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The warmest global temperatures of the past 85 million years
occurred during a prolonged greenhouse episode known as the
Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Cli-
matic Optimum terminated with a long-term cooling trend that cul-
minated in continental-scale glaciation of Antarctica from 34 Ma
onward. Whereas early studies attributed the Eocene transition
from greenhouse to icehouse climates to the tectonic opening of
Southern Ocean gateways, more recent investigations invoked
a dominant role of declining atmospheric greenhouse gas concen-
trations (e.g., CO2). However, the scarcity of field data has pre-
vented empirical evaluation of these hypotheses. We present
marine microfossil and organic geochemical records spanning the
early-to-middle Eocene transition from theWilkes LandMargin, East
Antarctica. Dinoflagellate biogeography and sea surface tempera-
ture paleothermometry reveal that the earliest throughflow of
a westbound Antarctic Counter Current began ∼49–50 Ma through
a southern opening of the Tasmanian Gateway. This early opening
occurs in conjunction with the simultaneous onset of regional sur-
face water and continental cooling (2–4 °C), evidenced by bio-
marker- and pollen-based paleothermometry. We interpret that the
westbound flowing current flow across the Tasmanian Gateway
resulted in cooling of Antarctic surface waters and coasts, which
was conveyed to global intermediate waters through invigorated
deep convection in southern high latitudes. Although atmo-
spheric CO2 forcing alone would provide a more uniform middle
Eocene cooling, the opening of the Tasmanian Gateway better
explains Southern Ocean surface water and global deep ocean
cooling in the apparent absence of (sub-) equatorial cooling.

climate cooling | dinoflagellate cysts | organic palaeothermometry |
paleoceanography

Plant microfossils reveal the presence of paratropical rainforest
biomes on theAntarctic continent during the early Eocene (1).

Organic biomarker paleotemperature reconstructions also reveal
extremely warm Southern Ocean sea surface temperatures (SSTs)
at that time (2–4). Both lines of evidence indicate remarkably
warm climate conditions for the highest southern latitudes during
peak Cenozoic greenhouse conditions. Early hypotheses explain-
ing the Eocene warmth at high latitudes invoked a pivotal role of
ocean surface currents that, subject to a continental configuration
fundamentally different from today, facilitated an increased heat
transport to the Antarctic coastline (5, 6). Closed Southern Ocean
gateways (i.e., Drake Passage and the Tasmanian Gateway)
obstructed the formation of an isolating circumpolar surface cur-
rent: the Antarctic Circumpolar Current (ACC) and associated
coastal currents. In the absence of the isolating ACC, warm, low
latitude-derived currents were thought to have bathed the Ant-
arctic continent (5). Southern Ocean SSTs were characterized by

a marked, gradual cooling starting in the latest early Eocene
(∼49.5 Ma) (2–4), which culminated in the onset of large-scale
glaciation of Antarctica at 34 Ma (7, 8). The timing of the opening
of Southern Ocean gateways seemed roughly time equivalent with
major climatic transitions in the southern high latitudes (9).
Opposition to the gateway hypothesis emerged in the 1990s,

when sophisticated computer simulations [general circulation
models (GCMs)] indicated that the Eocene surface current con-
figuration in the Southern Ocean featured circulating gyres (10,
11). Despite the closed gateways, gyral SouthernOcean circulation
prevented low latitude-derived currents from reaching and
warming the coasts of Antarctica (10, 11). Additional evidence
against the gateway hypothesis was obtained from drill cores in the
Tasmanian Gateway region (Fig. S1), which showed that the ac-
celerated deepening and widening of the Tasmanian Gateway
occurred 2 million y before the onset of major Antarctic glaciation
(12)—therefore, contradicting a direct mechanistic link between
gateway opening, thermal isolation, and Antarctic glaciation. The
circum-Antarctic biogeographical patterns of marine phyto-
plankton (13) lend additional support to the ocean current regime
indicated by GCM experiments (Figs. S2 and S3) (11, 14). This
biogeographical information is primarily based on organic-walled
dinoflagellate cysts (dinocysts; fossil remains of dinoflagellates),
which are highly sensitive indicators of surface ocean conditions
(Table S1) (15). Before the opening of the Tasmanian Gateway,
the Antarctic margin-derived Tasman Current influenced surface
waters in the Pacific sector of the Tasmanian region, which is
consistent with high abundances of Antarctic-endemic dino-
cysts (11). In contrast, surface waters in the Australo-Antarctic
Gulf (AAG), west of Tasmania, were sourced by low latitude-
derived IndianOcean waters by the Proto-Leeuwin Current (PLC)
(11). Indeed, dinocyst assemblages in theAAGwere dominated by
cosmopolitan and low-latitude taxa (13) (SI Text and Figs. S2 and
S3). The early GCM experiments, strongly supported by the
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biogeographical patterns in microfossils (11, 16), suggested that
poleward ocean heat transport was not much larger than today’s
transport with closed oceanic gateways and cannot be the sole
explanation for the warmth on Antarctica (11, 16).
As an alternative explanation, it was proposed that elevated

atmospheric greenhouse gas concentrations (e.g., CO2) drove
Eocene climates into hothouse conditions. Accordingly, a decline
in the concentration of these greenhouse gases was considered the
primary forcing agent for the cooling of the middle Eocene, ulti-
mately leading to the development of the Oligocene and Neogene
icehouse world (17). However, the apparent absence of cooling
through the middle and late Eocene in subequatorial regions
(2, 18, 19) is not compatible with the greenhouse gas hypothesis.
In the absence of ice albedo feedbacks, which would amplify
high-latitude cooling during the Eocene, climate cooling through
CO2 decline alone would have been globally more uniform (20,
21) than documented in the available climate proxy data (2). The
observation that polar regions show pronounced cooling, whereas
(sub-) equatorial temperatures remained stable suggests that al-
ternative forcing factors must have been driving high-latitude cli-
mates in the Eocene without influencing the (sub-)equatorial
surface waters.
Although the opening of Southern Ocean gateways fails to ex-

plain the onset of continental-scale Antarctic glaciation at 34 Ma,
the oceanographic changes resulting from gateway opening most
likely had a climatic impact on the Southern Ocean surface waters
(12, 14). Moreover, these regional climatic effects had significance
at a supraregional level, because the signature of the Southern
Ocean climatic evolution (2) is effectively transported to the rest
of the world through deep water formation (21, 22). Detailed
geologic reconstructions have previously focused on the climatic
consequences of the gateway deepening that occurred at 35.5 Ma
(12), whereas earlier stages of the opening of the Tasmanian
Gateway were largely ignored. One difficulty has been the lack of
early-to-middle Eocene records that are spatially dispersed
around the Tasmanian Gateway.
Integrated Ocean Drilling Program (IODP) Expedition 318

recovered Eocene sediments from the Wilkes Land margin,
a hitherto unexplored sector of the Antarctic margin for the

Eocene time interval (Fig. 1 and Fig. S1). We generated dinocyst
assemblage and organic biomarker data from Site U1356 (Fig. S4),
which was on the Antarctic margin within the AAG. Dinocyst as-
semblage analyses were also generated from Ocean Drilling Pro-
gram (ODP) Leg 182, Site 1128 in the Australian Bight (23) (Fig. 1
and Fig. S1). Dinocyst assemblage and organic biomarker records
from ODP Leg 189, Site 1171 on the South Tasman Rise (STR)
and Site 1172 on the East Tasman Plateau (13) were revisited
for the purpose of this study (sediments from Site 1171 lack
biomarkers for SST reconstructions) (Fig. 1 and Fig. S1).
Dinocyst assemblage data from the Otway Basin and RV Sonne
and RV Rig Seismic gravity cores on the west coast of Tasmania
as well as dredge sample surveys were obtained from the lit-
erature (24, 25) (Fig. 1 and Fig. S1). The combined dataset
from these sites has sufficient spatial coverage to reconstruct
changes in biogeographical patterns across the early-to-middle
Eocene transition.
The lowermost 110 m of sedimentary strata recovered in Hole

U1356A (Fig. S5) consist of a relatively complete, well-dated early-
to-middle Eocene shelf sequence (26). The sequence is barren of
carbonate and biogenic opal but contains remarkably abundant
and well-preserved dinocysts (Fig. 2), biomarker assemblages (Fig.
3), and pyritized siliceous microfossils (SI Text) that allow for the
reconstruction of environmental conditions along theWilkes Land
shelf. To assess the oceanographic history of the Tasman region
during the early-to-middle Eocene, we integrated the dinocyst
results from Site U1356 with the results from other sites around
the TasmanianGateway to evaluate biogeographic patterns. Along
with organic biomarker paleothermometry, we used these records
to reconstruct the surface water and terrestrial temperature evo-
lution on both sides of the Tasmanian Gateway. We then com-
pared these results with the global intermediate water temperature
trends as derived from the compilation of benthic foraminiferal
oxygen isotopes (17) to evaluate the global significance of Tas-
manian Gateway opening. Additional information regarding lith-
ological descriptions and age models for sites used for this study as
well as a full methodology of the proxies applied is in SI Text.
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Fig. 1. Present day ocean bathymetry of the Australian sector of the Southern Ocean. The bathymetry of the ocean floor between Australia and Antarctica is
characterized by major spreading ridges (magnetic anomalies are in Fig. S1). The Balleny Fracture Zone marks the direction of motion of the Australian plate
away from Antarctica through the Cenozoic. Red dots mark the present day position of the sites used in this study. OB, Otway Basin; S/RS, RV Sonne and RV
Rig Seismic samples; TAS, Tasmania. Modified from ref. 44.
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Eocene Dinocyst Assemblages Around the Tasmanian
Gateway
Early Eocene (54–52 Ma) age sediments from Site U1356 contain
extremely high percentages (50–80%) of the dinocyst Apectodinium
(Fig. 2). The persistent dominance of this (sub-)tropical (27)
dinocyst genus along the Wilkes Land margin (at 65°S paleo-
latitude) is remarkable but consistent with the observation that
many other sites in the northern AAG yield dominant Apectodi-
nium in the same time interval (28). Endemic Antarctic dinocysts
occur only sporadically and in low abundance (<5% on average)
(Fig. 2) at all study sites within the AAG. In contrast, coeval
sediments from the southwest Pacific Ocean typically contain few
Apectodinium. Instead, these sites yield, on average, 15% typical
Antarctic-endemic taxa together with cosmopolitan species (Fig. 2
and statistical evaluation in SI Text). This distinct biogeographic
pattern illustrates the strong association between dinocyst assemb-
lages and the water masses on either side of the Tasmanian Gate-
way. It also reflects the influence of the low latitude-derived PLC on
the AAG vs. the Antarctica-derived Tasman Current in the south-
west Pacific Ocean (SI Text). More importantly, the distinct dif-
ference in dinocyst assemblages between the AAG and southwest
Pacific sites suggests that the Tasmanian Gateway served as an ef-
fective barrier to surface water exchange before 50 Ma (Fig. 4A).
During the latest early-to-middle Eocene (hereafter referred to

as mid-Eocene; 49–46Ma), abundant Antarctic endemic dinocysts
appear along the Wilkes Land Margin of the AAG (Fig. 2). Many
endemic taxa that are not reported from the AAG in late Paleo-
cene–early Eocene sediments (25, 29–31) first occur at Site U1356
between 52 and 49 Ma (the uncertainty of which is caused by a
hiatus in the Site U1356 record) (SI Text). It is highly unlikely that
these taxa were brought into the AAG by the PLC; the northern
side of the AAG, which is influenced by the PLC (11, 14), was
dominated by low to midlatitude and cosmopolitan dinocysts in
the early Paleogene (65–33 Ma) (Fig. 2), and records from that
region are devoid of endemic Antarctic dinocysts (13). However,
endemic Antarctic taxa reach relatively high abundances (15%) in

the southwest Pacific Ocean (i.e., east of the Tasmanian Gateway
region) during the early Eocene, where they dominate from ∼50
Ma onward (Fig. 2). We infer that these biogeographic patterns
are best explained by an opening in the southern part of the
Tasmanian Gateway, which allowed migration of endemic dino-
cysts into the AAG. Hence, we attribute the appearance of dom-
inant endemic Antarctic dinocysts on the Wilkes Land Margin
between 52 and 50Ma to the onset of westward throughflow of the
Antarctic Counter Current from the southwest Pacific Ocean into
the southern AAG (Fig. 4B).
A grab-sample survey along the East Antarctic margin (from

Wilkes Land to Prydz Bay) also shows that mid-Eocene samples
contain many endemic Antarctic taxa (32), which extends the
reach of the Antarctic Counter Current to large parts of the East
Antarctic margin. In sediment cores retrieved off southwest Tas-
mania [Otway Basin (25) and RV Rig Seismic and RV Sonne cores
(24)] (Fig. 1), endemic dinocysts occur in low abundance (>5%)
during the late early Eocene (∼50–49 Ma) (Fig. 2) but dominate
mid-Eocene assemblages (∼45–42.5 Ma onward) (Fig. 2). The
dominance of endemic species in these cores supports our in-
terpretation that surface water throughflow occurred from the
southwest Pacific Ocean into the AAG in the middle Eocene. The
virtual absence of southwest Pacific dinocysts in the early Eocene
section of the same cores indicates that, before 49–50 Ma, the
Tasmanian Gateway was still closed. This constrains the timing of
the onset of surface water throughflow to between 50 and 49 Ma.
The age uncertainty of 1 million y is caused by the stratigraphic
uncertainty of the lowermost samples in theRV Sonne andRVRig
Seismic cores (SI Text).
Along with endemic dinocysts, the mid-Eocene section at Site

U1356 contains low-latitude taxa that do not occur in age-equiv-
alent strata in the southwest Pacific (SI Text). This combination of
endemic and low-latitude constituents in the dinocyst assemblages
testifies to a continued influence of the PLC on the Wilkes Land
margin during the mid-Eocene, with the PLC mixing with south-
west Pacific waters that entered the AAG through the Tasmanian
Gateway. The absence of low-latitude taxa from the southwest
Pacific Ocean also implies that the northern continental blocks in
the Tasmanian Gateway and/or the westward throughflow of the
Antarctic Counter Current effectively blocked the eastward flow
of PLC surface waters to the Pacific side of the Tasmanian
Gateway during the middle Eocene (Fig. 4).

Tectonic Reconstructions of the Eocene Tasmanian Gateway
The sediment records from the continental blocks that constitute
the southern part of the Tasmanian sill indicate that an abrupt
increase in subsidence occurred at the end of the early Eocene
(∼51 Ma) (33, 34). This increase correlates to a seismic reflector
that can be traced throughout the STR. The overlying Eocene
strata cover large areas of the STR, vary in thickness, and are
mostly absent on the main structurally high areas. The seismic
reflector has been interpreted to represent the transition from a
southwest–northeast trending movement to north–south rifting of
the STR dated as late Paleocene to early Eocene (34, 35). Sub-
sequently, at ∼48 Ma, oceanic spreading rates markedly increased
in the AAG (36). The most plausible explanation for the recorded
tectonic evolution is that accelerated rifting during the early-to-
middle Eocene transition (∼52–48Ma) caused a gradual drowning
of continental blocks in the southern part of the Tasmanian
Gateway (SI Text and Fig. S6). This drowning scenario would ex-
plain the increased sedimentation rates in subbasins on the top of
the STR, which in such shallow marine settings, are largely con-
trolled by the subsidence of the continental crust (37). Further-
more, the deepening periphery of these blocks would facilitate the
establishment of a southern connection of surface waters between
the STR and the rifted margin of Antarctica. The southern region
of the Tasmanian Gateway (>60°S) would have been under the
influence of an atmospheric circulation dominated by easterlies
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Fig. 2. Differences in surface water plankton (dinocyst) assemblages on both
sides of the Tasmanian Gateway across the early-to-middle Eocene transition.
Relative abundances of Apectodinium spp. and endemic Antarctic dinocysts
from the six investigated localities are plotted separately for both sides of the
Tasmanian Gateway. Error bars reflect stratigraphic uncertainty (SI Text). The
lines through the dinocyst records from IODP Site U1356 and ODP Sites 1172
and 1171 are five-point running means. Data from Otway Basin are from ref.
23. Data from RV Rig Seismic and RV Sonne cruises are from ref. 24.
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(11) favoring a westward throughflow, which is consistent with our
dinocyst-inferred surface water circulation patterns.

Temperature Evolution
Recent GCM experiments comparing a closed vs. open Tasmanian
Gateway suggest a regional Southern Ocean surface water cooling
of ∼3 °C as the gateway opened (14). These experiments were set
up to investigate the deepening of the Tasmanian Gateway at 35.5
Ma and are not directly applicable to the scenario of early southern
opening of the gateway around 49–50Ma. Themodel results, which
assume a shallow but open Drake Passage (9), imply that any cir-
cum-Antarctic circulation would have effectively reduced the SST
of the Southern Ocean because of the longer residence time of
surface waters at high latitudes. To test this implication, we have
applied organic biomarker proxies on sediments from Site U1356
to estimate sea surface (TEX86) (38–40) and continental air
temperature (pollen assemblages and the organic Methylation
Index of Branched Tetraethers over the Cyclisation Ratio of
Branched Tetraethers (MBT/CBT) biomarker proxy) (41, 42).
We also generated MBT/CBT data for ODP Site 1172 in the
southwest Pacific Ocean (Fig. 1) and compare the paleotemper-
ature records with the previously published TEX86 SST record at
that site (2) (Fig. 3). The TEX86 data from Site U1356 indicate
near-tropical conditions in the early Eocene, with SSTs reaching
31 °C (calibration error ± 2.5 °C) and 24 °C (calibration error ±
4.0 °C) using theTEXH

86 andTEX
L
86 calibrations, respectively (39, 40)

(Fig. 3). Mean summer air temperatures of the Antarctic coastal

regions were 20–23 °C (calibration error ± 5.0 °C), which were
reconstructed independently from both terrestrial palynomorphs
and theMBT/CBT proxy (42) (Fig. 3). More important to the study
presented here is the cooling across the early-to-middle Eocene
transition: SSTs along the Wilkes Land margin cooled by 2–4 °C,
whereas air temperatures cooled by ∼4 °C (Fig. 3 and statistical
evaluations in SI Text). Although the magnitude of cooling falls
within the calibration errors (for absolute temperature) of the
proxies, proxy intercomparison studies have shown that TEX86
variability within the calibration error does match temperature
changes invoked from other temperature proxies (40) also in the
Eocene Southern Ocean (6). Moreover, the same magnitude of
continental cooling as seen in the MBT/CBT proxy is inferred
from parallel pollen–spore assemblage analyses analyzed from
the same sediments (1) (Fig. 3). In the southwest Pacific Ocean,
gradual cooling after the Early Eocene Climatic Optimum
(EECO) started at ∼4.5 Ma. This onset of cooling is also seen
in multiproxy temperature reconstructions from Eocene sec-
tions in New Zealand (3, 4), which extend the temperature
signal to larger parts of the Southern Ocean. The combined
micropaleontological and organic geochemical results show that
the termination of the EECO and the onset of cooling coincided
with the early opening of the Tasmanian Gateway (49–50 Ma).

Climatic Significance of Tasmanian Gateway Opening
The GCM experiments that simulate the effects of Tasmanian
Gateway opening suggest that the onset of circum-Antarctic
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surface circulation induces regional surface water cooling (11, 14).
Moreover, because the Southern Ocean surface waters were the
primary source region for intermediate waters in that time, the
cooling is propagated globally through downward convection/
water mass formation during the winter and then advection by
currents at depth (2, 21). Three independent lines of marine proxy
evidence directly support a primary source of intermediate water
formation in the Southern Ocean. (i) Neodymium isotope mea-
surements on fish teeth suggest that the Southern Ocean was the
dominant region for intermediate water formation in the Eocene
(22). (ii) Global intermediate waters witness a gradual cooling
coincident with our inference of high-latitude surface water
cooling and the onset of throughflow across the Tasmanian Gate-
way (Fig. 3). (iii) Pollen-based temperature reconstructions suggest
mean wintertime temperatures on the Wilkes Land coastal margin
of ∼10–15 °C (1). This season-specific winter temperature re-
construction agrees with the reconstructed temperatures of the
intermediate water masses (Fig. 3). This consistency in tem-
perature inferences lends additional support to the South Pacific

intermediate water formation taking place primarily during
wintertime. Other studies provide evidence for an additional
North Atlantic source for deep water formation (43) initiating
around the early-to-middle Eocene boundary. The depth of this
water mass would suggest a position below the carbonate com-
pensation depth, and that makes it uncertain whether this deep
water mass is represented in the data compilation of benthic fo-
raminiferal oxygen isotopes (Fig. 3). Moreover, the intermediate
deep water carbon isotope gradients between oceanic basins lend
additional support for increased formation of Southern Ocean
intermediate waters (43) during the middle Eocene, providing
additional evidence for a connection between the temperature
trends in benthic foraminiferal oxygen isotopes and in South-
ern Ocean surface waters.
The absolute temperatures from benthic foraminiferal oxygen

isotopes are much (10–18 °C) cooler compared with organic SST
proxies in the high southern latitudes (Fig. 3). This offset is too
large to be explained by an additional influence of continental ice
on the isotopes. However, it can be readily reconciled considering
that there is likely a summer bias of organic paleothermometer
proxies when applied to Paleogene high latitudes (1, 2) (additional
discussions in SI Text) and that deep water formation in the
Southern Ocean took place primarily in winter (1, 2, 21). Both
these inferences are well-supported by comparison with in-
dependent temperature data (1, 2).
Irrespective of constraints on absolute temperatures, the timing

of the initiation of cooling in Southern Ocean surface and in-
termediate deep waters and Antarctic continental temperature
records (Fig. 3) is remarkably consistent with the inferred onset of
throughflow across the Tasmanian Gateway. However, it should
be noted that the model experiments on Tasmanian Gateway
opening simulate a different scenario, in which the Tasmanian
Gateway deepens in the northern part of the gateway (14), causing
an eastward throughflow of the PLC into the southwest Pacific
Ocean (i.e., a proto-ACC) rather than the Antarctic Counter
Current at higher latitudes; thus, it is the opposite of what we
reconstruct for the early Eocene opening. We propose that any
circum-Antarctic circulation arguably has an effect of cooling,
because it reduces the influence of the lower-latitude currents on
the high latitudes.
The stable (sub-) equatorial temperatures throughout the Eo-

cene (2, 18, 19), in contrast to marked Southern Ocean cooling,
are difficult to explain solely through atmospheric CO2 forcing
(17). In the presumed absence of major changes in ice albedo
feedbacks in the Eocene, additional climatic forcings are required
that only influence the high latitudes. In the scenario proposed
here, opening of Southern Ocean Gateways and resulting through-
flow resulted in cooling of Antarctic margins. This scenario
would also explain why (sub-) equatorial temperatures remained
stable: these regions are not widely influenced by the effects of the
opening of high-latitude gateways. However, because intermediate
deep water temperatures also cooled in the middle Eocene, it
would be expected that equatorial regions that experienced up-
welling from deep intermediate waters should have undergone
some cooling in conjunction with high-latitude cooling. Thus, it
is likely that equatorial temperature evolution was spatially het-
erogeneous in nature during the Eocene. Equatorial paleoclimate
archives from the Eocene upwelling regions are required to test
this hypothesis. Although the available data suggest that atmo-
spheric CO2 declined over themiddle Eocene (17), an explanation
of all available temperature records requires a climatic forcing in
the Southern Ocean and the evolution of meridional temperature
gradients. The early Eocene opening of the Tasmanian Gateway
provides, at least conceptually, a plausible mechanism for cooling
the southern high-latitude surface waters without affectingmost of
the global (sub-)equatorial surface waters.

1128

U1356

1128

U1356

A

B

Australia

Antarctica

Antarctica

Australia

NZ

NZ

140°E

160°E

180°

120°E

120°E

16
0°

W

14
0°

W

120°W

120°W

180°60
°S

60°S

40°S

160°E

16
0°

W

40
°S

140°E

160°E

180°

120°E

120°E

16
0°

W

14
0°

W

120°W

120°W

180°60
°S

60°S

40°S

160°E

16
0°

W

40
°S

1171

1171

EAC

EAC

TC

AAG

AAG

TC

PLC

PLC

42.8 Ma

53.8 Ma

Apectodinium spp. Endemic Antarctic
dinocysts

Other low-latitude and 
cosmopolitan dinocysts

S/RS

OB
1172

1172

OB

S/RS

Fig. 4. Tectonic evolution of the Tasmanian Gateway. Eocene continental
configurations of the Australian sector of the Southern Ocean for the (A)
early Eocene (subchron C24n; 53.8 Ma) and (B) middle Eocene (chron C20;
42.8 Ma). Maps show the positions of the study sites: ODP Site 1128 (23);
IODP Site U1356 (this study); Dilwyn Formation, Otway Basin (OB), Victoria
(25); RV Sonne and RV Rig Seismic gravity core sites (S/RS) (24); ODP Site 1172
(13); and ODP Site 1171 (13). Dark gray areas reflect present day shorelines,
and light gray areas are submerged continental blocks above 3,000 m water
depth. The maps are overlain by surface currents as interpreted from mod-
eling experiments (11, 14). The Tasmanian Gateway was open to shallow
circulation from ∼50 Ma onward, which allowed for westward leakage
of the Antarctic Counter Current. EAC, East Australian Current; NZ, New
Zealand; TC, Tasman Current. Modified from ref. 44.

Bijl et al. PNAS | June 11, 2013 | vol. 110 | no. 24 | 9649

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220872110/-/DCSupplemental/pnas.201220872SI.pdf?targetid=nameddest=STXT


ACKNOWLEDGMENTS. The authors thank Peter J. Hill and Neville F. Exon for
discussions. This research used samples from the Ocean Drilling Program
(ODP) and the Integrated Ocean Drilling Program (IODP). P.K.B. and H.B.
thank the Netherlands Organization for Scientific Research [Grant
86610110 (to H.B.)] and the LPP Foundation for funding, and N. L. D. Welters
for sample processing. J.A.P.B. acknowledges the Natural Environmental Re-
search Council (NERC) and IODP–United Kingdom for Standard Research
Grant NE/I00646X/1 and Cruise Participation Grant NE/H014616/1. S.M.B.

acknowledges NERC for Cruise Participation Grant NE/H020098/1 and
postcruise research support (Grant NE/J019801/1). J.P. and U.R. acknowledge
support through German Research Foundation Grants PR 651/10 and RO
1113/6. J.P. was supported by the Biodiversity and Climate Research Center
(BIK-F) within the Hessian Initiative for Scientific and Economic Excellence
(LOEWE). L.T. acknowledges support from National Science Foundation Grant
OCE 1058858. A.S. thanks the European Research Council for Starting
Grant 259627.

1. Pross J, et al. (2012) Persistent near-tropical warmth on the Antarctic continent during
the early Eocene epoch. Nature 488(7409):73–77.

2. Bijl PK, et al. (2009) Early Palaeogene temperature evolution of the southwest Pacific
Ocean. Nature 461(7265):776–779.

3. Hollis CJ, et al. (2009) Tropical sea temperatures in the high latitude south Pacific
during the Eocene. Geology 37(2):99–102.

4. Hollis CJ, et al. (2012) Early Paleogene temperature history of the Southwest Pacific
Ocean: Reconciling proxies and models. Earth Planet Sci Lett 349–350:53–66.

5. Kennett JP, et al. (1974) Development of the circum-antarctic current. Science 186(4159):
144–147.

6. Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic
ocean, and their impact on global paleoceanography. J Geophys Res 82:3843–3860.

7. Zachos JC, Wise SW (1992) Early oligocene ice sheet expansion on Antarctica: Stable
isotope and sedimentoligical evidence from Kerguelen Plateau, southern Indian
Ocean. Geology 20:569–573.

8. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic
region. Palaeogeogr Palaeoclimatol Palaeoecol 198:11–37.

9. Lagabrielle Y, Goddéris Y, Donnadieu Y, Malavieille J, Suarez M (2009) The tectonic
history of Drake Passage and its possible impacts on global climate. Earth Planet Sci
Lett 279:197–211.

10. Sloan LC, Walker JCG, Moore TC, Jr. (1995) Possible role of oceanic heat transport in
early Eocene climate. Paleoceanography 10(2):347–356.

11. Huber M, et al. (2004) Eocene circulation of the Southern Ocean: Was Antarctica kept
warm by subtropical waters? Paleoceanography 19:4026.

12. Stickley CE, et al. (2004) Timing and nature of the deepening of the Tasmanian
Gateway. Paleoceanography 19:PA4027.

13. Bijl PK, et al. (2011) Environmental forcings of Paleogene Southern Ocean di-
noflagellate biogeography. Paleoceanography 26:PA1202.

14. Sijp WP, England MH, Huber M (2011) Effect of the deepening of the Tasman
Gateway on the global ocean. Paleoceanography 26:PA4207.

15. Sluijs A, Pross J, Brinkhuis H (2005) From greenhouse to icehouse; organic walled
dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Sci Rev
68:281–315.

16. Huber M, Nof D (2006) The ocean circulation in the Southern Hemisphere and its
climatic impacts in the Eocene. Palaeogeogr Palaeoclimatol Palaeoecol 231:9–28.

17. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse
warming and carbon-cycle dynamics. Nature 451(7176):279–283.

18. Pearson PN, et al. (2007) Stable tropical climate through the Eocene epoch. Geology
35(3):211–214.

19. Liu Z, et al. (2009) Global cooling during the eocene-oligocene climate transition.
Science 323(5918):1187–1190.

20. Huber M (2008) Climate change. A hotter greenhouse? Science 321(5887):353–354.
21. Huber M, Caballero R (2011) The early Eocene equable climate problem revisited.

Climate of the Past 7:603–633.
22. Thomas DJ, Bralower TJ, Jones CE (2003) Neodymium isotopic reconstruction of the

late Paleocene—early Eocene thermohaline circulation. Earth Planet Sci Lett 209:
309–322.

23. Feary DA, Hine AC, Malone MJ (2000) Great Australian Bight—Cenozoic cool-water
carbonates. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 182
(US Government Printing Office, College Station, TX).

24. Truswell EM (1997) Palynomorph assemblages from marine Eocene sediments on the
west Tasmanian continental margin and the South Tasman Rise. Aust J Earth Sci 44:
633–654.

25. Cookson IC (1965) Microplankton from the Paleocene Pebble Point Formation, south-
western Victoria. Proc R Soc Vic 78:137–141.

26. Escutia C, Brinkhuis H, Klaus A; Expedition 318 Scientists (2011) Proceedings of the
Ocean Drilling Program, Proceedings of the IODP, Volume 318 (Integrated Ocean
Drilling Program Management International, Inc., Tokyo).

27. Sluijs A, Brinkhuis H (2009) A dynamic climate and ecosystem state during the Pa-
leocene-Eocene Thermal Maximum: Inferences from dinoflagellate cyst assemblages
on the New Jersey Shelf. Biogeosciences 6:1755–1781.

28. Partridge AD (1976) The geological expression of eustacy in the early Tertiary of the
Gippsland Basin, Victoria. APEA J 16:73–79.

29. Cookson IC, Eisenack A (1965) Microplankton from the Browns Creek clays sw.
Victoria. Proc R Soc Vic 79:119–131.

30. Cookson IC (1965) Cretaceous and Tertiary microplankton from south-eastern Aus-
tralia. Proc R Soc Vic 78:85–93.

31. Cookson IC, Eisenack A (1961) Tertiary microplankton from the Rottnest Island Bore,
western Australia. J R Soc West Aust 44:39–47.

32. Truswell EM (1982) Palynology of seafloor samples collected by the 1911-1914 Aus-
tralasian Antarctic expedition: Implications for the geology of coastal east Antarctica.
J Geol Soc Aust 29:343–356.

33. Stickley CE, et al. (2004) Late Cretaceous–Quaternary biomagnetostratigraphy of ODP
Sites 1168, 1170, 1171, and 1172, Tasmanian Gateway. Proceedings of the Ocean
Drilling Program, Scientific Results, Volume 189, eds Exon NF, Kennett JP, Malone M
(US Government Printing Office, College Station, TX), pp 1–57.

34. Röhl U, et al. (2004) On the search for the Paleocene/Eocene boundary in the
Southern Ocean: Exploring ODP Leg 189 Holes 1171D and 1172D, Tasman Sea.
Geophys Monogr Ser 151:113–126.

35. Hill PJ, Exon NF (2004) The Cenozoic Southern Ocean: Tectonics, Sedimentation and
Climate Change Between Australia and Antarctica, Geophysical Monograph Series
151, eds Exon NF, Kennett JP, Malone M (American Geophysical Union, Washington,
DC), pp 19–42.

36. Close DI, Watts AB, Stagg HMJ (2009) A marine geophysical study of the Wilkes Land
rifted continental margin, Antarctica. Geophys J Int 177:430–450.

37. Sømme TO, Helland-Hansen W, Granjeon D (2009) Impact of eustatic amplitude
variations on shelf morphology, sediment dispersal, and sequence stratigraphic in-
terpretation: Icehouse versus greenhouse systems. Geology 37(7):587–590.

38. Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional var-
iations in marine crenarchaeotal membrane lipids: A new tool for reconstructing
ancient sea water temperatures? Earth Planet Sci Lett 204:265–274.

39. Kim J, et al. (2010) New indices and calibrations derived from the distribution of
crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface tempera-
ture reconstructions. Geochim Cosmochim Acta 74:4639–4654.

40. Schouten S, Hopmans EC, Sinninghe Damsté JS (2013) The organic geochemistry of
glycerol dialkyl glycerol tetraether lipids: A review. Org Geochem 54:19–61.

41. Weijers JWH, Schouten S, van den Donker JC, Hopmans EC, Sinninghe Damsté JS
(2007) Environmental controls on bacterial tetraether membrane lipid distribution in
soils. Geochim Cosmochim Acta 71:703–713.

42. Peterse F, et al. (2012) Revised calibration of the MBT-CBT paleotemperature proxy
based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim
Acta 96:215–229.

43. Hohbein MW, Sexton PF, Cartwright JA (2012) Onset of North Atlantic deep water
production coincident with inception of the Cenozoic cooling trend. Geology 40(3):
255–258.

44. Cande SC, Stock JM (2004) The Cenozoic Southern Ocean: Tectonics, Sedimentation
and Climate Change Between Australia and Antarctica, Geophysical Monograph Se-
ries (151), eds Exon NF, Kennett JP, Malone M (American Geophysical Union, Wash-
ington, DC), pp 5–18.

45. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aber-
rations in global climate 65 Ma to present. Science 292(5517):686–693.

9650 | www.pnas.org/cgi/doi/10.1073/pnas.1220872110 Bijl et al.

www.pnas.org/cgi/doi/10.1073/pnas.1220872110

