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We investigate the combinatorial properties of the traces of the
nth Hecke operators on the spaces of weight 2k cusp forms of level
N. We establish examples in which these traces are expressed in
terms of classical objects in enumerative combinatorics (e.g., tilings
and Motzkin paths). We establish in general that Hecke traces are
explicit rational linear combinations of values of Gegenbauer (also
known as ultraspherical) polynomials. These results arise from
‘‘packaging’’ the Hecke traces into power series in weight aspect.
These generating functions are easily computed by using the
Eichler–Selberg trace formula.

Modular forms play many roles in mathematics. For exam-
ple, they often occur as generating functions for interest-

ing quantities in arithmetic, combinatorics, and number theory.
The theory of Hecke operators then often applies and leads to
results of interest. Here, we examine the combinatorial proper-
ties of the action of Hecke operators on spaces of modular forms.

1. Introduction and Statement of Results
Throughout this article, let k be a positive integer, and let
S2k(�0(N)) [respectively (resp.), S2k

new(�0(N))] denote the space
generated by the weight 2k cusp forms (resp. newforms) on the
congruence subgroup �0(N) (see refs. 1 and 2 for background on
modular forms). For positive integers n and N, which are
coprime, define the integers Tr2k(�0(N), n) and Tr2k

new(�0(N), n)
by the following:

Tr2k
new��0�N� , n� :� trace of the nth Hecke

operator on S2k
new��0�N�� ; [1.1]

Tr2k��0�N� , n� :� trace of the nth Hecke

operator on S2k��0�N�� . [1.2]

Recent works (for example, see refs. 3–7) have proven congru-
ences between such traces and combinatorial numbers, such as
the Apéry numbers.

A�n� :� �
j�0

n �n � j
j �2�n

j�2

.

For example, Ahlgren and K.O. (3) confirmed the following
conjecture of Beukers:

Tr4
new��0�8� , p� � A� p � 1

2 � �mod p2�

for every odd prime p. Many more such congruences for traces
are obtained in ref. 4.

In view of these congruences, it is natural to investigate the
intrinsic combinatorial properties of these traces. In the n aspect
(i.e., where 2k and N are fixed), one does not expect to find a
simple combinatorial description of these traces. However, in the
weight aspect, these traces are combinatorial numbers. We begin
by presenting four examples of this phenomenon.

There are many instances in which these traces are combina-
torial numbers analogous to the Apéry numbers. For example,
we establish the following fact.

Theorem 1.1. If k � 2, then

Tr2k��0�7� , 2� � �2 � �
r�0

k�1� k � r � 1
2r � ���2�k�r�1.

Theorem 1.1 provides a combinatorial formula for the trace of
T2 on the space of cusp forms for the congruence subgroup �0(7).
Such formulas are often connected closely to hypergeometric
functions. First, we recall the traditional notation for these
functions. If n is a positive integer, then define (a)n by the
following:

�a�n :� a�a � 1��a � 2� · · · �a � n � 1�. [1.3]

If n � 0, then let (a)n :� 1. Gauss’ 2F1 hypergeometric functions
are defined by the following:

2F1�a, b
c�x� :� �

n�0

�
�a�n�b�n

�c�nn!
� xn. [1.4]

We establish the following formula involving 2F1 functions
(which are Gegenbauer polynomials).

Theorem 1.2. If k � 3, then

Tr2k��0�17� , 3� � �2 � 3��2�k�1

�2F1� �2 � k��2, �3 � k��2
2 � k � 9�

� ��2�k�2F1� �1 � k��2, �2 � k��2
1 � k � 9�.

In general, we will demonstrate that, apart from certain simple
summands, Hecke traces are almost always sums of such 2F1

evaluations.
In view of the combinatorial formulas in Theorems 1.1 and 1.2,

it is natural to wonder whether these traces are connected to
classical topics in enumerative combinatorics. The next two
examples confirm this speculation.

If n is a nonnegative integer, then let

T�n� :� #�tilings of a 3 � n rectangle using

1 � 1 and 2 � 2 tiles� . [1.5]

For example, Fig. 1 shows the five tilings when n � 3.
It turns out that Tr12(�0(3), 2) � 6�T(3) � 30, which is an

example of the following more general result.

Theorem 1.3. If k � 3, then

Tr2k��0�3� , 2� � 6��1�k�T�k � 3� .

Abbreviation: resp., respectively.
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As another example, we consider Motzkin paths. An elevated
Motzkin path of length n is a lattice path that lies strictly above
the x axis, apart from its endpoints (0, 0) and (n, 0), with steps
of the form (1, 1), (1, �1), and (1, 0). If n � 2, then let

Ma�n� :� sum of areas bounded by length n elevated

Motzkin paths and the x axis. [1.6]

For example, Fig. 2 shows the four elevated Motzkin paths of
length 5.

Therefore, Ma(5) � 20. It results that Tr12(�0(4), 3) �
12�Ma(5) � 240. This formula also generalizes to other weights,
as given in the following result.

Theorem 1.4. If k � 3, then

Tr2k��0�4� , 3� � 12��1�k�Ma�k � 1� .

The four theorems given above are special cases of a general
theorem concerning the combinatorial properties of the traces of
Hecke operators in weight aspect. To illustrate this general
phenomenon, consider the cusp forms given by the following:

F2k
new�N ; z� :� �

n�1
gcd�N, n��1

�

Tr2k
new��0�N� , n�qn [1.7]

(note that q :� e2�iz throughout). By the Atkin–Lehner theory,
such a cusp form is essentially (and often exactly) the sum of the
newforms in the space S2k

new(�0(N)).
To study the coefficients of these cusp forms, it is convenient

to employ the Eichler–Selberg trace formula (for example, see
refs. 8–10). Although these formulas are quite formidable at first

glance, we make some elementary observations that reveal some
surprisingly simple properties leading to results such as the
theorems given above.

For the group �0(8), consider the forms F2k
new(8; z):

F4
new�8; z� � q � 4q3 � 2q5 � 24q7 � · · ·

F6
new�8; z� � q � 20q3 � 74q5 � 24q7 � · · ·

F8
new�8; z� � 2q � 40q3 � 348q5 � 1680q7 � · · ·

···
···

···
···

···
···

[1.8]

For general N, we use these coefficients, grouped by column,
to define the following power series:

Rnew��0�N� , n ; x� :� �
k�1

�

Tr2k
new��0�N� , n�xk�1. [1.9]

Similarly, we consider the following power series:

R��0�N�, n; x� :� �
k�1

�

Tr2k��0�N� , n�xk�1. [1.10]

For the forms in 1.8, calculations suggest that these series are
rational functions. In particular, for levels 3, 5, and 7, calculations
suggest the following formulas:

Rnew��0�8� , 3; x� � �4x � 20x2 � 40x3 � 8x4 � 20x5 � · · ·

�
� 4x

27x3 � 15x2 � 5x � 1
,

Rnew��0�8� , 5; x� � �2x � 74x2 � 348x3 � · · ·

�
� 50x3 � 84x2 � 2x

3,125x5 � 625x4 � 70x3 � 14x2 � 5x � 1
,

and

Rnew��0�8� , 7; x� � 24x � 24x2 � 1,680x3 � · · ·

�
168x2 � 24x

2,401x4 � 392x3 � 78x2 � 8x � 1
.

These formulas prove to be correct, and indeed more is true. For
generating functions of traces in general, we prove the following
result.

Theorem 1.5. If N is a positive integer, and if n � 2 is prime to N,
then Rnew(�0(N), n; x) and R(�0(N), n; x) are both rational
functions in �(x). Moreover, all of their poles are simple and are
algebraic numbers of degree � 2 over �.

In section 3, we obtain Theorem 3.3, which is a result describing
a basis of rational functions that are summands for R(�0(N), n;
x). By the Atkin–Lehner theory of newforms, Theorem 1.5
follows as an immediate corollary. The most complicated ratio-
nal functions appearing in Theorem 3.3 are of the following form:

nx � 1
n2x2 � �2n � s2�x � 1

.

By using the well known generating functions for the Gegen-
bauer (also known as ultraspherical) polynomials Cn

(�)(r)

Fig. 1. Square tilings when n � 3.

Fig. 2. Motzkin paths for n � 5.
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�1 � 2rx � x2��� � �
n�0

�

Cn
����r�xn

(for example, see section 6.4.10 in ref. 11), and the fact that

Cn
����r� �

���n

n!
�2r�n�2F1��n�2, �1 � n��2

1 � n � �
� 1

r2�
(for example, see section 6.4.12 in ref. 11), it is not difficult to
deduce the following:

nx � 1
n2x2 � �2n � s2�x � 1

� 1 � nx

� �
m�1

�

�s2 � 2n�m
2F1��m�2, �1 � m��2

�m � 4n2

�2n � s2�2� xm

� n �
m�1

�

�s2 � 2n�m
2F1��m�2, �1 � m��2

�m � 4n2

�2n � s2�2� xm	1.

[1.11]

Consequently, it follows in general that Hecke traces are essen-
tially simple sums of values of Gegenbauer polynomials as in
Theorem 1.2.

Theorem 3.3, which is not difficult to prove, follows from an
analysis of the intrinsic combinatorial structure of the Eichler–
Selberg trace formula for Hecke operators. In section 2, we recall
a formulation of this result, and we make some key observations.
In the last section, we derive Theorems 1.1–1.4.

2. The Eichler–Selberg Trace Formula
Our methods involve reformulating the Eichler–Selberg trace
formula for Tr2k(�0(N), n) (see refs. 8–10). We use the version
of this trace formula due to Hijikata (see refs. 9 and 12). Fix
throughout positive integers k, N, and n. Let

E � �s � � � s2 � 4n 	 0�, [2.1]

H � �s � � � 
 t � �	, s2 � 4n � t2�, and [2.2]

P � �s � � � s2 � 4n � 0�. [2.3]

Decompose E into the disjoint union E � E
 � E�, where (s �
E
 (resp., s � E�) if the discriminant of �(�s2 � 4n) is 1 modulo
4 (resp., 0 modulo 4). For each s � E � H � P, define the
nonnegative integer t � t(s) by the following:

s2 � 4n

� �
mt2 if s � E
 , and m is a fundamental discriminant
4mt2 if s � E� , and 4m is a fundamental discriminant
t2 if s � H ,
0 if s � P .

[2.4]

Then define the following sets of integers:

F�s� :� 	�f � �	 � f divides t�s�� if s � E � H ,
�1� if s � P . [2.5]

Furthermore, for s � E � H � P, define y and y� to be the roots
of X2 � sX 	 n � 0, and accordingly let

a�s, k, n� :� �
1
2

�
y2k�1 � y�2k�1

y � y�
if s � E ,

min� �y � , �y� ��2k�1

�y � y� �
if s � H ,

1
4

� y �nk�1 if s � P .

[2.6]

Finally, let

��k, n� :� �
p�n

1 � pordp�n�	1

1 � p
if k � 1,

0 otherwise;
[2.7]

and, if n is a perfect square,

��k, N, n� :�
1

12
�2k � 1�nk�1N 


��N

�1 � 1���; [2.8]

otherwise, �(k, N, n) :� 0.

Theorem 2.1 (ref. 12, theorem 0.1). If N and n are positive coprime
integers, and k � 1, then

Tr2k��0�N� , n�

� ��k , n� � ��k , N , n�

� �
s�E�H�P

a�s , k , n� �
f�F�s�

b�s , f , n�c�s , f , N , n� ,

where b(s, f, n), c(s, f, N, n) are rational numbers depending only
on s, f, N, and n, and they are given explicitly (see refs. 9, section
2, and 12, section 0).

Remark: The numbers b(s, f, n) in the statement of the
theorem are given in terms of class numbers of orders of
imaginary quadratic fields if s � E and in terms of Euler’s
-function if s � H. The numbers c(s, f, N, n) are calculated by
counting solutions to certain congruences. In both cases, the
numbers can be calculated explicitly, but for brevity, we do not
repeat their definitions here. The main observation is that their
values are independent of the weight 2k.

3. Proof of Theorem 1.5
Throughout this section we fix coprime positive integers n and
N, and we recall the definition of the following generating
function:

R��0�N�, n; x� � �
k�1

�

Tr2k��0�N� , n�xk�1

from 1.10. In this section, we explore the combinatorics of the
variation of Tr2k(�0(N), n) in k. By the Atkin–Lehner theory of
newforms, Rnew(�0(N), n; x) is an integral linear combination of
R(�0(M), n; x), where M�N. Hence, it suffices to examine
R(�0(N), n; x). In particular, in Theorem 3.3, which is a more
precise version of Theorem 1.5, we determine an explicit formula
for R(�0(N), n; x).

Continuing with the notation of section 2, we first make the
following observation about the coefficients a(s, k, n) for s � E.

Proposition 3.1. If s � E, then

a�s, k, n� �
1
2 �

j�0

k�1

��1� j� 2k � 2 � j
j � njs2k�2j�2.

17018 � www.pnas.org�cgi�doi�10.1073�pnas.0407223101 Frechette et al.



Proof: From 2.6, when s � E,

a�s, k, n� �
1
2

�
y2k�1 � y�2k�1

y � y�
�

1
2 �

j�0

2k�2

y jy�2k�2�j. [3.1]

This sum can be expressed in terms of powers of yy� and y 	 y� by
using the following relation:

ym � y�m � �
j�0

 m�2

��1� j
m

m � j �m � j
j � �yy� � j�y � y� �m�2j.

[3.2]

Then, a straightforward induction, in conjunction with the
relations y 	 y� � s and yy� � n, yields the desired expression.

We next determine the generating function for the power
series with coefficients a(s, k, n), for s � E.

Lemma 3.2. If s � � and s2 � 4n  0, then

�
k�1

�

a�s, k, n�xk�1 �
1
2

�
nx � 1

n2x2 � �2n � s2�x � 1
.

Proof: The proof follows from Proposition 3.1 and from the
following:

�
j�1

�

��1� j� 2k � j
j � xj �

1
�1 � x�2k	1 , [3.3]

which is simply the binomial theorem. More specifically, we have
the following:

�
k�1

�

a�s, k, n�xk�1 �
1
2 �

k�1

� �
j�0

k�1

��1� j� 2k � 2 � j
j � njs2k�2j�2xk�1,

�
1
2 �

k�0

� �
j�0

�

��1� j� 2k � j
j � njs2kxk	j,

�
1
2 �

k�0

� s2kxk

�nx � 1�2k	1 ,

where the first equality follows from Proposition 3.1, the second
equality follows after reindexing the sums, and the third equality
follows from 3.3.

Now, let

S�N, n� :� �
N
12 


��N

�1 � 1��� if n is a perfect square,

0 otherwise;

[3.4]

and

��N, n� :� 	�n
2

c�2�n, 1, N, n� if n is a perfect square,

0 otherwise,

[3.5]

where c(2�n, 1, N, n) is defined as in ref. 12, section 0.

Theorem 3.3. If N and n are coprime positive integers, then

R��0�N�, n; x�

� ��1, n� � S�N, n�
nx � 1

�nx � 1�2 �
��N, n�

nx � 1

� �
d�n

d�n

2d2

n � d2 �
f��n

d�d�

b�n
d

� d, f, n�c�n
d

� d, f, N, n�
d2x � 1

�
1
2 �

s��
s2�4n0

�
f�t�s�

b�s, f, n�c�s, f, N, n�

�
nx � 1

n2x2 � �2n � s2�x � 1
.

Proof: We proceed by using the trace formula from Theorem
2.1. The first and second terms in the proposed formula for
R(�0(N), n; x) follow easily from 2.7 and 2.8. The third term
arises from the terms in the trace formula corresponding to s �
P. (We use the fact that b(s, 1, n) � 1, as in section 0 of ref. 12.)
The sum on divisors d of n with d  �n corresponds to the terms
in the trace formula coming from s � H. Finally, by using Lemma
3.2, the last sum corresponds to the sum on s � E in the trace
formula.

Remark: By taking n � 1, Theorem 3.3 provides generating
functions for dimensions of spaces of modular forms. For
example,

�
k�1

�

dim S2k��0�25��xk�1 �
x3 � 4x2 � 5x

�x � 1��x � 1�2

� 5x � 9x2 � 15x3 � · · · .

4. Combinatorial Theorems
Here, we prove Theorems 1.1–1.4. These results follow from an
analysis of the generating functions described in Theorem 3.3. By
using this result, it is straightforward to verify the following
proposition.

Proposition 4.1. With the notation as in 1.10, we have

R��0�3�, 2; x� �
2x

x � 1
�

2x
2x � 1

� �6x2 � 6x3 � 18x4 � · · · ,

R��0�7�, 2; x� � 3 �
2

x � 1
�

2x � 1
4x2 � 3x � 1

� �x � x2 � 9x3 � · · · ,

R��0�4�, 3; x� � 4 �
3

x � 1
�

1
3x � 1

� �12x2 � 24x3 � · · · ,

R��0�17�, 3; x� � 4 �
2

x � 1
�

6x � 2
9x2 � 2x � 1

� �4x � 20x2 � 28x3 � · · · .

Proof of Theorem 1.1: By Proposition 4.1, we have the following:

R��0�7�, 2; x� � 3 �
2

x � 1
�

2x � 1
4x2 � 3x � 1

� 1 � 2 �
n�1

�

xn �
2x � 1

4x2 � 3x � 1
.
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To prove the theorem, it suffices to show the following:

a�n� � �
j�0

n �n � j
2j ���2�n�j,

where the integers a(n) are defined by the following:

2x � 1
4x2 � 3x � 1

� �
n�0

�

a�n�xn � 1 � x � x2 � 7x3 � · · ·.

This is a straightforward calculation involving recurrence rela-
tions.

Proof of Theorem 1.2: By Proposition 4.1, we have the following:

R��0�17�, 3; x� � 4 �
2

x � 1
�

6x � 2
9x2 � 2x � 1

� 2 � 2 �
n�1

�

xn �
6x � 2

9x2 � 2x � 1
.

The theorem follows from 1.11.
Proof of Theorem 1.3: By Proposition 4.1, we have the following:

R��0�3�, 2; x� �
2x

x � 1
�

2x
2x � 1

�
6x2

2x2 � x � 1
.

By replacing x by �x, we obtain the known recurrence for 6T(n)
(see ref. 13, theorem 1).

Proof of Theorem 1.4: By Proposition 4.1, we have the following:

R��0�4�, 3; x� � 4 �
3

x � 1
�

1
3x � 1

�
12x2

3x2 � 2x � 1
.

By replacing x by �x, we obtain the known recurrence for
12Ma(n) (see ref. 14, propositions 1 and 2).

In view of the results presented here, it is natural to revisit the
properties of the Hecke operators from a purely combinatorial
perspective. For example, it is natural to ask the following
question.

Question. Are there direct combinatorial proofs of Theorems 1.1–1.4
using the theory of modular symbols?
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