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Abstract. In this paper we consider numerical homogenization and correctors for nonlinear
elliptic equations. The numerical correctors are constructed for operators with homogeneous random
coefficients. The construction employs two scales, one a physical scale and the other a numerical
scale. A numerical homogenization technique is proposed and analyzed. This procedure is developed
within finite element formulation. The convergence of the numerical procedure is presented for the
case of general heterogeneities using G-convergence theory. The proposed numerical homogenization
procedure for elliptic equations can be considered as a generalization of multiscale finite element
methods to nonlinear equations. Using corrector results we construct an approximation of oscillatory
solutions. Numerical examples are presented.
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1. Introduction. Consider the nonlinear elliptic equations

−div(aε(x, uε, Duε)) + a0,ε(x, uε, Duε) = f, uε ∈ W 1,p
0 (Q).(1)

Here ε denotes the small scale of the problem. Direct numerical simulations of these
kinds of problems are difficult because of scale disparity. Our objective is to find the
approximation of the homogenized solution without solving the fine scale problem;
i.e., (1) is solved on a grid of size h, where h � ε. The numerical procedure intro-
duced for this purpose can be regarded as numerical homogenization. The numerical
homogenization procedure for (1) should account for the functional dependence of
the macroscopic quantities on the solution and its gradients. Our motivation in con-
sidering (1) mostly stems from the applications of flow in porous media (multiphase
flow in saturated porous media and flow in unsaturated porous media) and enhanced
diffusion due to nonlinear heterogeneous convection, though many applications of
nonlinear elliptic equations of these kinds occur in transport problems.

In this paper we consider two issues: (1) the calculation of the correctors and
(2) the computation of the homogenized solution. The homogenization of nonlinear
elliptic equations in a random media has been studied previously (see, e.g., [17]). It
was shown that a solution uε converges (up to a subsequence) to u in an appropriate
norm and where u ∈ W 1,p

0 (Q) is a solution of

−div(a∗(x, u,Du)) + a∗0(x, u,Du) = f.(2)

The homogenized coefficients can be computed if we make an additional assumption
on the heterogeneities such as periodicity, almost periodicity, or when the fluxes are
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strictly stationary fields with respect to spatial variables. In these cases one has an
auxiliary problem of calculating a∗ and a∗0. The numerical homogenization procedure
presented in this paper does not use the auxiliary problem for the calculation of the
approximation of homogenized solutions.

To construct the numerical correctors we use two scales, a physical scale and a
numerical scale that is much larger than the physical one, and construct the correctors
in each numerical coarse block. The convergence for the corrector is obtained. These
results show us a way to obtain numerically the fine scale features of the solution. We
would like to note that the computation of the oscillation of solutions is important
for the application to flow in porous media and other transport problems.

We present a procedure for calculating a coarse solution, the solution at the length
scales h, 1 � h � ε. Our numerical homogenization procedure is based on general
finite element computations of the coarse scale equations. It selectively solves the
required local problems that reduce overall computations even in the periodic case.
The solutions of the local problems are uniquely determined, which makes our discrete
operator single-valued. The convergence of the numerical method is presented for
general kinds of heterogeneities using G-convergence theory. Moreover, we show that
the numerical homogenization approach presented in this paper can be considered as a
generalization of multiscale finite element methods introduced in [10]. A related work
in multiscale computations involves generalized finite element methods [2], residual
free bubbles [3, 19], the variational multiscale method [12], two-scale finite element
methods [15], two-scale conservative subgrid approaches [1], and the heterogeneous
multiscale method (HMM) [6].

Some numerical examples are considered in this paper. We study numerically the
effect of enhanced diffusion due to heterogeneous nonlinear convection,

∂uε

∂t
+

1

ε
vε(x) ·DF (uε) − d∆uε = f.

Since the elliptic part does not depend on t, the theory developed previously can be
applied. In this application we are interested in the effect of the enhanced diffusion
due to heterogeneous nonlinear convection. More precisely, assuming the existence of
homogeneous stream function for the velocity field and zero mean drift, we calculate
the approximation of the enhanced diffusion due to the convection using Buckley–
Leverett flux that describes the convection. Other numerical examples for Richards
equations are also studied.

The paper is organized as follows. In the next section we present some basic
facts that are used later in the analysis. Section 3 is devoted to the construction of
a numerical corrector and its convergence. Section 4 is devoted to the calculation
of the homogenized solution and its analysis. In section 5 we present numerical
results.

2. Preliminaries. We start with a description of random homogeneous fields
on Rd, which are shown to be useful in homogenization problems (see, e.g., [13]). Let
(Ω,Σ, µ) be a probability space. A random homogeneous field is a measurable function
on Ω and f(T (x)ω) are realizations of the random field. The realizations are well-
defined measurable functions on Rd for almost all ω ∈ Ω. Consider a d dimensional
dynamical system on Ω, T (x) : Ω → Ω, x ∈ Rd, that satisfies the following conditions:
(1) T (0) = I, and T (x + y) = T (x)T (y); (2) T (x) : Ω → Ω preserve the measure µ
on Ω; (3) for any measurable function f(ω) on Ω, the function f(T (x)ω) defined on
Rd×Ω is also measurable (see [13, 18]). Let Lp(Ω) denote the space of all p-integrable
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functions on Ω. Then U(x)f(ω) = f(T (x)ω) defines a d-parameter group of isometries
in the space Lp(Ω), and U(x) is strongly continuous [13, 17]. Further, we assume that
the dynamical system T is ergodic; i.e., any measurable T -invariant function on Ω is
constant. Denote by 〈·〉 the mean value over Ω,

〈f〉 =

∫
Ω

f(ω)dµ(ω) = E(f).

Now we explain briefly the relation between the standard definition of random
homogeneous fields and the one we introduced here following, e.g., [17]. Let Ξ be
a probability space endowed with a probability measure P . Let f be a random
vector valued function, i.e., a measurable map f : Ξ × Rd → RN . f is a random
homogeneous field if all its finite dimensional distributions are translation invariant.
The latter means that for any x1, x2, . . . , xk ∈ Rd, and any Borel subsets B1, B2,
. . . , Bk ⊂ RN ,

P{ξ ∈ Ξ : f(ξ, x1 + h) ∈ B1, . . . , f(ξ, xk + h) ∈ Bk}

is independent of h ∈ Rd. Consider a new probability space Ω and a dynamical system
T (x) acting on Ω. We define Ω to be the set of all measurable functions ω : Rd → RN

and set T (x)ω(y) = ω(x + y), x, y ∈ Rd. Let F be the σ-algebra generated by
“cylinder” sets, i.e., the sets of the form B = {ω : ω(x1) ∈ B1, . . . , ω(xk) ∈ Bk},
where x1, x2, . . . , xk ∈ Rd and B1, B2, . . . , Bk are Borel subsets in RN . We
define the measure µ on “cylinder” sets by µ(B) = P{ξ ∈ Ξ : f(ξ, ·) ∈ B} and
then extend it to F by σ-additivity. Thus, the probability space Ω and the measure-
preserving dynamical system T (x), x ∈ Rd, on Ω are constructed. Moreover, consider

the µ-measurable function f̂ : Ω → RN defined by the formula f̂(ω) = ω(0). Then

f(ξ, x) = f̂(T (x)ω), where ω(·) = f(ξ, ·). More examples regarding the construction
of T can be found in [13].

Denote by ∂i
ω the generator of U(x) along the ith coordinate direction, i.e.,

∂i
ω = lim

δ→0

f(T (δei)ω) − f(ω)

δ
.

The domains Di of ∂i
ω are dense in L2(Ω), and the intersection of all Di is also dense.

Next, following [17], we define potential and solenoidal fields. A vector field
f ∈ Lp(Ω) is said to be potential (or solenoidal, respectively) if its generic realization
f(T (x)ω) is a potential (or solenoidal, respectively) vector field in Rd. Denote by
Lp
pot(Ω) (respectively, Lp

sol(Ω)) the subspace of Lp(Ω) that consists of all potential
(respectively, solenoidal) vector fields. Introduce the following notation:

V p
pot = {f ∈ Lp

pot(Ω), 〈f〉 = 0}, V p
sol = {f ∈ Lp

sol(Ω), 〈f〉 = 0}.

The following properties are known (see [17, page 138]):

Lp
pot(Ω) = V p

pot ⊕Rd, Lp
sol(Ω) = V p

sol ⊕Rd, Lq
sol(Ω) = (V p

pot)
⊥, Lq

pot(Ω) = (V p
sol)

⊥.

Consider uε ∈ W 1,p
0 (Q),

−div(a(T (x/ε)ω, uε, Duε)) + a0(T (x/ε)ω, uε, Duε) = f in Q,(3)

where f is a deterministic function that does not depend on ε and is sufficiently
smooth, and Q ⊂ Rd is a domain with Lipschitz boundaries.
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Assume for all ω ∈ Ω

(a(ω, η, ξ1) − a(ω, η, ξ2), ξ1 − ξ2) ≥ C(1 + |ξ1| + |ξ2|)p−β |ξ1 − ξ2|β ,(4)

|a(ω, η, ξ)| + |a0(ω, η, ξ)| ≤ C(1 + |η| + |ξ|)p−1,(5)

|a(ω, η1, ξ1) − a(ω, η2, ξ2)| + |a0(ω, η1, ξ1) − a0(ω, η2, ξ2)|

≤ C(1 + |η1|p−1 + |η2|p−1 + |ξ1|p−1 + |ξ2|p−1)ν(|η1 − η2|)

+ C(1 + |η1|p−1−s + |η2|p−1−s + |ξ1|p−1−s + |ξ2|p−1−s)|ξ1 − ξ2|s,

(6)

where 0 < s ≤ 1, β ≥ max(p, 2), p > 1. Here ν(r) is a continuity modulus; i.e., ν(r) is
a nondecreasing continuous function on [0,+∞) such that ν(0) = 0, ν(r) > 0 if r > 0
and ν(r) = 1 if r > 1, and ν(r1 + r2) ≤ C(ν(r1) + ν(r2)). For the existence of the
solution we need a coercivity condition,

(a(ω, η, ξ), ξ) + a0(ω, η, ξ)η ≥ C|ξ|p − C1.(7)

It is known (e.g., [17]) that, as ε → 0, Duε converges to Du weakly in Lp(Q)d for
almost every ω, and u is the solution of

−div(a∗(u,Du)) + a∗0(u,Du) = f, u ∈ W 1,p
0 (Q).(8)

Further, a∗ and a∗0 can be constructed using the solution of the following auxiliary
problem. Given η ∈ R and ξ ∈ Rd, define wη,ξ ∈ V p

pot such that

a(ω, η, ξ + wη,ξ(ω)) ∈ Lq
sol(Ω)d.(9)

Then a∗(η, ξ) and a0(η, ξ) are defined as

a∗(η, ξ) = 〈a(ω, η, ξ + wη,ξ(ω))〉,
a∗0(η, ξ) = 〈a0(ω, η, ξ + wη,ξ(ω))〉.

(10)

Moreover, a∗(η, ξ) and a∗0(η, ξ) satisfy estimates similar to those of a and a0 with
different constants [17].

Remark 2.1. We would like to note that G-convergence and homogenization
results presented in [17] were formulated under weaker than (4) conditions. In par-
ticular, it is assumed that

(a(ω, η, ξ1) − a(ω, η, ξ2), ξ1 − ξ2) ≥ C(1 + |η| + |ξ1| + |ξ2|)p−β |ξ1 − ξ2|β .(11)

It turns out that G-convergence and homogenization results hold under more general
assumptions such as (4). The proof is identical to the one presented in [17]. Moreover,
following [17], it can be easily shown that the homogenized operator is also coercive
and satisfies (7).

Throughout the paper C denotes a generic constant, ‖ · ‖p denotes Lp(Q) (or the
broken norm), and Lp(Q)d norms and q are defined by 1/p + 1/q = 1. The notation
a.e. (almost every) is often omitted.
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3. Two-scale correctors. The corrector results obtained in this section will be
used in the approximation of solution gradients. The importance of this approxima-
tion is motivated by some applications in which details of the fluxes play a key role in
a physical phenomenon (e.g., flow in porous media). For the construction we assume
that the homogenized solution is computed with a reliable accuracy in an appropriate
norm which will be specified later. In the next section we will propose a numerical
procedure for the computation of the homogenized solution for more general hetero-
geneities. For the construction of the correctors we introduce two scale correctors,
where one scale represents the numerical scale h and the other the physical scale ε.

Define Mhφ(x) in the following way:

Mhφ(x) =
∑
i

1Qi

1

|Qi|

∫
Qi

φ(y)dy,

where
⋃
Qi = Q. Here Qi are domains with diameter of order h, e.g., finite element

triangles or some unions of the triangles. Note that Mhφ → φ in Lp(Q) as h → 0 (see
[22]). Further, define

P (T (y)ω, η, ξ) = ξ + wη,ξ(T (y)ω),(12)

where wη,ξ ∈ V p
pot(Ω) is the solution of the auxiliary problem a(ω, η, ξ + wη,ξ(ω)) ∈

Lq
sol(Ω)d. Here wη,ξ(T (y)ω) satisfies

−div(a(T (y)ω, η, ξ + wη,ξ(T (y)ω))) = 0

in the sense of distribution [17, p. 155].
The main result of this section regarding the convergence of the correctors is the

following.
Theorem 3.1. Let uε and u be solutions of (3) and (8), respectively, and let P

be defined by (12) in each Qi. Then

lim
h→0

lim
ε→0

∫
Q

|P (T (x/ε)ω,Mhu,MhDu) −Duε|pdx = 0(13)

µ-a.e.
We will omit µ-a.e. notation in further analysis. To make the expressions in the

proof more concise we introduce the notation

Pε = P (T (x/ε)ω,Mhu,MhDu).

Theorem 3.1 indicates that the gradient of solutions can be approximated by
P (T (x/ε)ω,Mhu,MhDu). This quantity can be computed based on MhDu and Mhu,
i.e., the gradient of the coarse solution in each coarse block, as we will show later.
The following lemma [4] will be used in the proof.

Lemma 3.2. For any φ1 and φ2 belonging to Lp(Q) we have

‖φ1 − φ2‖p,Q ≤ C

(∫
Q

|φ1 − φ2|β(1 + |φ1| + |φ2|)p−βdx

)1/β

×(|Q|1/p + ‖φ1‖p,Q + ‖φ2‖p,Q)(β−p)/β .

(14)

For the proof of Theorem 3.1 we need the following lemma.
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Lemma 3.3. For every η ∈ R and ξ ∈ Rd

‖P (ω, η, ξ)‖pp,Ω ≤ C(1 + |η|p + |ξ|p).

Proof. Using Lemma 3.2 and (4), we obtain

‖P‖pp,Ω ≤ C(1 + ‖P‖pp,Ω)(β−p)/β

(∫
Ω

|P |β(1 + |P |)p−βdµ(ω)

)p/β

≤ Cδ(p−β)/p

∫
Ω

|P |β(1 + |P |)p−βdµ(ω) + Cδ(1 + ‖P‖pp,Ω).

With a suitable choice of δ and using (4) and (5), we get

‖P‖pp,Ω ≤ C + C

∫
Ω

|P |β(1 + |P |)p−βdµ(ω)≤C + C

∫
Ω

(a(ω, η, P ) − a(ω, η, 0), P )dµ(ω)

≤ C + C

∣∣∣∣
∫

Ω

(a(ω, η, P ), P )dµ(ω)

∣∣∣∣ +

∣∣∣∣
∫

Ω

(a(ω, η, 0), P )dµ(ω)

∣∣∣∣
≤ C +

∣∣∣∣
∫

Ω

(a(ω, η, P ), ξ)dµ(ω)

∣∣∣∣ + (1 + |η|p−1)

∣∣∣∣
∫

Ω

Pdµ(ω)

∣∣∣∣
≤ C + Cδ1‖P‖pp,Ω + Cδ

−1/(p−1)
1 |η|p + C

∫
Ω

(1 + |η| + |P |)p−1|ξ|dµ(ω)

≤ Cδ2‖P‖pp,Ω +Cδ
−1/(p−1)
2 (1+|ξ|p)+C +Cδ1(|η|p + ‖P‖pp,Ω)+Cδ

−1/(p−1)
1 |η|p.

With an appropriate choice of δ1 and δ2, we obtain the desired result.
It follows from Lemma 3.3 that P (T (y)ω, η, ξ) ∈ Lp

loc(R
d)d for a.e. ω and for each

η ∈ R, ξ ∈ Rd. The next lemma will be also used in the proof of Theorem 3.1.
Lemma 3.4. If uk → 0 in Lr(Q) (1 < r < ∞) as k → ∞, then∫

Q

ν(uk)|vk|pdx → 0 as k → ∞

for all vk either (1) compact in Lp(Q) or (2) bounded in Lp+α(Q), α > 0. Here ν(r)
is the continuity modulus defined previously (see (6)) and 1 < p < ∞.

Proof. Since uk converges in Lr, it converges in measure. Consequently, for any
δ > 0 there exists Qδ and k0 such that meas(Q \ Qδ) < δ and ν(uk) < δ in Qδ for
k > k0. Thus ∫

Q

ν(uk)|vk|pdx =

∫
Qδ

ν(uk)|vk|pdx +

∫
Q\Qδ

ν(uk)|vk|pdx

≤ Cδ + C

∫
Q\Qδ

|vk|pdx.
(15)

Next we use the fact that if (1) or (2) is satisfied, then the set vk has equi-absolute
continuous norm [14] (i.e., for any ε > 0 there exists ζ > 0 such that meas(Qζ) < ζ
implies ‖PQζ

vk‖p,Q < ε, where PDf = {f(x) if x ∈ D; 0 otherwise}. Consequently,
the second term on the right-hand side (r.h.s.) of (15) converges to zero as
δ → 0.

The proof of Theorem 3.1 will be based on the following estimate:∫
Q

|Pε −Duε|pdx ≤
∫
Q

|Pε −Duε|β(1 + |Pε| + |Duε|)p−βdx(|Q|1/p

+ ‖Pε‖p,Q + ‖Duε‖p,Q)(β−p)/p.

(16)
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‖Duε‖p,Q is uniformly bounded for a.e. ω. ‖Pε‖p,Q is also uniformly bounded since
Mhu and MhDu are bounded in Lp(Q) and Lp(Q)d, respectively. Thus it remains to
estimate

∫
Q
|Pε −Duε|β(1 + |Pε| + |Duε|)p−βdx. For this term, using (4), we have∫

Q

|Pε −Duε|β(1 + |Pε| + |Duε|)p−βdx

≤ C

∣∣∣∣
∫
Q

(a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω, uε, Duε),Pε −Duε)dx

∣∣∣∣
≤ C

∣∣∣∣
∫
Q

(a(T (x/ε)ω,Mhu,Pε) − a(T (x/ε)ω, uε, Duε),Pε −Duε)dx

∣∣∣∣
+ C

∣∣∣∣
∫
Q

(a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω,Mhu,Pε),Pε −Duε)dx

∣∣∣∣ .

(17)

To prove Theorem 3.1 we will need to estimate the first and second terms on the
r.h.s. of (17). For the first term we have

C

∫
Q

(
a(T (x/ε)ω,Mhu,Pε) − a(T (x/ε)ω, uε, Duε),Pε −Duε

)
dx

= C

∫
Q

(a(T (x/ε)ω,Mhu,Pε),Pε)dx− C

∫
Q

(a(T (x/ε)ω,Mhu,Pε), Duε)dx

− C

∫
Q

(a(T (x/ε)ω, uε, Duε),Pε)dx + C

∫
Q

(a(T (x/ε)ω, uε, Duε), Duε)dx.

(18)

We will investigate the r.h.s. of (18) in the limit as ε → 0. For the first term of
the r.h.s. of (18) we have the following convergence.

Lemma 3.5.∫
Q

(a(T (x/ε)ω,Mhu,Pε),Pε)dx →
∫
Q

(a∗(Mhu,MhDu),MhDu)dx

as ε → 0.
Proof.∫

Q

(a(T (x/ε)ω,Mhu,Pε),Pε)dx

=
∑
i

∫
Qi

(
a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), ξi + wηi,ξi(T (x/ε)ω)

)
dx

=
∑
i

∫
Qi

(
a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), ξi

)
dx

+
∑
i

∫
Qi

(
a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), wηi,ξi(T (x/ε)ω)

)
dx

→
∑
i

∫
Qi

1Qi(a
∗(ηi, ξi), ξi)dx

as ε → 0. In the last step we have used the Birkhoff ergodic theorem (see [13]) as well
as (9), (10), and wη,ξ ∈ V p

pot. Next we note that the limit can be written as∑
i

∫
Qi

1Qi
(a∗(ξi), ξi)dx =

∫
Q

(a∗(Mhu,MhDu),MhDu)dx.
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For the second term of the r.h.s. of (18) we have the following convergence.
Lemma 3.6.∫

Q

(a(T (x/ε)ω,Mhu,Pε), Duε)dx →
∫
Q

(a∗(Mhu,MhDu), Du)dx

as ε → 0.
Proof.∫

Q

(a(T (x/ε)ω,Mhu,Pε), Duε)dx =
∑
i

∫
Qi

(a(T (x/ε)ω, ηiP (T (x/ε)ω, ηi, ξi)), Duε)dx.

Duε is bounded in Lp(Q)d for a.e. ω. To show that a(T (x/ε)ω, P (T (x/ε)ω, ηi, ξi)) is
bounded in Lr(Qi)

d, where r > q, we will use Meyers’ theorem [16]. Since
−div(a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi))) = 0 in 3 × Qi (where 3 × Qi is a domain
that contains Qi and is surrounded with a ring of size Qi), using Meyers’ theorem we
can conclude that

‖P (T (x/ε)ω, ηi, ξi)‖p+η,Qi ≤ C‖P (T (x/ε)ω, ηi, ξi)‖p,3×Qi ,

where C is independent of ω and depends only on operator constants. Note that P ∈
Lp
loc(R

d)d. Since ‖P (T (x/ε)ω, ηi, ξi)‖p,3×Qi
is bounded for a.e. ω (see Lemma 3.3),

‖P (T (x/ε)ω, ηi, ξi)‖p+α,Qi is also bounded for a.e. ω. From here, using bounds for
a(T (y)ω, η, ξ), we can easily obtain that a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) is bounded
in Lr(Qi)

d, where r > q for a.e. ω. Indeed,∫
Qi

|a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) − a(T (x/ε)ω, ηi, 0)|rdx

≤ C

∫
Qi

(|1 + ηi + P (T (x/ε)ω, ηi, ξi)|)(p−2)r|P (T (x/ε)ω, ηi, ξi)|rdx

≤ C(‖P‖r,Qi
+ ‖P‖(p−1)r,Qi

).

Since P is in Lp+α(Qi)
d for a.e. ω, we can pick r = q + α/(p − 1). Consequently,

(a(T (x/ε)ω, ηi, ξi + wηi,ξi(T (x/ε)ω)), Duε) is bounded in Lσ(Qi)
d, σ > 1, for every

ηi and ξi. Thus it contains a subsequence that weak* converges to gi for any i and
a.e. ω. Since −div(a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi))) = 0 in Qi, using a compen-
sated compactness argument we can obtain that as ε → 0, gi = (a∗(ηi, ξi), Du).
The latter is true because Duε weakly converges to Du in Lp(Q)d for a.e. ω and
a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) weakly converges to a∗(ηi, ξi) in Lr(Q). The fact
that Duε weakly converges to Du for a.e. ω follows from general G-convergence results
[17], and the weak convergence of a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)) is a consequence
of the Birkhoff ergodic theorem. Consequently,∑

i

∫
Qi

(a(T (x/ε)ω, ηi, P (T (x/ε)ω, ηi, ξi)), Duε)dx

→
∑
i

∫
Qi

(a∗(ηi, ξi), Du)dx =

∫
Q

(a∗(Mhu,MhDu), Du)dx.

For the third term of the r.h.s. of (18) we have the following convergence.
Lemma 3.7.∫

Q

(a(T (x/ε)ω, uε, Duε),Pε)dx →
∫
Q

(a∗(u,Du),MhDu)dx

as ε → 0.
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Proof.∫
Q

(a(T (x/ε)ω, uε, Duε),Pε)dx =
∑
i

∫
Qi

(a(T (x/ε)ω, uε, Duε), P (T (x/ε)ω, ηi, ξi))dx.

Since |a(ω, η, ξ)| ≤ C(1 + |η|p−1 + |ξ|p−1) and P (T (x/ε)ω, ηi, ξi) converges to ξi
in Lp(Q)d and is bounded in Lp+η(Q)d, similar to the analysis for the Lemma 3.6 we
can obtain that

∑
i

∫
Qi

(a(T (x/ε)ω, uε, Duε), P (T (x/ε)ω, ηi, ξi))dx

→
∑
i

∫
Qi

(a∗(u,Du), ξi)dx =

∫
Q

(a∗(u,Du),MhDu)dx.

For the fourth term of the r.h.s. of (18), we have the following.
Lemma 3.8.∫

Q

(a(T (x/ε)ω, uε, Duε), Duε)dx →
∫
Q

(a∗(u,Du), Du)dx

as ε → 0.
Proof. ∫

Q

(a(T (x/ε)ω, uε, Duε), Duε)dx

= −
∫
Q

(div(a(T (x/ε)ω, uε, Duε)), uε)dx = −
∫
Q

fuεdx

→ −
∫
Q

fudx =

∫
Q

(a∗(u,Du), Du)dx.

Next for the second term on the r.h.s. of (17), using (6), we have

C

∣∣∣∣
∫
Q

(a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω,Mhu,Pε),Pε −Duε)dx

∣∣∣∣
≤ C

δ1

∣∣∣∣
∫
Q

a(T (x/ε)ω, uε,Pε) − a(T (x/ε)ω,Mhu,Pε)

∣∣∣∣
q

dx + Cδ1

∫
Q

|Pε −Duε|pdx

≤ C

δ1

∑
i

∫
Qi

ν(|uε − ηi|)q(1 + |ξi|p)dx

+
C

δ1

∑
i

∫
Qi

ν(|uε − ηi|)q(1 + |wηi,ξi |p)dx + Cδ1

∫
Q

|Pε −Duε|pdx,

(19)

where ν(r) is a continuity modulus defined earlier (see (6)). Here we have used the
uniform boundedness of Duε as well as uε in Lp(Q)d and Lp(Q), respectively. The
first term on the r.h.s. converges to

∫
Q
ν(|u − Mhu|)q(1 + |MhDu|p)dx by Lemma

3.4. For the second term, using Meyers’ theorem (cf. Lemma 3.6), we obtain that
wηi,ξi is bounded in Lp+α(Qi)

d, α > 0. Thus, using Lemma 3.4, we have that the
second term for each i converges to

∫
Qi

ν(|u − ηi|)q(1 + 〈|wηi,ξi |p〉)dx, which is not
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greater than
∫
Qi

ν(|u − ηi|)q(1 + |ηi|p + |ξi|p)dx. Summing this over all i, we get∫
Q
ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dx. Thus (19) is not greater than∫

Q

ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dx + Cδ1

∫
Q

|Pε −Duε|pdx.

With an appropriate choice of δ1, combining all the estimates, we have for (17)
(cf. (16))

lim
ε→0

∫
Q

|Pε −Duε|pdx

≤ C

(∫
Q

(a∗(Mhu,MhDu),MhDu)dx−
∫
Q

(a∗(Mhu,MhDu), Du)dx

−
∫
Q

(a∗(u,Du),MhDu)dx +

∫
Q

(a∗(u,Du), Du)dx

)

+

∫
Q

ν(|u−Mhu|)q(1 + |Mhu|p + |MhDu|p)dx.

(20)

Next it is not difficult to show that the r.h.s. of (20) approaches zero as h → 0.
For this reason we write∫

Q

(a∗(Mhu,MhDu),MhDu)dx−
∫
Q

(a∗(Mhu,MhDu), Du)dx

−
∫
Q

(a∗(u,Du),MhDu)dx +

∫
Q

(a∗(u,Du), Du)dx

=

∫
Q

(a∗(u,Du) − a∗(Mhu,MhDu), Du−MhDu)dx.

(21)

Next, using the estimate |a∗(η1, ξ1)− a∗(η2, ξ2)| ≤ C(1 + |η1|p−1 + |η2|p−1 + |ξ1|p−1 +
|ξ2|p−1)ν(|η1 − η2|) + C(1 + |η1|p−1−s̃ + |η2|p−1−s̃ + |ξ1|p−1−s̃ + |ξ2|p−1−s̃)|ξ1 − ξ2|s̃,
0 < r̃ ≤ 1 (see [17]), we can obtain that the r.h.s. of (21) converges to zero as h → 0.
Indeed,

∫
Q

(a∗(u,Du) − a∗(Mhu,MhDu), Du−MhDu)dx

≤ C

∫
Q

(1 + |u|p−1+ |Du|p−1 + |Mhu|p−1+ |MhDu|p−1)ν(|u−Mhu|)|Du−MhDu|dx

+ C

∫
Q

(1 + |u|p−1−s̃ + |Du|p−1−s̃ + |Mhu|p−1−s̃ + |MhDu|p−1−s̃)|Du−MhDu|s̃dx.

(22)

Using the Holder inequality, it can be easily shown that the second term here converges
to zero as h → 0. Since Mhu converges to u in Lp(Q) and MhDu converges to Du in
Lp(Q)d from Lemma 3.4, the first term in (22) also converges to zero. Similarly one
can show that the last term on the r.h.s. of (20) converges to zero as h → 0. This
completes the proof of Theorem 3.1.

As an example we consider the correctors for

div(a(T (x/ε)ω)kr(uε)Duε) = f.(23)
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We assume that the operator satisfies the conditions stated previously. In this
case P (T (y)ω, η, ξ) = ξ + wη,ξ(T (y)ω), where wη,ξ ∈ Lp

pot(Ω) satisfies

−div(a(T (x/ε)ω)kr(η)(ξ + wη,ξ)) = 0.

Introducing a notation N such that wi
η,ξ(ω) = Nij(ω)ξj , we have the classical equation

(see [13]) for N(ω), i.e., a(ω)(I +N) ∈ Lq
sol(Ω). Consequently, the correctors for (23)

have the form

P (T (y)ω, η, ξ) = ξ(I + N(T (y)ω)).

From this we conclude that u satisfies

div(a∗kr(u)Du) = f,

where a∗ is the homogenized tensor corresponding to a linear elliptic operator. The
approximation for the gradient of the solution is defined by

P (T (x/ε)ω,Mhu,MhDu) = MhDu(I + N(T (x/ε)ω)).

Theorem 3.1 shows a way to compute an approximation for the gradient of uε,
although this computation is difficult since it involves the solution of the auxiliary
problem. In the next section we will present the numerical computation of the oscil-
latory solution.

4. Numerical computation of the homogenized solution.

4.1. Numerical homogenization method. Consider uε ∈ W 1,p
0 (Q),

−div(aε(x, uε, Duε)) + a0,ε(x, uε, Duε) = f,(24)

where aε(x, η, ξ) and a0,ε(x, η, ξ), η ∈ R, ξ ∈ Rd, satisfy (4)–(6) and (7). As we men-
tioned in the introduction, the numerical homogenization procedure and its analysis
can be studied for more general heterogeneities using G-convergence theory. The main
idea of the numerical homogenization procedure is to find the homogenized solution
without using the auxiliary problem. Consider a finite dimensional space over the
standard triangular partitions K of Q =

⋃
K, and let

Sh={vh ∈ C0(Q) : the restriction vh is linear for each element K and vh = 0 on ∂Q},
(25)

diam(K) ≤ Ch. Here we assume that h � ε is chosen for the approximation of the
homogenized solution. The numerical homogenization procedure consists of finding
an approximation, uh ∈ Sh, of a homogenized solution u such that

(Aε,huh, vh) =

∫
Q

fvhdx,(26)

where

(Aε,huh, vh) =
∑
K

∫
K

((aε(x, η
uh , Duε,h), Dvh) + a0,ε(x, η

uh , Duε,h)vh)dx.(27)
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Here uε,h satisfies

−div(aε(x, η
uh , Duε,h)) = 0 in K,(28)

uε,h = uh on ∂K, and ηvh(= Mhvh) = 1
|K|

∫
K
vhdx in each K. Our numerical homog-

enization procedure consists of (26), (27), and (28). In some sense, (27) attempts to
approximate

∫
Q

[(a∗(x, uh, Duh), Dvh)+a∗0(x, uh, Duh)vh]dx, which is a finite element

formulation of the homogenized equation. Note that solutions, uh, of (26) depend on
ε, which we do not explicitly write because uh ∈ Sh. We would like to point out
that different boundary conditions can be chosen; e.g., one can use an oversampling
technique [10], where the solution of the larger problem is used in the calculation of
the solution of local problems. We have implemented and shown the advantages of
an oversampling technique in our recent work [7]. In the next subsection we will show
that the numerical homogenization approach can be considered as a generalization of
MsFEM.

Next we briefly describe the numerical implementation of MsFEM for nonlinear
elliptic problems. For each uh =

∑
i θiφ

i
0(x) ∈ Sh, where φi

0(x) is a basis in Sh, (26)
is equivalent to solving

F (θ) = b,(29)

where F (θ) is defined by (27) with vh = φi
0(x) and bi =

∫
Q
fφi

0(x)dx. Equation

(29) can be solved using Newton’s method or its modifications. This involves the
inversion of the Jacobian corresponding to F (θ). When using MsFEM, the Jaco-
bian is a matrix assembled on the coarse grid, which gives us the advantage in the
computations.

The following convergence result will be shown.
Theorem 4.1. Let uh and u be solutions of (26) and (2), respectively. Then

lim
h→0

lim
ε→0

‖uh − u‖W 1,p
0 (Q) = 0(30)

(up to a subsequence) under some nonrestrictive assumptions on a∗(x, η, ξ).
Remark 4.1. Since the proof uses G-convergence theory, the limiting a∗ (as well

as a∗0) is not unique, and the convergence of the numerical solutions is up to a sub-
sequence in ε; i.e., uh converges to a solution of a homogenized equation. We note
that for the random homogeneous case the limiting operator is unique and the whole
sequence converges. In later analysis, all the limits are taken up to a subsequence.

Note that because of the lack of scale separation, the above result cannot be
improved, because there are all the scales α(ε), such that α(ε) → 0 as ε → 0 are
present. We have observed significant improvement in the numerical calculation when
an oversampling technique is used for problems without scale separation. To show
that uε,h approximates uε in W 1,p

0 (Q) we will use the corrector results presented in
the previous section.

4.2. Numerical homogenization method and MsFEM. To present the re-
lation between the numerical homogenization approach and MsFEM we introduce the
multiscale mapping, EMsFEM : Sh → V h

ε , a one-to-one operator which is constructed
in the following way. For each vh ∈ Sh, vε,h is the solution of

−div(aε(x, η
vh , Dvε,h)) = 0 in K;(31)
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in each K, vε,h = vh on ∂K, and ηvh = 1
|K|

∫
K
vhdx. In [11] the authors introduce

MsFEM, where a basis for V h
ε is constructed by mapping a basis of Sh. The extension

of this approach to nonlinear problems yields a nonlinear space for the approximation
of heterogeneities. Note that vε,h are uniquely determined because (31) enjoys the
monotonicity property. Now the numerical homogenization procedure can be written
in the following way. Find uh ∈ Sh (consequently, uε,h = EMsFEMuh ∈ V h

ε ) such
that

(Aε,huh, vh) =

∫
Q

fvhdx ∀vh ∈ Sh,(32)

where Aε,h is given by (26). Later on we will show that Duε,h approximates Duε in
Lp(Q)d, assuming that the fluxes aε(x, η, ξ) and a0,ε(x, η, ξ) are random homogeneous
fields. Clearly, for periodic problems, (31) can be solved in a period of size ε and
extended periodically to K. This solution will approximate the solution of (31) and
can be used in the construction of Aε,h and in setting up (32) (cf. HMM [6]). The
convergence analysis for this case can be easily carried out using periodic correctors,
and this will be presented elsewhere. Finally, we would like to note that one can adopt
the oversampling technique [10] for nonlinear multiscale finite element methods.

4.3. Proof of Theorem 4.1. The proof of Theorem 4.1 will be carried out in
the following way. First we show the coercivity of Aε,h defined by (27). Next we
study the limit as ε → 0 of (26) and show that the solution of the limiting equation
approximates homogenized solutions. For the sake of simplification of the proof, we
assume β = p in (4).

Lemma 4.2. Let Aε,h be defined by (27). Then for sufficiently small h, there
exists a constant C > 0 such that for any vh ∈ Sh

(Aε,hvh, vh) ≥ C‖Dvh‖pp,Q − C1.

Proof. Let ṽε,h = vε,h − vh. It follows that ṽε,h ∈ W 1,p
0 (K) satisfies the following

problem:

−div aε(x, η
vh , Dṽε,h + Dvh) = 0 in K.(33)

Using (33) and applying Green’s theorem and (7), we have the following estimate:

(Aε,hvh, vh) =
∑
K

∫
K

[(aε(x, η
vh , Dvε,h), Dvh) + a0,ε(x, η

vh , Dvε,h)vh]dx

=
∑
K

∫
K

[(aε(x, η
vh , Dvh +Dṽε,h), Dvh +Dṽε,h) + a0,ε(x, η

vh , Dvε,h)vh]dx

=
∑
K

∫
K

[(aε(x, η
vh , Dvh +Dṽε,h), Dvh +Dṽε,h)+ a0,ε(x, η

vh , Dvε,h)ηvh ]dx

+
∑
K

∫
K

a0,ε(x, η
vh , Dvε,h)(vh − ηvh)dx

≥ C
∑
K

∫
K

|Dvh + Dṽε,h|pdx− Ch

(
1 +

∑
K

∫
K

|Dvh|pdx
)

− C1.
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Here we have also used the fact that
∫
K
|ηvh |pdx ≤ C

∫
K
|vh|pdx. Next we will show

that

∑
K

∫
K

|Dvh + Dṽε,h|pdx =
∑
K

∫
K

|Dvε,h|p dx ≥ C
∑
K

∫
K

|Dvh|pdx.

We note that vh is piecewise linear on ∂K for triangular mesh, i.e., vε,h|∂K =
vh = β + (Dvh, x − x0), for some constants β and x0 independent of Dvh. We set
v̄ε,h = vε,h−β. Then, by change of variable and homogeneity argument and applying
the trace theorem, we have

∑
K

∫
K

|Dvε,h|pdx ≥ C
∑
K

hd

hp

∫
Kr

|Dy v̄ε,h|pdy

≥ C
∑
K

hd

hp

∫
∂Kr

|(Dvh, y h)|pdy = C
∑
K

hd|Dvh|pC(eDvh
),

where Kr is a reference triangle of size of order 1, eDvh
is the unit vector in the

direction of Dvh, and

C(eDvh
) =

∫
∂Kr

|(eDvh
, y)|pdy.

Here we have used the trace inequality, ‖u‖Lp(∂Q) ≤ C‖u‖W 1,p(Q), and taken into
account the equivalence of finite dimensional norms for every h. One can further
show that C(eξ) is bounded from below independent of ξ and h. By contradiction,
suppose that the claim is not true. Then there exists a sequence {eξn} which has a
subsequence (denoted by the same notation) such that eξn → e∗ and C(eξn) → 0 as
n → ∞. Since C(eξ) is continuous, it follows that C(e∗) = 0. This further implies
that (e∗, y) = 0 on ∂Kr, and hence e∗ = 0. This is a contradiction.

Next we show that Aε,h is equicontinuous for any h in any compact set.
Lemma 4.3. For any vh ∈ Sh and wh ∈ Sh in a compact set we have

‖Aε,hvh −Aε,hwh‖p ≤ C

(∑
K

∫
K

(|D(vh − wh)|p + ν(|ηvh − ηwh |))dx
)1/p

,

where C does not depend on ε.
Since this result is for fixed h (i.e., finite dimensional), we do not specify the

norm.
Proof.

‖Aε,hvh −Aε,hwh‖ =
∑
K

∫
K

|aε(x, ηvh , Dvε,h) − aε(x, η
wh , Dwε,h)|dx

+
∑
K

∫
K

|a0,ε(x, η
vh , Dvε,h) − a0,ε(x, η

wh , Dwε,h)|dx.
(34)

Next we will estimate the first term on the r.h.s. of (34). The estimate for the second
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term is analogous.

∑
K

∫
K

|aε(x, ηvh , Dvε,h) − aε(x, η
wh , Dwε,h)|dx

≤ C
∑
K

∫
K

(1 + |ηvh | + |ηwh | + |Dvε,h| + |Dwε,h|)p−1ν(|ηvh − ηwh |)

+ C
∑
K

∫
K

(1 + |ηvh | + |ηwh | + |Dvε,h| + |Dwε,h|)p−1−s|Dvε,h −Dwε,h|s

≤ C

(∑
K

∫
K

ν(|ηvh − ηwh |)pdx
)1/p

+ C

(∑
K

∫
K

|Dvε,h −Dwε,h|p
)1/p

.

(35)

Here we have used the Cauchy inequality along with the facts that ‖Dvε,h‖p,K ≤
C‖Dvh‖p,K , ‖Dwε,h‖p,K ≤ C‖Dwh‖p,K , and ‖Dvh‖p,Q ≤ C, ‖Dwh‖p,Q ≤ C. It
remains to estimate the second term on the r.h.s. of (35).

∑
K

∫
K

|Dvε,h −Dwε,h|p

≤ C
∑
K

∫
K

(aε(x, η
vh , Dvε,h) − aε(x, η

vh , Dwε,h), Dvε,h −Dwε,h)dx

≤
∑
K

∫
K

(aε(x, η
vh , Dwε,h) − aε(x, η

wh , Dwε,h), Dvε,h −Dwε,h)dx

+
∑
K

∫
K

(aε(x, η
wh , Dwε,h) − aε(x, η

vh , Dwε,h), Dvε,h −Dwε,h)dx

≤ C
∑
K

∫
K

(aε(x, η
vh , Dvε,h) − aε(x, η

wh , Dwε,h), Dvh + Dṽε,h −Dwh −Dw̃ε,h)dx

+ C
∑
K

∫
K

(aε(x, η
wh , Dwε,h) − aε(x, η

vh , Dwε,h), Dvε,h −Dwε,h)dx

≤ C
∑
K

∫
K

(aε(x, η
vh , Dvε,h) − aε(x, η

wh , Dwε,h), Dvh −Dwh)dx

+ C
∑
K

∫
K

ν(|ηwh − ηvh |)pdx

≤ C

(∑
K

∫
K

|Dvh −Dwh|pdx
)1/p

+ C
∑
K

∫
K

ν(|ηwh − ηvh |)pdx.

(36)

Here we have used Holder and Cauchy inequalities along with the facts that ‖Dvε,h‖p,K
≤ C‖Dvh‖p,K , ‖Dwε,h‖p,K ≤ C‖Dwh‖p,K , and ‖Dvh‖p,Q ≤ C, ‖Dwh‖p,Q ≤ C, and

that vε,h = vh+ ṽε,h, where ṽε,h ∈ W 1,p
0 (K) satisfies −div aε(x, η

vh , Dvh+Dṽε,h) = 0.
The estimates (35) and (36) give us the estimate for the first term of the r.h.s. of
(34). A similar estimate for the second term can be obtained in a very analogous
manner.

The coercivity and continuity of Aε,h guarantee the existence of a solution for the
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discrete equation

(Aε,huε,h, wh) =

∫
Q

fwhdx.(37)

Lemma 4.4. For any vh ∈ Sh and wh ∈ Sh

lim
ε→0

(Aε,hvh, wh) = (Ahvh, wh)

(up to a sub-sequence), where the r.h.s. is defined as

(Ahvh, wh) =
∑
K

∫
K

[(a∗(x, ηvh , Dv0), Dwh) + a∗0(x, η
vh , Dv0)wh]dx

and v0 is the solution of v0 − vh ∈ W 1,p
0 (K),

−div(a∗(x, ηvh , Dv0)) = 0.

Here a∗(x, η, ξ) is a G-limit of the corresponding limit operator.
Proof. Using the theorem on G-convergence of arbitrary solutions [17, p. 87], we

obtain that solutions vε,h of (31) weakly converge to v0 in W 1,p(K), and aε(x, η
vh ,

Dvε,h) weakly converges to a∗(x, ηvh , Dv0) in Lq(K)d, and a0,ε(x, η
vh , Dvε,h)

weakly converges to a∗0(x, η
vh , Dv0) in Lq(K) (up to a subsequence), where a∗(x, η, ξ)

and a∗0(x, η, ξ) are the fluxes corresponding to a G-limit of the original operators.
Thus,

lim
ε→0

(Aε,hvh, wh) = lim
ε→0

∑
K

∫
K

[(aε(x, η
vh , Dvε,h), Dwh) + a0,ε(x, η

vh , Dvε,h)wh]dx

=
∑
K

∫
K

[(a∗(x, ηvh , Dv0), Dwh) + a∗0(x, η
vh , Dv0)wh]dx = (Ahvh, wh).

It can be easily shown that Ah is coercive for small h. Since Aε,h is equicontinuous
in any compact set, the results of Lemma 4.4 hold for any vh ∈ Sh and wh ∈ Sh that
are uniformly bounded (finite dimensional). Thus, taking the limit ε → 0 of (37) (up
to a subsequence), we obtain

(Ahuh, wh) =

∫
Q

fwhdx.

From Lemma 4.2 and the continuity of Ah (which can be easily verified) it follows
that uh exists and is uniformly bounded in W 1,p

0 (Q), and thus uh → u (up to a subse-
quence) weakly in W 1,p

0 (Q). Our task to show that u is a solution of the homogenized
equation. The following lemma is needed for this purpose.

Lemma 4.5. Assume that vh ∈ Sh and Dvh are uniformly bounded in Lp+α(Q)d

(with α > 0) and wh ∈ Sh and Dwh are uniformly bounded in Lp(Q)d. Then

lim
h→0

(Ahvh −A∗vh, wh) = 0,

where

(A∗vh, wh) =
∑
K

∫
K

[(a∗(x, vh, Dvh), Dwh) + a∗0(x, vh, Dvh)wh]dx.
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Proof.

(Ahvh −A∗vh, wh) =
∑
K

∫
K

[(a∗(x, ηvh , Dv0) − a∗(x, vh, Dvh), Dwh)

+ (a∗0(x, η
vh , Dv0) − a∗0(x, vh, Dvh))wh]dx.

(38)

Next we will show that the first and second terms on the r.h.s. of (38) converge to
zero. For the first term we have

∑
K

∫
K

(a∗(x, ηvh , Dv0) − a∗(x, vh, Dvh), Dwh)dx

≤ C
∑
K

∫
K

ν(|vh − ηvh |)(1 + |ηvh |p−1 + |vh|p−1 + |Dv0|p−1 + |Dvh|p−1)|Dwh|dx

+ C
∑
K

∫
K

(1 + |ηvh | + |vh| + |Dv0| + |Dvh|)p−1−s|Dvh −Dv0|s|Dwh|dx

≤ C
∑
K

(∫
K

ν(|vh − ηvh |)q(1 + |Dvh|p)dx
)1/q (∫

K

|Dwh|pdx
)1/p

+ C
∑
K

(∫
K

(1 + |Dvh|p)dx
)(p−qs)/pq (∫

K

|D(vh − v0|pdx
)s/p (∫

K

|Dwh|pdx
)1/p

= C

(∫
Q

ν(|vh − ηvh |)q(1 + |Dvh|p)dx
)1/q

+ C

(∫
Q

|D(vh − v0)|pdx
)s/p

.

(39)

Here we have used the Cauchy inequality along with the facts that ‖Dwh‖p,Q ≤
C,

∫
K
|Dv0|pdx ≤ C

∫
K
|Dvh|pdx,

∫
K
|vh|pdx ≤ C

∫
K
|Dvh|pdx, and

∫
K
|ηvh |pdx ≤

C
∫
K
|Dvh|pdx. Next we will show that ‖Dvh −Dv0‖p,Q → 0 as h → 0 under some

assumptions regarding the regularity of a∗(x, η, ξ) with respect to spatial variables.
Moreover, this convergence is uniform for a uniformly bounded family of Dvh. Define
a∗K(x, η, ξ) as a piecewise constant function on each K and η, ξ defined in each K by

a∗K(η, ξ) =
1

|K|

∫
K

a∗(x, η, ξ).

We assume that in each K

|a∗(x, η, ξ) − a∗K(η, ξ)| ≤ αh(1 + |η|p−1 + |ξ|p−1),(40)

where αh is a generic sequence such that αh → 0 as h → 0 and is independent of K.
For example, this condition is satisfied if a∗(x, η, ξ) is a Holder function with respect
to spatial variables. Note that for random homogeneous operators, (40) trivially holds
because a∗ is independent of x.
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Then

‖Dvh −Dv0‖pp,Q ≤ C
∑
K

∫
K

(a∗(x, ηvh , Dvh) − a∗(x, ηvh , Dv0), Dvh −Dv0)dx

= C
∑
K

∫
K

(a∗(x, ηvh , Dvh) − a∗K(ηvh , Dvh), Dvh −Dv0)dx

+ C
∑
K

∫
K

(a∗K(ηvh , Dvh) − a∗(x, ηvh , Dv0), Dvh −Dv0)dx

= C
∑
K

∫
K

(a∗(x, ηvh , Dvh) − a∗K(ηvh , Dvh), Dvh −Dv0)dx

≤ Cαh

∑
K

∫
K

(1 + |ηvh |p−1 + |Dvh|)p−1|Dvh −Dv0|dx

≤ Cαh(1 + ‖Dvh‖p/qp,Q)‖Dvh −Dv0‖p,Q.

From here it follows that ‖Dvh −Dv0‖p,Q → 0 as h → 0.
We note that the r.h.s. of (39) converges to zero because ‖Dvh −Dv0‖p,Q → 0 as

h → 0 and because of Lemma 3.4. Thus, the first term on the r.h.s. of (38) converges
to zero.

For the second term on the r.h.s. of (38) we have

∑
K

∫
K

(a∗0(x, η
vh , Dv0) − a∗0(x, vh, Dvh))whdx

≤ C
∑
K

∫
K

ν(|vh − ηvh |)(1 + |ηvh |p−1 + |vh|p−1 + |Dv0|p−1 + |Dvh|p−1)|wh|dx

+ C
∑
K

∫
K

(1 + |ηvh | + |vh| + |Dv0| + |Dvh|)p−1−s|Dvh −Dv0|s|wh|dx.

(41)

Clearly one can do the same manipulations as the those for the first term of the r.h.s.
of (38) to show that the r.h.s. of (41) converges to zero as h → 0.

For the proof of Theorem 4.1 we assume that Duh is uniformly bounded in
Lp+α(Q)d for some α > 0. One can assume additional nonrestrictive regularity as-
sumptions [16] for input data and obtain Meyers-type estimates, ‖Du‖p+α,Q ≤ C,
for the homogenized solutions. In this case it is reasonable also to assume that the
discrete solutions are uniformly bounded in Lp+α(Q)d. We have obtained results on
Meyers-type estimates for our approximate solutions in the case p = 2 (see [8]). We
are currently studying the generalization of these results to arbitrary p. One can im-
pose different kinds of assumptions for which the Lemma 4.5 holds without assuming
that Duh is uniformly bounded in Lp+α(Q)d, e.g.,

|a∗(x, η, ξ) − a∗(s, η′, ξ)| ≤ C(1 + |η|p−1 + |η′|p−1 + |ξ|p−1−r)|η − η′|r

(0 < r < 1).
To conclude the proof of Theorem 4.1 we note that uh → u (up to a sub-sequence)

weakly in W 1,p
0 (Q), and our goal is to show that u is a solution of the homogenized

equation. Using Lemma 4.5, we obtain that

(Ahuh −A∗uh, vh) =

∫
Q

fvhdx− (A∗uh, vh).
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Thus it follows from Lemma 4.5 that A∗uh → f weakly in W−1,p(Q). Moreover,
using Lemma 4.5, we obtain that (A∗uh, uh) →

∫
Q
fvhdx. Since the operator A∗ is

of type M (see [20]), we obtain that A∗u = f ; i.e., u is a solution of a homogenized
equation. Moreover, A∗ is also of type S+ (see [21]), which allows us to state that
uh → u strongly in W 1,p

0 (Q).
Remark 4.2. We would like to note that in the periodic and random homogeneous

cases Theorem 4.1 holds in the limit ε/h → 0; i.e., h = h(ε) � ε. This will be presented
elsewhere.

Remark 4.3. Finally we would like to note that Theorem 4.1 is proved under the
assumptions (40) and ‖Duh‖p+α,Q ≤ C, α > 0. The latter has been shown for p = 2
in [8].

4.4. Approximation of the oscillations. In order to approximate solutions
uε in the W 1,p-norm, we assume aε(x, η, ξ) = a(T (x/ε), η, ξ) and a0,ε(x, η, ξ) =
a0(T (x/ε), η, ξ). Then the following theorem holds.

Theorem 4.6.

lim
h→0

lim
ε→0

‖D(uε,h − uε)‖p,Q = 0,

where uε,h = EMsFEMuh, defined by (31) (or (28) in each K).
Proof. Because of Theorem 3.1 we need to show only that

lim
h→0

lim
ε→0

‖Duε,h − P (T (x/ε)ω,Mhu,MhDu)‖p,Q = 0.

Similarly,

lim
ε→0

‖Duε,h − P (T (x/ε)ω,Mhuh,MhDuh)‖p,K = 0.(42)

Equation (42) follows from the fact that −div(a∗(ηuh , Dxuh)) = 0, i.e., the homoge-
nized solution for uε,h is uh. Consequently,

lim
ε→0

‖Duε,h − P (T (x/ε)ω,Mhuh,MhDuh)‖p,Q = 0.

It remains to show that

lim
h→0

lim
ε→0

‖P (T (x/ε)ω,Mhuh,MhDuh) − P (T (x/ε)ω,Mhu,MhDu)‖p,Q = 0.

To show this we need the estimate for
∫
Ω
|P (ω, η1, ξ1) − P (ω, η2, ξ2)|pdµ(ω). Define

P1 = P (ω, η1, ξ1) and P2 = P (ω, η2, ξ2). Then∫
Ω

|P1 − P2|pdµ(ω) ≤ C

∫
Ω

(a(ω, η1, P1) − a(ω, η1, P2), P1 − P2)dµ(ω)

=

∫
Ω

(a(ω, η1, P1) − a(ω, η2, P2), P1 − P2)dµ(ω)

+

∫
Ω

(a(ω, η2, P2) − a(ω, η1, P2), P1 − P2))dµ(ω)

≤
∫

Ω

(a(ω, η1, P1) − a(ω, η2, P2), ξ1 − ξ2)dµ(ω)

+
C

δ1

∫
Ω

(1 + |η1|p + |η2|p + |P2|p)ν(|η1 − η2|)dµ(ω)

+ Cδ1

∫
Ω

|P1 − P2|pdµ(ω).
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Choosing δ1 appropriately small and using (10), we have

∫
Ω

|P1 − P2|pdµ(ω)

≤ (a∗(η1, ξ1) − a∗(η2, ξ2), ξ1 − ξ2) + C

∫
Ω

(1 + |η1|p + |η2|p + |P2|p)ν(|η1 − η2)dµ(ω).

(43)

Using (43), we have

lim
h→0

lim
ε→0

‖P (T (x/ε)ω,Mhuh,MhDuh) − P (T (x/ε)ω,Mhu,MhDu)‖p,Q

≤ lim
h→0

∑
K

∫
K

(a∗(Mhuh,MhDuh) − a∗(Mhu,MhDu),MhDuh −MhDu)dx

+ C lim
h→0

∑
K

∫
K

(1 + |Mhuh| + |Mhu| + |MhDu|)pν(|Mhuh −Mhu|)dx.

The r.h.s. of (4.4) converges to zero, which can be established in a manner similar to
the convergence analysis of the r.h.s. of (20).

5. Numerical results. Our first numerical example is a nonlinear convection
diffusion equation in two dimensions:

1

ε
v(T (x/ε)ω) ·DF (uε) − d∆uε = f,(44)

where divv = 0. Assuming that there exists a homogeneous stream function H(T
(x/ε)ω),

H =

(
0 H(T (x/ε)ω)
−H(T (x/ε)ω) 0

)
,

such that divH = v, we obtain

div(−dδijDuε + H(T (x/ε)ω)DF (uε)) = f

or

−div(a(T (x/ε)ω, uε)Duε) = f,

where

a =

(
−d H(T (x/ε)ω)F ′(u)
−H(T (x/ε)ω)F ′(u) −d

)
.

We assume that a satisfies the assumptions imposed in previous sections. The auxil-
iary problem is defined as follows: wη,ξ(ω) ∈ V p

pot is the solution of

div(a(T (y)ω, η)(ξ + wη,ξ(T (y)ω))) = 0.

Introducing N j
η (T (y)ω) ∈ V p

pot such that wi
η,ξ(T (y)ω) = N ij

η (T (y)ω)ξj , we have

div(a(T (y)ω, η)(I + Nη(T (y)ω))) = 0,
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where I is the identity matrix. Using wη,ξ, we can compute the homogenized operator
that is given by

div(a∗(u)Du) = f,

where a∗ij(η) = −dδij+〈HikF
′(η)Nkj

η 〉. Here we have taken into account that 〈N〉 = 0

since N ∈ V p
pot. The term 〈HikF

′(η)Nkj
η 〉 can be regarded as an enhanced diffusion

due to heterogeneous convection, similar to the linear case [9]. A numerical corrector
is defined as

Pε = MhDu(I + wMhu(T (x/ε)ω)).

Next we present numerical examples where the enhanced diffusivity is approxi-
mately computed locally. It is more transparent for this purpose to use a parabolic
equation,

∂uε

∂t
+

1

ε
v(T (x/ε)ω) ·DF (uε) = d∆uε.(45)

Using general G-convergence theory, we have the following equation for the homoge-
nized solution:

∂u

∂t
= div(a∗(u)u),(46)

where a∗(η) is the homogenized operator derived from the elliptic problem shown
above. In particular, a∗ij = dδij + acij , where acij(η) = −〈HikF

′(η)Nkj
η 〉 is the en-

hanced diffusion due to nonlinear heterogeneous convection. It can be shown that the
corrector has the same form as in the elliptic case

P (T (x/ε)ω,Mhu(t, x),MhDu(t, x)) = MhDu(t, x)(I + wMhu(t,x)(T (x/ε)ω)),

i.e., all the time dependence is in the homogenized solution. The proof is the same as
in the elliptic case.

To illustrate the significance of the enhanced diffusion, we present some numerical
examples. Numerical tests are performed using the finite element method. First we
present the total diffusivity as a function of η (i.e., average of the solution) for two
different heterogeneous velocity fields given by the stream functions H = sin(2πy/ε)+
sin(2

√
(2)πy/ε). We take ε = 0.1 and d = 0.1 (molecular diffusion). The flux function

is chosen to be the Buckley–Leverett function F (u) = u2/(u2+0.2(1−u)2)) motivated
by porous media flows. The enhanced diffusion is computed by solving the problem
in a unit square, and thus it is only an approximate value of it. In Figure 1 we
plot the total diffusivity. The left plot in this figure represents the total diffusivity
in the horizontal direction (along the layers), and the right plot represents the total
diffusivity in the vertical direction. Clearly, the diffusion is enhanced dramatically
in the horizontal direction, that is, along the convection (note the ten-fold difference
between the y-axis scales). As we see for η ≈ 0.4, there is a 15-fold increase in the
diffusion relative to molecular diffusion, d. Moreover, since F ′(0) = F ′(1) = 0, there
is no enhancement if η = 0 or η = 1 (this corresponds to pure phases). For the cellular
flow, H(x, y) = sin(2πy/ε) sin(2πx/ε), we obtain isotropic diffusion, which is shown
in Figure 2.
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Fig. 1. Horizontal (left) and vertical (right) effective diffusivity for the layered media with
stream function H(x, y) = sin(2πy/ε) and flux function F (u) = u2/(u2 + 0.2(1 − u)2).
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Fig. 2. Effective diffusivity for the isotropic media with stream function H(x, y) = sin(2πy/ε)×
sin(2πx/ε) and flux function F (u) = u2/(u2 + 0.2(1 − u)2).

The next set of numerical examples is designed to compare the solutions of the
original (fine scale equation) with the solutions of the equations obtained using nu-
merical homogenization with and without enhanced diffusion. Our goal here is to
illustrate the importance of nonlinear enhanced diffusion. We consider

∂uε

∂t
+

1

ε
vε ·DF (uε) = d∆uε(47)

in a unit square domain with boundary and initial conditions as follows: uε = 1 at the
inlet (x1 = 0), uε = 0 at the outlet (x1 = 1), and no flow boundary conditions on
the lateral sides x2 = 0 and x2 = 1. We have tested various heterogeneous fields for
the velocity, and we present here a result for the layered flow, H = sin(2πy/ε).

In Figure 3 we plot the average (over the whole domain) of the solutions of (47)
( 1
Q

∫
Q
uε(x, t)dx) as a function of time. We compare the fine scale solution with the
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Fig. 3. Comparison of the average u over the whole domain for three problems: (1) fine scale
(designated with a solid line), (2) homogenized solution with no enhanced diffusion (designated with
a dashed line), and (3) homogenized solution with enhanced diffusion (designated with a dotted line).
In this case H(x, y) = sin(2πy/ε) and F (u) = u2/(u2 + 0.2(1 − u)2).
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Fig. 4. Vertical average (across the heterogeneities) of the solution for the layered media with
stream function H(x, y) = sin(2πy/ε) and flux function F (u) = u2/(u2 + 0.2(1 − u)2) at time 0.4.

coarse scale solutions where the enhanced diffusivity is taken into account; i.e., it can
be considered as a numerical homogenization procedure with one coarse block. We
also consider the coarse scale solution where the enhanced diffusion is neglected, i.e,
ut = d∆u. As we see from this figure, the solution computed with enhanced diffusion
performs well and gives a reasonable approximation of the fine scale solution. On the
other hand, the average solution that does not account for enhanced diffusion performs
very poorly. In Figure 4 we plot the average along the horizontal direction (x2)
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Fig. 5. Effective diffusivity for the isotropic media with Gaussian stream function which has
correlation lengths lx = ly = 0.1, mean zero, and variance 0.5. The flux function is chosen as
F (u) = u2/(u2 + 0.2(1 − u)2) and d = 0.1 (see (44)).

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

av
er

ag
ed

 s
ol

ut
io

n

Averaged across vertical direction

Fine
NH (ac=0)
NH (with ac)

x 

Fig. 6. Average of the solution along the horizontal direction at t = 0.4 for Gaussian stream
function which has correlation lengths lx = ly = 0.1, mean zero, and variance 0.5. The flux function
is chosen as F (u) = u2/(u2 + 0.2(1 − u)2) and d = 0.1 (see (44)).

(across heterogeneities) of the solutions at time 0.4. The figure clearly indicates the
importance of having enhanced diffusion in the homogenized setting of the problem.
Next we present an example where the stream function H(x, y) is a realization of the
random field with Gaussian distribution. To generate a realization of the random
field with prescribed correlation lengths, we use GSLIB [5]. In particular, H(x, y) is a
realization of a Gaussian field with correlation lengths lx = ly = 0.1, and with mean
zero and variance 0.5. Here d = 0.1 and F (u) = u2/(u2 +0.2(1−u)2) are used in (44).
In Figure 5 we plot the total diffusivity. As we see, the enhancement of the diffusion
can be up to 6 times the molecular diffusion, d. Since the stream field is isotropic, it is
sufficient to consider total diffusion in one direction. In Figure 6 we plot a cross section
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Fig. 7. Left: the solutions are averaged in the vertical direction. Right: the fluxes are averaged
in the vertical direction.

of the solution at time 0.4. These results clearly indicate the importance of enhanced
diffusion. For different realizations of the random field we have observed similar
results. We note that this example can be easily generalized to nonlinear convection
diffusion of more general form, 1

ε v(T (x/ε)ω) ·DF (uε)−div(a(T (x/ε)ω, uε, Duε)) = f .
Finally, we consider an application of the numerical homogenization procedure

to Richards equations, div(aε(x, uε)Dxuε) = 0, where aε(x, η) = kε(x)/(1 + η)αε(x).
kε(x) = exp(βε(x)) is chosen such that βε(x) is a realization of a random field with the
spherical variogram [5], correlation lengths lx = 0.2, ly = 0.02, and variance σ = 1.5.
Here αε(x) is chosen such that αε(x) = kε(x)+ const with the spatial average of 2. In
Figure 7 we compare the solutions (uε) and the fluxes (−aε(x, uε)Dxuε) correspond-
ing to this equation with boundary and initial conditions given as previously. The
solutions are rescaled for comparison purposes. The solid line designates the fine scale
model results computed on a 120×120 grid, and the dotted line designates the coarse
scale results computed using the numerical homogenization procedure on a 12 × 12
coarse grid. These results demonstrate the robustness of our approach for anistropic
fields where h and ε are nearly the same. For different realizations of the random field
we have observed similar results. Currently, we are studying the application of the
oversampling technique to the numerical homogenization procedure.
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