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Abstract

Background: Although the use of microarray technology has seen exponential growth, analysis of microarray data remains
a challenge to many investigators. One difficulty lies in the interpretation of a list of differentially expressed genes, or in how
to plan new experiments given that knowledge. Clustering methods can be used to identify groups of genes with similar
expression patterns, and genes with unknown function can be provisionally annotated based on the concept of ‘‘guilt by
association’’, where function is tentatively inferred from the known functions of genes with similar expression patterns.
These methods frequently suffer from two limitations: (1) visualization usually only gives access to group membership,
rather than specific information about nearest neighbors, and (2) the resolution or quality of the relationships are not easily
inferred.

Methodology/Principal Findings: We have addressed these issues by improving the precision of similarity detection over
that of a single experiment and by creating a tool to visualize tractable association networks: we (1) performed meta-
analysis computation of correlation coefficients for all gene pairs in a heterogeneous data set collected from 2,145 publicly
available micorarray samples in mouse, (2) filtered the resulting distribution of over 130 million correlation coefficients to
build new, more tractable distributions from the strongest correlations, and (3) designed and implemented a new Web
based tool (StarNet, http://vanburenlab.medicine.tamhsc.edu/starnet.html) for visualization of sub-networks of the
correlation coefficients built according to user specified parameters.

Conclusions/Significance: Correlations were calculated across a heterogeneous collection of publicly available microarray
data. Users can access this analysis using a new freely available Web-based application for visualizing tractable correlation
networks that are flexibly specified by the user. This new resource enables rapid hypothesis development for transcription
regulatory relationships.
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Introduction

Several approaches to microarray data analysis make use of

clustering techniques [1–4] to suggest functional roles for previously

uncharacterized genes. Clustering approaches, however, normally

result in a graphical display of groupings that typically lack specific

information about the correlation of expression patterns between

two selected genes. Thus while group membership can be tentatively

established, the topology of the group, or the interactions between its

members are not necessarily well elucidated.

Synthesis and visualization of publicly available data remains a

challenge for biologists. Available microarray data is thus typically

not exploited beyond the scope of the original experiment.

Visualization platforms such as Cytoscape [5] or BioTapestry [6]

have provided versatile solutions for viewing large networks,

including association and interaction networks, but such platforms

expect a network provided by the user, and do not learn or

reconstruct the networks in and of themselves.

Dynamic Bayesian networks offer a viable approach for the

discovery of gene regulatory network topology [7–12]. However,

these methods are often computationally intensive, heuristic, and

limited to the study of small networks usually derived from time

series data. Our approach to addressing these issues focuses on

visualizing association networks local to a given gene of interest.

Using the Affymetrix GeneChip Mouse Genome 430 2.0 Array

platform, we (1) selected samples from a wide variety of tissues

and experimental conditions to build a table of correlation

coefficients from all pair-wise comparisons of genes represented

on the array, (2) selected a subset of those samples in order to

examine the differences in network topology which arise in a

smaller set of related regulatory states in cardiac tissues and early

developmental states, relative to the average regulatory state

represented by the full cohort of arrays, (3) built a Web based

application for user specified network construction and viewing,

and (4) provide assessment of the resultant networks by drawing

networks of known interactions involving the list of genes in the
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correlation network, and by determining Gene Ontology (GO)

[13] annotation terms that are enriched in the correlation network

as compared with the entire array platform. All data used in our

analyses were retrieved from the Gene Expression Omnibus [14].

Fig. 1 shows an overview of the project.

We present a user-directed approach to network elucidation,

and provide an intuitive Web-based interface (StarNet, http://

vanburenlab.medicine.tamhsc.edu/starnet.html) for visual explo-

ration of correlation networks radiating from a selected gene. In

short, there are two main parts to the work described here: (1)

construction of a database by combining annotations and known

interactions from Entrez Gene with our meta-analysis computa-

tion of correlation coefficients and data partitioning, and (2)

development of a Web-based front end (StarNet) that interrogates

the database, constructs networks for visualization, and performs

some analyses on those networks to provide a quick assessment of

their utility. StarNet results may suggest putative interactions,

either in biochemical pathways or transcriptional regulatory

networks, thus providing new hypotheses for additional experi-

ments. The results provided by StarNet may also be viewed as the

first step in a data analysis pipeline, where the putative networks

produced by StarNet, for example, may be studied further using

the tools of Bayesian network analysis.

Methods

Data Preparation
We selected 2,145 sample hybridizations performed on the

Affymetrix GeneChip Mouse Genome 430 2.0 Array which are

available from the Gene Expression Omnibus (GEO) [14,15] for

which raw data was available from GEO. Data from these samples,

which we have dubbed the ‘‘full cohort’’, cover a wide range of

tissues and experimental conditions. Of these hybridizations, 239

were from experiments related to cardiac development, cardiac

tissues in adult mice, or early development (the ‘‘cardiac cohort’’). A

complete list of the experimental datasets used is available at http://

www.vanburenlab.tamhsc.edu/starnet_doc.html.

Features on the array were mapped to Entrez Gene [16] IDs

using Version 9 of the mapping provided by Dai and colleagues

[17]. Their mapping yields 16,297 genes on the array. The arrays

within the full and cardiac cohorts were normalized separately,

using the justRMALite [18] package within the BioConductor

[19] suite of tools. This procedure performs quantile normaliza-

tion, positive match only adjustment, and Tukey median polish.

Pearson correlation coefficients were calculated for all pairwise

comparisons of genes on the array using Octave. This yielded

132,787,956 coefficients for each cohort.

Several subsets of the collection of correlation coefficients were

built. First, we selected the 20,000 (20K) largest positive

correlation coefficients. This procedure was repeated for 40,000

(40K) and 100,000 (100K) coefficients. The 20K, 40K, and 100K

sub-distributions were also formed for the largest negative

coefficients. We further considered the union of positive and

negative ‘‘extreme tails’’, for each of the three sizes. This

procedure was executed for both the full and cardiac cohorts,

yielding a total of 18 different sub-distributions.

To guarantee that each gene on the array is represented in our

distributions, a ‘‘genecentric’’ distribution was built. The ten

largest positive correlations to each gene were selected, with the

proviso that the p-value of the correlation was less than .05. This

was repeated for negative correlations, and again the union of

positive and negative correlations was considered. This procedure

was carried out for both full and cardiac cohorts, thus obtaining an

additional six distributions.

We built two further classes of ‘‘specialty’’ distributions, each a

variant on the genecentric distribution. First, the genecentric

construction was repeated, but constrained to those genes whose

GO [13] annotation contains the term ‘‘transcription’’. Next, the

same procedure was repeated for those genes GO-annotated with

either of the terms ‘‘transcription’’ or ‘‘signal’’. This yielded an

additional 12 distributions.

Database
Both sets of correlation coefficients were loaded into a MySQL

database, and the partitioning of the set of correlation coefficients

was executed using MySQL database calls scripted with Perl.

The database was also populated with Entrez Gene data and

Gene Reference Into Function (RIF) files available at NCBI’s FTP

site (ftp://ftp.ncbi.nlm.nih.gov/gene/; data was retrieved from

NCBI on April 26, 2007), which we filtered on their taxonomic ID

for mouse entries; Gene RIF interaction data are used in

constructing graphs of known interactions in StarNet.

Network Construction
The network construction algorithms were implemented in Perl.

The algorithms allow a variety of choices for defining network

topology. For details see the user manual at http://vanburenlab.

tamhsc.edu/starnet_doc.html. The relevant parameters (e.g.,

which type of network to build, which distribution to use) chosen

by the user on the submission page are passed to the network

building script, and reflected in the script’s output.

Visualization
The CGI script that takes user input from the StarNet

submission page and produces the results pages was written in

Figure 1. Analysis pipeline. 2145 array samples were selected for the
Affymetrix whole genome mouse 430 2.0 array platform. Data were
normalized and scaled using justRMALite. The resulting distribution of
over 130 million Pearson correlation coefficients was filtered to produce
various distributions of the strongest relationships. Correlation data and
Entrez Gene annotations were used to populate a new database.
StarNet was developed to allow users to make database queries to
create and draw correlation networks local to their gene of interest on-
the-fly, and to provide supporting information about genes in those
networks.
doi:10.1371/journal.pone.0001717.g001
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Perl. Graphs are drawn using AT & T’s Graphviz package

(http://www.graphviz.org). Determination of whether genes in the

graph are GO-annotated is achieved by a search against our

MySQL database. GO term enrichment in the network is also

determined using calls to our MySQL database. The correlation

coefficients and counts of array samples, which are needed to

determine confidence intervals for correlation coefficients, are

written to file by the network construction procedure, and later

read by the visualization script. Edges (correlations) are color

coded such that darker edges represent stronger correlations.

Positive correlations are drawn as shades of blue, and negative as

shades of red. Note that the correlation scales were determined on

a per network basis. That is, for each network the positive (and/or

negative) scales are redrawn, with the scale drawn by equally

partitioning between the minimum and maximum positive (and/

or negative) correlations within that network. Data used in

building graphs of known interactions comes from Gene RIF files

available at NCBI’s FTP site.

For further details regarding scales, procedures used to build

graphs of known interactions, and other details of the visualization

script, see the white paper and user manual available at http://

vanburenlab.tamhsc.edu/starnet_doc.html.

Web Site
StarNet takes a user-specified gene as input, as well as the

parameters indicated below. Using the distributions described above,

a network is then drawn centered about the specified gene. The gene

of choice is level 0; those genes to which it is directly connected by

correlations from the distribution of choice, and using the graphing

methodology of choice, are level 1, etc. Two graphs are produced,

one for the cardiac cohort and one for the full cohort. In addition to

the correlation graphs we provide (1) lists of genes in the graph,

hyperlinked to Entrez, (2) lists of the edges in the graph, with 95%

and 99% confidence intervals for the corresponding correlation

coefficients, (3) a list of known interactions involving the genes in the

graphs, (4) a list of genes annotated with the GO term specified by

the user, (5) a list of GO terms enriched in the graph, hyperlinked to

AmiGO, and (6) graphs of known interactions involving genes in the

networks which StarNet has produced. Additionally, the cardiac and

full cohort graphs can be expanded for closer examination, and the

nodes in these expanded graphs are hyperlinked to the correspond-

ing entries in Entrez Gene.

To use StarNet (available at http://vanburenlab.tamhsc.edu/

starnet.html) the user enters a gene of interest and specifies

parameters describing the network to be built and the appearance

of the resultant graph. The user submits a gene by entering either

the gene’s Entrez Gene ID or its gene symbol; a symbol lookup

utility is provided. Parameters include the distribution to use (as

described above); whether to draw positive, negative, or both

positive and negative correlations; the number of levels to draw the

network; a parameter specifying network topology; and a GO term

for which to search, where those genes annotated with that term

will be highlighted in the network and listed. Additionally, there

are several parameters to specify aesthetic features of the drawn

networks, including alternative color schemes, which may be

required by color-blind individuals.

For further details on and explanation of parameter choices, in

particular for choices of network topology, see the user manual

available at http://vanburenlab.tamhsc.edu/starnet_doc.html.

Statistical Analysis
Pearson correlation coefficients between genes on the array were

computed using Octave (full cohort: n = 2,145, cardiac cohort:

n = 239). A two-tailed t-test was used to compute p-values for each

coefficient. After using the Fisher z-transformation to normalize the

correlation coefficients, confidence intervals in the normalized

setting were computed, and the inverse of the Fisher z-transform

applied to yield confidence intervals in our original variables.

Enrichment of GO terms was evaluated using the hypergeo-

metric test, following the recommendations of Rivals and

colleagues [20] and Gentleman and colleagues [21]. Hypergeo-

metric distribution computations were implemented in Perl. To

compute the factorials involved in this distribution, we computed

the natural log of the gamma function, using a slight modification

of code provided at www.perlmonks.org.

For each of our distributions we computed the mean, standard

deviation, and skew. Skew was computed without bias correction.

We ran several tests for normality on the distributions:

Kolomogorov-Smirnov, Lilliefors, and Jarque-Bera. All were run

at the 5% significance level. The Kolmogorov-Smirnov test was

run using the sample mean and standard deviation as the

parameters for the normal to which to compare our empirical

distribution. As the sub-distributions were all found to be non-

Normal, we used the Mann-Whitney rank sum test to compare

respective sub-distributions from the cardiac and full cohorts. All

tests were performed using MATLAB.

Results

StarNet
The main contribution of this work is the creation of StarNet, a

new freely available Web-based tool that facilitates the reconstruc-

tion of transcription regulatory networks via rapid hypothesis

development and providing provisional gene groups for focused

modeling efforts. A brief description of the tool’s features and usage,

along with links to supporting documentation, are given in the

Methods. Below we describe some features of the sub-distributions

that StarNet calls on to construct networks, and we present a sample

analysis to show a representative example of StarNet’s utility in

developing hypotheses about regulatory and pathway interactions

with a gene of interest. This demonstration is conducted with Hand1,

a well-characterized gene, to show that StarNet is capable of

generating networks around a gene of interest that are highly

consistent with the known characteristics of that gene.

Distributions and data quality
The genecentric distribution and the distribution of the 100,000

(100K) largest correlations (see Methods) are bimodal in both the

cardiac and the full cohort, with one positive mode and one

negative mode. Separately examining the positive coefficients and

negative coefficients in each sub-distribution reveals that the

positive (resp. negative) coefficients are not distributed normally,

and are instead skewed to the more extreme values (Table 1).

The mean of the 100K most positive correlations in the cardiac

cohort (.9263) is statistically different from the mean of the 100K

most positive correlations in the full cohort (.8957) with p,1e-16

(Mann-Whitney rank sum test). The same is true of the means of

the 100K most negative correlations in cardiac and full cohorts

(p,1e-16), as well as for both positive and negative genecentric

distributions (p,1e-16). The correlations in the cardiac cohorts

show a general trend of being more extreme than those in the full

cohort (Fig. 2a).

The full cohort represents a large number of regulatory states,

from a variety of tissues, whereas the cardiac cohort represents a

relatively fewer number of related regulatory states. The bimodal

distributions from the full cohort thus represent an average state

consisting of coregulatory and correlative relationships that are

relatively weaker on average than those of the cardiac distribu-
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Table 1. Sub-distribution statistics.

Distribution Mean Standard Deviation Skew Number of Genes

Cardiac 20K Negative 20.7951 0.0231 21.2851 2,746

Full 20K Negative 20.5150 0.0264 21.6448 3,486

Cardiac 20K Positive 0.9568 0.0117 1.2876 1,534

Full 20K Positive 0.9559 0.0167 0.5900 1,494

Cardiac 40K Negative 20.7755 0.0259 21.2907 3,712

Full 40K Negative 20.4944 0.0282 21.5856 4,734

Cardiac 40K Positive 0.9458 0.0141 1.0664 2,067

Full 40K Positive 0.9361 0.0239 0.5426 2,265

Cardiac 100K Negative 20.7457 0.0304 21.2628 5,122

Full 100K Negative 20.4648 0.0309 21.5276 6,670

Cardiac 100K Positive 0.9263 0.0192 0.8767 3,362

Full 100K Positive 0.8957 0.0386 0.5479 4,077

Cardiac Genecentric Negative 20.5907 0.1342 0.3833 16,297

Full Genecentric Negative 20.3568 0.1048 0.4748 16,295

Cardiac Genecentric Positive 0.7678 0.1126 20.2972 16,297

Full Genecentric Positive 0.6856 0.1371 0.1511 16,297

doi:10.1371/journal.pone.0001717.t001

Figure 2. Selected distributions used by StarNet. a: The cardiac cohort (dark blue) and full cohort (light blue) Genecentric distributions. b: The
largest positive correlations in the cardiac cohort. The highest 335 of these associations have a Pearson correlation of 1 (to 16 decimal places), and
these form a notable spike at the tail of the distribution (arrow). c: The 335 associations indicated in panel b are composed of 80 genes in the 22
groups of genes shown here. d: The genomic structure of the Pcdhgb1 family of genes (drawn with the UCSC Genome Browser).
doi:10.1371/journal.pone.0001717.g002
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tions. There are two main factors that contribute to this observed

difference between the cardiac and full cohort sub-distributions:

(1) co-regulation is context-specific, meaning that the transcription

activity of two genes may be tightly co-regulated in one tissue or

milieu, and weakly co-regulated in others; and (2) conditioning the

data on a ‘cardiac cohort’, or on any sub-population of tissue types,

has a tendency to strengthen measured correlations because of the

narrowed range of phenotypes produced by gene activity in those

sub-populations. As conditioning increases the average correlation,

many gene pairs thus affected that are also highly correlated in other

tissues are thus not necessarily specifically corregulated under

conditioning. The measured differences between the cardiac and

full cohort sub-distributions validate our reasoning for doing separate

analyses of the full and cardiac cohorts, and these separate analyses

will facilitate future inquiry into the relative contributions of context-

specific co-regulation and spurious correlation to the measured

differences between the distributions.

At the positive tail of both the cardiac and full cohort highest

correlations, there is a spike of 335 correlations equal to 1 (to a

precision of 16 decimal places, Fig. 2b and 2c). The 80 genes

represented by these correlations are distributed into 18 pairs of

genes, and one group each of 3 genes, 8 genes, 11 genes and 22 genes,

respectively. In seven of the pairs, one of the two gene IDs in the pair

was replaced by the other by Entrez Gene, or one of the gene IDs was

discontinued. In nine other pairs, as well as the group of three genes,

Blast 2 sequences (bl2seq) reveals greater than 90% sequence

similarity between the transcripts of the genes within the group, most

often at the 39 ends of both genes, from which Affymetrix’s probesets

are taken. Two of the pairs cannot be explained using Entrez Gene or

overall sequence similarity, but the annotation of Dai and colleagues

[17] reveal that the two features in each of these pairs are represented

by exactly the same probesets. The remaining three groups are

composed of genes that have alternative transcription start sites

(families Pcdhga, Ugt1a and Pcdha, respectively). Fig. 2d shows the

gene structure for the protocadherin family Pcdhga represented in the

group of twenty-two; each of the genes in our grouping appears in this

structure, and all share a common 39 end. Similar results hold for the

group of eight and the group of eleven, although in the latter case

there is one gene (Pcdha1) in the group that is not in the same locus,

but does have 97% sequence similarity with some of the members of

the group. Edges in our networks with a correlation of 1 are thus

connecting genes that are effectively technical replicates. These results

assert the robustness of measuring correlations across different

experimental conditions in experiments conducted by different

investigators, and demonstrate the generally high reproducibility of

measurements made with this Affymetrix platform.

An example analysis with StarNet: Hand1
As a representative example, below we analyze Hand1 with the

freely accessible Web-based tool StarNet. We selected Hand1

because its role in cardiac development is well established. The

analysis below is intended to illuminate the strengths and

weaknesses of StarNet, and is not an attempt to present new

results. Analysis was performed with the default settings in

StarNet, which includes interrogating the genecentric distribution,

and networks are drawn with the highest 5 correlations from the

gene of interest (level 1) and the highest 5 correlations for each of

those genes (level 2). The genecentric distribution was chosen as a

default because this distribution has complete coverage of the

array platform. The other parameters were chosen because our

testing experience has shown that these parameters produce

informative networks that are easily visualized. The StarNet

analysis results discussed below may be viewed at http://

vanburenlab.tamhsc.edu/Hand1/result.html. Alternatively, these

results may also be recreated by typing ‘Hand1’ into the ‘Gene

Symbol/Entrez ID’ field of the StarNet interface, and clicking

‘Submit’. With the present implementation, a new analysis takes

about two minutes with the default settings in StarNet.

Hand1 is implicated in left ventricle formation, and is

downregulated in mice lacking Nkx2-5 [22]. In the cardiac cohort

network for Hand1 drawn with the default parameters in StarNet,

we find 7 known DNA-binding genes (Snai2, Hoxb6, Twist2, Hoxa1,

Prrx2, Hoxd1, and Hoxd8), and 4 genes known to be involved in

organ morphogenesis (Hoxb6, Hoxd1, Hoxd8, and Gpc3), not

including Hand1 itself in either case (Fig. 3).

Cfc1, Msx1, Foxh1, Phlda2, and BC030046 all appear as

immediate neighbors of Hand1 in the full cohort network drawn

with StarNet using the default parameters (Fig. 3). Cfc1 is a Nodal

co-receptor, has been shown to control Lefty expression in chicks, and

has been shown to play a critical role in normal and abnormal

cardiovascular development in humans [23]. The homeobox Msx1 is

involved in early neural development and Msx1 interacts with BMP

and Smad family members [24]. Foxh1 is known to interact with

Nkx2-5, and is essential for anterior heart field development [25].

Deletion of Phlda2 causes placentomegaly and mice that lack Hand1

die at embryonic day 8.5 from placental and extra-embryonic

abnormalities [22,26]. BC030046 is an uncharacterized cDNA

sequence derived from preimplantation embryo libraries. Cfc1, Msx1,

Foxh1, and Phlda are thus functionally related to Hand1, while the

function of embryo-expressed BC030046 is unknown. The Hand1 full

cohort network is enriched for the GO term, ‘DNA-dependent

regulation of transcription’ (Hand1, Foxh1 , Msx1 , Nr4a3 , Mef2d,

Etv2, Mixl1, Lin28, Pitx2, Tead2, Asb4, Gli3, Cbx2, and Msx2,

unadjusted p-value = 0.00000004, hypergeometric test), and most

of the genes in the second level of the full cohort network have been

implicated in development or heart development (Dll3, Pitx2, Lin28,

Igfbp1, Nr4a3, Msi1, Mef2d, Etv2, Mesp1, Mixl1, Tead2, Igf2, Mest, Gli3,

Cbx2 (15 out of 22 genes in the second level)). In particular, Pitx2

expression is initiated by Nodal, and is left-side expressed in the

lateral plate and later in the primordial visceral organs; maintenance

of this asymmetrical expression requires Nkx2-5 [27].

Discussion

We have noted that known markers for cardiac development

appear together more frequently in full cohort networks than in

cardiac cohort networks. In the full cohort, where the network is

constructed from a more general milieu of associations, genes

specifically active in embryonic stages are prominently associated,

although it is with relatively smaller correlations than in the

cardiac network, on average. Upon examining a finer resolution of

associations in the cardiac/development milieu alone (i.e. upon

conditioning the measured associations to a narrower range of

tissue types), we find that the prominence of correlated genes that

are known markers for embryonic or cardiac tissue types in the full

cohort networks is frequently displaced by other genes that are

more highly correlated within the narrower milieu of the cardiac

cohort. Higher correlations between expressed genes are an

expected result of conditioning on a narrower field of tissue types.

It is also expected that a systematic comparison of the high ranking

correlations from each of the cohorts, where networks are built

about selected genes implicated in cardiac development, will reveal

insights into previously uncharacterized features of cardiac

transcriptional regulatory networks.

Future directions
Correlation, while indicating relationships, does not imply

causality. For this reason, the networks built by StarNet should not
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be viewed as directional, or as indicating that any given gene in the

graph is a direct influence on any other. Important relationships

are captured by correlation, however, and may thus suggest

further experimentation or modeling. Recent work has indicated

the utility of correlation as a measure of gene co-expression

relationships. For example, Reiss and colleagues [28] discuss co-

expression (but emphasize the importance of co-regulation), noting

that correlative relationships change depending on the milieu.

These issues have also been discussed by other groups [29–31],

where again the distinction between co-regulation and correlation

is made, with co-expression recognized as an important analytical

tool. Assertions about causality can be formed using other

Figure 3. Representative graphical output from StarNet (textual output not shown). a: Full cohort correlation network with Hand1 as the
central node. b: Cardiac cohort correlation network with Hand1 as the central node. c: Known associations involving genes from a (which appear in
blue text). d: Known associations involving genes from B (which appear in blue text). In a and b, red text indicates genes with annotation that include
‘‘transcription’’, and line color represents correlation strength as indicated by the scale bars. In c and d, black edges represent previously known
protein-protein interactions, and red arrows represent previously known protein-.DNA interactions. Known interactions for all genes in each
correlation network are determined by searching Gene RIF interactions supplied by Entrez Gene.
doi:10.1371/journal.pone.0001717.g003
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methodologies such as Bayesian networks and structural equation

modeling. Gene lists for networks produced by StarNet can be

used as starting material for these methods.

The full cohort and cardiac cohort networks given here as

examples of StarNet’s analysis are not immediately amenable to

quantitative comparisons. One obvious obstacle to comparison is

that the networks do not have any nodes in common besides the

central node. Many networks drawn with StarNet do have several

nodes in common, but the common nodes are frequently a

minority of the total network nodes. The networks are constructed

with arbitrary cutoffs for the highest correlations with a given

node, so many biologically important associations may be missing

from a particular network. One approach to comparing these

networks would then be to create a ‘super-network’ for each

cohort, where all the unique nodes from the full and cardiac

network are combined, and a completely connected network is

created from the original distribution (full or cardiac) of correlation

coefficients. These completely connected networks can be

analyzed using the tools of social network analysis [32]. This

may be achieved by trimming the completely connected networks

according to specified rules. For example, if the correlation

between gene X and gene Y is lower than the product of the

correlations (X, Z) and (Z, Y), then this suggests that any influence

between genes X and Y occurs through the intermediate gene Z.

This implies that the edge between X and Y should be trimmed

from the network. Upon trimming each network in this manner, it

is then straightforward to compute metrics such as betweeness

centrality or closeness centrality and compare them between the two

networks. Such quantitative comparisons between networks

remain to be developed in future work.

The methodology and algorithms developed to create StarNet

may be easily applied to other organisms, other platforms, and any

subset of the arrays may be selected as a cohort. Future efforts will

expand the utility of StarNet in these areas, and consider

comparisons of more than two cohorts.

StarNet adds a useful tool to the repertoire of the biomedical

scientist. It is easy to use, and the results are readily interpretable.

It can be used in conjunction with the other tools at the biologist’s

disposal, either as a tool for generating hypotheses for new

experimental investigations, or as the first step towards recon-

structing and modeling transcriptional regulatory networks.
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