NEW LOWER BOUNDS FOR THE RANK OF MATRIX MULTIPLICATION

J.M. LANDSBERG

ABSTRACT. The rank of the matrix multiplication operator for \(n \times n \) matrices is one of the most studied quantities in algebraic complexity theory. I prove that the rank is at least \(3n^2 - o(n^2) \). More precisely, for any integer \(p \leq n-1 \) the rank is at least \((3 - \frac{1}{p+1})n^2 - (1 + 2p(\frac{2p}{p+1}))n \). The previous lower bound, due to Bläser \([2]\), was \(\frac{3}{2}n^2 - 3n \) (the case \(p = 1 \)). The new bounds improve Bläser’s bound for all \(n > 84 \). I also prove lower bounds for rectangular matrices significantly better than the the previous bound.

1. INTRODUCTION

Let \(X = (x_{ij}^p) \), \(Y = (y_{ij}^p) \) be \(n \times n \)-matrices with indeterminant entries. The rank of matrix multiplication, denoted \(\text{R}(M_{n,n,n}) \), is the smallest number \(r \) of products \(p_\rho = u_\rho(X)v_\rho(Y), 1 \leq \rho \leq r \), where \(u_\rho, v_\rho \) are linear forms, such that the entries of the matrix product \(XY^t \) are contained in the linear span of the \(p_\rho \). This quantity is also called the bilinear complexity of \(n \times n \) matrix multiplication. More generally, one may define the rank \(\text{R}(b) \) of any bilinear map \(b \), see \(\S 2 \).

From the point of view of geometry, rank is badly behaved as it is not semi-continuous. Geometers usually prefer to work with the border rank of a bilinear map \(b \), denoted \(\text{R}^b(b) \), which fixes the semi-continuity problem by fiat: the border rank of a bilinear map \(b \), denoted \(\text{R}^b(b) \), is the smallest \(r \) such that \(b \) can be approximated to arbitrary precision by bilinear maps of rank \(r \). By definition, one has \(\text{R}(b) \geq \text{R}^b(b) \). A more formal definition is given in \(\S 2 \).

Let \(M_{n,m,1} \) denote the multiplication of an \(n \times m \) matrix by an \(m \times 1 \) matrix. In \([5]\) G. Ottaviani and I gave new lower bounds for the border rank of matrix multiplication, namely, for all \(p \leq n-1 \), \(\text{R}^b(M_{n,n,m}) \geq \frac{2p+1}{p+1}nm \). Taking \(p = n-1 \) gives the bound \(\text{R}(M_{n,n,m}) \geq 2nm - m \). In this article it will be advantageous to work with a smaller value of \(p \). The results of \([5]\) are used here to prove:

Theorem 1.1. Let \(p \leq n-1 \) be a natural number. Then

\[
\text{R}(M_{n,n,m}) \geq \frac{2p+1}{p+1}nm + n^2 - (1 + 2p(\frac{2p}{p+1}))n.
\]

The previous bound, due to Bläser \([2]\), was \(\text{R}(M_{n,n,m}) \geq 2nm - m + 2n - 2 \). For square matrices Theorem 1.1 specializes to:

Theorem 1.2. Let \(p \leq n-1 \) be a natural number. Then

\[
\text{R}(M_{n,n,n}) \geq (3 - \frac{1}{p+1})n^2 - (1 + 2p(\frac{2p}{p+1}))n.
\]

In particular, \(\text{R}(M_{n,n,n}) \geq 3n^2 - o(n^2) \).

The “in particular” follows by setting e.g., \(p = \lfloor \sqrt{\log(n)} \rfloor \).

Key words and phrases. rank, matrix multiplication, MSC 68Q17.
supported by NSF grant DMS-1006353.
This improves Bläser’s bound [1] of $\frac{5}{8}n^2 - 3n$ (the case $p = 1$) for all $n > 84$. Working under my direction, Alex Massarenti and Emanuele Raviolo [8, 7] improved the error term in Theorem 1.2. In a preprint of this article I made a mistake in computing the error term. Unfortunately this mistake was not noticed before Massarenti and Raviolo’s paper [8] was published, repeating the error, although their contribution is completely correct and their correct bound will appear in [7].

Remark 1.3. If T is a tensor of border rank r, where the approximating curve of rank r tensors limits in such a way that q derivatives of the curve are used, then the rank of T is at most $(2q-1)r$, see [3, Prop. 15.26]. In [6] they give explicit, but very large upper bounds on the order of approximation h needed to write a tensor of border rank r as lying in the h-jet of a curve of tensors of rank r.

The language of tensors will be used throughout. In §2 the language of tensors is introduced and previous work of Bläser and others is rephrased in a language suitable for generalizations. In §3 I describe the equations of [5] and give a very easy proof of a slightly weaker result than Theorem 1.1. In §4 I express the equations in coordinates and prove Theorem 1.1. I work over the complex numbers throughout.

Acknowledgement. I thank the anonymous referee for useful suggestions and C. Ikenmeyer for help with the exposition.

2. Ranks and border ranks of tensors

Let A, B, C be vector spaces, of dimensions a, b, c and with dual spaces A^*, B^*, C^*. That is, A^* is the space of linear maps $A \to \mathbb{C}$. Write $A^* \otimes B$ for the space of linear maps $A \to B$ and $A^* \otimes B^* \otimes C$ for the space of bilinear maps $A \times B \to C$. To avoid extra \ast-s, I work with bilinear maps $A^* \times B^* \to C$, i.e., elements of $A \otimes B \otimes C$. Let $T : A^* \times B^* \to C$ be a bilinear map. One may also consider T as a linear map $T : A^* \to B \otimes C$ (and similarly with the roles of A, B, C exchanged), or as a trilinear map $A^* \times B^* \times C^* \to \mathbb{C}$.

The rank of a bilinear map $T : A^* \times B^* \to C$, denoted $\operatorname{R}(T)$, is the smallest r such that there exist $a_1, \cdots, a_r \in A, b_1, \cdots, b_r \in B, c_1, \cdots, c_r \in C$ such that $T(\alpha, \beta) = \sum_{i=1}^r a_i(\alpha)b_i(\beta)c_i$ for all $\alpha \in A^*$ and $\beta \in B^*$. The border rank of T, denoted $\overline{\operatorname{R}}(T)$, is the smallest r such that T may be written as a limit of a sequence of rank r tensors. Since the set of tensors of border rank at most r is closed, one can use polynomials to obtain lower bounds on border rank. That is, let P be a polynomial on $A \otimes B \otimes C$ such that P vanishes on all tensors of border rank at most r: if $T \in A \otimes B \otimes C$ is such that $P(T) \neq 0$, then $\overline{\operatorname{R}}(T) > r$.

The following proposition is a rephrasing of part of the proof in [1]:

Proposition 2.1. Let P be a polynomial of degree d on $A \otimes B \otimes C$ such that $P(T) \neq 0$ implies $\overline{\operatorname{R}}(T) > r$. Let $T \in A \otimes B \otimes C$ be a tensor such that $P(T) \neq 0$ and $T : A^* \to B \otimes C$ is injective. Then $\overline{\operatorname{R}}(T) \geq r + a - d$.

As stated, the proposition is useless, as the degrees of polynomials vanishing on all tensors of border rank at most r are greater than r. (A general tensor of border rank r also has rank r.) However the conclusion still holds if one can find, for a given tensor T, a polynomial, or collection of polynomials on smaller spaces, such that the nonvanishing of P on T is equivalent to the non-vanishing of the new polynomials. Then one substitutes the smaller degree into the statement to obtain the nontrivial lower bound.

In our situation, first I will show $P(M_{(n,n,m)}) \neq 0$ if and only if $\tilde{P} (\tilde{M}) \neq 0$ where \tilde{M} is a tensor in a smaller space of tensors and \tilde{P} is a polynomial of lower degree than P, see (2). More precisely, note that in the course of the proof, $B \otimes C$ does not play a role, and we will see that the
relevant polynomial, when applied to matrix multiplication $M \in A \otimes B \otimes C = A \otimes \mathbb{C}^n \otimes \mathbb{C}^n$, will not vanish if and only if a polynomial \tilde{P} applied to $\tilde{M} \in A \otimes \mathbb{C}^n \otimes \mathbb{C}^n$ with $\deg(\tilde{P}) = \deg(P)/n$, does not vanish, so the proof below works in this case. Then, in §4, I show that $\tilde{P}(\tilde{M}) \neq 0$ is implied by the non-vanishing of two polynomials of even smaller degrees.

This is why both Bläser’s result and the result of this paper improve the bound of border rank by \mathbb{C}, times to see that the pulled back polynomial is not identically zero restricted to $P = \mathbb{C}$.

Lemma 2.3.

Let \mathbb{C}^a be given a basis. Given a polynomial P of degree d on \mathbb{C}^a, there exists a set of at most d basis vectors such that P restricted to their span is not identically zero.

The lemma follows by simply choosing a monomial that appears in P, as it can involve at most d basis vectors.

Proof of Proposition 2.1.

Let $R(T) = r$ and assume we have written T as a sum of r rank one tensors. Since $T : A^* \otimes B \otimes C$ is injective we may write $T = T' + T''$ with $R(T') = a$, $R(T'') = r - a$ and $T' : A^* \otimes B \otimes C$ injective. Now consider the a elements of $A \otimes B \otimes C$ appearing in T'. Since they are linearly independent, by Lemma 2.2 we may choose a subset of d of them such that P, evaluated on the sum of terms in T' whose A terms are in the span of these d elements, is not identically zero. Let T_1 denote the sum of the terms in T' not involving the (at most) d basis vectors needed for nonvanishing, so $R(T_1) \geq a - d$. Let $T_2 = T - T_1 + T''$. Now $R(T_2) \geq r$ because $P(T_2) \neq 0$. Finally $R(T) = R(T_1) + R(T_2)$.

Let $G(k, V) \subset \mathbb{P} \Lambda^k V$ denote the Grassmannian of k-planes through the origin in V in its Plücker embedding. That is, if a k-plane is spanned by v_1, \ldots, v_k, we write it as $[v_1 \wedge \cdots \wedge v_k]$. One says a function on $G(k, V)$ is a polynomial of degree d if, as a function in the Plücker coordinates, it is a degree d polynomial. The Plücker coordinates $(x^\alpha_\mu)_k$, $k + 1 \leq \mu \leq \dim V = v$, $1 \leq \alpha \leq k$ are obtained by choosing a basis $\epsilon_1, \ldots, \epsilon_v$ of V, centering the coordinates at $[\epsilon_1 \wedge \cdots \wedge \epsilon_k]$, and writing a nearby k-plane as $[\epsilon_1 + \sum x^i_\mu \epsilon_\mu] \wedge \cdots \wedge [\epsilon_k + \sum x^i_\mu \epsilon_\mu]$. If the polynomial is also homogeneous in the x^i_μ, this is equivalent to it being the restriction of a homogeneous degree d polynomial on $\Lambda^k V$. (The ambiguity of the scale does not matter as we are only concerned with its vanishing.)

Lemma 2.3.

Let A be given a basis. Given a homogeneous polynomial of degree d on the Grassmannian $G(k, A)$, there exists at least dk basis vectors such that, denoting their (at most) dk-dimensional span by A', P restricted to $G(k, A')$ is not identically zero.

Proof. Consider the map $f : A^k \rightarrow G(k, A)$ given by $(a_1, \ldots, a_k) \mapsto [a_1 \wedge \cdots \wedge a_k]$. Then f is surjective. Take the polynomial P and pull it back by f. (The pullback $f^*(P)$ is defined by $f^*(P)(a_1, \ldots, a_k) := P(f(a_1, \ldots, a_k))$.) The pullback is of degree d in each copy of A. (I.e., fixing $k - 1$ parameters, it becomes a degree d polynomial in the k-th.) Now simply apply Lemma 2.2 k times to see that the pulled back polynomial is not identically zero restricted to A', and thus P restricted to $G(k, A')$ is not identically zero.

Remark 2.4. The bound in Lemma 2.3 is sharp, as give A a basis a_1, \ldots, a_n and consider the polynomial on $\Lambda^k A$ with coordinates $x^I = x^{i_1} \cdots x^{i_k}$ corresponding to the vector $\sum_I x^I a_{i_1} \wedge \cdots \wedge a_{i_k}$; $P = x^{i_1} \cdots x^{i_{k+1}} \cdots x^{i_{(d-1)k+1}} \cdots x^{i_{dk}}$. Then P restricted to $G(k, (a_1, \ldots, a_{dk}))$ is non-vanishing but there is no smaller subspace spanned by basis vectors on which it is non-vanishing.
3. Matrix multiplication and its rank

Let \(M_{(m,n,l)} : \text{Mat}_{\mathbb{C}^m} \times \text{Mat}_{\mathbb{C}^n} \rightarrow \text{Mat}_{\mathbb{C}^l} \) denote the matrix multiplication operator. Write \(M = \mathbb{C}^m \), \(N = \mathbb{C}^n \) and \(L = \mathbb{C}^l \). Then

\[
M_{(m,n,l)} : (N \otimes L^*) \times (L \otimes M^*) \rightarrow N \otimes M^*
\]

has the interpretation as \(M_{(m,n,l)} = Id_N \otimes Id_M \otimes Id_L \in (N^* \otimes L^*) \otimes (L^* \otimes M^*) \), where \(Id_X \in N^* \otimes N \) is the identity map. If one thinks of \(M_{(m,n,l)} \) as a trilinear map \((N \otimes L^*) \times (L \otimes M^*) \rightarrow (N \otimes M^*) \rightarrow \mathbb{C} \), in bases it is \((X,Y,Z) \mapsto \text{trace}(XYZ)\). If one thinks of \(M_{(m,n,l)} \) as a linear map \(N \otimes L^* \rightarrow (L^* \otimes M^*) \otimes (N \otimes M^*) \) it is just the identity map tensored with \(Id_M \). In particular, if \(\alpha \in N \otimes L^* \) is of rank \(q \), its image, considered as a linear map \(L \otimes M^* \rightarrow N \otimes M^* \), is of rank \(qm \).

Returning to general tensors \(T \in A \otimes B \otimes C \), from now on assume \(b = c \). When \(T = M_{(m,n,l)} \), one has \(A = N^* \otimes L \), \(B = L^* \otimes M \), \(C = N \otimes M^* \), so \(b = c \) is equivalent to \(l = n \).

The equations of [5] are as follows: given \(T \in A \otimes B \otimes C \), with \(b = c \), take \(A' \subset A \) of dimension \(2p + 1 \leq a \). Define a linear map

\[
T_{A'}^{A^p} : \Lambda^p A' \otimes B^* \rightarrow \Lambda^{p+1} A' \otimes C
\]

by first considering \(T|_{A' \otimes B \otimes C} : B^* \rightarrow A' \otimes C \) tensored with the identity map on \(\Lambda^p A' \), which is a map \(\Lambda^p A' \otimes B^* \rightarrow \Lambda^p A' \otimes B \otimes C \), and then projecting the image to \(\Lambda^{p+1} A' \otimes C \). Then if the determinant of this linear map is nonzero, the border rank of \(T \) is at least \(\frac{2p+1}{p+1} b \). If there exists an \(A' \) such that the determinant is nonzero, we may think of the determinant as a nontrivial homogeneous polynomial of degree \(\left(\frac{2p+1}{p} \right) b \) on \(G(2p+1, A) \).

Now consider the case \(T = M_{(n,n,m)} \), and recall that \(B = L^* \otimes M \), \(C = N \otimes M^* \). The map \((M_{(n,n,m)})_{A'}^{A^p} : \Lambda^p A' \otimes L \otimes M^* \rightarrow \Lambda^{p+1} A' \otimes N \otimes M^* \) is actually a reduced map

\[
\tilde{M}_{A'}^{A^p} : \Lambda^p A' \otimes L \rightarrow \Lambda^{p+1} A' \otimes N
\]

tensored with the identity map \(M^* \rightarrow M^* \), and thus its determinant is non-vanishing if and only if the determinant of \(\tilde{M}_{A'}^{A^p} \) is nonvanishing. But this is a polynomial of degree \(\left(\frac{2p+1}{p} \right) b \ll \left(\frac{2p+1}{p} \right) n^2 \) on \(G(2p+1, n^2) \). Proposition 2.1 with \(d = \left(\frac{2p+1}{p} \right) n \), \(a = n^2 \) and \(r = \frac{2p+1}{p+1} \cdot mnn \), combined with Lemma 2.3 gives the bound

\[
R(M_{(n,n,m)}) \geq \frac{2p+1}{p+1} mn + n^2 - (2p+1) \left(\frac{2p+1}{p} \right) n.
\]

Note that this already gives the \(3n^2 - o(n^2) \) asymptotic lower bound. The remainder of the paper is dedicated to improving the error term.

Let \(a = 3 \) (so \(p = 1 \)) and \(b = c \), the map (1) expressed in bases is a \(3b \times 3b \) matrix. If \(a_0, a_1, a_2 \) is a basis of \(A \) and one chooses bases of \(B, C \), then elements of \(B \otimes C \) may be written as matrices, and \(T = a_0 \otimes X_0 + a_1 \otimes X_1 + a_2 \otimes X_2 \), where \(X_j \) are size \(b \) square matrices. Order the basis of \(A \) by \(a_0, a_1, a_2 \) and of \(\Lambda^2 A \) by \(a_1 \wedge a_2, a_0 \wedge a_1, a_0 \wedge a_2 \). We compute

\[
T_{A'}^{(a_0 \otimes \beta)} = \beta(X_0) \otimes a_0 \wedge a_0 + \beta(X_1) \otimes a_1 \wedge a_0 + \beta(X_2) \otimes a_2 \wedge a_0 = -\beta(X_1) \otimes a_0 \wedge a_1 - \beta(X_2) \otimes a_0 \wedge a_2,
\]

\[
T_{A'}^{(a_1 \otimes \beta)} = \beta(X_0) \otimes a_0 \wedge a_1 - \beta(X_2) \otimes a_1 \wedge a_2,
\]

\[
T_{A'}^{(a_2 \otimes \beta)} = \beta(X_0) \otimes a_0 \wedge a_2 + \beta(X_1) \otimes a_1 \wedge a_2,
\]
so the corresponding matrix for $T_A^{\Lambda^1}$ is the block matrix

$$
\text{Mat}(T_A^{\Lambda^1}) = \begin{pmatrix}
0 & -X_2 & X_1 \\
-X_1 & X_0 & 0 \\
-X_2 & 0 & X_0
\end{pmatrix}.
$$

Now assume X_0 is invertible and change bases such that it is the identity matrix. Recall the formula for block matrices

$$
\det \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} = \det(W) \det(X - YW^{-1}Z),
$$

assuming W is invertible. Then, using the $(b, 2b) \times (b, 2b)$ blocking (so $X = 0$ in (3))

$$
\det \text{Mat}(T_A^{\Lambda^1}) = \det(X_1X_2 - X_2X_1) = \det([X_1, X_2]).
$$

When $\dim A > 3$, if there exists a three dimensional subspace A' of A, such that $\det \text{Mat}(T_A^{\Lambda^1}) = 0$, then $R(T) \geq \frac{3}{2}b$ as this is (1) in the case $p = 1$. These are Strassen’s equations [9].

I now phrase the equations of [5] in coordinates. Let $\dim A = 2p + 1$. Write $T = a_0 \otimes X_0 + \cdots + a_{2p} \otimes X_{2p}$. The expression of (1) in bases is as follows: write $a_I := a_{i_1} \land \cdots \land a_{i_p}$ for $\Lambda^p A$, require that the first (2^p_{p+1}) basis vectors have $i_1 = 0$, that the second (2^p_p) do not, and call these multi-indices $0J$ and K. Order the bases of $\Lambda^{p+1}A$ such that the first (2^p_{p+1}) multi-indices do not have 0, and the second (2^p_p) do, and furthermore that the second set of indices is ordered the same way as K, only we write $0K$ since a zero index is included. Then the resulting matrix is of the form

$$
\begin{pmatrix} 0 & Q \\ \breve{Q} & R \end{pmatrix}
$$

where this matrix is blocked $((\binom{2p}{p+1})b, (\binom{2p}{p})b) \times ((\binom{2p}{p+1})b, (\binom{2p}{p})b)$,

$$
R = \begin{pmatrix} X_0 & \cdots \\ \vdots & \ddots & \vdots \\ X_0 & & X_0
\end{pmatrix},
$$

and Q, \breve{Q} have entries in blocks consisting of X_1, \ldots, X_{2p} and zero. Thus if X_0 is the identity matrix, so is R and the determinant equals the determinant of QQ. If X_0 is the identity matrix, when $p = 1$ we have $QQ = [X_1, X_2]$ and when $p = 2$

$$
QQ = \begin{pmatrix}
0 & [X_1, X_2] & [X_1, X_3] & [X_1, X_4] \\
[X_2, X_1] & 0 & [X_2, X_3] & [X_2, X_4] \\
[X_3, X_1] & [X_3, X_2] & 0 & [X_3, X_4] \\
[X_4, X_1] & [X_4, X_2] & [X_4, X_3] & 0
\end{pmatrix}.
$$

In general, when X_0 is the identity matrix, QQ is a block $((\binom{2p}{p+1})b \times (\binom{2p}{p})b)$ matrix whose block entries are either zero or commutators $[X_i, X_j]$.

To prove Theorem 1.1 we work with $\hat{M}_i^{\Lambda^p}$ of (2), so $b = n$. First apply Lemma 2.2 to choose n basis vectors such that restricted to them $\det(X_0)$ is non-vanishing, and then we consider our polynomial $\det(QQ)$ as defined on $G(2p, (2p + 1)n^2 - 1)$, and apply Lemma 2.3, using $2p(\binom{2p}{p})n$ basis vectors to insure it is non-vanishing. Our error term is thus $n + 2p(\binom{2p}{p-1})n$, and the theorem follows.
Remark 4.1. In [8, 7], they show the matrix $Q \tilde{Q}$ can be made to have a nonzero determinant by a subtle combination of factoring and splitting it into a sum of two matrices that carries a lower cost than just taking its determinant.

References

7. Alex Massarenti and Emanuele Raviolo, *Erratum to: The rank of $n \times n$ matrix multiplication is at least $3n^2 - 2\sqrt{2}n^3/2 - 3n$*, to appear.

8. , *The rank of $n \times n$ matrix multiplication is at least $3n^2 - 2\sqrt{2}n^3/2 - 3n$*, Linear Algebra Appl. 438 (2013), no. 11, 4500–4509. MR 3034546

E-mail address: jml@math.tamu.edu