
SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 38, No. 6, pp. 2526–2547

RANDOMIZED DIVIDE-AND-CONQUER: IMPROVED PATH,
MATCHING, AND PACKING ALGORITHMS∗

JIANER CHEN† , JOACHIM KNEIS‡ , SONGJIAN LU† , DANIEL MÖLLE‡ ,
STEFAN RICHTER‡ , PETER ROSSMANITH‡ , SING-HOI SZE§ , AND FENGHUI ZHANG†

Abstract. We propose a randomized divide-and-conquer technique that leads to improved ran-
domized and deterministic algorithms for NP-hard path, matching, and packing problems. For the
parameterized max-path problem, our randomized algorithm runs in time O(4kk2.7m) and poly-
nomial space (where m is the number of edges in the input graph), improving the previous best
randomized algorithm for the problem that runs in time O(5.44kkm) and exponential space. Our
randomized algorithms for the parameterized max r-d matching and max r-set packing problems
run in time 4(r−1)knO(1) and polynomial space, improving the previous best algorithms for the prob-
lems that run in time 10.88rknO(1) and exponential space. Moreover, our randomized algorithms can
be derandomized to result in significantly improved deterministic algorithms for the problems, and
they can be extended to solve other matching and packing problems.

Key words. randomized algorithm, divide-and-conquer, path, matching, set packing

AMS subject classifications. 68Q25, 68R05, 68W20, 68W40

DOI. 10.1137/080716475

1. Introduction. This paper studies new and improved algorithmic techniques
for exact and parameterized algorithms for NP-hard path, matching, and packing

problems, a research direction that has recently drawn considerable attention [2, 4, 7,
10, 11, 13, 15, 16, 20, 21].

1.1. Preliminaries and problem formulations. Let G be an undirected graph.
A path ρ in G is a sequence of vertices 〈v1, . . . , vk〉 in G such that for all 1 ≤ i ≤ k−1,
[vi, vi+1] is an edge in G, where k is called the length of ρ. The path ρ is simple if no
vertex is repeated in the sequence. A k-path in G is a simple path of length k in G.
If the graph G is weighted (i.e., if each vertex in G is assigned a weight that is a real
number), then the weight of the path ρ is equal to the sum of weights of the vertices
in ρ.

Definition 1.1 (the parameterized maximum path problem (p-max path)).
Given a weighted undirected graph G of n vertices and m edges and a parameter k,
either construct a k-path in G whose weight is the maximum over all k-paths in G or
report that no k-path exists in G.

There is an unweighted version for the p-max path problem in which the input

∗Received by the editors February 25, 2008; accepted for publication (in revised form) February 24,
2009; published electronically May 13, 2009. Part of the results in this paper was reported, indepen-
dently, at The 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007) and at
The 32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2006).

http://www.siam.org/journals/sicomp/38-6/71647.html
†Department of Computer Science & Engineering, Texas A&M University, College Station, TX

77843 (chen@cs.tamu.edu, sjlu@cs.tamu.edu, fhzhang@cs.tamu.edu). The work of these authors was
supported in part by the National Science Foundation under grants CCR-0311590 and CCF-0830455.

‡Department of Computer Science, RWTH Aachen University, 52056 Aachen, Germany (kneis@
cs.rwth-aachen.de, moelle@cs.rwth-aachen.de, richter@cs.rwth-aachen.de, rossmani@cs.rwth-aachen.
de). The work of these authors was supported by the Deutsche Forschungsgemeinschaft of Germany
under grants RO 927/7 and RO 927/6.

§Departments of Computer Science & Engineering and Biochemistry & Biophysics, Texas A&M
University, College Station, TX 77843 (shsze@cs.tamu.edu). This author’s work was supported in
part by the National Science Foundation under grant CCR-0311590.

2526

RANDOMIZED DIVIDE-AND-CONQUER 2527

graph is unweighted. The unweighted version can be trivially reduced to the general
version by regarding an unweighted graph as a weighted graph in which all vertices are
assigned weight 1. There is also a version of the problem on directed graphs, where we
are looking for a directed k-path of the maximum weight in a weighted and directed
graph. We will be focused on the problem on undirected graphs and, in certain places,
extend our discussion to directed graphs.

A set M of points in the r-dimensional Euclidean space Rr is a matching if no
two points in M agree in any coordinate. A k-matching is a matching consisting of
exactly k points in Rr. If each point in Rr is assigned a weight, then the weight of a
matching M is equal to the sum of weights of the points in M .

Definition 1.2 (the parameterized maximum r-dimensional matching problem
(p-max r-d matching)). Given a set S of n points in the r-dimensional Euclidean
space Rr and a parameter k, where each point in S is assigned a weight, either con-
struct a k-matching in S whose weight is the maximum over all k-matchings in S or
report that no k-matching exists in S.

We also have an unweighted version for the p-max r-d matching problem, which
assumes that all points in the input set S are assigned weight 1.

An r-set is a set containing exactly r elements. A collection P of r-sets is a packing
if no two r-sets in P intersect. A k-packing is a packing consisting of exactly k r-sets.
If each r-set is assigned a weight, then the weight of a packing P is the sum of weights
of the r-sets in P .

Definition 1.3 (the parameterized maximum r-set packing problem (p-max

r-set packing)). Given a collection C of n r-sets and a parameter k, where each
r-set in C is assigned a weight, either construct a k-packing in C whose weight is the
maximum over all k-packings in C or report that no k-packing exists in C.

The unweighted version of the p-max r-set packing problem assumes that all
r-sets in the input collection C are assigned weight 1.

It is easy to see that the p-max r-d matching problem can be trivially reduced
to the p-max r-set packing problem. Therefore, any algorithm solving the latter
can be directly used to solve the former.

1.2. Previous work. Most previous algorithms for the p-max path, p-max r-d
matching, and p-max r-set packing problems were presented for the unweighted
versions of the problems. Many of these algorithms, with minor modifications, also
work for the general versions of the problems.

The p-max path problem is closely related to a number of well-known NP-
hard problems, such as the longest path, Hamiltonian path, and traveling salesman
problems. Earlier algorithms [3, 16] for the problem have running time bounded by
2kk!nO(1). Papadimitriou and Yannakakis [19] studied a restricted version of the prob-
lem and conjectured that it is solvable in polynomial time to determine if a graph
contains a (log n)-path. This conjecture was confirmed by Alon, Yuster, and Zwick [2],
who presented for the p-max path problem randomized and deterministic algorithms
of running time 2O(k)nO(1). Recently, the p-max path problem has found applications
in bioinformatics for detecting signaling pathways in protein interaction networks [21]
and for biological subnetwork matchings [11].

The p-max r-d matching and p-max r-set packing problems were first studied
by Downey and Fellows [6], where deterministic algorithms of time (rk)!(rk)3rknO(1)

were developed. The upper bounds on the complexity of these problems were subse-
quently improved to (r−1)k((r−1)k/e)k(r−2)nO(1) [4, 10] based on the greedy localiza-
tion techniques [4]. Koutis [13] developed randomized algorithms of time 10.88rknO(1)

2528 CHEN ET AL.

and space O(2rk + rn), and deterministic algorithms of time 2O(rk)nO(1) and space
O(2rk + rn) for the problems. The deterministic upper bound was further improved
to 25rk−4k

(
6(r−1)k+k

rk

)
nO(1) (still with exponential space) by Fellows et al. [7]. The

problems of packing a small subgraph in a given graph, such as the triangle pack-
ing problem, can be transformed into the p-max r-set packing problem directly.
Algorithms for this kind of graph packing problems have also been studied [7, 15, 20].

Currently, the best randomized and deterministic algorithms for the p-max path,
p-max r-d matching, and p-max r-set packing problems [2, 7, 13] are based
on the color-coding technique developed by Alon, Yuster, and Zwick [2]. The tech-
nique is based on constructing an (n, k)-family of perfect hash functions and a dy-
namic programming process on k-colored instances. For example, the randomized
algorithm for the p-max path problem given in [2] based on this technique runs in
time (2e)knO(1) = 5.44knO(1) and space 2knO(1). Because of the lower bound Ω(ek) on
the size of (n, k)-families of perfect hash functions [18], and of the nature of dynamic
programming, it seems difficult to further improve the time complexity and to avoid
exponential space complexity for algorithms based on this technique.

1.3. Our contributions. In this paper, we develop new exponential-time algo-
rithmic techniques that lead to improved randomized and deterministic algorithms
for the p-max path, p-max r-d matching, and p-max r-set packing problems.
Our main idea is using a divide-and-conquer method, as follows. Suppose that we
are looking for a subset Sh of h elements in a universal set U . Moreover, we assume
that the subset Sh is “hierarchical” in the sense that such a subset is constituted by
smaller subsets of similar properties. We first randomly partition the universal set U
into two disjoint parts, U1 and U2. A simple probabilistic analysis shows that with
an effective probability, the desired subset Sh is evenly split by this random partition
into two smaller subsets of similar properties. This enables us to recursively look in
each of the parts U1 and U2 for a smaller subset of h/2 elements in Sh and of similar
properties, and to finally combine the smaller subsets to obtain the desired subset Sh

in the original universal set U .
Take the p-max 3-set packing problem as an example. For a given collection C

of 3-sets and a parameter k, the universal set U is the set of all elements that appear
in the 3-sets in C, and the desired subset S3k consists of the 3k elements from k 3-sets
that make a k-packing Pk of the maximum weight in C. It is not difficult to see that
with a probability of at least 1/23k, a random partition of U into two parts U1 and U2

includes all 3k/2 elements from k/2 3-sets in Pk in the part U1 and all 3k/2 elements
from the other k/2 3-sets in Pk in the part U2.1 Moreover, the two parts U1 and U2

induce two subcollections C1 and C2 of C, respectively, after deleting all 3-sets that
contain both elements in U1 and U2. Therefore, a k-packing of the maximum weight in
C can be constructed by combining a (k/2)-packing of the maximum weight in C1 and
a (k/2)-packing of the maximum weight in C2, which can be recursively constructed.

This simple method leads directly to randomized algorithms with improved run-
ning time and with polynomial space. For the p-max path problem, this new method
gives a randomized algorithm of time O(4kk2.7m) and space O(nk log k+m), improv-
ing the previously best randomized algorithm for the problem of time O(5.44kkm)
and space O(2kkn + m) [2]. For the p-max r-d matching and p-max r-set pack-

ing problems, the method gives randomized algorithms of time 4(r−1)kklog k/3nO(1)

and space (rk log k + rn), improving the previously best randomized algorithms for

1We will show in section 4 that with a more careful analysis, we can derive a better probability.

RANDOMIZED DIVIDE-AND-CONQUER 2529

the problems of time 10.88rknO(1) and space O(2rk + rn) [13]. Furthermore, these
randomized algorithms can be derandomized, which leads to deterministic algorithms
that significantly improve previous best deterministic algorithms for the correspond-
ing problems.

The major techniques and results reported in this paper were independently dis-
covered by the research group at Texas A&M University and by the research group
at RWTH Aachen University. Preliminary results from the two groups were reported
independently at SODA’2007 and WG’2006, respectively [5, 12]. The current paper is
a result of collaboration between the two groups, which enhances, extends, and refines
the results reported in [5, 12].

2. On a class of recurrence relations. The analysis of many of our random-
ized and deterministic algorithms presented in this paper requires solving recurrence
relations of a special form, which seems neither standard nor trivial. This section is
devoted to giving a thorough and formal study of this class of recurrence relations.

Theorem 2.1. Let T (k, n) be a function satisfying the following conditions: there
are functions t(n), f(k), and h(n), and a real number a ≥ 1 such that

(A) T (k, n) ≤ O(a2kt(n)) for all k ≤ h(n); and
(B) for k > h(n), the function T (k, n) satisfies

T (k, n) ≤ f(k)ak[t(n) + T (k1, n) + T (k2, n)],

where k1 = �k/2� and k2 = �k/2	.
Then T (k, n) = O(a2kg(k)t(n)), where g(k) is any function satisfying:

(C) g(k) ≥ 1 for all k ≥ 1; and
(D) there exist an integer k0 ≥ 1 and a positive real number d0 < 1 such that for

all k ≥ k0,

H(a, k, f(k), g(k)) def==
a2k1f(k)g(k1) + a2k2f(k)g(k2)

akg(k)
≤ d0.

Proof. Pick a constant c0 so that d0(1 + 1/(2c0)) ≤ 1. We claim

(1) T (k, n) ≤ c0a
2kg(k)t(n),

which will prove the theorem.
We prove (1) by induction on k. For the values of k that are bounded by h(n), (1)

holds true by condition (A) if the constant c0 is sufficiently large. Applying induction
on condition (B) when k > h(n), we obtain

T (k, n) ≤ f(k)ak[t(n) + T (k1, n) + T (k2, n)]
≤ f(k)ak[t(n) + c0a

2k1g(k1)t(n) + c0a
2k2g(k2)t(n)]

= c0a
2kg(k)t(n)

[
f(k)

c0akg(k)
+

a2k1f(k)g(k1) + a2k2f(k)g(k2)
akg(k)

]
.(2)

By condition (D), the second term in the bracket in (2) is H(a, k, f(k), g(k)), which is
bounded by d0. Combining condition (D) with the fact that the values k1, k2, g(k1),
g(k2), a, and k are all larger than or equal to 1, we also get the following bound for
the first term in the bracket in (2):

f(k)
c0akg(k)

≤ d0

2c0
.

2530 CHEN ET AL.

By the way we selected the value of c0, we have d0 + d0/(2c0) = d0(1 + 1/(2c0)) ≤ 1.
Therefore,

T (k, n) ≤ c0a
2kg(k)t(n),

and the induction goes through.
Applying Theorem 2.1, we obtain a sequence of corollaries that give the bounds

that are specifically needed in the analysis of our algorithms presented in this paper.
Corollary 2.2 below will be used in the analysis of our algorithm for the p-max path

problem.
Corollary 2.2. Suppose that a function T (k, n) satisfies T (1, n) = O(t(n)) and

the following recurrence relation for k ≥ 2:

T (k, n) ≤ c0a
k[t(n) + T (k1, n) + T (k2, n)],

where k1 = �k/2�, k2 = �k/2	, and c0 and a ≥ 1 are constants. Then T (k, n) =
O(a2kkαt(n)), where α is any constant satisfying α > log2(c0(a2 + 1)/a).

Proof. Using the notation in Theorem 2.1, here we have f(k) = c0 and h(n) ≡ 1.
We verify that the function g(k) = kα satisfies conditions (C) and (D) in Theorem 2.1.
Condition (C) is trivially satisfied. To verify condition (D), we have

H(a, k, c0, g(k)) =
c0a

2k1kα
1 + c0a

2k2kα
2

akkα
.

If k is even, we have

H(a, k, c0, g(k)) =
c0a

k(k/2)α + c0a
k(k/2)α

akkα
=

c0

2α−1
.

Since α > log2(c0(a2 + 1)/a) and it is easy to see that (a2 + 1)/a ≥ 2, we get
c0/2α−1 < 1.

On the other hand, suppose that k is odd; then

H(a, k, c0, g(k)) =
c0a

k+1((k + 1)/2)α + c0a
k−1((k − 1)/2)α

akkα

=
c0

2αa

[
a2

(
1 +

1
k

)α

+
(

1 − 1
k

)α]
.

Since when k → ∞, a2(1 + 1/k)α + (1 − 1/k)α → a2 + 1, the above value approaches
c0(a2+1)/(2αa). From α > log2(c0(a2+1)/a) we have c0(a2+1)/(2αa) < 1. Therefore,
there must be a constant k0 such that d = c0[a2(1 + 1/k0)α + (1− 1/k0)α]/(2αa) < 1,
and for all odd numbers k ≥ k0, we have H(a, k, c0, g(k)) ≤ d.

Now if we let d0 = max{c0/2α−1, d}, then d0 < 1 and for all k ≥ k0 we have

H(a, k, c0, g(k)) ≤ d0.

Thus, the function g(k) = kα satisfies condition (D) in Theorem 2.1. The corollary
follows.

Corollary 2.3 below will be used in the analysis of our algorithms for the p-max

r-d matching and p-max r-set packing problems.
Corollary 2.3. Suppose that a function T (k, n) satisfies T (1, n) = O(t(n)) and

the following recurrence relation for k ≥ 2:

T (k, n) ≤ c0k
bak[t(n) + T (k1, n) + T (k2, n)],

RANDOMIZED DIVIDE-AND-CONQUER 2531

where k1 = �k/2�, k2 = �k/2	, and c0, b > 0, and a ≥ 1 are all constants. Then
T (k, n) = O(a2kkα log kt(n)), where α is any constant satisfying α > b/2.

Proof. Using the notation in Theorem 2.1, here we have f(k) = c0k
b and h(n) ≡

1. We verify that the function g(k) = kα log k satisfies conditions (C) and (D) in
Theorem 2.1. Condition (C) is trivially satisfied. To verify condition (D), we have

H(a, k, c0k
b, g(k)) =

c0k
ba2k1kα log k1

1 + c0k
ba2k2kα log k2

2

akkα log k

≤ c0k
bak+1((k + 1)/2)α log((k+1)/2) + c0k

bak+1((k + 1)/2)α log((k+1)/2)

akkα log k

=
2α+1c0k

ba

(k + 1)2α
· (k + 1)α log(k+1)

kα log k

≤ 2α+1c0a

(k + 1)2α−b
· (k + 1)α log(k+1)

kα log k
.

To see the limit of this value when k approaches ∞, note that if we let r > 1 be a
constant such that 2α − b − 2α log r > 0 (note α > b/2), then the above expression
can be rewritten as

2α+1c0a

(k + 1)2α−b
· (k + 1)α log(k+1)

kα log k
=

2α+1c0a

rα log r(k + 1)2α−b−2α log r
· ((k + 1)/r)α log((k+1)/r)

kα log k
.

Now since r > 1, (k + 1)/r < k when k is sufficiently large. Therefore, the value
approaches 0 when k → ∞. In particular, this implies that there is an integer k0 and
a constant d0 < 1 such that when k ≥ k0, H(a, k, c0k

b, g(k)) ≤ d0. This completes the
proof of the corollary.

3. A randomized algorithm for the PATH problem. Now we are ready to
present our randomized algorithms. The first problem we are dealing with is the p-

max path problem that looks for a k-path of the maximum weight in a weighted
graph.

Fix a weighted graph G = (V, E). For any V ′ ⊆ V , denote by G[V ′] the subgraph
of G induced by V ′. The concatenation of two paths ρ1 = 〈v1, . . . , vl〉 and ρ2 =
〈w1, . . . , wh〉 in G, where [vl, w1] is an edge in G, is the path 〈v1, . . . , vl, w1 . . . , wh〉.
We denote by ρ∅ the special 0-path (i.e., the empty path containing no vertex) and
define that the concatenation of ρ∅ and any path ρ gives the path ρ. An h-path ρ is
also called a (v, h)-path if v is an end vertex of ρ.

Let Pl be a set of l-paths in G, and let V ′ ⊆ V such that no vertex in V ′ is on
any path in Pl. A (v, h)-path ρ is in Pl � V ′ if v ∈ V ′ and ρ is a concatenation of an
l-path in Pl and an (h− l)-path in G[V ′]. In particular, for P0 = {ρ∅}, any (v, 1)-path
in P0 � V ′ consists of the single vertex v in V ′.

On a set Pl of l-paths in G and V ′ ⊆ V , where Pl contains at most one (v, l)-
path for each vertex v, and no vertex in V ′ is on any path in Pl, our algorithm
find-paths(Pl, V

′, h) returns a set Pl+h of (l + h)-paths in Pl � V ′. In particular,
the algorithm find-paths({ρ∅}, V, k) returns a set of k-paths in the graph G. The
algorithm is given in Figure 1.

Theorem 3.1. Let Pl and V ′ be defined as above. For any vertex v in V ′, if there
are (v, l + h)-paths in Pl � V ′, then with probability larger than 1− 1/e > 0.632 (here
e is the base of the natural logarithm), the set Pl+h returned by the algorithm find-
paths(Pl, V

′, h) contains a (v, l + h)-path in Pl � V ′ whose weight is the maximum

2532 CHEN ET AL.

find-paths(Pl, V
′, h)

input: a set Pl of l-paths; V ′ ⊆ V and no vertex in V ′ is on a path in Pl; an integer h ≥ 1;
output: a set Pl+h of (l + h)-paths in Pl � V ′;
1. Pl+h = ∅;
2. if h = 1 then
2.1. if Pl = {ρ∅} then Pl+1 contains a (u, 1)-path for each vertex u ∈ V ′; return Pl+1;
2.2. else for each (w, l)-path ρl in Pl and each u ∈ V ′, where [w, u] is an edge in G, do
2.3. concatenate ρl and u to make a (u, l + 1)-path ρl+1 in Pl � V ′;
2.4. if Pl+1 contains no (u, l + 1)-path then add ρl+1 to Pl+1;
2.5. else if the (u, l + 1)-path ρ′l+1 in Pl+1 has a weight smaller than that of ρl+1

2.6. then replace ρ′l+1 in Pl+1 by ρl+1;
2.7. return Pl+1;
3. loop 2.51 · 2h times do
3.1. randomly partition the vertices in V ′ into two parts VL and VR;
3.2. P L

l+�h/2� = find-paths(Pl, VL, �h/2�);
3.3. if P L

l+�h/2� 	= ∅ then

3.4. P R
l+h = find-paths(P L

l+�h/2�, VR,
h/2�);
3.5. for each (u, l + h)-path ρl+h in P R

l+h do

3.6. if Pl+h contains no (u, l + h)-path in Pl � V ′ then add ρl+h to Pl+h;
3.7. else if the (u, l + h)-path ρ′l+h in Pl+h has a weight smaller than that of ρl+h

3.8. then replace ρ′l+h in Pl+h by ρl+h;
4. return Pl+h.

Fig. 1. A randomized divide-and-conquer algorithm for p-max path.

over all (v, l + h)-paths in Pl � V ′. The algorithm find-paths(Pl, V
′, h) runs in time

O(4hh2.7m) and in space O(n(l + h) log h + m).
Proof. First note that by steps 2.4–2.6 and steps 3.6–3.8, if the set Pl+h contains

a (v, l+h)-path ρ, then ρ must be a valid (v, l+h)-path in Pl �V ′. Therefore, if there
is no (v, l + h)-path in Pl � V ′, then the set Pl+h cannot contain a (v, l + h)-path.

Thus we assume that in the graph G there are (v, l + h)-paths in Pl � V ′. Let

ρl+h = 〈u1, . . . , ul, w1, . . . , wh〉
be a (v, l + h)-path in Pl � V ′ whose weight is the maximum over all (v, l + h)-paths
in Pl � V ′, where 〈u1, . . . , ul〉 is an l-path in Pl, 〈w1, . . . , wh〉 is an h-path in G[V ′],
and wh = v. We prove the theorem by induction on h ≥ 1.

Consider the case h = 1. If Pl = {ρ∅} (in this case l = 0), then the set Pl+1

returned by step 2.1 contains the (unique) (v, 1)-path in Pl � V ′, which is obviously
of the maximum weight. On the other hand, if l > 0, then when the (ul, l)-path
〈u1, . . . , ul〉 in Pl and the vertex wh = w1 = v are examined in step 2.2, the path
ρl+1 is constructed in step 2.3, and steps 2.4–2.6 ensure that a (v, l + 1)-path of the
maximum weight is included in the set Pl+1. This proves the case h = 1.

Now suppose that h > 1. We rewrite the path ρl+h as

ρl+h = 〈u1, . . . , ul, w1, . . . , wh1 , . . . , wh〉,
where h1 = �h/2�. With probability 1/2h, step 3.1 of the algorithm puts vertices
w1, . . . , wh1 into VL, and vertices wh1+1, . . . , wh into VR. If this is the case, then the
path

ρl+h1 = 〈u1, . . . , ul, w1, . . . , wh1〉
is a (wh1 , l+h1)-path in Pl�VL. By the induction hypothesis, with probability larger
than 1 − 1/e, the set PL

l+h1
obtained in step 3.2 contains a (wh1 , l + h1)-path ρl+h1

RANDOMIZED DIVIDE-AND-CONQUER 2533

in Pl � VL whose weight is at least as large as that of ρl+h1 . Now the concatenation
of the path ρl+h1

and the path 〈wh1+1, . . . , wh〉 is a (wh, (l + h1) + (h − h1))-path
(i.e., a (v, l + h)-path) in PL

l+h1
� VR. Thus, by our induction hypothesis again, with

probability larger than 1− 1/e, the set PR
l+h obtained in step 3.4 contains a (v, l +h)-

path ρl+h in PL
l+h1

� VR whose weight is at least as large as the sum of the weight
of the path ρl+h1

and the weight of the path 〈wh1+1, . . . , wh〉. Since the weight of
ρl+h1

is not smaller than that of ρl+h1 , we conclude that the weight of the path ρl+h

is not smaller than that of ρl+h. Finally, since the path ρl+h is a concatenation of a
(w, l+h1)-path ρ′l+h1

in Pl �VL (for some vertex w ∈ VL) and a path in G[VR], where
the path ρ′l+h1

is a concatenation of a path in Pl and a path in G[VL], we derive that
ρl+h is actually a (v, l+h)-path in Pl�V ′. Since the weight of ρl+h is not smaller than
the weight of ρl+h, and by our assumption, the path ρl+h has the maximum weight
over all (v, l+h)-paths in Pl�V ′, we conclude that ρl+h must also be a (v, l+h)-path
of the maximum weight in Pl � V ′.

In conclusion, with probability 1/2h, step 3.1 includes the vertices w1, . . . , wh1 in
VL and the vertices wh1+1, . . . , wh in VR. If this is the partition, then with probability
larger than 1− 1/e, the set PL

l+h1
in step 3.2 contains the (wh1 , l + h1)-path ρl+h1

. In
case the set PL

l+h1
contains the path ρl+h1

, with probability larger than 1 − 1/e, the
set PR

l+h in step 3.4 contains a (v, l + h)-path of the maximum weight. Therefore, by
steps 3.5–3.8, in each loop of step 3, the probability q that the set Pl+h contains a
(v, l + h)-path of the maximum weight is larger than

(1 − 1/e)2

2h
>

1
2.51 · 2h

.

Since step 3 of the algorithm loops 2.51 ·2h times, the overall probability that the
algorithm returns the set Pl+h that contains a (v, l +h)-path of the maximum weight
is

1 − (1 − q)2.51·2h

> 1 −
(

1 − 1
2.51 · 2h

)2.51·2h

> 1 − 1
e
.

This proves the first part of the theorem.
To analyze the time complexity, let T (h, m) be the running time of the algorithm

find-paths(Pl, V
′, h), where m is the number of edges in the original graph G. Clearly

we have T (1, m) = O(m). From the algorithm, we have the following recurrence
relation when h > 1:

T (h, m) = 2.51 · 2h[cm + T (�h/2�, m) + T (�h/2	, m)],

where c > 0 is a constant. Using the notation in Corollary 2.2, here we have c0 = 2.51,
a = 2, and t(n) = cm. Now log2(c0(a2 + 1)/a) ≥ 2.64. Thus, by Corollary 2.2, the
running time T (h, m) of the algorithm find-paths(Pl, V

′, h) is O(4hh2.7m).
In terms of the space complexity, each recursive call to the algorithm find-

paths(Pl, V
′, h) uses O(n(l+h)) space (mainly for the sets PL

l+h1
, PR

l+h, and Pl+h, not-
ing that for each vertex w in the graph G, each of these sets contains at most one (w, ∗)-
path). Since the recursive depth of the algorithm find-paths(Pl, V

′, h) is O(log h),
we conclude that the space complexity of the algorithm find-paths(Pl, V

′, h) is
O(n(l + h) log h + m).

To obtain a randomized algorithm solving the p-max path problem with a re-
quired error bound, we simply run the algorithm find-paths({ρ∅}, V, k) sufficiently

2534 CHEN ET AL.

many times, each taking O(4kk2.7m) time and O(nk log k + m) space. For example,
to achieve an error bound of 0.0001, we can run the algorithm t times, where t sat-
isfies (1/e)t ≤ 0.0001 (e.g., t = 10). Note that the set Pk returned by the algorithm
find-paths({ρ∅}, V, k) contains at most one (v, k)-path for each vertex v in the graph
G. Therefore, by picking the (v, k)-path of the maximum weight in Pk, this process
returns a k-path of the maximum weight in the graph G with an arbitrarily small
error bound.

Corollary 3.2. There is a randomized algorithm of time O(4kk2.7m) and space
O(nk log k + m) that solves the p-max path problem with an arbitrarily small error
bound.

Remark. The algorithm find-paths can be used directly to solve the p-max path

problem on directed graphs, as long as we interpret the edge [w, u] in step 2.2 of the
algorithm as a directed edge from w to u. The proof of Theorem 3.1 can be applied
to directed graphs with no change.

We compare our algorithm in Corollary 3.2 with previously known algorithms
for the p-max path problem. To our knowledge, there are two kinds of randomized
algorithms for the problem. The first kind is based on random permutations of vertices
followed by searching in a directed acyclic graph [2, 11]. The algorithm runs in time
O(mk!) and space O(m). The second kind, proposed by Alon, Yuster, and Zwick [2],
is based on random coloring of vertices in a graph followed by dynamic programming
to search for a simple path of length k in the colored graph. The algorithm runs
in time O((2e)kkm) = O(5.44kkm) and space O(2kkn + m) (the space is mainly
for the dynamic programming phase). Compared to these algorithms, our algorithm
has a significantly improved running time and uses polynomial space. In fact, if we
are interested only in knowing whether the graph has a path of length k, a slight
modification of our algorithm can further reduce the space complexity to O(n log k +
m).

4. Randomized algorithms for the MATCHING and PACKING problems.
The randomized divide-and-conquer method described in the previous section can also
be used to develop improved algorithms for matching and packing problems.

Recall that any algorithm solving the p-max r-set packing problem can be
used directly to solve the p-max r-d matching problem. Therefore, our discussion
in this section will be focused on the p-max r-set packing problem, which looks for
a k-packing of the maximum weight in a collection of r-sets. We have the following
result.

Theorem 4.1. There is a randomized algorithm that solves the p-max r-set
packing problem in time O(4(r−1)kklog k/3rn) and space O(rk log k + rn), where n is
the number of r-sets in the given instance of the p-max r-set packing problem.

Proof. Consider the algorithm in Figure 2. Let k1 = �k/2�. We first prove, by
induction on the parameter k, that if the collection C contains k-packings, then with
probability larger than 1− 1/e, the algorithm set-packing(C, k) returns a k-packing
in C whose weight is the maximum over all k-packings in C.

This is obviously true when k = 1. Now suppose that k > 1. Again first note
that if the collection C has no k-packings, then the algorithm set-packing(C, k) must
return the empty set ∅. Now suppose that C contains k-packings, and let Pk be a k-
packing in C whose weight is the maximum over all k-packings in C. With a probability(

k
k1

)
/2rk, step 3.1 of the algorithm partitions the rk elements in the k r-sets in Pk

such that the rk1 elements in (any) k1 r-sets in Pk are in SL while the r(k − k1)
elements in the other k − k1 r-sets in Pk are in SR. If this is the case, let PL

k1
be the

RANDOMIZED DIVIDE-AND-CONQUER 2535
set-packing(C, k)
input: a collection C of r-sets, in which each r-set is assigned a weight, and an integer k ≥ 1;
output: a k-packing in C that has the maximum weight over all k-packings in C,

or ∅ if C has no k-packing.
1. if k = 1 then

if C 	= ∅ then return an r-set of the maximum weight in C else return ∅;
2. P = ∅;
3. loop 2.51 · 2rk/

(k
�k/2�

)
times do

3.1. randomly partition the set elements into two parts SL and SR;
3.2. let CL be the subcollection of r-sets in C in which all elements are in SL;
3.3. let CR be the subcollection of r-sets in C in which all elements are in SR;
3.4. PL = set-packing(CL, �k/2�); PR = set-packing(CR,
k/2�);
3.5. if PL 	= ∅, PR 	= ∅, and the sum of the weights of PL and PR is larger than the weight of P

then P = PL ∪ PR;
4. return P.

Fig. 2. A randomized divide-and-conquer algorithm for p-max r-set packing.

set of k1 r-sets in Pk whose elements are all in SL and let PR
k−k1

be the set of k − k1

r-sets in Pk whose elements are all in SR. Note that PL
k1

is a k1-packing in CL and
that PR

k−k1
is a (k − k1)-packing in CR. Thus, by the induction hypothesis, with a

probability larger than (1 − 1/e)2, step 3.4 of the algorithm generates a k1-packing
PL in CL and a (k − k1)-packing PR in CR, such that the weight of PL is not smaller
than that of PL

k1
and that the weight of PR is not smaller than that of PR

k−k1
. Note

that the union of PL and PR must be a k-packing in C because no set element appears
in both CL and CR. Since the union of PL

k1
and PR

k−k1
is the k-packing Pk that has

the maximum weight over all k-packings in C, we conclude that the union of PL and
PR must be a k-packing of the maximum weight in C. In summary, if the collection C
contains k-packings, then with a probability q larger than

(1 − 1/e)2
(

k
k1

)
2rk

>

(
k
k1

)
2.51 · 2rk

,

an execution of steps 3.1–3.5 of the algorithm will make P a k-packing of the maximum
weight in C. Now since the loop in step 3 is executed 2.51 · 2rk/

(
k
k1

)
times, with

probability at least

1 − (1 − q)2.51·2rk/(k
k1

) > 1 −
(

1 −
(

k
k1

)
2.51 · 2rk

)2.51·2rk/(k
k1

)
> 1 − 1

e
,

the algorithm set-packing(C, k) returns a k-packing of the maximum weight in C.
To analyze the complexity of the algorithm, let T (k, n) be the running time of the

algorithm set-packing(C, k), where n is the total number of r-sets in the collection
C. Clearly we have T (1, n) = O(rn). Moreover, for k > 1,

T (k, n) =

(
2.51 · 2rk(

k
k1

)
)

· [crn + T (k1, n) + T (k − k1, n)]

≤ 14
√

π
√

k(2r−1)k[crn + T (�k/2�, n) + T (�k/2	, n)],

where c is a constant, and based on Stirling’s formula [9], we have used the inequality(
k
k1

) ≥ 2k/(2e
√

πk). Using the notation in Corollary 2.3, here we have c0 = 14
√

π,
kb =

√
k = k1/2, a = 2r−1, and t(n) = crn. By Corollary 2.3, the running time of the

2536 CHEN ET AL.

algorithm set-packing(C, k) is bounded by

T (k, n) = O((2r−1)2kklog k/3rn) = O(4(r−1)kklog k/3rn).

Moreover, since the recursion depth of the algorithm is bounded by O(log k), it
is easy to see that the space complexity of the algorithm is O(rk log k + rn).

The theorem now follows by an argument similar to that for Corollary 3.2.
Corollary 4.2. The p-max r-d matching problem can be solved in time

O(4(r−1)kklog k/3rn) and space O(rk log k + rn), where n is the number of points in
the given instance of the p-max r-d matching problem.

The previously best randomized algorithms for the p-max r-d matching and p-

max r-set packing problems are due to Koutis and have running time 10.88rknO(1)

and space complexity O(2rk +rn). Therefore, Theorem 4.1 and Corollary 4.2 not only
give significantly improved running time but also bring the space complexity from
exponential down to polynomial.

The techniques used in Theorem 4.1 can be used to solve graph packing problems
in a very general form. Let H be a fixed graph. A k-H-packing of a graph G is a
collection of k vertex-disjoint subgraphs Pk = {H1, . . . , Hk} of G such that each Hi

is isomorphic to the graph H . Suppose that there is also a weight function fW from
the subgraphs of G to real numbers (that is, for each subgraph G′ of G, fW (G′) is
a real number that is the weight of the subgraph G′). Then we define the weight of
a k-H-packing Pk to be the sum of the weights of the subgraphs in Pk. Now we can
define a graph packing problem as follows.

p-max H-graph packing: Given a graph G and a parameter k,
where there is a weight function fW from the subgraphs of G to real
numbers, either construct a k-H-packing of G that has the maximum
weight over all k-H-packings of G, or report that no k-H-packing
exists in G.

Suppose that the graph H contains r vertices. Then the p-max H-graph pack-

ing problem can be reduced to the p-max r-set packing problem, as follows. On the
input graph G, let CG be the collection of all subsets Vr of r vertices in G such that
the induced subgraph G[Vr] contains the graph H (or more formally, H is isomorphic
to a subgraph of G[Vr]). For each subset Vr in CG, define the weight of Vr to be the
weight of H ′, where H ′ is the subgraph in G[Vr] that is isomorphic to H , and the
weight of H ′ is the maximum over all subgraphs of G[Vr] that are isomorphic to H .
It is easy to verify that there is a one-to-one mapping between the k-packings of the
maximum weight in the collection CG and the k-H-packings of the maximum weight
of the graph G. Thus, the p-max H-graph packing problem on the graph G can be
solved directly by applying the algorithm given in Theorem 4.1 to the collection CG.
Furthermore, we can avoid the explicit construction of the collection CG and further
reduce the complexity of the algorithm. The detailed algorithm is given in Figure 3.

Theorem 4.3. Let H be a fixed graph of r vertices. Then the algorithm H-graph
packing solves the p-max H-graph packing problem in time O(4(r−1)kklog k/3nrr2)
and space O(rk log k + n2) on a graph of n vertices.

Proof. The correctness proof and the complexity analysis of the algorithm H-
graph packing are completely similar to that of Theorem 4.1, except for the case
k = 1 in step 1. To find the subgraph H ′ in G that is isomorphic to H and has the
maximum weight, we enumerate all subsets of r vertices in G. For each subset Vr,
we consider all possible vertex mappings from H to G[Vr]. Note that each isomorphic
mapping from H to a subgraph of G is uniquely determined by a subset Vr of r vertices

RANDOMIZED DIVIDE-AND-CONQUER 2537
H-graph packing(G,k)
input: a graph G, an integer k ≥ 1, and a weight function fW from subgraphs of G to real numbers;
output: a k-H-packing of G that has the maximum weight over all k-H-packings of G,

or ∅ if there is no k-H-packing of G.
1. if k = 1 then

if H is isomorphic to a subgraph of G
then let H′ be the subgraph of G that is isomorphic to H and has the maximum weight

over all subgraphs of G that are isomorphic to H, return H′
else return ∅;

2. Pk = ∅;
3. loop 2.51 · 2rk/

(k
�k/2�

)
times do

3.1. randomly partition the vertices of G into two parts VL and VR;
3.2. PL = H-graph packing(G[VL], �k/2�); PR = H-graph packing(G[VR],
k/2�);
3.3. if PL 	= ∅, PR 	= ∅, and the sum of the weights of PL and PR is larger than the weight of Pk

then Pk = PL ∪ PR;
4. return Pk.

Fig. 3. A randomized divide-and-conquer algorithm for p-max H-graph packing.

in G and a vertex mapping from H to G[Vr]. Therefore, this process enumerates all
possible isomorphic mappings from H to subgraphs of G. There are

(
n
r

)
subsets of

r vertices in G, and for each subset Vr, there are r! vertex mappings from H to
G[Vr]. For such a vertex mapping from H to G[Vr], it takes time O(r2) to check if the
mapping induces an isomorphic mapping from H to a subgraph of G[Vr], assuming
the graph G being given by an adjacency matrix. In summary, step 1 takes time
O(
(

n
r

)
r2r!) = O(nrr2). That is, we have

T (1, n) = O(nrr2).

The rest of the derivation of the running time of the algorithm follows directly from
Corollary 2.3.

For space complexity, since the recursion depth is bounded by O(log k), and all
copies of the graph H are disjoint, the space complexity of the algorithm is O(rk log k+
n2), where we assume that the graph G is given by an adjacency matrix that takes
space O(n2).

5. Derandomization. In this section, we discuss how the randomized algo-
rithms presented in the previous sections can be derandomized. Our derandomization
process is based on the construction of (n, k)-universal sets proposed by Naor, Schul-
man, and Srinivasan [17].

Assume that n and k are integers such that n ≥ k. Denote by Zn the set
{0, 1, . . . , n − 1}. A splitting function over Zn is a {0, 1} (i.e., Boolean) function over
Zn. A subset S of Zn is a k-subset if S consists of exactly k elements. Let (S0, S1) be
a partition of the k-subset S, i.e., S0∪S1 = S and S0∩S1 = ∅. We say that a splitting
function f over Zn implements the partition (S0, S1) if f(x) = 0 for all x ∈ S0 and
f(y) = 1 for all y ∈ S1.

Definition 5.1 (see [17]). A set Ψ of splitting functions over Zn is an (n, k)-
universal set if for every k-subset S of Zn and any partition (S0, S1) of S, there is a
splitting function f in Ψ that implements (S0, S1). The size of an (n, k)-universal set
Ψ is the number of splitting functions in Ψ.

Naor, Schulman, and Srinivasan [17] developed a deterministic algorithm for the
construction of an (n, k)-universal set. The construction was presented in an extended
abstract [17] with many details omitted. Moreover, the construction was implicitly
given via the construction of a more general structure, i.e., (n, k, l)-splitters. For
the completeness of our discussion, we rephrase in the following proposition, more

2538 CHEN ET AL.

precisely, a result on (n, k)-universal sets that is slightly different from the one given
in [17]. Moreover, in the appendix, we present a detailed description for the construc-
tion of an (n, k)-universal set and give a formal proof of Proposition 5.2.2

Proposition 5.2 (see [17]). There is an O(n2k+12 log2 k) time deterministic al-
gorithm that constructs an (n, k)-universal set of size bounded by n2k+12 log2 k+2.

A function f on Zn is injective from a subset S of Zn if for any two different
elements x and y in S, f(x) �= f(y).

By Bertrand’s postulate, proved by Chebyshev in 1850 (see [22, section 5.2]), there
is a prime number q such that n ≤ q < 2n. Moreover, the smallest prime number q0

between n and 2n can be constructed in time O(n), as follows. By the prime number
theorem (see [22, Theorem 5.19]), there is a constant d0 such that for any integer
n ≥ 2, there is a prime number between n and n + d0 log n. Therefore, by checking
each of the integers between n and n + d0 log n and testing its primality using the
trivial primality testing algorithm of running time O(

√
n), we can always find the

smallest prime number q0 between n and 2n in time O(
√

n log n) = O(n).
Proposition 5.3 (see [8]). Let n and k be integers, n ≥ k, and let q0 be the

smallest prime number such that n ≤ q0 < 2n. For any k-subset S in Zn, there is an
integer z, 0 ≤ z < q0, such that the function gn,k,z over Zn, defined as gn,k,z(a) =
(az mod q0) mod k2, is injective from S.

For a function gn,k,z from Zn to {0, 1, . . . , k2 − 1}, as defined in Proposition 5.3,
we say that the function gn,k,z partitions the set Zn into k2 pairwise disjoint subsets
{W0, W1, . . . , Wk2−1} if for all 0 ≤ i ≤ k2 − 1, Wi = {a ∈ Zn | gn,k,z(a) = i}.

Now we are ready for our derandomized algorithms. First consider the p-max

path problem. Without loss of generality, we assume that the vertices in the input
graph G are labeled by the integers {0, 1, . . . , n − 1}. The algorithm for the p-max

path problem is given in Figure 4.
Theorem 5.4. For a graph G of n vertices and m edges, the algorithm D-

paths(G, k) solves the p-max path problem in time 4k+O(log3 k)nm.
Proof. First consider the correctness of the algorithm. Note that the path ρ0

returned by the algorithm D-paths remains ∅ unless step 4.2 of the algorithm replaces
ρ0 by a real k-path in G. In particular, the algorithm works correctly if the graph G
contains no k-paths.

Now let ρk be a k-path of the maximum weight in the graph G. By Proposition 5.3,
there is an integer z0, 0 ≤ z0 < q0, such that the function gn,k,z0 is injective from the
k-subset consisting of the k vertices in the path ρk. Consider the execution of step
4.1 in algorithm D-paths on this particular integer z0, which calls the subroutine
path-ext({ρ∅}, V, z0, k).

The subroutine path-ext has a structure similar to that of the algorithm find-
paths in Figure 1, and our discussion will concentrate on the differences. For the
integer z0 and for any subset V ′ of V , we say that a path ρ is (z0, V

′)-separated if for
any two vertices u1 and u2 in ρ, where u1, u2 ∈ V ′, we have gn,k,z0(u1) �= gn,k,z0(u2).
For a general input (Pl, V

′, z0, h) to the subroutine path-ext, we prove the following
claim:

2As described in [17], it is possible to construct an (n, k)-universal set of size 2O(k) log n. However,
it is based on a more complicated construction that is also less efficient, compared to the one given
in Proposition 5.2. Moreover, for most parameterized problems, it seems sufficient to use (n, k)-
universal sets, where n = O(k2) (e.g., see the D-paths algorithm for the p-max path problem given
in Figure 4). For this class of universal sets, the construction of Proposition 5.2 produces universal
sets whose size is not worse than the one given in [17].

RANDOMIZED DIVIDE-AND-CONQUER 2539
D-paths(G, k)
input: a weighted graph G with vertex set V = {0, 1, . . . , n − 1}, and an integer k ≥ 1;
output: a k-path of the maximum weight in G if G contains k-paths;
1. for h = 1 to k do construct a (k2, h)-universal set Ψh;
2. let q0 be the smallest prime number such that n ≤ q0 < 2n;
3. ρ0 = ∅; {suppose that ∅ is a virtual k-path of infinitely small weight}
4. for each z, 0 ≤ z < q0 do
4.1. Pk = path-ext({ρ∅}, V, z, k);
4.2. if Pk contains a k-path whose weight is larger than that of ρ0

then replace ρ0 by the k-path of the maximum weight in Pk;
5. return ρ0.

path-ext(Pl, V
′, z, h)

input: a set Pl of l-paths in G; a subset V ′ of vertices in G (V ′ contains no vertex in Pl); an
integer z that lets the function gn,k,z give an initial partition of V ′; and an integer h ≥ 1;

output: a set Pl+h of (l + h)-paths in Pl � V ′;
1. Pl+h = ∅;
2. if h = 1 then
2.1. if Pl = {ρ∅} then Pl+1 contains a (u, 1)-path for each vertex u ∈ V ′; return Pl+1;
2.2. else for each (w, l)-path ρl in Pl and each u ∈ V ′, where [w, u] is an edge in G, do
2.3. concatenate ρl and u to make a (u, l + 1)-path ρl+1 in Pl � V ′;
2.4. if Pl+1 contains no (u, l + 1)-path then add ρl+1 to Pl+1;
2.5. else if the (u, l + 1)-path ρ′l+1 in Pl+1 has a weight smaller than that of ρl+1

2.6. then replace ρ′l+1 in Pl+1 by ρl+1;
2.7. return Pl+1;
3. for each splitting function f in the (k2, h)-universal set Ψh do
3.1. VL = {v, | v ∈ V ′ and f(gn,k,z(v)) = 0};
3.2. VR = {v, | v ∈ V ′ and f(gn,k,z(v)) = 1};
3.3. P L

l+�h/2� = path-ext(Pl, VL, z, �h/2�);
3.4. if P L

l+�h/2� 	= ∅ then

3.5. P R
l+h = path-ext(P L

l+�h/2�, VR, z,
h/2�);
3.6. for each (u, l + h)-path ρl+h in P R

l+h do

3.7. if Pl+h contains no (u, l + h)-path in Pl � V ′ then add ρl+h to Pl+h;
3.8. else if the (u, l + h)-path ρ′l+h in Pl+h has a weight smaller than that of ρl+h

3.9. then replace ρ′l+h in Pl+h by ρl+h;
4. return Pl+h.

Fig. 4. A deterministic algorithm for p-max path.

For any vertex v ∈ V ′, there is a (z0, V
′)-separated (v, l + h)-path

in Pl � V ′ if and only if the set Pl+h constructed by the subroutine
path-ext(Pl, V

′, z0, h) contains a (z0, V
′)-separated (v, l + h)-path

in Pl � V ′ whose weight is the maximum over all (z0, V
′)-separated

(v, l + h)-paths in Pl � V ′.
One direction is trivial: it suffices to ensure the existence of a (z0, V

′)-separated (v, l+
h)-path in Pl�V ′ if the set Pl+h contains a (z0, V

′)-separated (v, l+h)-path in Pl�V ′.
We prove the other direction by induction on h. For the case h = 1, the algorithm
path-ext proceeds in exactly the same way as that of the algorithm find-paths
in Figure 1. Since every (v, l + 1)-path in Pl � V ′ is (z0, V

′)-separated, in this case
the corresponding part of the proof for algorithm find-paths (i.e., Theorem 3.1) is
directly applied to derive the correctness of the above claim. Now consider the case
h > 1. Suppose that there is a (z0, V

′)-separated (v, l + h)-path in Pl � V ′, and let

ρl+h = 〈u1, . . . , ul, w1, . . . , wh1 , . . . , wh〉
be a (z0, V

′)-separated (v, l + h)-path of the maximum weight in Pl � V ′, where
〈u1, . . . , ul〉 is a path in Pl, wj ∈ V ′ for all j, h1 = �h/2�, and wh = v. Since ρl+h is
(z0, V

′)-separated, Sh = {gn,k,z0(w1), . . . , gn,k,z0(wh)} consists of exactly h elements

2540 CHEN ET AL.

in the set Zk2 , and ({gn,k,z0(w1), . . . , gn,k,z0(wh1)}, {gn,k,z0(wh1+1), . . . , gn,k,z0(wh)})
is a partition of Sh. By the definition of the (k2, h)-universal set Ψh, there is a splitting
function f0 in Ψh such that f0(gn,k,z0(wj)) = 0 for 1 ≤ j ≤ h1, and f0(gn,k,z0(wj)) = 1
for h1 +1 ≤ j ≤ h. Therefore, when this splitting function f0 is picked in step 3 of the
algorithm path-ext(Pl, V

′, z0, h), the set VL obtained in step 3.1 contains the vertices
w1, . . . , wh1 , and the set VR obtained in step 3.2 contains the vertices wh1+1, . . . , wh.

Note that the path ρl+h1 = 〈u1, . . . , ul, w1, . . . , wh1〉 is a (z0, VL)-separated (wh1 , l+
h1)-path in Pl � VL. By the induction hypothesis, the set PL

l+h1
obtained in step 3.3

contains a (z0, VL)-separated (wh1 , l + h1)-path ρl+h1
in Pl � VL whose weight is at

least as large as that of ρl+h1 . Now the concatenation of the path ρl+h1
and the path

〈wh1+1, . . . , wh〉 is a (z0, VR)-separated (wh, (l +h1)+ (h−h1))-path (i.e., a (v, l +h)-
path) in PL

l+h1
�VR. Thus, by our induction hypothesis again, the set PR

l+h obtained in
step 3.5 contains a (z0, VR)-separated (v, l +h)-path ρl+h in PL

l+h1
�VR whose weight

is at least as large as the sum of the weights of the paths ρl+h1
and 〈wh1+1, . . . , wh〉.

Since the weight of ρl+h1
is not smaller than that of ρl+h1 , we conclude that the weight

of the path ρl+h is not smaller than that of ρl+h. Finally, since the path ρl+h is a
concatenation of a (w, l+h1)-path ρ′l+h1

in PL
l+h1

and a path in G[VR] that is (z0, VR)-
separated, where by the induction hypothesis, ρ′l+h1

is a (z0, VL)-separated path in
Pl � VL, we derive that ρl+h is actually a (z0, V

′)-separated (v, l + h)-path in Pl � V ′

(note that for two vertices w ∈ VL and w′ ∈ VR, the values gn,k,z0(w) and gn,k,z0(w′)
are always different because they are mapped to different values under the splitting
function f0). Since the weight of ρl+h is not smaller than the weight of ρl+h, and by
our assumption, the path ρl+h has the maximum weight over all (z0, V

′)-separated
(v, l + h)-paths in Pl � V ′, we conclude that ρl+h must also be a (z0, V

′)-separated
(v, l + h)-path of the maximum weight in Pl � V ′. Therefore, the collection Pl+h re-
turned by the subroutine path-ext(Pl, V

′, z0, h) must contain a (z0, V
′)-separated

(v, l + h)-path of the maximum weight. This completes the proof for the claim.
Now the correctness of the algorithm D-paths can be easily derived from the

above claim: by our assumption on the integer z0, the k-path ρk of the maximum
weight in the graph G is actually a (z0, V)-separated (v, k)-path in {ρ∅} � V (i.e., in
the graph G). Therefore, the above claim concludes that the set Pk obtained in step
4.1 of the algorithm D-paths by calling the subroutine path-ext({ρ∅}, V, z0, k) must
contain a (v, k)-path of the maximum weight. In consequence, the path ρ0 returned
in step 5 of the algorithm D-paths(G, k) must be a k-path of the maximum weight.

For the running time of the algorithm, note that the running time of the algorithm
D-paths is dominated by step 4, which is a q0-time iteration of the subroutine path-
ext, where q0 = O(n). Let T (h, m) be the running time of the recursive subroutine
path-ext(Pl, V

′, z, h), where m is the number of edges in the input graph G to the
main algorithm D-paths(G, k). By Proposition 5.2, the (k2, h)-universal set Ψh has
at most k22h+12 log2 h+2 splitting functions. Therefore, the value T (h, m) satisfies the
following recurrence relations (where c1 and c2 are constants):

T (1, m) ≤ c1m;

T (h, m) ≤ k22h+12 log2 h+2[c2m + T (�h/2�, m) + T (�h/2	, m)].(3)

Let X0 = k2212 log2 k+2 = 212 log2 k+2 log k+2. Since k ≥ h for all values h used in the
subroutine path-ext(Pl, V

′, z, h), we derive from (3) that

T (1, m) ≤ c1m;
T (h, m) ≤ 2hX0[c2m + T (�h/2�, m) + T (�h/2	, m)].(4)

RANDOMIZED DIVIDE-AND-CONQUER 2541

Since the value X0 is independent of the variables h and m, we can apply Corollary 2.2
to the recurrence relations in (4) and obtain T (h, m) = O(4hhαm), where α is any
number larger than log2(X0(4 + 1)/2). In particular, if we pick α = log2 X0 + 2 =
12 log2 k + 2 log k + 4, we have

hα ≤ kα = 2α log k = 2O(log3 k),

which gives

T (h, m) = O(4h2O(log3 k)m) = 4k+O(log3 k)m.

Combining this with our previous discussion, we conclude that the running time of
the algorithm D-paths is bounded by 4k+O(log3 k)nm.

Using the same technique, we can develop improved deterministic algorithms for
the matching and packing problems discussed in section 4.

Theorem 5.5. There is a deterministic algorithm that solves the p-max r-set
packing problem in time 4rk+O(log3(rk))n2, where n is the number of r-sets in the
input instance.

Proof. The deterministic algorithm for the p-max r-set packing problem is a
derandomization of the algorithm given in Figure 2. The procedure is very similar
to that described in Theorem 5.4 for the p-max path problem. The only difference
is that here we use an ((rk)2, rh)-universal set in which a splitting function splits
the (implicit) h-packing of the maximum weight into two packings of sizes �h/2� and
�h/2	, respectively. We leave the details for interested readers to verify.

Corollary 5.6. There is a deterministic algorithm that solves the p-max r-d
matching problem in time 4rk+O(log3(rk))n2, where n is the number of points in the
input instance.

Corollary 5.7. Let H be a fixed graph of r vertices. There is a deterministic al-
gorithm that solves the p-max H-graph packing problem in time 4rk+O(log3(rk))nr+1,
where n is the number of vertices in the input graph G.

Remark 1. The results in this section significantly improve previous best determin-
istic algorithms for the problems [2, 7, 13]. In fact, the running time of our algorithms
is even better than that of the previous best randomized algorithms for the corre-
sponding problems. The previous best randomized algorithm for the p-max path

problem has running time O(5.44kkm) [2], and previous best randomized algorithms
for the p-max r-set packing and p-max r-d matching problems have running time
10.88rknO(1) [13].

Remark 2. We noted that very recently Koutis [14] reported a randomized algo-
rithm of running time O(23k/2nO(1)) for the p-max path problem, and randomized
algorithms of running time O(23knO(1)) for the p-max 3-set packing and p-max

3-d matching problems. The running time of Koutis’s randomized algorithm for
the p-max path problem has even been further improved by Williams to O(2knO(1))
[23]. However, as remarked in [23], the algorithms reported in [14, 23] work only for
the unweighted versions of the problems and do not appear to extend to the more
general weighted versions. Moreover, it is unknown, as indicated in [14], whether the
new randomized algorithms for p-max 3-set packing and p-max 3-d matching

can be extended to p-max r-set packing and p-max r-d matching for general
r > 3. Finally, as asked in both [14] and [23], it is not clear whether the new random-
ized algorithms can be derandomized to result in improvements over the deterministic
algorithms presented in the current paper.

2542 CHEN ET AL.

Appendix. Deterministic construction of (n, k)-universal sets. Naor,
Schulman, and Srinivasan developed a deterministic construction of (n, k)-universal
sets [17]. The construction was described via the construction of a more general struc-
ture, i.e., (n, k, l)-splitters. Moreover, the construction was presented in an extended
abstract [17] in which many details were omitted. For the completeness of our discus-
sion, we will reproduce in this appendix a slightly different and simpler construction
and its analysis specifically for (n, k)-universal sets. The presentation here is more
precise with all needed details provided.

We start with some terminology and definitions in probability theory.
Let (Ω, Pr) be a probability space, where Ω is a finite set and Pr is the probability

measure. The size of (Ω, Pr) is the number of elements in Ω. The probability space
(Ω, Pr) is uniform if Pr(a) = 1/|Ω| for all a ∈ Ω (in this case, we will simply write the
probability space as Ω).

A {0, 1}-random variable ξ over the probability space (Ω, Pr) is a function from Ω
to {0, 1}. A group of h {0, 1}-random variables ξ1, ξ2, . . . , ξh are mutually independent
if for any combination of h binary bits b1, . . . , bh in {0, 1} the following holds:

Pr(ξ1 = b1, ξ2 = b2, . . . , ξh = bh) = Pr(ξ1 = b1)Pr(ξ2 = b2) · · ·Pr(ξh = bh).

A group of n {0, 1}-random variables ξ1, ξ2, . . . , ξn are k-wise independent if every
group of k different {0, 1}-random variables among ξ1, ξ2, . . . , ξn are mutually inde-
pendent.

The following lemma is crucial to our construction and was first proved in [1].
Lemma A.1 (see [1]). Let n = 2d−1 for an integer d and let k be an odd number,

k ≤ n. There is an algorithm of running time O(n(n + 1)(k−1)/2) that constructs a
uniform probability space Ω of size 2(n+1)(k−1)/2 and a group of n k-wise independent
{0, 1}-random variables ξ1, . . . , ξn over Ω such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2
for all 1 ≤ i ≤ n.

We start with a simple observation.
Lemma A.2. For every integer n ≥ 1, there is an (n, 1)-universal set of size 2.
Proof. The splitting functions f0 ≡ 0 and f1 ≡ 1 over Zn obviously form an

(n, 1)-universal set for Zn.
Now we present a construction of a general (n, k)-universal set of small size that,

however, is not sufficiently efficient. Compared to the work presented in [17], the size
of our structure is more precise (and slightly improved), which will be important for
the later construction. Moreover, the time complexity of our construction is lower
than that described in [17].

Lemma A.3. Let k be an odd number and let n be an integer such that n ≥ k
and n ≥ 2. There is an (n, k)-universal set of size bounded by 2kk log n, which can be
constructed in time O

((
n
k

)
2kk(2n)(k−1)/2

)
.

Proof. The lemma is true for k = 1 by Lemma A.2. Thus, we assume k ≥ 3.
Let n1 = 2d − 1, where d is the smallest integer such that n ≤ n1 (note that n ≤

n1 ≤ 2n−1). By Lemma A.1, we can construct, in time O(n1(n1+1)(k−1)/2), a uniform
probability space Ω of size 2(n1+1)(k−1)/2 and a group of n1 k-wise independent {0, 1}-
random variables ξ1, . . . , ξn1 over Ω such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2 for all
1 ≤ i ≤ n1. By picking the first n of these n1 random variables, we get a group of
n k-wise independent {0, 1}-random variables ξ1, . . . , ξn over the uniform probability
space Ω such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2 for all 1 ≤ i ≤ n. All these can be
constructed in time O(n(2n)(k−1)/2).

Note that the uniform probability space Ω and the random variables ξ1, . . . , ξn

constructed above actually make a collection P of D = 2(n1 + 1)(k−1)/2 splitting

RANDOMIZED DIVIDE-AND-CONQUER 2543

functions over Zn. In fact, for each element a in Ω, the values of the random variables
ξ1, . . . , ξn make a binary string ξ1(a) · · · ξn(a) of length n, which can be interpreted
as a splitting function over Zn.

Construct a bipartite graph G = (V1 ∪V2, E) with the vertex bipartition (V1, V2),
where V1 consists of D vertices, corresponding to the D splitting functions in the
collection P , and the vertex set V2 consists of D′ =

(
n
k

)
2k vertices such that for each

k-subset S of Zn and each partition (S1, S2) of S, there is a corresponding vertex in
V2. An edge [v, w] is created in G if the splitting function corresponding to the vertex
v ∈ V1 implements the partition (S1, S2) of a k-subset S of Zn that correspond to the
vertex w ∈ V2.

Claim. Each vertex in V2 has a degree D/2k.
Proof of the claim. Let S = {h1, . . . , hk} be any k-subset of Zn and let (S1, S2) be

a partition of S. Define k binary bits bhi , 1 ≤ i ≤ k, such that bhi = 0 if hi ∈ S1 and
bhi = 1 if hi ∈ S2. Consider the k mutually independent random variables ξh1 , . . . , ξhk

(they are mutually independent because the random variables ξ1, . . . , ξn are k-wise
independent); we have

Pr(ξh1 = bh1 , . . . , ξhk
= bhk

) = Pr(ξh1 = bh1) · · ·Pr(ξhk
= bhk

) = 1/2k.

Thus, there are D/2k elements a in Ω such that ξhi(a) = bhi for 1 ≤ i ≤ k. By
the interpretation above, there are D/2k splitting functions in the collection P that
implement the partition (S1, S2) of the k-subset S. By our construction of the graph
G, the vertex w in V2 corresponding to the partition (S1, S2) of the k-subset S has
degree D/2k. The claim now is proved because S is an arbitrary k-subset in Zn and
(S1, S2) is an arbitrary partition of S.

Since there are D′ vertices in V2, the above claim shows that the bipartite graph
G contains exactly (D′D)/2k edges. Now since there are D vertices in V1, there is a
vertex v1 in V1 in the graph G whose degree is at least D′/2k. In other words, there
is a splitting function in the collection P that implements at least D′/2k partitions of
k-subsets of Zn (these partitions can be partitions for different k-subsets of Zn).

We perform the following operations on the graph G: mark the vertex v1 in V1 and
remove all vertices in V2 that are adjacent to v1 (or, equivalently, we mark a splitting
function f in P and remove all partitions of k-subsets of Zn that are implemented
by f). Let D′

1 be the number of vertices in V2 in the remaining bipartite graph G′.
D′

1 ≤ (1 − 1/2k)D′.
Note that each vertex in V2 in the remaining graph G′ still has degree D/2k.

Therefore, by repeating the above process, in the remaining graph G′ we can find
a vertex v2 in V1 that is adjacent to at least D′

1/2k vertices in V2. Now we mark
v2 and remove the vertices in V2 that are adjacent to v2. Now there are at most
D′

2 ≤ (1 − 1/2k)D′
1 ≤ (1 − 1/2k)2D′ vertices in V2 in the remaining graph.

Repeat the above process until all vertices in V2 are removed. The number t′ of
times the above process is repeated is not larger than the smallest integer t such that
(1 − 1/2k)tD′ < 1. For k = 3, we can directly verify that t′ ≤ 2kk log n; and for
k ≥ 5, since D′ =

(
n
k

)
2k ≤ nk and (1−1/2k)2

k

< 1/e, we can also formally prove that
t′ ≤ 2kk log n.

Each execution of the above process marks a vertex in V1; therefore, there are
at most 2kk log n vertices in V1 that are marked in the above process. By our con-
struction, all vertices in the set V2 are adjacent to at least one marked vertex in V1.
Accordingly, there are D′′ ≤ 2kk log n splitting functions in the collection P such that
every partition of any k-subset in Zn is implemented by at least one of these D′′

2544 CHEN ET AL.

splitting functions. That is, these D′′ splitting functions make an (n, k)-universal set
P ′ of size bounded by 2kk log n.

We analyze the time complexity for the entire construction of the (n, k)-universal
set P ′. As given earlier, the construction of the uniform probability space Ω and the
{0, 1}-random variables ξ1, . . . , ξn takes time O(n(2n)(k−1)/2). The construction of
the bipartite graph G takes time O(k|V1||V2|) = O(kDD′) = O

((
n
k

)
k2k(2n)(k−1)/2

)
.

To perform the above iteration process of marking vertices in V1, we can represent
the bipartite graph G as a D × D′ matrix and keep an array for the degrees of the
vertices in V1. It is not difficult to verify that on such data structures, the entire vertex
marking process takes time O(t′(D + D′) + DD′) = O

((
n
k

)
2k(2n)(k−1)/2

)
. Thus, the

total construction of the (n, k)-universal set P ′ takes time O
((

n
k

)
2kk(2n)(k−1)/2

)
.

The size of the (n, k)-universal set constructed in Lemma A.3 is quite small.
Unfortunately, the time complexity for constructing such an (n, k)-universal set given
in the lemma is unacceptably high. Therefore, we need to use additional techniques
to reduce the construction time.

Fix n and k, where n ≥ k. At the moment, we assume k ≥ 2. Define

k1 = the largest odd number bounded by k/(4 log k),
t = �k/k1� (it is not hard to verify that t ≤ 4 log k + 2),
k2 = k − k1(t − 1) (note that k2 ≤ k1),(5)
n1 = k2, and
p = a prime number such that n ≤ p < 2n,

where the existence of the prime number p above is guaranteed by Bertrand’s postulate
[22].

Consider the set Zk2 = {0, 1, . . . , k2 − 1}. Pick any t − 1 elements i2, i3, . . . , it in
Zk2 , such that i2 < i3 < · · · < it. These t − 1 elements naturally divide the set Zk2

into t sets consisting of consecutive elements (where X1 may be an empty set):

X1 = {0, . . . , i2 − 1}, X2 = {i2, . . . , i3 − 1}, . . . , Xt = {it, . . . , k2 − 1}.

Such a division (X1, X2, . . . , Xt) of the set Zk2 based on t−1 selected elements in Zk2

will be called a t-grouping of the set Zk2 .
According to Lemma A.3, we can construct (note that k1 is an odd number

and that n1 ≥ 4) an (n1, k1)-universal set P1 of size D1 ≤ k12k1 log n1 in time
O(
(

n1
k1

)
2k1k1(2n1)(k1−1)/2). Moreover, we define k′

2 = k2 if k2 is odd, and k′
2 = k2 + 1

if k2 is even, and we construct an (n1, k
′
2)-universal set P2 of size D2 ≤ k′

22
k′
2 log n1 ≤

k12k2+1 log n1 in time O(
(

n1
k1

)
2k1k1(2n1)(k1−1)/2) (we can replace k′

2 by k1 because by
definition k′

2 ≤ k1). Using the definitions of k1, k2, and n1, it is not hard to verify
that

(6) D1 ≤ k2k1−1 and D2 ≤ k2k2 .

Lemma A.4. Let P be an (n, k)-universal set. Then for any n′, k ≤ n′ ≤ n, P is
also an (n′, k)-universal set; and for any k′ ≤ k, P is also an (n, k′)-universal set.

Proof. Each splitting function in P can be regarded as a splitting function over
Zn′ . Since every k-subset of Zn′ is also a k-subset of Zn, we conclude that any partition
of any k-subset in Zn′ is implemented by a splitting function in P ; i.e., P is also an
(n′, k)-universal set.

RANDOMIZED DIVIDE-AND-CONQUER 2545
Splitting fz,(X1,...,Xt),(f1,...,ft−1,ft)(a)

where a ∈ Zn is the input of the function, 0 ≤ z < p, (X1, . . . , Xt) is a t-grouping of Zk2 ,
f1, . . . , ft−1 are splitting functions in P1, and ft is a splitting function in P2.

1. x = (az mod p) mod k2;
2. suppose that x is the jth smallest element in Xi;
3. return fi(j).

Fig. 5. A splitting function over Zn.

Every partition (S′
1, S

′
2) of any k′-subset S′ of Zn can be extended to a partition

(S1, S2) of a k-subset of Zn by adding k−k′ elements in Zn−S′ to S′
1. Now the splitting

function in P that implements (S1, S2) also implements the partition (S′
1, S

′
2) of S′.

Thus, P is also an (n, k′)-universal set.
Now we are ready to construct our (n, k)-universal set P . Each splitting function

over Zn in P is defined based on an integer z between 0 and p − 1, a t-grouping
(X1, . . . , Xt) of the set Zk2 , t − 1 splitting functions f1, . . . , ft−1 in the (n1, k1)-
universal set P1, and a splitting function ft in the (n1, k

′
2)-universal set P2. The

splitting function over Zn is defined by the algorithm given in Figure 5.
First note that the function fz,(X1,...,Xt),(f1,...,ft−1,ft)(a) is a well-defined splitting

function. In fact, by step 1, x is an element in Zk2 . Since (X1, . . . , Xt) is a t-grouping
of Zk2 , x must belong to a unique Xi and have a unique rank j in Xi. Thus, step 3
will return a Boolean value fi(j).

Definition A.5. Let P be the collection of all possible splitting functions over
Zn defined in Figure 5, over all integers z, 0 ≤ z < p, all t-groupings (X1, . . . , Xt) of
Zk2 , all possible lists (f1, . . . , ft−1) of splitting functions in the (n1, k1)-universal set
P1 (where the same function may appear more than once in the list), and all splitting
functions ft in the (n1, k

′
2)-universal set P2.

Now we are ready for our main result.
Theorem A.6 (see [17]). For all integers k ≥ 1 and n ≥ k, there is an (n, k)-

universal set of size bounded by n2k+12 log2 k+2, which can be constructed in time
O(n2k+12 log2 k).

Proof. The theorem holds true for k = 1 by Lemma A.2. Thus, we assume k ≥ 2.
We prove that the collection P given in the definition before this theorem is an (n, k)-
universal set that satisfies the conditions given in the theorem.

We first consider the size of the collection P . There are p < 2n possible integers
z. As described earlier, each t-grouping of Zk2 can be given by t−1 different elements
in Zk2 . Therefore, the total number of different t-groupings of Zk2 is bounded by(

k2

t−1

) ≤ k2(t−1). The number of possible lists (f1, . . . , ft−1) of splitting functions in P1

is |P1|t−1 = Dt−1
1 , and, finally, the number of splitting functions in P2 is |P2| = D2.

Putting all these together, and recalling the definitions and inequalities in (5) and
(6), we conclude that the size of P is bounded by

2nk2(t−1)Dt−1
1 D2

≤ 2nk2(t−1)(k2k1−1)t−1(k2k2)
= 2nk3t−22(k1−1)(t−1)+k2

≤ 2nk12 log k+42(k1−1)(t−1)+(k−k1(t−1))

= n212 log2 k+4 log k+12k−(t−1)

≤ n2k+12 log2 k+2,

where the last inequality has used the facts t = �k/k1� ≥ k/k1 ≥ k/(k/(4 log k)) =
4 log k.

2546 CHEN ET AL.

To construct the collection P , we first construct the collections P1 and P2. As
discussed earlier, P1 and P2 can be constructed in time O(

(
n1
k1

)
2k1k1(2n1)(k1−1)/2) =

O(2k). Once the collections P1 and P2 are available, the integers z, the t-groupings
(X1, . . . , Xt) of Zk2 , and the lists (f1, . . . , ft−1) of splitting functions in P1 and the
splitting functions ft in P2 can be systematically enumerated, in constant time per
combination, which gives a representation of the corresponding splitting function in P .
In conclusion, the collection P can be constructed in time O(|P|) = O(n2k+12 log2 k).

What remains is to show that P is an (n, k)-universal set. For this, let S be a
given k-subset of Zn and let (S1, S2) be a partition of S. By Proposition 5.3, there
is an integer z0, 0 ≤ z0 < p, such that the function gn,k,z0 over Zn is injective from
S. Let S′, S′

1, and S′
2 be the subsets of Zk2 that are the images of S, S1, and S2

under gn,k,z0 , respectively. By the definitions, we have |S′| = |S|, |S′
1| = |S1|, and

|S′
2| = |S2|, and (S′

1, S
′
2) is a partition of the k-subset S′ in Zk2 .

It is easy to see that there is a t-grouping (X0
1 , . . . , X0

t) of the set Zk2 such that
each of the first t − 1 subsets X0

1 , . . . , X0
t−1 contains exactly k1 elements in S′, and

the last subset X0
t contains k2 elements in S′. Let Ti = X0

i ∩ S′ for 1 ≤ i ≤ t. Then
Ti is a k1-subset of X0

i for 1 ≤ i ≤ t − 1, and Tt is a k2-subset of X0
t . Moreover, the

partition (S′
1, S

′
2) of S′ induces a partition (Ti,1, Ti,2) for each Ti, 1 ≤ i ≤ t, where

Ti,1 = Ti ∩ S′
1 and Ti,2 = Ti ∩ S′

2.
Since P1 is an (n1, k1)-universal set, which by Lemma A.4 is also an (|X0

i |, k1)-
universal set, for each i, 1 ≤ i ≤ t − 1, there is a splitting function f0

i in P1 that
implements the partition (Ti,1, Ti,2) of the k1-subset Ti of X0

i (note that the subset
X0

i can be regarded as the set Z|X0
i |) for 1 ≤ i ≤ t−1. That is, f0

i (x) = 0 if x ∈ Ti,1 and
f0

i (y) = 1 if y ∈ Ti,2. Similarly, there is a splitting function f0
t in P2 that implements

the partition (Tt,1, Tt,2) of the k2-subset Tt.
Now consider the splitting function fz0,(X0

1 ,...,X0
t),(f0

1 ,...,f0
t). On an element a in the

subset S1, step 1 of the algorithm Splitting produces an element x = gn,k,z0(a) in
the set S′

1. Suppose that x is in the set X0
i ; then x is in the set Ti,1. By the way we

selected the splitting function f0
i , we have f0

i (x) = 0. In summary, on an element a
in the subset S1, we have fz0,(X0

1 ,...,X0
t),(f0

1 ,...,f0
t)(a) = 0. Using the same reasoning,

we can show fz0,(X0
1 ,...,X0

t),(f0
1 ,...,f0

t)(a) = 1 for every element a in S2. Therefore, the
function fz0,(X0

1 ,...,X0
t),(f0

1 ,...,f0
t) in the collection P implements the partition (S1, S2)

of the k-subset S of Zn.
Since S is an arbitrary k-subset of Zn and (S1, S2) is an arbitrary partition of S,

we conclude that the collection P is an (n, k)-universal set.

Acknowledgments. The authors are grateful to Mike Fellows, Fedor Fomin,
Somit Gupta, Ming Li, and Vijaya Ramachandran for their comments and discussions
on early versions of this paper. The authors would also like to thank the referees for
their critical reading, helpful comments, and constructive suggestions, which have
resulted in improvements on the presentations and certain technical results.

REFERENCES

[1] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567–683.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.
[3] H. Bodlaender, On linear time minor tests with depth-first search, J. Algorithms, 14 (1993),

pp. 1–23.
[4] J. Chen, D. Friesen, W. Jia, and I. Kanj, Using nondeterminism to design efficient deter-

ministic algorithms, Algorithmica, 40 (2004), pp. 83–97.

RANDOMIZED DIVIDE-AND-CONQUER 2547

[5] J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for path, matching, and
packing problems, in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), SIAM, Philadelphia, 2007, pp. 298–307.

[6] R. Downey and M. Fellows, Parameterized Complexity, Springer, New York, 1999.
[7] M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege, D. Thilikos,

and S. Whitesides, Faster fixed-parameter tractable algorithms for matching and packing
problems, in Algorithms–ESA 2004, Lecture Notes in Comput. Sci. 3221, Springer, Berlin,
2004, pp. 311–322.

[8] M. Fredman, J. Komlos, and E. Szemeredi, Storing a sparse table with O(1) worst case
access time, J. ACM, 31 (1984), pp. 538–544.

[9] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison–Wesley,
Reading, MA, 1994.

[10] W. Jia, C. Zhang, and J. Chen, An efficient parameterized algorithm for m-set packing, J.
Algorithms, 50 (2004), pp. 106–117.

[11] B. Kelley, R. Sharan, R. Karp, T. Sittler, D. Root, B. Stockwell, and T. Ideker, Con-
served pathways within bacteria and yeast as revealed by global protein network alignment,
Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 11394–11399.

[12] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Divide-and-color, in Graph-Theoretic
Concepts in Computer Science (WG 2006), Lecture Notes in Comput. Sci. 4271, Springer,
Berlin, 2006, pp. 58–67.

[13] I. Koutis, A faster parameterized algorithm for set packing, Inform. Process. Lett., 94 (2005),
pp. 7–9.

[14] I. Koutis, Faster algebraic algorithms for path and packing problems, in Proceedings of the
35th International Colloquium on Automata, Languages and Programming (ICALP 2008),
Part I, Lecture Notes in Comput. Sci. 5125, Springer, Berlin, 2008, pp. 575–586.

[15] L. Mathieson, E. Prieto, and P. Shaw, Packing edge disjoint triangles: A parameterized
view, in Proceedings of the First International Workshop on Parameterized and Exact
Computation (IWPEC 2004), Lecture Notes in Comput. Sci. 3162, Springer, Berlin, 2004,
pp. 127–137.

[16] B. Monien, How to find long paths efficiently, Ann. Discrete Math., 25 (1985), pp. 239–254.
[17] M. Naor, L. Schulman, and A. Srinivasan, Splitters and near-optimal derandomization, in

Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS
1995), IEEE Computer Society Press, Palo Alto, CA, 1995, pp. 182–190.

[18] A. Nilli, Perfect hashing and probability, Combin. Probab. Comput., 3 (1994), pp. 407–409.
[19] C. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity of the

V-C dimension, J. Comput. System Sci., 53 (1996), pp. 161–170.
[20] E. Prieto and C. Sloper, Looking at the stars, Theoret. Comput. Sci., 351 (2006), pp. 437–

445.
[21] J. Scott, T. Ideker, R. Karp, and R. Sharan, Efficient algorithms for detecting signaling

pathways in protein interaction networks, J. Comput. Biol., 13 (2006), pp. 133–144.
[22] V. Shoup, A Computational Introduction to Number Theory and Algebra, 2nd ed., Cambridge

University Press, New York, 2008.
[23] R. Williams, Finding paths of length k in O∗(2k) time, Inform. Process. Lett., 109 (2009), pp.

315–318.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

