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ON A MATHEMATICAL MODEL OF THE PRODUCTIVITY INDEX
OF A WELL FROM RESERVOIR ENGINEERING∗
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JAY R. WALTON‡

Abstract. Motivated by the reservoir engineering concept of the productivity index of a produc-
ing oil well in an isolated reservoir, we analyze a time dependent functional, diffusive capacity, on the
solutions to initial boundary value problems for a parabolic equation. Sufficient conditions providing
for time independent diffusive capacity are given for different boundary conditions. The dependence
of the constant diffusive capacity on the type of the boundary condition (Dirichlet, Neumann, or
third boundary condition) is investigated using a known variational principle and confirmed numer-
ically for various geometrical settings. An important comparison between two principal constant
values of a diffusive capacity is made, leading to the establishment of criteria when the so-called
pseudo-steady-state and boundary-dominated productivity indices of a well significantly differ from
each other. The third boundary condition is shown to model the thin skin effect for the constant
wellbore pressure production regime for a damaged well. The questions of stabilization and unique-
ness of the time independent values of the diffusive capacity are addressed. The derived formulas are
used in numerical study of evaluating the productivity index of a well in a general three-dimensional
reservoir for a variety of well configurations.
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1. Introduction. In many applied problems, where the modeled processes are,
in general, transient, it is important to define such functionals on the solutions, which
are, in a sense, time invariant. Existence of such property is important from both
practical and theoretical points of view. An important such example to petroleum
reservoir engineering, the productivity index (PI), is studied here.

It was long ago observed by petroleum engineers that if a bounded reservoir is
depleted by a well, then the ratio of the flow rate to the pressure drawdown (the
pressure drop between the reservoir and the wellbore) stabilizes to a constant value.
This constant value seems to depend only on the geometrical and hydrodynamical
characteristics of the reservoir. In particular, it appears to be independent of the
pressure drawdown in the reservoir or the flow rate from the well [23].

The first concise description of this fact was formulated in the classical book by
Muskat [23]. The ratio of the rate of flow from the well to the difference between the
average pressure on the wellbore and the average pressure in the reservoir is called
the productivity index of the well [23]. There are two idealized production regimes
considered most frequently for the purpose of analysis in engineering practice: the
well can be produced either with a constant flow rate or with a constant wellbore
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pressure. In a bounded reservoir depleted in either of the two regimes, the PI of a
well stabilizes and remains constant in a long time asymptote.

To analyze the productivity of the well we consider three initial boundary value
problems (IBVPs) that correspond to current engineering practice. However, while
two of the formulated problems corresponding to the constant pressure production
regime are well-posed, the problem modeling the regime with a constant rate of pro-
duction is ill-posed in the sense of nonuniqueness of solution.

Field operations often reduce the permeability of the region adjacent to the
wellbore—the so-called skin zone. Disregarding the skin effect leads to overestimation
of the PI of the damaged well [30, 15]. One of the IBVPs considered in this article
models the skin effect in the constant pressure production regime.

The objective for this paper is to build a rigorous mathematical frame for studying
the PI. In this respect, it proves useful to introduce the concept of diffusive capacity
for a well-reservoir system. The diffusive capacity is an integral type characteristic of
the solution of an IVBP. To address the issue of nonuniqueness of solution of the ill-
posed IBVP, we impose restrictions defining a class of solutions in which the diffusive
capacity is unique. The inflicted restrictions are motivated by physical considerations
as well as traditional engineering practice.

An important property of the PI to stabilize with time regardless of the production
regime is then analyzed in terms of the diffusive capacity. Sufficient conditions for the
diffusive capacity to be time independent are given for different boundary conditions;
through a variational approach to studying the diffusive capacities, its dependence on
different boundary conditions is revealed. The obtained theoretical results are then
illustrated by numerical computations of the constant diffusive capacities for processes
with different boundary conditions in various geometrical settings.

1.1. PI of a well in a bounded reservoir. Reservoir engineering ap-
proach: Shape factors. Consider a bounded hydrocarbon reservoir with a flowing
fluid (oil) and a well produced with either constant wellbore pressure or constant
production rate. The PI of a well is defined as [26]

PI(t) =
q(t)

pw(t) − pa(t)
,(1)

where q(t) is the rate of flow from the well, pw(t) is the flowing bottomhole pressure,
and pa(t) is the average pressure of the fluid in the reservoir. When the well is
produced with a constant wellbore pressure, its value is taken as pw(t) in (1). The
concept of the PI of a well facilitates reservoir engineering methods of estimation of
the available reserves and, consequently, helps to optimize the recovery efficiency.

About a century ago it was empirically observed that under either of the two
recovery regimes, the PI of a well stabilizes and remains almost constant in a long
time asymptote [26]. When the PI of a well is constant, the production regimes
have traditionally accepted names: the production regime with the constant rate and
constant PI is called a pseudo-steady-state (PSS), and the production regime with
the constant wellbore pressure and the constant PI is called a boundary-dominated
(BD) state.

The first analytical formula for representation of the PI of a well for a PSS regime
was obtained by Muskat [23] for an isolated cylindrical reservoir and a given constant
production rate on the fully penetrated vertical well. The IBVPs with the constant
rate well boundary condition for a number of typical drainage shapes were first solved
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by Matthews, Brons, and Hazebroek in [21] in connection to the analysis of the build-
up wellbore pressure after well shut-in. Using the result of Matthews, Brons, and
Hazebroek, an approximate formula for a PSS PI (with skin s) can be written as

JDietz =
1

1
2 ln 4V

γCAr2
w

+ s
,(2)

where V is the area of the two-dimensional reservoir (a three-dimensional reservoir
with a uniform thickness), rw is the radius of the circular well, and γ is Euler’s
constant. Equation (2) uses the solution for the dimensionless PSS wellbore pressure
first derived by Ramey and Cobb in [27]. The values of the so-called shape factor CA

were first presented in [6] and are usually referred to as Dietz’s shape factors in the
petroleum engineering literature. Positive skin captures the damage to the skin zone,
while the negative skin was shown to model a stimulated well [12, 15, 4, 8, 14, 19].

The approximate formula (2) is also used to estimate the productivity of a well
produced with a constant bottomhole pressure. However, it is known that the BD
state PI of a well is, in general, different from the PSS PI. In particular, the empirical
evidence is that the PSS PI is always greater than or equal to the BD PI.

In 1998 Wattenbarger and Helmy derived an algorithm and computed the values
of shape factors in (2) for the typical shapes of the drainage area for BD state, using
a method of images, Laplace transform, and a fundamental relationship between the
images in Laplace space of the cumulative production and the production rate. The
applicability of (2) is contingent on the method of images—a drainage area to which
the method of images can be applied must be of a shape, which, when translated
infinitely many times in all directions, can cover the entire two-dimensional plane.

Most solutions for evaluating the PI in three-dimensional reservoirs, i.e., for di-
rectionally drilled wells, follow the same principle as the two-dimensional methods in
that they are based on a semianalytical solution for a particular case, from which one
finds a convenient approximate formula which is then applied to similar reservoir/well
configurations. The semianalytical solution is often based on the superposition of an-
alytical solutions for a transient problem in an unbounded reservoir. For the solution
of the problem to be unique, additional assumptions must be made. Usually the
restrictions are imposed on the distribution of the pressure on the wellbore. Under
one such restriction, the wellbore is assumed to have infinite conductivity, i.e., the
wellbore pressure is assumed to be constant on the wellbore at each moment of time.
Under another restriction the pressure flux through the wellbore surface is constant
at all times.

The solution in a bounded reservoir is then expressed in terms of an infinite time
dependent series, similar to the technique used in [21, 16]. Then a comprehensive com-
puting procedure is applied to determine the stabilized values of the time dependent
series in the obtained solution [20, 25, 29, 17, 3, 28].

In most cases the methods for computing the PI of a deviated or horizontal well in
a three-dimensional reservoir are aimed at obtaining an appropriate value of a shape
factor CA and skin factor s in (2). The effects associated with the deviation of the well
from a fully penetrated vertical one are included in the skin s. A vertical well is called
fully penetrated if its penetration length is equal to the thickness of the reservoir. A
vertical fully penetrated well corresponds to s = 0. The effects of the geometry of the
external boundaries of the reservoir are included in the shape factor CA [20, 7].

As seen from this brief review, the existing methods and techniques of evaluation
of the PI impose serious restrictions on the geometry of the reservoir. In particular,
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the vertical dimension of the reservoir has to be small in comparison to its lateral
dimensions to allow one to neglect the flow in the vertical direction or include its effect
in the geometrical skin, sg. Another restriction is due to the use of the method of
images, which requires the drainage area shape to be convex and suitable for covering
the whole plane when translated infinitely many times.

One should also note that very little attention has been paid to methods for
evaluating a BD PI. For instance, all works mentioned above are concerned only with
evaluating the PSS PI in three-dimensional reservoirs. In practice, the BD PI values
are taken to be equal to the PSS PI, although it has been shown that the difference
between these two values of PI can be up to 10% even for horizontal flow in simple
drainage shapes [13, 16].

2. Statement of the problem. Let a point in R
n be denoted by x = (x1, . . . , xn),

n = 2, 3. Let Ω be an open domain in R
n which is bounded by the two disjoint piece-

wise smooth surfaces Γw and Γe. Let u(x, t), t ∈ R, be a solution of the equation

∂u

∂t
= Lu,(3)

where L = ∇ · (A(x)∇), A is a symmetric positive definite matrix with smooth
components and ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
) is the usual gradient operator.

Let u(x, t) be subject to the homogeneous Neumann boundary condition on Γe:

∂u

∂�ν
= (A(x)∇u) · �n = 0,(4)

where �n is the outward normal to Γe. On the remaining part of the boundary, Γw,
three types of boundary conditions will be considered:

(a) constant total flux
∫
Γw

∂u
∂�ν dS = −q, q being a real positive constant;

(b) constant Dirichlet condition u|Γw = uw2, uw2 being a real positive constant;
(c) mixed boundary condition

(
(u− uw3)|Γw + α∂u

∂�ν

)
|Γw = 0, where α and uw3

are real constants, uw3 > 0.
For simplicity, we assume that the components of the coefficient matrix A and the
domain boundary are smooth, so solutions of the IBVPs I, II, and III (stated below)
are understood in a classical sense. In (b), uw2 > 0 is a given constant; in (c), uw3 > 0
and α are given constants.

This leads to three IBVPs:
Problem I.

Lu =
∂u

∂t
, x ∈ Ω, t > 0,

∂u

∂�ν
|Γe = 0,

∫
Γw

∂u

∂�ν
dS = −q,

u(x, 0) = f1(x).

Remark 1. As mentioned in the introduction, Problem I is ill-posed: there are
infinitely many solutions. The PI will be modeled as an integral characteristic of
a solution and hence will be lacking uniqueness of definition. Therefore, we will
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consider two classes of solutions in each of which the solution is unique up to an
additive constant. These two classes will be described in detail in sections 3 and 4.
Each class has a clear physical meaning. The integral characteristic modeling the PI
will be shown to be unique in each class.

Problem II.

Lu =
∂u

∂t
, x ∈ Ω, t > 0,

∂u

∂�ν
|Γe = 0,

u|Γw
= uw2,

u(x, 0) = f2(x).

Problem III.

Lu =
∂u

∂t
, x ∈ Ω, t > 0,

∂u

∂�ν
|Γe = 0,(

α
∂u

∂�ν
+ (u− uw3)

)
|Γw = 0,

u(x, 0) = f3(x).

Remark 2. Physically, u(x, t) is interpreted as the fluid pressure in the reservoir,
and hence, we will restrict our attention only to positive solutions of Problems I, II,
and III. Moreover, a solution to Problem I is not necessarily positive on Ω for all
t > 0, even if the initial function f1(x) is positive on Ω. It will be shown that for
positive q, there exists a solution to Problem I which is positive on Ω for t ∈ (0, T )
for some positive T .

Remark 3. The maximum principle for a parabolic equation implies that the
solution of Problem II is unique and positive if the initial condition f2 is positive on
Ω [10]. The uniqueness, existence, and regularity of the solutions of Problem III with
respect to the sign of the coefficient α in the boundary condition on Γw are discussed,
for example, in [10]. Formally, Problem III is a generalization of Problem II. However,
we consider Problem II separately in light of its importance for applications in the
reservoir engineering.

Remark 4. The obtained results can be extended to a generalized Wiener solution
of an IBVP in a locally smooth domain [18]. We will not present it in this work to
preserve the original engineering statement of the problem.

2.1. Definition of diffusive capacity. Let us introduce the following notation.
If v is a function defined on Ω, then let v̄w and v̄Ω denote the average of v on Γw and
Ω, respectively, defined by

v̄w =
1

W

∫
Γw

vdS

and

v̄Ω =
1

V

∫
Ω

vdx,

where V = mesnΩ, W = mesn−1Γw.
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Definition 1. Let u(x, t) be a classical solution [10] of the parabolic equation
Lu = ∂u

∂t in Ω× (0,∞) with boundary condition ∂u
∂�ν |Γe = 0 and (a), (b), or (c) on Γw.

Let T > 0 be such that u(x, t) > 0 for all x ∈ Ω and t ∈ (0, T ). The diffusive capacity
of Γw with respect to Γe (or simply diffusive capacity) corresponding to the solution
u(x, t) is the ratio

J(u, t) =

∫
Γw

∂u
∂�ν dS

ūw − ūΩ
,(5)

where t ∈ (0, T ).
Remark 5. For fixed boundary and initial conditions in Problem II (III), the

diffusive capacity J(u, t) corresponding to the solution u of Problem II (III) is a
function of time only. However, for fixed boundary and initial conditions in Problem
I, the diffusive capacity J(u, t) is a time dependent functional on the set of solutions
{u} to Problem I.

Remark 6. The corresponding diffusive capacity corresponding to a solution of
Problem III is defined as

J(u, t) =

∫
Γw

∂u
∂�ν dS

uw3 − ūΩ
.(6)

Such correction to the general definition is based on the physical assumption that uw3

is an average wellbore pressure, measured inside the wellbore.
In our intended application, Ω represents a hydrocarbon reservoir with a flowing

fluid (oil) with the outer boundary Γe and a well with boundary Γw. The outer
boundary of the reservoir is assumed impermeable to the flowing fluid. It is assumed
that the fluid is slightly compressible and its flow in the reservoir is governed by
Darcy’s law relating the gradient of pressure in the reservoir to the filtration velocity
[23, 26]. Then u(x, t) corresponds to the pressure in the reservoir and the three types of
boundary conditions specified on the well Γw correspond to different recovery regimes.
Boundary condition (a) models the recovery regime with constant production rate,
(b) models the recovery regime with constant wellbore pressure, and (c) models the
constant wellbore pressure regime of production from a well with nonzero skin [26].
The initial conditions f1, f2, and f3 take on a meaning of the pressure distribution
in the reservoir Ω; hence, we will require that fi ≥ 0 on Ω, i = 1, 2, 3. IBVP III will
be discussed in greater detail in section 5. The diffusive capacity J(u, t) takes on the
meaning of the PI of the well.

3. Time independent diffusive capacity. In this section we show that for
each of the IBVP (I, II, and III) there exist initial distributions f1(x), f2(x), and
f3(x), respectively, such that the diffusive capacity with respect to the corresponding
problem is constant [16]. For Problem I, we describe the class of solutions to IBVP I
on which the diffusive capacity takes a unique value. In the last subsection, the time
independent values of the diffusive capacity for Problems I, II, and III are compared
to each other.

3.1. IBVP I. All solutions of Problem I, for which the diffusive capacity is
independent of time, possess the following property.

Remark 7. If u(x, t) is a solution of Problem I and J(u, t) = J(u) is constant for
all t > 0, then there exist real constants C and B such that

ūw =
1

W

∫
Γw

udS = C + Bt.(7)
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This can be seen from the following argument. From the definition of the diffusive
capacity (5), it follows that ūw = − q

J(u) + ūΩ. Hence, ∂ūw

∂t = ∂ūΩ

∂t . The divergence

theorem implies that

∂ūΩ

∂t
=

1

V

∫
Ω

Ludx =
1

V

∫
Γw

∂u

∂�ν
dS.(8)

Consequently,

∂ūw

∂t
= − q

V
,(9)

from which (7) easily follows.
The “infinite conductivity of the well” assumption asserts that at each instant

of time, the pressure on the wellbore is constant. Together with the latter remark,
this motivated us to study the diffusive capacity on the class of solutions of Problem
I, defined by Υ = {u | ∃C and B are constants, such thatu(x, t) = C + Bt for x ∈
Γw and for t ≥ 0 }.

Proposition 1. Problem I has a unique solution in class Υ.
Proof. Assume that u ∈ Υ and v ∈ Υ are solutions of Problem I. Let C1, B1, C2,

and B2 be such that for t > 0,

u(x, t)|Γw = C1 + B1t

and

v(x, t)|Γw
= C2 + B2t.

Then the difference g(x, t) = u(x, t) − v(x, t) is the solution of the following IBVP:

Lg =
∂g

∂t
, x ∈ Ω, t > 0,(10)

∂g

∂�ν
|Γe = 0,(11)

g|Γw = (C1 − C2) + (B1 −B2)t,(12)

g(x, 0) = 0.(13)

In addition, ∫
Γw

∂g

∂�ν
= 0.(14)

Condition (13) immediately implies that C1 = C2.
The function h = ∂g

∂t is a solution of the following problem:

Lh =
∂h

∂t
, x ∈ Ω, t > 0,(15)

∂h

∂�ν
|Γe = 0,(16)
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h|Γw
= B1 −B2,(17)

h(x, 0) =
∂g

∂t
(x, 0).(18)

In addition, from the boundary condition on Γw of Problem I and the divergence
theorem it follows that for t > 0,

∫
Ω

hdx =
∂

∂t

∫
Ω

gdx =

∫
Ω

Lgdx ≡ 0.(19)

As a solution of the parabolic equation (15) with the Dirichlet condition (17) on one
part of the boundary ∂Ω and Neumann condition (16) on the remaining part of ∂Ω,
h will converge to a constant B1 − B2 on Ω as t → ∞ [18]. Together with condition
(19) this implies that

(B1 −B2)V = lim
t→∞

∫
Ω

h(x, t)dx = 0.(20)

Thus, u = v.
For purposes that will become clear from Proposition 2, let us introduce the

following auxiliary steady-state boundary value problem. Let u1(x) be such that

Lu1 = − 1

V
,(21)

u1|Γw
= 0,(22)

∂u1

∂�ν
|Γe

= 0.(23)

Then the following proposition gives a sufficient condition providing for time inde-
pendent unique diffusive capacity J(u, t) = J(u).

Proposition 2. If the initial condition in Problem I is given by f1(x) = qu1(x)+
C where u1 is the solution of (21)–(23) and C is an arbitrary constant such that
f1(x) > 0 for all x ∈ Ω, then the diffusive capacity corresponding to a solution u ∈ Υ
of Problem I is independent of time and determined by

JI := J(u, t) =
V∫

Ω
u1(x)dx

.(24)

Proof. Let the initial condition in Problem I be f1(x) = qu1(x) and

u(x, t) = qu1(x) − q

V
t.(25)

By virtue of the divergence theorem,

∫
Γw

∂u

∂�ν
dS = −q.

Consequently, u is a solution of IBVP I with the initial distribution f1(x) = qu1(x).
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Note that u, defined by (25), belongs to class Υ. In addition, it is clear that the
diffusive capacity J(u, t) on u(x, t) is constant and is given by

J(u, t) =
V∫

Ω
u1(x)dx

= JI.

Remark 8. Function u, defined by (25), is positive on Ω only for t ∈ (0, T ), where

T =
minx∈Ω u1(x)

V
.(26)

Solutions of Problem I represent the pressure distribution in the reservoir at time
t; hence, we are interested in the positive on Ω solutions only. Therefore, the diffusive
capacity (as a model of a PSS PI) J(u, t) = JI is defined only for t ∈ (0, T ), where T
is given by (26).

The necessary condition for the time independent diffusive capacity on the solu-
tions of Problem I in class Υ is given by the following proposition.

Proposition 3. If the diffusive capacity J(u, t), corresponding to a solution
u ∈ Υ of Problem I, is constant for all t > 0, then∫

Ω

(u(x, 0) − qu1(x))dx + C∗ = 0,(27)

where constant C∗ is independent of q and u1 is the solution of the problem (21)–(23).
Proof. Let u ∈ Υ be a solution of Problem I such that J(u, t) = J(u) is constant

for all t > 0. Let

g(x, t) = u(x, t) −
(
qu1(x) − q

V
t
)
.(28)

There exist constants C and B such that u|Γw = C +Bt. Moreover, by (9), B = − q
V .

Hence, g is a solution of the problem

Lg =
∂g

∂t
, x ∈ Ω, t > 0,(29)

∂g

∂�ν
|Γe

= 0,(30)

g|Γw
= C,(31)

g(x, 0) = u(x, 0) − qu1(x).(32)

In addition, g is subject to the following condition:∫
Γw

∂g

∂�ν
dS = 0.(33)

As a solution of the parabolic equation (29) with the boundary conditions (30) and
(31), g(x, t) → C as t → ∞. Together with (33), the latter implies that ḡΩ = C for
all t > 0. Therefore,

∫
Ω
g(x, 0)dx =

∫
Ω
(u(x, 0) − qu1(x))dx = CV = C∗.

Remark 9. By Proposition 3, the initial distribution providing for the time in-
dependent diffusive capacity is unique up to an additive function of zero average on
Ω and an additive constant independent of the geometry of the domain or boundary
conditions.

Remark 10. The integral of the solution of Problem I at t = 0 represents the
initial reserves in the reservoir [9, 2]. The main physical consequence of Proposition 3
is that the diffusive capacity as a model of the PI uniquely determines the average
initial amount of the reserves in the reservoir.
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3.2. IBVP II. Let

∂u2

∂t
= Lu2,(34)

∂u2

∂�ν
|Γe = 0,(35)

u2|Γw = 0,(36)

u2(x, 0) = f2(x) − uw2.(37)

Obviously, u(x, t) = u2(x, t) + uw2 solves Problem II. Then the diffusive capacity for
Problem II can be expressed in terms of u2(x, t), namely,

J(u, t) := J(u2, t) =

∫
Γw

∂u2

∂�ν dS

− 1
V

∫
Ω
u2(x, t)dx

.(38)

Consider the related Sturm–Liouville problem for the elliptic operator L and the
first eigenpair of the latter; i.e., let λ0 and φ0(x) be the first eigenvalue and first
eigenfunction, respectively, of the problem

Lφ0 = −λ0φ0,(39)

φ0|Γw
= 0,(40)

∂φ0

∂�ν
|Γe = 0.(41)

Let u2(x, t) be a solution of the IBVP (34)–(37) with the initial distribution u2(x, 0)
equal to φ0(x). Then u2(x, t) = φ0(x)e−λ0t is a solution of the IBVP (34)–(37). The
diffusive capacity is constant and is equal to

JII := J(u2, t) =
λ0

∫
Ω
φ0(x)dxe−λ0t

1
V

∫
Ω
φ0(x)dxeλ0t

= λ0V.(42)

This leads to the next proposition.
Proposition 4. If the initial condition of Problem II is given by f2(x) = φ0(x)+

uw2, where φ0 is the eigenfunction of problem (39)–(41) corresponding to the minimal
eigenvalue λ0, then the diffusive capacity on the solution u of Problem II is constant
and is given by

J(u, t) = JII = λ0V.

In fact, the diffusive capacity is constant provided that the initial distribution
u2(x, 0) is equal to any eigenfunction φi(x), i = 1, 2 . . . . However, only the eigenfunc-
tion corresponding to the minimal eigenvalue does not change sign on Ω; therefore,
in terms of the pressure distribution in the hydrocarbon reservoir, φ0(x) is the only
physically realistic initial distribution.
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3.3. IBVP III. Let u3(x, t) = u(x, t)− uw3, where u solves (III) and uw3 is the
given average value of u on Γw (see Remark 6). Then u3(x, t) is a solution of the
reduced problem

Lu3 =
∂u3

∂t
,(43)

∂u3

∂�ν
|Γe

= 0,(44)

(
α
∂u3

∂�ν
+ u3

)
|Γw

= 0,(45)

u3(x, 0) = f3(x) − uw3.(46)

Diffusive capacity J(u, t) corresponding to Problem III is expressed in terms of
J(u3, t) in the following way:

J(u, t) = J(u3, t) =

∫
Γw

∂u3

∂�ν dS

− 1
V

∫
Ω
udx

.(47)

Physically, the Robin boundary condition on Γw in Problem III corresponds to pro-
duction from a well with a thin-skin zone with constant wellbore pressure (constant
ū3|Γw

) [26]. A sufficient condition for the diffusive capacity to be constant is similar
to that for Problem II.

In particular, consider the related Sturm–Liouville problem. Let λα
k and φα

k (x)
be an eigenpair of the problem

Lφα
k = −λα

kφ
α
k ,(48)

∂φα
k

∂�ν
|Γe = 0,(49)

φα
k + α

∂φα
k

∂�ν
|Γw = 0.(50)

Here, the superscript α is intended to emphasize that the solution and, hence, the
diffusive capacity of Problem III depend on the value of parameter α. This dependence
will be analyzed in subsequent sections. Let u3(x, t) be a solution of the IBVP (43)–
(46) with the initial distribution u3(x, 0) = φα

k (x). Then u3(x, t) = φα
k (x)e−λα

k t solves
(43)–(46) and the diffusive capacity is time independent.

When parameter α in Problem III is positive, then the minimal eigenvalue λα
0 is

positive and the corresponding eigenfunction φα
0 (x) does not change sign on Ω.

In section 5 we will show that the boundary condition on Γw of Problem III
models skin effect for a damaged well produced with a constant wellbore pressure.
As mentioned in section 1, the production from a stimulated well is modeled by a
negative skin factor s; therefore, we will analyze the behavior of the diffusive capacity
on the solutions of Problem III for negative values of parameter α. The latter case
will be discussed in more detail in section 5. For the purposes of this section, it is
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sufficient to note that when α < 0, the minimal eigenvalue and hence the constant
diffusive capacity may be negative. Negative PI is an indication of injection into the
well; therefore, to avoid the contradiction, our attention will be restricted to positive
eigenvalues only. The analysis of the first eigenfunction will be given in section 5.

Regardless of the sign of α, let λα
0 be the first nonnegative eigenvalue. If the initial

distribution in (43)–(46) is equal to the corresponding eigenfunction, the constant
diffusive capacity is given by

JIII(α) := J(u3, t) = λα
0V.(51)

Therefore, we have shown the following proposition.
Proposition 5. If the initial condition of Problem III is given by f3(x) =

φα
0 (x) + uw3, where φα

0 is the eigenfunction of problem (48)–(50) corresponding to
the minimal positive eigenvalue λα

0 , then the diffusive capacity on the solution u of
Problem III is constant and is given by

J(u, t) = JIII(α) = λα
0V.

3.4. Comparison of the time independent diffusive capacities for Prob-
lems I, II, and III. The steady-state auxiliary problem (21)–(23) introduced earlier
has a convenient variational formulation which facilitates deriving an important re-
lation between the time independent diffusive capacities of Γw with respect to Γe in
Ω.

Assume that solutions of Problems I, II, and III satisfy the conditions in Propo-
sitions 2, 4, and 5, respectively. Then the diffusive capacities for Problems I, II, and
III (JI, JII, and JIII(α)) are time independent and their values are given by (24), (42),
and (51), respectively.

Let H1,2(Ω) be the Sobolev space [1]. Denote by
◦

H1,2 (Ω,Γw) the closure in the

H1,2(Ω) norm of smooth functions that vanish on Γw, and denote by
◦

H1,2 (Ω,Γw, α)
the closure in the H1,2(Ω) norm of smooth functions such that (u + α∂u

∂�ν )|Γw = 0 [1].
The following are well-known variational principles yielding the first eigenvalues

λ0 and λα
0 of the problems (39)–(41) and (48)–(50), respectively (see [5]):

λ0 = inf
u∈

◦
H1,2(Ω,Γe)

∫
Ω
A∇u · ∇udx∫

Ω
u2dx

,(52)

λα
0 = inf

u∈
◦

H1,2(Ω,Γwα)

∫
Ω
A∇u · ∇udx + 1

α

∫
Γw

u2dS∫
Ω
u2dx

.(53)

These two principles imply that for any positive α1 and α2 such that (see [5]) α1 > α2,
λα1

0 < λα2
0 . Moreover, λα

0 ↗ λ0 as α ↘ 0. This leads to the next proposition.
Proposition 6. If the initial conditions in Problems II and III are such that JII

and JIII(α) are time independent and α ↘ 0, then JIII(α) ↗ JII.
Another important comparison can be made between the time independent ca-

pacities for Problems I and II.
Theorem 1. If the initial conditions in Problems I and II are such that the

diffusive capacities JI and JII are time independent, then

JII ≤ JI ≤ CΩJII,(54)
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where CΩ = maxΩ φ0

φ̄0
.

Proof. Let u1 ∈
◦
H1

2 (Ω,Γw) be a solution of the problem (21)–(23). We need to
show that

1∫
Ω
u1(x)dx

≥ λ0.

From (52) it follows that

λ0 ≤
∫
Ω
(∇u1) · (A∇u1)dx∫

Ω
u2

1dx
.(55)

Using the identity

∇ · (u1A∇u1) = (∇u1) · (A∇u1) − u1∇ · (A∇u1),

applying the divergence theorem to the numerator, and making use of (21)–(23), we
obtain

λ0 ≤ 1

V

∫
Ω
u1dx∫

Ω
u2

1dx
.(56)

The last inequality can be rewritten as

λ0 ≤ 1

V

(∫
Ω
u1dx

)2
∫
Ω
u2

1dx

1∫
Ω
u1dx

.(57)

The first part of (54) now follows from Hölder’s inequality.
Let u1(x) be a solution of (21)–(23) and φ0 of (39)–(41). After multiplication of

both sides of (21) by φ0, using the symmetry of A in the identity

(∇ · (A∇u1))φ0 = ∇ · (φ0A∇u1) −∇ · (u1A∇φ0) + ∇ · (A∇φ0)u1,(58)

followed by integration over Ω, from the divergence theorem one concludes that

λ0 max
Ω

φ0

∫
Ω

u1dV ≥ λ0

∫
Ω

u1φ0dV =
1

V

∫
Ω

φ0dV = φ̄0.(59)

The latter can be recast as the second part of (54), using the positivity of u1 and
φ0.

Remark 11. The constant CΩ is a peak-to-average ratio and has a clear physical
meaning [24].

4. Transient diffusive capacity. In section 3 it was shown that the PI of a well
in a reservoir is constant for all t > 0 provided that the pressure distribution at t = 0
satisfies certain conditions. The PI is known to stabilize in a long time asymptote
regardless of the initial pressure distribution. In this chapter we will consider a tran-
sient diffusive capacity and investigate questions related to its stabilization. Thus, we
will analyze Problems I and II with arbitrary initial conditions. The only restriction
that is imposed on the initial conditions f1 and f2 of Problems I and II, respectively,
is motivated by physical considerations: we require that f1 and f2 be positive smooth
functions on Ω.



MATHEMATICAL MODEL OF THE PRODUCTIVITY INDEX 1965

4.1. IBVP I: Constant production rate regime. In section 1 it was men-
tioned that the constant rate regime is usually modeled with one of two assumptions:
at each time t > 0 either the pressure or the pressure flux is assumed to be constant on
the wellbore. Proposition 2 shows that the condition of a constant wellbore pressure
at each time t > 0 (infinite conductivity condition) is equivalent to the conditions of
the PSS, i.e., the PI of a well is time independent. In this section we will show that
the diffusive capacity on the class Υ of solutions of Problem I (defined in section 3)
is stable with respect to small perturbations of boundary conditions. Recall that Υ
is the class of solutions u of Problem I such that at each time t > 0, u is constant on
Γw. Then the stability of J is established by the following proposition.

Proposition 7. Let v(x, t) be a solution of Problem I such that v(x, t) = Bt+C
for all x ∈ Γw. Let u(x, t) be a solution of Problem I such that u(x, t) = Bt +
C + h(x, t) for all x ∈ Γw, where h(x, t) is a smooth, bounded function. For any
ε > 0, there exists δ > 0 such that if for all t > 0, |h(x, t)| ≤ δ for all x ∈ Γw, then
|J(u, t) − J(v, t)| ≤ ε for all t > 0.

Proof. Function ṽ(x, t) = u(x, t) − v(x, t) is a solution of the following problem:

Lṽ =
∂ṽ

∂t
, x ∈ Ω, t > 0,(60)

∂ṽ

∂�ν
|Γe = 0,(61)

ṽ|Γw = h(x, t),(62)

ṽ(x, 0) = 0.(63)

The maximum principle for parabolic equation (60) implies that |ṽ(x, t)| ≤ δ for
all x ∈ Ω and t ≥ 0. Since

∫
Γw

∂u
∂ν dS =

∫
Γw

∂u
∂ν dS = −q for t ≥ 0,

∣∣∣∣ 1

J(v, t)
− 1

J(u, t)

∣∣∣∣ ≤ 1

q

∣∣∣∣ 1

W

∫
Γw

(u− v)dS +
1

V

∫
Ω

(u− v)dx

∣∣∣∣ .
Hence, | 1

J(v,t) −
1

J(u,t) | ≤ δ.

One should note that JI is shown to be a PSS PI of a well only for solutions
of Problem I that belong to class Υ. The extent to which the assumption of the
infinite conductivity of the well is realistic for various reservoir-well configurations
will be discussed in more detail in section 7. Below we investigate the question of the
uniqueness of the PSS PI. Recall that the PSS PI is a constant value of the diffusive
capacity on the solutions to Problem I.

Remark 12. JI is not necessarily a unique constant value of the diffusive capacity
on the solutions to Problem I.

This is established by the following argument. Consider solutions to Problem I
with a constant flux on Γw; i.e., let u(x, t) be a solution of the following problem:

Lu =
∂u

∂t
, x ∈ Ω, t > 0,(64)

∂u

∂�ν
|Γe = 0,(65)
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∂u

∂�ν
|Γw

= − q

W
,(66)

u(x, 0) = f1(x).(67)

The solution to (64)–(67) is given (up to an additive constant) by u(x, t) = qv− q
V t+

h(x, t), where v(x) is a solution of the steady-state problem

Lv = − 1

V
, x ∈ Ω,(68)

∂v

∂�ν
|Γe

= 0,(69)

∂v

∂�ν
|Γw

= − 1

W
,(70)

and h(x, t) is a solution of the corresponding problem with homogeneous boundary
conditions:

Lh =
∂h

∂t
, x ∈ Ω, t > 0,(71)

∂h

∂�ν
|Γe = 0,(72)

∂h

∂�ν
|Γw

= 0,(73)

h(x, 0) = f1(x) − qv(x).(74)

The solution to (71)–(74) is given by h(x, t) =
∑∞

n=0 cnφn(x)e−λnt, where φn(x) and
λn are solutions of the related Sturm–Liouville problem and cn are the coefficients of
the Fourier expansion of h(x, 0) in terms of φn. The diffusive capacity J(u, t) is given
by

J(u, t) =
−q

v̄w − v̄Ω + h̄w − h̄Ω
.(75)

Note that v̄w and v̄Ω are constant, while h̄w and h̄Ω are functions of time. Clearly, the
difference h̄w − h̄Ω =

∑∞
n=0 cn(φ̄nw − φ̄nΩ)e−λnt converges to a constant as t → ∞.

Therefore, J(u, t) converges to a constant value Ĵ as t → ∞. However, Ĵ is not
necessarily equal to JI.

Henceforth, we do not address the uniqueness of the constant diffusive capacity
on the solutions of Problem I and, consequently, of the PSS PI. In the subsequent
sections we will refer to JI as the value of the PSS PI, thus implicitly assuming that
the wellbore has an infinite conductivity.
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4.2. IBVP II: Constant wellbore pressure regime. For simplicity, consider
the following problem for a parabolic equation. Let u(x, t) be a solution of

Lu =
∂u

∂t
, x ∈ Ω, t ≥ 0,(76)

∂u

∂�ν
|Γe = 0,(77)

u|Γw = 0,(78)

u(x, 0) = u0(x),(79)

where u0(x) > 0. Then the diffusive capacity is simply

J(u, t) = V

∫
Γw

∂u
∂�ν dS∫

Ω
udx

.(80)

Along with (76)–(79), consider the related Sturm–Liouville problem for the oper-
ator L,

Lφk = −λkφk, x ∈ Ω, t ≥ 0,(81)

∂φk

∂�ν
|Γe

= 0,(82)

φk|Γw = 0.(83)

Let {φk(x)}∞k=0 be an orthonormal family of solutions of (81)–(83) with respect to
the usual inner product in L2(Ω). Define dk =

∫
Ω
φk(x)dx and ck =

∫
Ω
u0(x)φk(x)dx.

Then the diffusive capacity can be written as

J(u, t) = V

∑∞
k=0 ckλkdke

−λkt∑∞
k=0 ckdke

−λkt
.

The latter can be recast into

J(u, t) = V λ0

⎡
⎣1 +

∑∞
k=1

ck
c0

dk

d0

(
λk

λ0
− 1

)
e−(λk−λ0)t

1 +
∑∞

k=1
ck
c0

dk

d0
e−(λk−λ0)t

⎤
⎦ .(84)

Since λ0 < λ1 < λ3 < · · ·, as t → ∞, J(u, t) → λ0V . This proves the following.
Proposition 8. If u is a solution of IBVP II, then the diffusive capacity J(u, t)

converges to the constant value JII as t → ∞ for any initial condition f2.
In terms of the PI, Proposition 8 can be rephrased in the following way: if a well

is produced with a constant wellbore pressure, the PI stabilizes to constant value JII

as t → ∞ regardless of the initial pressure distribution.
Note that since the initial condition u0(x) is positive on Ω, c0 > 0 and d0 > 0.

From the maximum principle for parabolic equation (76) it follows that u(x, t) ≥ 0
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for all t > 0. Consequently, the denominator in (84), equal to
∫
Ω
u(x, t)dx/c0d0e

−λ0t,
is positive for all t > 0. Therefore, from (84) follows the next remark.

Remark 13. If in (84) ckdk > 0 for any k, then J(u, t) ↘ λ0V .
The last observation allows one to analyze several physically important examples

of the transient PI in terms of the diffusive capacity on the solutions of the IBVP for
a parabolic equation.

Example 1. Suppose that a well is produced with constant rate, the PI is constant,
and the well has infinite conductivity. Then the pressure in the reservoir u(x, t) is
determined (up to an additive constant) by u(x, t) = qu1(x)− q

V t (see Proposition 2),
where u1(x) is a solution of the auxiliary steady-state problem

Lu1(x) = − 1

V
, x ∈ Ω,

∂u1

∂�ν
|Γe = 0,

u1|Γw = 0.

Suppose that at some time t0 > 0, the production regime was changed to a
constant wellbore pressure production. Then the pressure in the reservoir u(x, t) for
t > t0 is defined by u(x, t) = v(x, t− t0)− q

V (t− t0), where v(x, t) is a solution of the
problem

Lv(x) = −∂v

∂t
, x ∈ Ω, t > 0,

∂v

∂�ν
|Γe = 0,

v|Γw = 0,

v(x, 0) = qu1(x).

The diffusive capacity J(u, t) = J(v, t), where v(x, t) is defined by

v(x, t) =

∞∑
n=0

ckφk(x)e−λkt,

where ck = q
∫
Ω
u1(x)φkdx. Using integration by parts, we obtain

∫
Ω

Lu1φk =

∫
Ω

u1Lφk.

Hence,

1

V

∫
Ω

φk = λk

∫
Ω

u1φk.
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Fig. 1. Radial profile of an initial distribution yielding small diffusive capacity.

Thus, for any k = 1, 2 . . . , dkck > 0 and (84) implies that J(u, t) ↘ JII. In other
words, when the regime of production changes from PSS, i.e., constant flow rate, to
constant wellbore pressure, the PI monotonically decreases to the BD PI.

Example 2. For the purpose of analysis it is frequently assumed that at t = 0
the pressure in the reservoir is distributed uniformly, i.e., u0(x) = ui, where ui is a
positive constant. Then ck = uidk and the PI is monotonically decreasing to the BD
PI.

Finally, consider an example of the initial pressure distribution yielding the PI
which is less than the BD PI.

Example 3. Let u0(x) = 100φ0(x)−3φ1(x). Then the diffusive capacity J(u, t) <
λ0V .

An example of such initial distribution for an ideal cylindrical reservoir with
vertical fully penetrated well is given in Figure 1, where the radial profile of u0(r) is
given. The dimensionless radius of the reservoir is equal to RD = 1000. Physically this
example may be interpreted as follows. Assume that the reservoir has been depleted
by a set of wells. Suppose that the old wells are shut down and a new well is drilled
and produced. Then the PI of the new well will monotonically increase to the BD PI
value.

5. Model of the skin effect. Stabilized production with constant rate is char-
acterized by the PSS PI. When the well is damaged, the value of the PI is less than
what is predicted by the model. As described in section 1, such effect is called thin-
skin effect. To take into account the skin effect, the PSS PI is corrected according to
the equation

PIPSS,skin =
1

1
PIPSS

+ s
,(85)

where s is the so-called skin factor or simply skin. The skin factor concept was
originally introduced to describe the behavior of damaged wells. Others have extended
the idea to stimulated wells which have a higher PI than the PSS PI of an ideal well.
In [15] it was shown that a negative skin s corresponds to a stimulated well.

All existing results on modeling the skin effect pertain to the constant rate produc-
tion regime. In this section it will be shown that for the constant wellbore pressure
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production regime, the skin effect can be modeled by a third boundary condition
specified on the well boundary.

5.1. Diffusive capacity for IBVP III in an annulus. Let u(r, t) be a solution
of the problem

∂

∂r

(
r
∂u

∂r

)
=

∂u

∂t
, 1 < r < RD, t > 0,(86)

∂u

∂r
|r=RD

= 0,(87)

(
u + α

∂u

∂r

)
|r=1 = 0,(88)

u(r, 0) = u0(r).(89)

Problem (86)–(89) models the axisymmetric flow of oil in an ideal isolated cir-
cular reservoir with a perfect circular well situated in the center. Here, u(r, t) is the
dimensionless pressure in the reservoir, the dimensionless formation permeability is 1,
and the dimensionless outer radius is equal to RD. The dimensionless wellbore radius
is equal to 1. Constant wellbore pressure production is assumed. The thin skin zone
adjacent to the well has a permeability below than that of the formation.

We will call a production regime for a well with a thin skin zone characterized
by a constant PI a generalized BD state. When α = 0 (no damaged zone around the
well), it is a BD regime.

Along with problem (86)–(89), consider a related Sturm–Liouville problem:

∂

∂r

(
r
∂φα

k

∂r

)
= −λα

k∂φ
α
k , 1 < r < RD, t > 0,(90)

∂φα
k

∂r
|r=RD

= 0,(91)

(
φα
k + α

∂φα
k

∂r

)
|r=1 = 0.(92)

Let λα
0 be the minimal nonnegative eigenvalue of the problem (90)–(92). If the

initial condition u0(r) = φα
0 is the eigenfunction corresponding to λα

0 , then by Proposi-
tions 5 and 6 the generalized BD PI is determined by JIII(α) = λα

0V and JIII(0) = JII.
In analogy to (85), we define the skin factor s by

s = s(α) :=
1

JIII(α)
− 1

JII
=

1

JIII(α)
− 1

JIII(0)
.(93)

Positive skin defined by (93) is evidence of a damaged well. By analogy, the generalized
BD index of a stimulated well should be greater than the BD index, yielding negative
skin s.
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Fig. 2. Graph of s(α) for RD = 1000 (left panel) and for RD = 10, 000 (right panel).

When α < 0, λα
0 is the first positive eigenvalue. The eigenpair solves known

equations involving Bessel functions of the first and the second kind. Using known
facts from the theory of Bessel functions, it is not hard to show the following.

Proposition 9. As α → ∞, λα
0 → 0. As α → −∞, λα

0 → λ
(N)
0 , where λ

(N)
0 is

the minimal nontrivial eigenvalue of the following problem:

∂

∂r

(
r
∂u

∂r

)
=

∂u

∂t
, 1 < r < RD, t > 0,(94)

∂u

∂r
|r=RD

= 0,(95)

∂u

∂r
= 0,(96)

u(r, 0) = u0(r).(97)

This implies, in particular, that s(α), defined by (93), is bounded from below,

since λ
(N)
0 is bounded from above. The relation between s and α for RD = 1000

and RD = 1000 is shown in Figure 2 for a range of values of α. Figure 2 illustrates
that when α > 0, skin s = α, i.e., the positive skin can be successfully modeled by
the third boundary condition, in perfect agreement with the constant rate case. To
analyze the case of α < 0, additional considerations are necessary.

Eigenfunctions φα
0 corresponding to the minimal positive eigenvalue λα

0 of the
problem (90)–(92) for two sample positive and negative values of α are pictured in
Figure 3. As seen in Figure 3, for negative α the corresponding eigenfunction φα

0

changes sign on the interval 1 < r < RD. Recall that the initial condition of the
problem (86)–(89) u0 is equal to φα

0 . Consequently, the sufficient condition for the
generalized BD state is such that the initial pressure distribution in the reservoir is
not everywhere positive. Thus, a negative value of the skin factor s creates a physical
contradiction, and problem (86)–(89) with α < 0 cannot serve as an appropriate
model for a stimulated well.
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Fig. 3. Eigenfunctions for negative α (left panel) and positive α (right panel). RD = 1000.

6. PI in a two-dimensional reservoir. In this chapter we present a numerical
study of the diffusive capacity/PI in two-dimensional domains. We will restrict our
attention to PSS and BD productivity indices only, that is, we will consider only
IBVPs I and II.

If the thickness of the reservoir is uniform, then for a fully penetrated vertical well
the three-dimensional problem reduces to a two-dimensional one. Since the radius of
wellbore is small compared to the dimensions of the reservoir, we can assume that the
pressure is uniformly distributed on the wellbore. Therefore, for a two-dimensional
problem, the PSS PI is equal to JI given by (24).

Under the assumption that the reservoir is ideal and the well is perfectly circular,
vertical, and fully penetrated, the IBVPs I and II can be formulated in terms of
dimensionless variables as follows. Let Ω ∈ R

2 be the horizontal cross-section of
such a reservoir. Let {r, θ} be a polar coordinate system specified on Ω along with
the Cartesian coordinate system {x, y}. The origins of both coordinate systems are
located at the center of the well, which is represented by a circle with equation r = 1.
Let RD be the radius of the circle of the same area as Ω. Then the dimensionless
area V of Ω is equal to (R2

D − 1)/2. As before, let Γe denote the exterior boundary
of Ω. The auxiliary steady-state problem (21)–(23) and the Sturm–Liouville problem
(39)–(41) can be written as

∂2u1

∂x2
+

∂2u1

∂y2
= − 1

V
,(98)

u1|r=1 = 0,(99)

∂u1

∂�n
|Γe = 0,(100)

and

∂2φ0

∂x2
+

∂2φ0

∂y2
= −λ0φ0,(101)

φ0|r=1 = 0,(102)

∂φ0

∂�n
|Γe = 0,(103)
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respectively. By Propositions 2 and 4, the values of the PSS and BD PIs are given by
the following equations, respectively:

JI =
V∫

Ω
u1dx

(104)

and

JII = λ0V.(105)

As the first stage, JI and JII values were compared to the values obtained by
Dietz’s equation (2) for domains in which (2) can be applied, that is, for domains
with polygonal exterior boundaries: rectangle, triangle, circle, romb, and hexagon.
Value JI was compared to the value of the PSS PI JPSS computed by (2) with the
shape factors CA taken from [6] for every considered shape. The constant diffusive
capacity JII, given by (105), was compared to the PI JBD computed by (2) with the
BD shape factors CA provided in [13]. The results were obtained for two values of
the dimensionless radius RD of the drainage area, RD = 1000 and RD = 10, 000.

The obtained results are not presented here due to limited space, but (104) and
(105) closely agree to the corresponding existing formulas. The largest difference
between the corresponding values is the one between JI and JII in the drainage areas
where the well is located far from the center of symmetry of the domain.

As noted, one of the disadvantages of (2) is that it cannot be applied to the
drainage area shapes that do not satisfy the requirements of the method of images.
On the other hand, (104) and (105) are valid for all drainage area shapes and can
be applied to a general reservoir without the usual assumptions of the homogeneity
and isotropy of the media. Below we exploit these useful features of the new formulas
for PI to analyze its behavior in more complex geometries and for anisotropic media.
Then, using the new method we will evaluate the diffusive capacity in domains with
more complex geometry, revealing some geometric characteristics of the domain that
lead to the nonnegligible difference between JI and JII.

6.1. PI in domains violating isoperimetric inequality. Theorem 1 of sec-
tion 3 gives the means to investigate more deeply the effects on the difference between
JI and JII of the shape of the exterior boundary of the domain. The difference between
JI and JII is expected to be greater when the constant CΩ on the right-hand side of
inequality (54) is much greater than 1. The constant CΩ is, in its turn, determined
by the minimal eigenvalue λ0 and the behavior of the corresponding eigenfunction φ0

of the elliptic problem (101)–(103).
The first eigenpair of the problem is directly related to the geometry of the do-

main, namely, to the symmetry and curvature of the exterior boundary and the shape
of the well boundary. To illustrate the effect of the curvature and the symmetry of
the exterior boundary, consider domains in Figure 4 (A) and (B). If the domain does
not satisfy the classical isoperimetric inequality, the first eigenvalue of the problem
(101)–(103) can be small enough in comparison to CΩ to make the difference between
JI and JII significant [22]. It is not hard to show that for 0 < ε < 1, both domains pic-
tured in Figure 4 violate the classical isoperimetric inequality [22]. For either shape,
the domain parameters b and ε change so that the ratio of the area of the domain to
the radius of the well is held constant and corresponds to R = 1000. The circular
well is located in the center of the area. The results of the numerical investigation for
domains violating the classical isoperimetric inequality [22] are collected in Table 1.
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Fig. 4. Domains violating isoperimetric inequality.

Table 1

The difference between JI and JII in domains violating the isoperimetric inequality.

Shape ε JI JII

∣∣JI−JII
JII

∣∣,
percent

0.0 0.1227 0.1065 4.69
0.4 0.0539 0.4370 23.34
0.6 0.0137 0.0100 37.00

see Figure 4 (A) 0.8 0.0071 0.005 39.22

0.8 0.0990 0.1222 19.00
see Figure 4 (B) 0.95 0.0056 0.0311 82.00

The symmetrical domain is presented to illustrate the importance of symmetry: the
difference between JI and JII for a symmetrical domain is significantly less than for a
nonsymmetrical domain with the same curvature of the exterior boundary.

7. PI in a three-dimensional reservoir. As described in the introduction,
the existing methods for evaluating the PI have two major drawbacks. First, the
evaluation of a PI requires solving a transient problem in a period long enough for
the pressure to reach a PSS. When the well is not fully penetrated or directionally
drilled (deviated or horizontal), the period necessary for the pressure to stabilize
may become excessively long, creating difficulties for computational procedures. To
address the problem of excessively long computations, some simplifying assumptions
are made. Most of the methods are based on the assumption that the thickness of
the reservoir is small enough to make the flow in the vertical direction negligible or so
insignificant that its impact on the distribution of pressure can be included in a skin
factor [20, 11]. With the restriction on the reservoir thickness, the problem reduces
to a two-dimensional one. Then the techniques for two-dimensional reservoirs can be
applied. The majority of such techniques utilize the method of images, creating the
second drawback—restrictions on the geometry of the domain.

With this in mind, a number of numerical experiments were conducted for various
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well configurations in three-dimensional domains. Here we illustrate the behavior of
the PIs in a general homogeneous three-dimensional reservoir/well system. Equations
(24) and (42) are convenient to use in such settings, since they require only solution
of steady-state three-dimensional problems. Note that the use of (24) implies that
in a constant rate of production regime, the pressure is uniformly distributed on the
wellbore at each t > 0. One can argue that this assumption is physically realistic for
horizontal wells of any length, if we assume that the wellbore has infinite conductivity
so that the pressure of the fluid entering the wellbore instantly equalizes at every point
of the wellbore. For vertical or slanted wells, the assumption of uniform pressure
distribution on the wellbore at each t > 0 implies that we neglect gravity effects.
Certainly, for long vertical or slanted wells, this assumption is not physically realistic.

Fig. 5. Schematic representation of domain D1.

Fig. 6. Schematic representation of domain D2.

Two domains modeling three-dimensional reservoirs that were considered for the
numerical study are depicted in Figures 5, 6, and 7. Domain D1 is a cylindrical
reservoir of uniform thickness h and the dimensionless radius RD. Analogously to the
two-dimensional definition, RD is defined as the ratio of the radius of the horizontal
cross-section (in this case, circle) to the well radius. The value of RD is set to 1000
for all settings. For consistency of comparisons made below, the radius of the circle



1976 IBRAGIMOV, KHALMANOVA, VALKO, AND WALTON

Fig. 7. Schematic representation of horizontal projection of domain D2.

Fig. 8. Schematic representation of the vertical cross-section for well configuration (C).

of the cross-section of the domain D2 is chosen so that the remaining area is equal to
the area of the cross-section of domain D1; i.e., the dimensionless radius associated
with the horizontal cross-section of D2 is RD = 1000.

Two well configurations were considered for both reservoir models. For domain
D2, the direction of any considered well was such that its projection on the top of the
reservoir corresponded to the schematic configuration shown in Figure 7. A well is
modeled by a circular cylinder with the dimensionless radius rw = 1. Then for both
domains D1 and D2, the cross-section by the plane containing the well is a rectangle.
Figures 8 and 9 show such cross-sections for every well configuration considered in
the computational experiments. In configuration (E), the center of symmetry of the
well coincides with the center of symmetry of the cross-section. In configuration (C),
the well is drilled from the middle of the top side of the reservoir cross-section.

7.1. Directionally drilled wells. Effect of vertical flow. Productivity in-
dices for well configuration (C) for domains D2 and D1 are given in Tables 2 and 3,
respectively. In all cases, the penetration length of the well is equal to h so that for
θ = 0, the vertical well fully penetrates the reservoir. The graphs of JI and JII as
functions of the angle θ of the well direction, shown in Figures 10 and 11, reveal that
the optimal direction of a well of the fixed penetration length is not the vertical one.
It is a clear indication of the effect of the vertical flow of fluid from the bottom of
the reservoir toward the slanted well. This effect cannot be quantified by a reduced
two-dimensional problem for a fully penetrated vertical well.

7.2. Horizontal well. Methods presented in [20, 11] rely heavily on the assump-
tion that the vertical dimension of the reservoir is small compared to the penetration
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Fig. 9. Schematic representation of the vertical cross-section for well configuration (E).

Table 2

PIs for domains D2, well configuration (C).

θ 0 15 30 45 60 75
JI 0.1597 0.1714 0.1673 0.1634 0.1586 0.1529
JII 0.1587 0.1704 0.1662 0.1623 0.1576 0.1520∣∣JI−JII

JII

∣∣, 0.60 0.64 0.64 0.67 0.61 0.59

percent

Table 3

PIs for domain D1, well configuration (C).

θ 0 8 15 30 45 60 75
JI 0.1629 0.1705 0.1765 0.1718 0.1691 0.1680 0.1662

h = 100 JII 0.1623 0.1696 0.1758 0.1710 0.1683 0.1672 0.1655∣∣JI−JII
JII

∣∣, 0.36 0.50 0.37 0.50 0.48 0.46 0.47

percent

JI 0.1629 0.1665 0.1697 0.1611 0.1426 0.1315 0.1199
h = 200 JII 0.1623 0.1658 0.1689 0.1605 0.1422 0.1312 0.1196∣∣JI−JII

JII

∣∣, 0.36 0.41 0.43 0.38 0.30 0.27 0.28

percent

length of the well. Moreover, as noted in [20], the precision of the evaluation of the
PI for horizontal wells decreases drastically as the distance from the well to vertical
boundaries of the reservoir becomes comparable to the distance to the top and/or
the bottom of the reservoir, if the reduction to the two-dimensional problem is used.
This section presents computational results for such settings when the assumption of
the small reservoir thickness and the well being clearly inside the drainage area are
relaxed.

The setting considered is a horizontal well with configuration (E), located at
distance d below the plane of symmetry of domain D1. The graphs of the computed
PSS PI JI as a function of distance d from the center of the reservoir for various
penetration lengths L are shown in Figure 12.

For all practical purposes, one can conclude that the optimal location of a hori-
zontal well in a cylindrical reservoir D1 is in the horizontal plane of symmetry of the
reservoir. Note that for long wells, however, the PSS PI slightly increases for small
values of d. This may be an indication of an interesting feature of the diffusive capac-
ity as a geometrical characteristic defined through the first eigenvalue λ0. The latter
is sensitive to the location of the well relative to the planes and lines of symmetry
of the domain, as it is comprehensively illustrated in section 6. In three-dimensional
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Fig. 10. PIs for domain D2, well configuration (C).
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Fig. 11. PIs for domain D1, well configuration (C).

domains, there are more such planes and lines of symmetry and, therefore, there may
be several well configurations yielding maximal PI.
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