way regularization:
– The L1L2 method proposed by Ou, Hämäläinen and Golland (2009)
– MNE+sOWR (i.e., obtaining the MNE solution as Stage 1 and then

applying sOWR)
– MCE+tOWR (i.e., obtaining the MCE solution as Stage 1 and then

applying tOWR)
– MNE+TWR (i.e., obtaining the MNE solution as Stage 1 and then

applying Stage 2 of TWR)

We put MNE+sOWR in the two-way regularization category because
the L2 penalty in MNE puts constraints on both domains, and sOWR puts
the L1 penalty only on the spatial domain. As a result, the temporal do-
main is regularized by the L2 penalty, while the spatial domain is regularized
first by the L2 penalty and then by the L1 penalty. Similarly, MCE+tOWR
is also categorized as a two-way regularization method. MNE+sOWR and
MCE+tOWR can be considered as two alternative ways for two-way reg-
ularization and are suggested by a reviewer. MNE+TWR, also suggested
by a reviewer, is a slight modification of TWR, replacing the first stage of
TWR by MNE. Its inclusion in comparison helps us study the effect of using
a different Stage 1 estimator on the performance of TWR. We implemented
all the methods in R, and the tuning parameters are selected using either
CV or GCV.

Three comparison criteria are utilized: the overall mean squared error
(MSE), the standardized distance between the energy peak of the estimated
source and the energy peak of the true source, and the computation time.

The overall MSE is defined as

MSE =
1

p
‖B− B̃‖2F ,

where B and B̃ are the true and recovered source matrices, respectively.
The energy of the dipole j at time point k is defined as (b2jk,x + b2jk,y +

b2jk,z)
1/2, where bjk,x, bjk,y, bjk,z (j = 1, . . . , p, k = 1, . . . , s), are the ampli-

tude components for the jth dipole at the time point k in the Cartesian
coordinate system. The energy of the reconstructed source can be defined
similarly. The standardized distance between the estimated and the true
energy peak at time point k is defined as

dk =

√

(x∗k − x̂k)2 + (y∗k − ŷk)2 + (z∗k − ẑk)2

p/3
,
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Table 1

Comparison of nine methods using four criteria: the mean squared error (MSE),
the standardized distance between the true energy peak and the estimated energy

peak at the left motor area (d25), at the right visual area (d58), and the computation
time (in seconds). Reported are the average and standard error of each criterion

based on 100 simulation runs

Method MSE (10−3) d25 (×10
−4) d58 (×10

−4) Computation time (sec.)

MNE 544.0 (9.0) 50.2 (7.3) 42.9 (5.9) 4371 (4.3)
MCE 903.7 (8.9) 337.1 (6.4) 156.1 (11.4) 1545 (3.0)
tOWR 407.9 (8.9) 40.2 (5.8) 39.6 (4.3) 1841 (3.4)∗

sOWR 153.2 (7.7) 19.3 (4.6) 13.9 (3.9) 1798 (3.6)∗

TWR 22.3 (5.7) 15.7 (3.3) 7.1 (2.4) 1872 (3.5)∗

L1L2 44.3 (7.1) 31.0 (6.1) 17.8 (2.3) 40,872 (8.8)
MNE+sOWR 187.3 (8.8) 27.9 (6.8) 14.5 (3.1) 5998 (3.9)
MCE+tOWR 912.7 (10.9) 343.8 (6.2) 145.2 (12.7) 3321 (3.8)
MNE+TWR 28.6 (7.2) 16.9 (4.3) 10.7 (3.9) 6201 (3.1)

∗The computation time for each simulation run is computed based on 15 iterations, which
are usually more than needed for algorithm convergence.

where p/3 is the total number of dipoles, x∗k, y
∗
k, z

∗
k are the coordinates of the

location for the maximum source energy at time point k, and x̂, ŷ, ẑ are the
coordinates for the maximum estimated source energy at the corresponding
time point. In this simulation example, there are two peak times, 25 ms and
58 ms, so we are interested in d25 and d58.

3.3. Results. The simulation was conducted 100 times with the noise
term in Model (1) newly generated for each run. The criteria described in the
previous subsection (i.e., MSE, d25, d58, computation time) were evaluated
for each simulation run, and the mean and standard error of the criterion
values across the 100 runs were calculated. The numerical results are shown
in Table 1.

Several interesting observations can be made from the table. TWR is the
best method in the sense of having the smallest MSE and the shortest dis-
tances between the true and the estimated peaks. Among the four one-way
regularization methods, sOWR and tOWR outperform the classical MNE
and MCE methods, and tOWR outperforms sOWR. The fact that TWR
outperforms the four one-way regularization methods justifies our proposal
of using two-way regularization. The L1L2 method is the third most accu-
rate method, but its computation time is more than 21 times as large as
that of TWR. MNE+sOWR and MCE+tOWR are less satisfactory, demon-
strating the importance of the first stage. MNE+sOWR is not better than
sOWR because the L2 penalty of MNE does not smooth the temporal do-
main. The performance of MCE+tOWR is similar to MCE and is not better
than tOWR because MCE does not recover well important information at



16 TIAN, HUANG, SHEN AND LI

the first stage, and hence tOWR based on MCE is inaccurate. Note that the
reported computation time for TWR, sOWR and tOWR are based on fixed
15 iterations in order to make the calculation of the average computation
time meaningful. Such report is conservative because these algorithms usu-
ally converge rapidly and fewer iterations (usually less than 10) are enough
to obtain considerably good accuracy.

Figures 2 and 3 show the 3-D brain mapping by different methods at
25 ms and 58 ms for a randomly selected simulation run. TWR performs
the best among the nine methods in detecting the true source locations
even though it misses some small regions. It is able to identify the majority
parts of both source locations, and its solutions are focal. Solutions from
sOWR and MNE+sOWR are more scattered than TWR. MNE and tOWR
produce even more diffuse solutions. MCE misses the main parts of both
active areas and so does MCE+tOWR, and they are the least satisfactory
methods. The L1L2 method recovers some of the activity, but the solution
is overly focal. The plot of MNE+TWR is very similar to that of TWR, so
it is not presented here to save space. Direct comparison of results of TWR
and tOWR clearly demonstrate the positive effect of using regularization in
the spatial domain.

Figures 4 and 5 show the true and the recovered time courses by the nine
methods for an arbitrarily chosen single dipole component in the two active
areas, respectively, for a randomly selected simulation run. Each subfigure
shows the true time course and the estimated time course by one method. As
one can see, the methods considering the temporal smoothness reconstruct
the shape of the source time course well. TWR, tOWR, L1L2, MCE+tOWR
and MNE+TWR all produce smooth time courses. TWR recovers the most
energy of the source, while MCE+tOWR recovers the least. MNE+TWR
tends to overshrink the amplitude of the time course because MNE over-
shrinks the amplitude. The methods without considering the roughness reg-
ularization in the temporal domain result in noisy time courses even though
some methods can recover the general trend. In Figure 5(b), MCE does
not capture the major peaks of the signal, and, consequently, MCE+tOWR
[Figure 5(h)], which relies on the solution of MCE, does not recover any sig-
nal activity either. Direct comparison of results of TWR and sOWR clearly
demonstrate the positive effect of using regularization in the time domain.

The selection of the focality parameter and the roughness penalty param-
eter was conducted using the method presented in Section 2.4. Figure 6(a)
and (b) shows the CV and GCV scores for TWR as functions of µ1 and µ2,
respectively. The optimal values of the tuning parameters are µ1 = 0.33 and
µ2 = 5.9. Figure 6(c) shows the sparsity level of the reconstructed source
matrix, B̃, for TWR as a function of the number of iterations when the tun-
ing parameters are set at the selected values. The sparsity level for a matrix
is defined as the number of zero entries over the total number of entries.
Here the total number of entries for B̃ is p× s= 3,072,000. From this fig-
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Fig. 2. Overviews of brain mapping by different methods at 25 ms. (a) shows the true
map, indicating an active area located at the left motor area. TWR identifies the major
active area and the solution is focal. The L1L2 method also identifies the active area
but the solution is too focal. sOWR and MNE+sOWR produce more scattering solutions
than TWR. MNE and tOWR detected active areas are diffuse. MCE and MCE+tOWR
misidentify the active region.
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Fig. 3. Sideviews of brain mapping by different methods at 58 ms. (a) shows the true
map, indicating an active area located at the right visual area. TWR and L1L2 identify
the major active area and the solution is focal. sOWR and MNE+sOWR produce more
scattering solutions than TWR. MNE and tOWR detected active areas are diffuse. MCE
and MCE+tOWR misidentify the active region.

ure, we observe that the sparsity of B̃ levels off rather rapidly and stays
steadily at about 0.996, a fairly high sparsity level. In fact, this sparsity
level matches closely the true level in the simulation setup: The number of
true source dipoles is 20, and so the total number of active source compo-
nents is 60 after considering orientations. Thus, the true sparsity level is
1− 60/p= 1− 60/15360 ≈ 0.996.

4. Real data example. In this section we demonstrate the proposed meth-
od using a human MEG data set obtained from the Center for Clinical Neu-
rosciences at the University of Texas Health Science Center at Houston. The
study subject is a 44-year-old female patient with grade three left frontal
astrocytoma who underwent the MEG test as part of the presurgical eval-
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Fig. 4. Estimated time courses for one arbitrarily chosen dipole component at left mo-
tor area by different methods for a randomly selected simulation run. TWR, tOWR,
MCE+tOWR, L1L2 and MNE+TWR recover the shape of the time course reasonably well
and the solutions are smooth. But MCR+tOWR, MNE+TWR and L1L2 overshrink the
amplitude. MNE, MCE, sOWR and MNE+sOWR estimate the general trend reasonably
well, but the estimated time courses are too noisy. TWR gives the best result.

uation. The patient underwent a somatosensory task which is designed to
noninvasively identify the somatosensory areas of the patient. We choose
this study because of the clinical usefulness of the somatosensory task in
presurgical mapping.
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Fig. 5. Estimated time courses for one arbitrarily chosen dipole component at right visual
area by different methods for a randomly selected simulation run. TWR, tOWR, L1L2 and
MNE+TWR recover the shape of the time course reasonably well and the solutions are
smooth. But MNE+TWR overshrinks the amplitude. MNE, sOWR and MNE+sOWR es-
timate the general trend reasonably well, but the estimated time courses are too noisy.
MCE and MCE+tOWR do not recover the shape of the time course. TWR gives the best
result.

Data collection was done with a whole-head neuromagnetometer contain-
ing 248 first-order axial gradiometers. During the MEG somatosensory ses-
sion, 558 repeated stimulations were delivered to the patient’s right lower
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Fig. 6. Selection of µ1 and µ2 and the sparsity level as a function of the number of
iterations. The optimal µ1 and µ2 are around 0.33 and 5.9, respectively. The sparsity
measure levels off at around 0.996.

lip through a pneumatically driven soft plastic diaphragm. Each stimulation
lasted 40 ms with 450 ms epoch duration (including a prestimulus base-
line of 100 ms) and an interstimulus interval randomized between 0.5 s and
0.6 s. We removed the offset and averaged the 558 epochs to obtain the fi-
nal event-related magnetic field response. Then a bad channel was removed.
The MEG device recorded 228 time points in each epoch. The measurement
matrix Y is 247× 228, where n= 247 is the number of valid MEG channels
and s = 228 is the number of recorded data points per epoch. The n × p
forward operator X was obtained using the MNE software with p= 15,372.

The measured MEG recordings from the 247 valid channels are plotted in
Figure 7(a). Among the 228 time points, there are two peaks at time points

Fig. 7. MEG data. (a) MEG recordings from 247 valid channels; (b) Reconstructed time
courses from an arbitrary source location in the somatosensory area by different methods.
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85 and 99, corresponding to the activation of the primary somatosensory
area contralateral to the stimuli, as expected by clinical experiences and
brain anatomic theories.

Nine methods, MNE, MCE, TWR, tOWR, sOWR, MNE+TWR,
MNE+sOWR, MCE+tOWR and L1L2, were applied to solve the MEG
inverse problem. Figure 7(b) shows the reconstructed time courses for an
arbitrary source location by different methods. As we can see, TWR, sOWR
and tOWR, are satisfactory in terms of estimating the shape of the source
time course and capturing the peak features at time points 85 and 99. But
sOWR produces a noisy time course. MNE and MNE+sOWR overshrink
the magnitudes in addition to producing a noisy time course. MNE+TWR
recovers the shape of the time course but underestimates the amplitude. The
L1L2 method does not distinguish the two peaks. MCE only identifies the
first peak but misses the second one. MCE+tOWR does not capture any
activity because it smoothes the spikes caused by MCE and hence is the
least satisfactory method.

Figure 8 shows the side views of the brain mapping at time point 85
by different methods. As we can see, the somatosensory area was correctly
identified by TWR, which matches the clinical expectation. As with the
synthetic example, tOWR and MNE produce diffuse solutions, leading to
false positives around the somatosensory area. sOWR produces a scattering
solution and so does MNE+sOWR. MNE+TWR and L1L2 also identify
some activity in the frontal lobe. Solutions from MCE and MCE+tOWR
are too focal and do not cover the somatosensory area.

Figure 9(a) shows the CV error as a function of µ1. The CV error was
minimized when the sparsity parameter, µ1, is about 0.44. Figure 9(b) dis-
plays the GCV error as a function of µ2. It shows that the optimal µ2 is
about 59.5. The sparsity level as a function of the number of iterations is
shown in Figure 9(c). As we can see, the sparsity level increases at first and
then levels off rapidly, indicating the algorithm converges fast. The optimal
sparsity level was about 0.999.

5. Discussion. TWR solves the MEG inverse problem by using two-way
penalties that promote both the temporal smoothness and the spatial focal-
ity of the solution. We developed a computational efficient two-stage proce-
dure for implementing TWR. We also considered a one-stage approach that
tries to recover the source signal matrix B=AGT by solving

min
A,G
{‖Y−XAGT ‖2F + µ1|A|+ µ2 tr(G

TΩG)}.(24)

The optimal matrices A and G can be obtained by alternating optimiza-
tion. When fixing A as Â, the optimal G can be obtained as in Algo-
rithm 1, as described in Section 2.3. When fixing G as Ĝ, the problem (24)
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Fig. 8. Side views of the brain mapping at time point 85 by different methods. TWR
provides a focal and accurate detection; MNE+TWR and L1L2 identify some activity in
the frontal lobe in addition to the somatosensory area. Solutions from MNE, sOWR, tOWR
and MNE+sOWR are too diffuse to be satisfactory. Both MCE and MCE+tOWR miss
the activity in the somatosensory area.

becomes

min
A
{‖Y−XAĜT ‖2F + µ1|A|}

=min
A
{tr[Ĝ(YĜ−XA)T (YĜ−XA)ĜT ] + µ1|A|}(25)

=min
A
{‖YĜ−XA‖2F + µ1|A|},

which is equivalent to s different problems, one for each column ofA, namely,

min
aj

{‖Yĝj −Xaj‖
2 + µ1|aj |}, j = 1, . . . , s,

where ĝj is the jth column of the matrix Ĝ. Each of these problems is
a standard LASSO regression problem [Tibshirani (1996)] with over 10,000
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Fig. 9. Selection of µ1 and µ2 and the sparsity level as a function of the number of
iterations. The optimal µ1 and µ2 are around 0.44 and 59.5, respectively. The sparsity
measure levels off at around 0.999.

variables. Although efficient computational algorithms exist for the LASSO
regression, the fact that the LASSO problem needs to be solved a few hun-
dred times during each iteration of updating A makes this approach com-
putationally unattractive. Developing a scalable algorithm for the one-stage
approach is an important issue for its practical application and remains an
interesting research topic.
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in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann.
Phys. 165 211–233.

Witten, D. M., Tibshirani, R. and Hastie, T. (2009). A penalized matrix decom-
position, with applications to sparse principal components and canonical correlation
analysis. Biostatistics 10 515–534.

Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., Takaki, Y. and
Kuroiwa, Y. (2000). Multiple equivalent current dipole source localization of visual
event-related potentials during oddball paradigm with motor response. Brain Topogr.
12 159–175.

http://www.ams.org/mathscinet-getitem?mr=2419336
http://www.ams.org/mathscinet-getitem?mr=1379242


TWO-WAY REGULARIZATION 27

T. S. Tian

Department of Psychology

University of Houston

Houston, Texas 77204

USA

E-mail: siva.tian@times.uh.edu

J. Z. Huang

Department of Statistics

Texas A&M University

College Station, Texas 77843

USA

E-mail: jianhua@stat.tamu.edu

H. Shen

Department of Statistics

and Operations Research

University of North Carolina

at Chapel Hill

Chapel Hill, North Carolina 27599

USA

E-mail: haipeng@email.unc.edu

Z. Li

Department of Neurology

Medical College of Wisconsin

Milwaukee, Wisconsin 53226

USA

E-mail: zhli@mcw.edu

mailto:siva.tian@times.uh.edu
mailto:jianhua@stat.tamu.edu
mailto:haipeng@email.unc.edu
mailto:zhli@mcw.edu

	1 Introduction
	2 Methodology
	2.1 Stage 1
	2.2 Stage 2
	2.3 Algorithm
	2.4 Tuning parameters
	2.5 One-way regularization

	3 Synthetic example
	3.1 Data generation
	3.2 Comparison criteria
	3.3 Results

	4 Real data example
	5 Discussion
	Acknowledgments
	References
	Author's addresses

