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Abstract

Our answer is the latter. Space-time singularities, including the initial one, are de-

scribed by world-sheet topological Abelian gauge theories with a Chern-Simons term.

Their effective N = 2 supersymmetry provides an initial fixed point where the Bogomolny

bound is saturated on the world-sheet, corresponding to an extreme Reissner-Nordstrom

solution in space-time. Away from the singularity the gauge theory has world-sheet matter

fields, bosons and fermions, associated with the generation of target space-time. Because

the fermions are complex (cf the Quantum Hall Effect) rather than real (cf high-Tc su-

perconductors) the energetically-preferred vacuum is not parity or time-reversal invariant,

and the associated renormalization group flow explains the cosmological arrow of time, as

well as the decay of real or virtual black holes, with a monotonic increase in entropy.
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1 Introduction and Summary

Condensed matter physicists have recently been fascinated with conduction effects
in two planar systems: Hall conductors [1] and high-Tc superconductors [2]. Both
of these are described by QED in 2+1 dimensions interacting with matter that may
be fermionic, bosonic or in general anyonic. At the other end of physics, it has
been realized that Robertson-Walker-Friedmann cosmology [3] and black holes in
string theory [4] are described by coset Wess-Zumino models with, in the interesting
cases of 2-dimensional or spherically-symmetric 4-dimensional systems, an Abelian
U(1) or O(1,1) gauge theory on the 2-dimensional world-sheet. For reasons which
we explained recently [5] it is useful to make a homotopic extension of the world-
sheet Abelian gauge theory action to a third dimension, an idea familiar from the
Wess-Zumino term. Confronted with this convergence between the field-theoretical
descriptions of string cosmology and condensed matter systems, it is natural to
ask in more detail whether the string Universe bears a closer similarity to a Hall
conductor or to a high-Tc superconductor.

The answer is a Hall conductor, as we have already suggested previously [5]. Early
theories of high-Tc superconductivity suggested violations of parity P and time-
reversal invariance T , and a zero-magnetic-field Hall effect [6, 7]. However, physical
high-Tc superconductors exhibit neither feature: in particular, they conserve both
P and T [8]. On the other hand, the stringy description of the neighbourhood
of a space-time singularity involves in an essential way an Abelian Chern-Simons
term that violates both P and T , as in the Hall effect at non-zero magnetic field
[1]. This similarity between space-time singularities and Hall conductors extends to
the underlying infinite-dimensional W -algebras [9]. In the case of singular stringy
space-times, a W1+∞ algebra ensures the maintenance of quantum coherence [10],
whilst a wedge subalgebra has been exhibited in connection with the non-singular
Laughlin wave-functions of the Quantum Hall Effect [11]. As we show later, this can
be elevated to the fullW1+∞ algebra if Hall conductors with non-trivial topology are
considered, such as annular or doped conductors. The convergence of these physical
descriptions is supported by the observation that the c = 1 string model, which
represents the spatially or temporally asymptotic limit of a full stringy singularity,
can be regarded as an incompressible quantum fluid [12], as can Hall charge carriers
[1].

Specifically, stringy singularities are described on the world-sheet by an effective
Chern-Simons-Higgs theory which exhibits N = 2 supersymmetry. This means that
they satisfy the Bogomolny bound [13] and correspond (in target space-time) to
extreme Reissner-Nordstrom black holes [14]. It also means that they correspond to
the zero-field Hall effect, which can be realized on a honeycomb lattice [6], but is not
seen in the known high-Tc superconductors, as we have already commented. The
enhanced symmetry at the black hole core contains a W1+∞⊗W1+∞ algebra, whose
breakdown away from the singularity to the coherence-preserving W1+∞ algebra
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is accompanied by the appearance of discrete massless modes [15]. Similar states
should appear in analogous Hall conductors.

The N = 2 zero-field Hall effect theory is a fixed point of the renormalization
group flow. The T - and P -violation in the generic Hall conductor correspond to the
irreversibility of black hole decay and the arrow of cosmological time. We identify the
Hall fraction with the level parameter k = 9/4 of the stringy black hole in the absence
of additional matter. Hall conductors with different fractions can be understood as
conductivity plateaux in the Laughlin hierarchy [16], and the expanding Universe
can be regarded as sliding down this hierarchy [3], with the corresponding creation
of matter degrees of freedom.

Corresponding to the above paragraphs, we discuss planar electron systems in
section 2, the correspondence of a Hall conductor to a Minkowski black hole in
section 3, and the rôle of N = 2 supersymmetry and the renormalization flow in
section 4. Section 5 develops further the isomorphism between Hall conductors
and Minkowski black holes, and finally section 6 correlates the irreversibility of the
renormalization group flow, P and T violation in the Hall vacuum, the cosmological
arrow of time, black hole decay and microscopic entropy growth.

2 Planar Electron Systems

Let us review the general features of such systems, emphasizing those character-
istics relevant for our purposes. The action for QED3 with fermionic matter is

S =
∫

d3x[−1

4
FµνF

µν + ψ(i/∂ + e/A)ψ + κǫµνρAµ∂νAρ + ...] (1)

where we have allowed for the possibility of a Chern-Simons term which violates P
and T but not PT . Such a term is absent from the fundamental Lagrangian, but
can be generated by matter loops, for example non-relativistic electrons via a Pauli
magnetic moment term

SPauli =
geh̄

4Mc
σB(x) ; σ = spin−matrix (2)

calculated in the adiabatic limit. Note that the effective action is supersymmetric if
the gyromagnetic ratio g is 2 [17], as expected for elementary Dirac charge carriers.

The fermionic current obtained from (1) using the classical equations of motion
is transverse to the direction of the applied electromagnetic field,

Jµ = 2κǫµνρ∂νAρ (3)
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so the charge density is proportional to the applied magnetic field, and the transverse
Hall conductivity is

σxy =
∂ρ

∂B
(4)

The P - and T -violation inherent in the action (1) can show up as a non-zero current
in the presence of a non-zero magnetic field - the usual Hall effect which occurs
within separated Landau levels. However, there can also be a zero-field Hall effect
in the form of a non-zero transverse conductivity (4) even in the limit B → 0, when
the Landau levels become degenerate. This is in principle a possibility in planar
superconductors, thanks to the Meissner effect.

High-Tc superconductors are planar, and it is natural to enquire whether they
exhibit such P - and T -violation. Many theories of high-Tc superconductivity exploit
the existence of excitations with fractional statistics, anyons, in planar systems
[18]. When starting from fermions or bosons, the description of anyons requires the
introduction of a statistical Abelian gauge field a, which will in general have its own
Chern-Simons term, as well as a mixed a − A Chern-Simons term in the effective
action. Such anyonic theories of high-Tc superconductivity do indeed violate P and
T in general, and predict a zero-field Hall effect. Neither of these features are seen
in known high-Tc superconductors [8], and such anyonic theories are therefore ruled
out. P and T are, however, conserved if the charge-carriers are real fermions, which
is predicted in one microscopic theory of high-Tc superconductivity [19]. This theory
also predicts successfully the ratio of the gap ∆ to Tc [19, 20].

Stringy singularities clearly resemble more closely the Hall conductor mentioned
in the next-to-last paragraph: they are described (see the next Section) by Abelian
world-sheet gauge theories with a (dimensionally-reduced) Chern-Simons term inter-
acting with complex fermions. Anyons play no apparent role in the known singular
string solutions, and there is no analogue of the statistical gauge field on the world-
sheet. Moreover, just like the Hall electrons in each Landau level, which form an
incompressible quantum fluid, there is an equivalent structure in the c = 1 string
model [12], which describes the spatially- or temporally-asymptotic form of the sin-
gular stringy solution.

This physical similarity is reflected in the underlying group-theoretical structure.
It has been known for some time that the c = 1 model and stringy black holes possess
a global W1+∞ symmetry on the world-sheet [21, 22], which is elevated to a local
symmetry in target space-time [10, 23]. This W-algebra contains an infinite Cartan
subalgebra, whose associated charges constitute W-hair for the black hole which
maintains quantum coherence [10]. A wedge subalgebra of a similar W-algebra has
recently been identified in the integer Quantum Hall Effect [11]. However, because of
physical regularity conditions on the Laughlin wave functions, the full W-algebra has
not been obtained. The requirement of regularity would be relaxed in planar Hall
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conductors with non-trivial topology, such as an annulus. Indeed, as we shall see in
more detail later on, an annular Hall conductor is an accurate model of a black hole in
string theory. The latter is described by a spike-antispike configuration on the world-
sheet, and these defects correspond to the inside and outside of the annulus. A more
general multi-spike-antispike configuration, which describes a generic foamy state of
target space-time with many microscopic black holes, can in principle be realized
by doping a Hall conductor. The corresponding generalization of the Laughlin wave
function need not be regular at any of the doping sites, and hence would realize a
similar mathematical structure as well as underlying quantum fluid picture.

3 Correspondence to Minkowski Black Hole

We now demonstrate in more detail the connection of a Hall conductor to a
Minkowski Black hole in string theory. We first recall that a Minkowski black hole
is described on the world-sheet by an SL(2, R)/O(1, 1) Wess-Zumino coset model
[4], which in the neighbourhood of the space-time singularity becomes a O(1, 1)
topological gauge theory coupled to matter fields [4, 24] :

Seff = − k

4π

∫

d2z
√
hhijDiaDjb+ i

k

2π

∫

d2zwǫij(F (A))ij + ... (5)

Here w is the degree of freedom describing the singularity, the Di, i = 1,2 are gauge
covariant derivatives, (F (A))ij is the field strength of the Abelian O(1, 1) gauge
potential, the bosonic fields a, b are SL(2, R) coordinates, and the dots represent
higher-order terms in the expansion around the singularity, which is represented by
a spike on the world-sheet [5].

The correspondence to the planar electron systems of the previous section, which
are described by Abelian (electromagnetic) gauge models coupled to fermions, be-
comes clearer if we regard the effective action (5) as the adiabatic approximation to
a three-dimensional gauge theory. This limit is particularly relevant in view of the
relation given in ref. [5] of space-time foam to multi-defect configurations on the
world-sheet. The present-day physical phase described by a plasma of Minkowski
black holes arises at low “temperature”, defined to be the homotopic parameter
of the third dimension compactified on a circle of radius β = T−1. The three-
dimensional effective gauge theory whose constant-“temperature” sections define
the conformal WZ model corresponding to a Minkowski black hole is a scalar Higgs-
Chern-Simons gauge theory [25]. Defining

Φ ≡
(

a+ b
a− b

)

(6)
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it can be written in the form

k̃

4π

∫

Σ2×S1

dτd2z
√
hhijDiΦDjΦ− i

k̃

2π

∫

dτd2zǫµνρA(Σ, τ)µ∂νA(Σ, τ)ρ (7)

where k̃ ≡ k
β
, and Φ ≡ Φσ3, with σ3 a 2 × 2 Pauli matrix. One can easily obtain

equation (5) by making a dimensional reduction with respect to τ and eliminating
the Aτ component of the gauge potential via its equation of motion. The theory
(7) can then be written in terms of a single complex field by identifying Φ with the
complex conjugate of Φ.

To complete the model (7) we must specify the effective scalar potential. Since
the approach to the singularity is equivalent to a symmetry-restoration process,
as described in ref. [15], the effective potential should vanish when Φ = 0. It
should also have a symmetry-breaking minimum at some non-zero |Φ| = V . On the
other hand, if we want the three-dimensional quantum theory to be well-defined, we
should require it to be renormalizable. The most general potential obeying all these
requirements is

V (Φ) =
αe4

k̃2
(|Φ|2 − V 2)2|Φ|2 (8)

This corresponds to the Bogomolny limit of interest to us if α = 1/4π2 [25]. As
already mentioned, in the case of black holes, the singularity corresponds to the
symmetric state Φ = 0, whilst the horizon corresponds to Φ = 1 , and hence V = 1
in the effective potential (8).

We now observe that the Minkowski black hole is a static solitonic configuration
of the model (7,8) which satisfies the classical Euler-Lagrange equations:

D1Φ = ∓iD2Φ

eǫij∂iAj ≡ eB = ±(8πe2)2

k̃2
|Φ|2(1− |Φ|2) (9)

It was shown in ref. [25] that the equations (9) possess topologically stable solu-
tions for which |Φ| → 1 at large distances, and the corresponding magnetic flux
is quantized. However, these solutions are not consistent with the stereographic
embedding

|z|2 = −uv (10)

of the world-sheet into space-time, which leads to the target-space Minkowski black
hole metric

ds2target =
1

1− uv
dudv (11)

We see in (10), (11) that the origin of the stereographically-projected world-sheet
corresponds to the horizon uv = 0 of the black hole, where |Φ| = 1, since the
SL(2, R) coordinates obey ab + uv = 1. The embedding (10) actually describes
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only the interior of the horizon of the Minkowski black hole. Thus we can without
loss of generality place the anti-spike describing the space-time singularity at the
spatial world-sheet point at infinity. The Minkowski black hole is therefore described
by a solution of the Higgs-Chern-Simons equations (9) in which the Higgs field Φ
approaches the symmetric vacuum asymptotically at large distances. In this case,
the equations (9) possess non-topological soliton solutions, for which the magnetic
flux is not quantized, but continuously varying. At the singularity, the flux vanishes
as argued in ref. [5] on the basis of a trivial w-integration.

An important aspect of this Bogomolny limit is that the mass of the elementary
excitations of the system equals their electric charge. This can be seen as follows:
due to the Chern-Simons term, an object carrying a magnetic flux ΦM also carries
a non-zero electric charge Q:

Q = − k̃

2π
ΦM (12)

The energy E of a non-topological soliton is then given by

E = e|ΦM | = 2πe

k̃
|Q| (13)

which is the lower bound of the general energy relation[25]

E ≥ e|ΦM | (14)

which follows from the general expression for the energy in the model (7,8) without
using its equations of motion (9). Hence the Minkowski black hole is of extreme
Reissner-Nordstrom type [14].

As already mentioned, in a previous paper [5] we showed that the magnetic flux
ΦM vanishes at the singularity, as the result of a trivial integration over the w
variable. However, that argument does not apply away from the singularity, where
the action is not of pure Chern-Simons type, but has extra terms that can be de-
scribed collectively as the effective potential discussed above. This is why the flux
can in general be non-zero away from the singularity, leading to non-topological
solitons with continously-varying non-zero fluxes, interpretable as possible masses
of Minkowski black holes.

4 Supersymmetry and Renormalization Group Flow

We have already recalled that the region around the singularity can be described
by a topological field theory (TFT). This can be put in a form with twisted N=2 su-
persymmetry, in which the supersymmetries become fermionic BRST gauge symme-
tries F , and the fermions become ghosts. As was pointed out in ref. [24], fixed points
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in the action of F dominate the path integral. An example is the region around a
singularity in two-dimensional space-time, which is described by a twisted N=2 su-
persymmetric Wess-Zumino (SWZ) model. This leads to a super W -symmetry at
the singularity, which contains an enhanced W1+∞ ⊗W1+∞ bosonic symmetry at
the core of the black hole [15]. This enhanced symmetry is broken as one moves
away from the singularity, and the symmetry breaking is accompanied by the ap-
pearance of discrete massless modes [15]. However, although the topological nature
of the theory is lost away from the singularity, its supersymmetry is maintained by
undoing the twist present at the core. The fermionic fields that are ghosts at the
singularity become the usual fermionic partners of N=2 supersymmetry when the
model is untwisted, and the transformations F have no fixed points away form the
singularity.

We now reconsider these ideas from a three-dimensional point of view. Consider
the region close to the core of a two-dimensional black hole, where the physics is
described by an SWZ model [24, 26]

SSWZ = SWZ +
i

2π

∫

d2z[ΨDz̄Ψ+ΨDzΨ] (15)

and the fermions of the coset model have been written in the matrix form Ψ =
(

0 ψ
ψ∗ 0

)

and Ψ =

(

0 ψ

ψ
∗

0

)

. In the case of the Minkowski black hole, the

explicit N=1 supersymmetry can be enhanced to a higher N=2 supersymmetry by
imposing a GSO projection [26]. Since the effective Higgs-Chern-Simons theory is
known to have such an extended N=2 supersymmetry [27], we assume that this is
done before the homotopic extension to the three-dimensional manifold.

Under this assumption, we rewrite the action (15) using a Dirac-like notation for

the fermions: χ ≡
(

ψ
ψ

)

so that :

Sfermion
SWZ =

i

2π

∫

d2zχ/D(A)χ (16)

As in the purely bosonic case, the two-dimensional fermion-scalar theory can be
interpreted as the adiabatic approximation to a three-dimensional model, after
using the equation of motion for the time component of the gauge field. The
homotopically-extended model is then an N=2 supersymmetric Abelian Chern-
Simons-Higgs model with a symmetry-breaking vacuum. This we can interpret as a
renormalization group fixed point of a more general model of a charged scalar field
coupled to a Chern-Simons gauge field [28]:

1

2
ǫµνρAµ∂νAρ + |D(A)µφ|2 + χ/D(A)χ+ αχχφ∗φ− h(φ∗φ)3 + ... (17)

where the dots denote terms that are irrelevant in the renormalization group sense,
and play no role in our arguments. Also, we did not write explicitly a quartic
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interaction because, although dominant in the infrared limit, it does not move the
fixed point [28].

The φ and χ fields can develop dynamical masses in the model (17), via a three-
dimensional Berezinsky-Kosterlitz-Thouless (BKT) phase transition [29] which can
lead to superfluidity. However, we will argue that this is not the case for the
Minkowski black hole, which resembles a Hall conductor rather than an anyon su-
perfluid. To see this, we recall the mass generation mechanism in the model (17):
the nonlinear interactions among the φ fields can be linearized in the Hartree-Fock
approximation by replacing pairs φ∗φ by their vacuum expectation value < φ∗φ >.
This produces a theory with a dynamical effective potential of the form (8) without
a local order parameter. Dynamical mass generation can be studied in this model
with the aid of the large-N expansion for the number of scalar fields [19], although
there is just one scalar field in the physical case. The large-N expansion gives a cor-
rect qualitative description of the gap, but one must go beyond this approximation
to see the BKT nature of the transition. The result of the analysis depends on the
values of the respective couplings. Among the leading-order renormalization group
fixed points there is one with N=2 supersymmetry given by α = 3e2, h = e4. This
fixed point is infrared stable [28], implying that supersymmetry is an asymptotic
symmetry of the system. This observation confirms our physical intuition about
the importance of the Bogomolny limit for black hole physics. Viewed from three
dimensions, the underlying theory has a cut-off parameter whose variation drives
it to a non-trivial N=2 SWZ model describing matter interacting with a Reissner-
Nordstrom black hole. Its extremality is intimately connected with supersymmetry
[30]. In view of this supersymmetry, this fixed point separates phases in which
either both fermions and scalars have identical non-zero masses, or both are mass-
less. Clearly, the space-time singularity corresponds to the massless phase, whilst
the non-singular part of the space-time, including the horizon, corresponds to the
massive phase.

The three-dimensional system violates both time-reversal T and parity P in the
massive phase. This is because when one integrates out a Dirac fermion with mass

mf = 〈φ∗φ〉3e2 (18)

one generates a Chern-Simons term with coefficient sgn(mf)
1

8π
, which is independent

of the magnitude of the mass [31]. This is unable to cancel the bare Chern-Simons
coefficient in general, and certainly not in the adiabatic limit where the bare coeffi-
cient vanishes. The induced T− and P− violation are physical motivations for our
identification of black holes with Hall conductors rather than high-Tc superconduc-
tors. The latter do not show any experimental signature of T and P violation [8],
a fact attributed by one of us (N.E.M.) and N. Dorey [19] to the observation that
defects in high-Tc superconductors correspond to an even number of species of real
fermions, for which the induced Chern-Simons coefficient vanishes. In our case, the
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non-compact nature of the coset and supersymmetry give us a complex fermion rep-
resentation that induces a non-zero coefficient. The consequent T violation implies
irreversibility in the flow of the homotopic scale or cut-off parameter, corresponding
to the irreversibility of black hole decay. Moreover, in view of the embedding (10)
of the world-sheet into space-time, the induced P− violation corresponds to an “ar-
row” in the target time direction. This observation leads to the cosmological arrow
of time, when applied to a space-time with a cosmological singularity, as we discuss
in more detail in section 6.

The appearance of parity violation in the string vacuum does not contradict any
no-go theorems [32]. Spontaneous parity violation is forbidden in vector-like local
field theories [33], and in three-dimensional gauge theories with fermions in real rep-
resentations of the Lorentz group SO(2,1) spontaneous or dynamical parity violation
is energetically disfavoured if there is an even number of fermion flavours. However,
these arguments do not apply when fermions belong to complex representations of
SO(2,1), and spontaneous parity violation can indeed be energetically preferred in
theories with an odd number of complex fermions [31], as is the case in the SWZ
model of interest here.

It is instructive to make connections with the description of target-space black
holes as world-sheet spikes and vortices. At the horizon, the composite scalar field
in the effective gauge theory description acquires a non-trivial vacuum expectation
value < φ∗φ > 6= 0. Small fluctuations about this non-trivial minimum in the ef-
fective potential can be fermionized as follows. As already mentioned, the horizon
corresponds to the limit uv → 0, where the coefficient of the Chern-Simons term
vanishes. Due to supersymmetry, there is an induced fermion mass that becomes
infinite in this limit. Integrating out the gauge field in this non-trivial vacuum, one
easily obtains

Leff = −(φ∗∂µφ+ χγµχ)
2 + iχ/∂χ + (scalar − sector) (19)

Redefining the fermion fields by [34]

λ ≡ φχ : λ ≡ φ∗χ (20)

and using the non-zero vacuum expectation value < φ∗φ > 6= 0, we find a massive
2+1-dimensional Thirring model with an attractive four-fermion interaction:

iλ/∂λ− 1

4
(λγµλ)

2 (21)

Upon the dimensional reduction corresponding to the adiabatic limit, this model
becomes after bosonization [35] a 2-dimensional sine-Gordon model which describes
spikes on the world-sheet.
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A similar mechanism operates at the singularity, which corresponds to an antispike
in the world-sheet picture. The bare Chern-Simons term is non-vanishing at the
singularity, and is the dominant term in a derivative expansion, because of the
short-distance nature of the problem. It can therefore be fermionized by infinite-
mass fermions, which add an extra effective flavour to the Thirring model (21),
that yield after bosonization [35] sine-Gordon terms that describe the world-sheet
antispike corresponding to the singularity [5].

5 Isomorphism with the Quantum Hall Effect

We now develop the isomorphism of the above effective gauge model description
of a Minkowski black hole with the formalism for a Hall conductor. We recall that
the Hall effect has long been described using a σ-model [36] with a Chern-Simons
term, in which the longitudinal and transverse conductivities σxx, σxy, are treated
as couplings subject to renormalisation, the conductivity plateaux corresponding to
vanishing β-functions and hence conformal invariance of the σ-model. This approach
has recently been extended from the integer to the fractional quantum Hall effect
[37], exploiting better the complex SL(2, Z) duality symmetry of the effective σ-
model.

We have already touched on similarities of the effective gauge theory description
of the black hole WZ coset model to the physics underlying the quantum Hall effect.
The bosonic fields (a, b) in the Lagrangian (7) have charges coupled to the gauge
field Aµ, and the corresponding current δSeff/δAµ can easily be found by integrating
out the scalar fields in the massive phase which corresponds to space-time 1. It is
evident from the effective potential (8) that the scalar fields acquire masses of order
µ = e2

k̃
near the symmetric vacuum, where k̃ is the coefficient of the Chern-Simons

term. In the adiabatic limit, the homotopic scale β → ∞, hence k̃ ∝ 1

β
→ 0 and

the scalar mass µ → 0. Thus the effective theory is well approximated by one-loop
graphs that yield Maxwell terms for the gauge field [38]

Sgauge =
∫

d3x[
1

24π|µ|(Fµν(A))
2 + κA ∧ F (A) + χ(i/∂ + e/A)χ + ...] (22)

Notice the opposite sign of the induced Maxwell term as opposed to the standard
electrodynamics. The fermion current then exhibits a transverse Hall form. Sum-
ming over all “times” to obtain the two-dimensional current

Ĵi =
∫ β

0

jχi = σxy
ij ∂jw (23)

1We recall that the massless phase corresponds to the singularity, where the gauge field-theory
is purely topological.
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we find

σxy
ij = −ǫij

ke2

2π
(24)

for the transverse conductivity.

We see immediately from (24) that the WZ coefficient k is the Hall fraction. The
Minkowski black hole case therefore corresponds to a fractional charge 9

4
e in the

language of the Hall effect.

As we have mentioned in section 2, a wedge subalgebra of W1+∞ has been found
as a symmetry of the quantum Hall system [11]. This symmetry is generated by
the magnetic translation operators in the x − y plane, i.e. translations in y up to
x-dependent gauge transformations (in a gauge where the electromagnetic potential
is A0 = 0, Ax = −By,Ay = Az = 0 ) :

b ≡ −∂y + i∂x + ieBx

b† ≡ ∂y + i∂x − ieBx (25)

where B denotes the external magnetic field in the direction perpendicular to the
plane. Integer powers of the operators (25)

Vn,m = (b†)n+1(b)m+1 : n,m ≥ −1 (26)

generate quantum deformations of W -algebras [11] that include area-preserving dif-
feomorphisms of the type recently argued [10] to be responsible for quantum coher-
ence in systems with space-time singularities. As we mentioned earlier, the difference
of the Hall systems discussed in [11] from the ordinary W∞-case is the requirement
of regularity of the wavefunction at the position of the electron. This implies a
truncation of the algebra to the positive modes (26). On the other hand the KP-
hierarchy

ΛKP = ∂z +
∞
∑

i=0

ui(∂z)
−i−1 (27)

that generates the full W∞ algebras [22], contains modes corresponding to the neg-
ative integer powers of b and b† in (26), which lead to divergences of the electron
wavefunction at the origin. Such divergences are associated with topological defects
on the plane, as is the case of annular or doped Hall conductors 2. The existence
of the full W∞ algebra can be verified directly in those cases using an effective
gauge field theory description of the lowest Landau level by a pure Chern-Simons
gauge theory on a topologically non-trivial space, which is equivalent to the infi-
nite topological-mass limit of a Maxwell-Chern-Simons theory [39]. The generators

2We remind the reader that a “missing” electron changes the Hilbert space of the problem in a
topologically non-trivial way [19].
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of the full W∞ symmetry in that case can be expressed in terms of the magnetic
translation operators (25) as

Wn,n̄ = exp(
2π

k
nb†)exp(−2π

k
n̄b) (28)

where n ≡ −iτn+ im, n̄ is the complex conjugate, n,m are integers (not necessarily
positive) and τ denotes a (complex) modular parameter of the Riemann surface on
which the system is defined. The coefficient of the Chern-Simons term is normalized
to k/8π and [b, b†] = k/2πImτ . Compared with the smooth case of ref. [11], the
Chern-Simons theory can be considered as describing excitations on the edge of a
large disk which the Hall system lives on. In that case, since the relevant wave-
functions are defined far away from the origin, any regularity requirements can be
relaxed, leading to an enhancement of the symmetry to the full W1+∞.

We showed in ref. [15] that a higherW1+∞⊗W1+∞ symmetry group is recovered at
a space-time singularity, as a bosonic subgroup of N = 2 superW1+∞ symmetry [40].
The spontaneous breakdown of W1+∞ ⊗W1+∞ to W1+∞ away from the singularity
is accompanied by the appearance of discrete massless leg-poles. In view of the
intimate connection of the Hall systems with N = 2 supersymmetry [17, 41], we
expect a similar feature of the excitation spectrum in annular Hall conductors :
discrete long-range excitations should appear whenever the planar topology of the
Hall conductor is non-trivial. The following facts point in this direction: In Hall
electron systems the N = 2 supersymmetry is generated by the covariant derivative
operators [41]

a ≡ ∂x + i∂y − ieBy

a† ≡ −∂x + i∂y + ieBy (29)

The latter commute with b and b†, but not with the Landau Hamiltonian H ∝
aa†+a†a, since [a, a†] = k/2π. These operators generate [39] aW∞ algebra in a way
similar to (28), which is not a symmetry of the Landau Hamiltonian. Restriction to
the first Landau level, make the effective gauge theory infinitely massive, and thus
purely topological. The Landau Hamiltonian formally vanishes in that limit, and
the W∞ algebra generated by the a and a† operators, which acts on this Landau
level, may be promoted to a symmetry algebra of this reduced system. In the black
hole case this corresponds to the limit close to the singularity, where there is an
enhanced W∞ ⊗W∞ [15].

This is just one example of the rich interplay that we expect between studies
of Hall conductors and string black holes in view of the isomorphism we have de-
veloped. The above paragraph is one example of a theoretical discovery in black
hole physics that may have implications for experiments on Hall conductors. Con-
versely, measurements on Hall conductors can be regarded as a laboratory for doing
experimental black hole physics on a table top .
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It would be interesting to study the renormalisation group flow that relates dif-
ferent fractions in the hierarchy of Hall systems, which has been associated with
extended duality symmetries [37]. It would seem that there is only one value k = 9

4

which admits a space-time interpretation in the two-dimensional black hole case.
However, the W∞-symmetry structure of the WZ is essentially unchanged for other
values of k [21]. Moreover, we expect that it is possible to construct consistent
models by tensoring a WZ model with other field theories on the world-sheet so
as to obtain a total central charge of 26 (or 15 for supersymmetric theories), as
required for the space-time interpretation. Such mixed WZ models have recently
been considered in connection with higher-dimensional universes [42]. One would
consider such a tensored WZ model as corresponding to some Hall system with a
filling fraction falling in a hierarchy of values appearing in a flow of central charge
from the other tensored components, interpreted as matter fields.

Looking at the form (9) of the magnetic field in the effective gauge theory de-
scription of the WZ model, we see that it vanishes close to the singularity, as well
as at the horizon. Thus the system close to the singularity resembles that of a
zero-field Hall conductor, as discussed in section 1. This is consistent with the
spontaneous nature of T− and P− violation [6], which, we have earlier argued, ex-
plains the irreversibility of black hole decay and the arrow of time when applied to
the cosmological singularity. It is natural to ask whether space-time is still a Hall
liquid far away from the singularity, where the Chern-Simons description acquires
higher-order corrections. The answer is yes, according to recent studies of c = 1
matrix models [12], which represent the spatially-asymptotic form of the black hole.
The character of an incompressible Hall fluid and the associated W1+∞-symmetry
structure are preserved [43, 12]. Thus space-time foam, as described by a system of
multiple topological defects on the world-sheet, shares many common features with
Hall fluids.

6 Renormalisation Group Flow and the Arrow of

Time

We have argued recently [44] that space-time foam can be formulated as a renor-
malization flow problem on the world-sheet, through the identification of the renor-
malization group mass scale, that was introduced as a covariant world-sheet cut-off,
with the target time in Planck units. This cut-off must be introduced to separate
the light degrees of freedom measured in laboratory experiments from the massive
string degrees of freedom which are not observed. The massless states are related
to the massive states by W -symmetries which maintain quantum coherence 3 [10],

3It should be noticed that the W -symmetries pertain to the two-dimensional target space string
theory, where the massive modes are solitonic non-propagating modes having definite energies and
momenta [43, 10]. Two-dimensional strings have been argued to constitute the s-wave sector of
higher-dimensional target spaces [45].
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and quantum mechanics is modified in the effective theory of the light degrees of
freedom, which behave like an open system with monotonically increasing entropy
[44]. It is worth emphasizing the fact that the full string theory, with its massive
degrees of freedom, is a conformally invariant theory in which there is no renormal-
ization group flow. This in some sense defines a concept of “eternity” within which
the light-mode subsystem (our world) interacts thermodynamically by exchanging
energy with its environment (massive string states). This leads to an irreversible
time flow for an observer who is part of this subsystem. Formally the above ideas
can be expressed as follows [44]. Let {Gi} be a collective notation for the heavy and
light string modes, and t be the renormalisation group scale. The evolution equation
of the density matrix ρ away from a (conformally invariant) fixed point reads [44]

ρ̇ ≡ ∂ρ

∂t
= i[ρ,H ] + iGij [ρ,G

i]βj (30)

where H is the Hamiltonian and βi = dGi/dt is the renormalization group β-
function. The non-triviality of the friction non-commutator term in (30) implies

the non triviality of the commutator term. Indeed, for systems interacting with a
reservoir of particles at temperature β−1, as is our light-mode system, the density
matrix is expressed as exp(β(F−H)) where F is the free energy. In the case of strings
F is the generating functional of connected string amplitudes and is associated [46]
with the Zamolodchikov c-function [47]. At a conformally-invariant fixed point (fp)
the latter becomes a c-number, the central charge of the theory, and so [ρ,H ]fp = 0,
and the evolution equation (30) has trivial content. On the other hand, by consid-
ering deformations of the pertinent stringy σ-models by massless states only [44],
one goes away from the conformally-invariant fixed point in an irreversible way,
as implied by Zamolodchikov’s c-theorem [47, 48]. The situation is similar to the
conventional renormalization group flow in local field theories. Due to logarithmic
infinities, the experimentalist in the laboratory measures “running” coupling con-
stants correponding to light particles. Formally, the light mode infinities can be
remedied by introducing heavy states which make the theory finite and are respon-
sible for the renormalization group flow of the light states. This formal procedure
of local field theories acquires, therefore, an important physical meaning in string
theory propagating in singular backgrounds, such as black holes or cosmological sin-
gularities [4, 42]. Within the framework of string theory the observed flow of time is
a consequence [44] of the existence of massive (solitonic) string modes which couple
to the observed light states on account of the W -symmetries [10]. The irreversibility
of the renormalization group flow implied by Zamolodchikov’s c-theorem [47, 48]
corresponds to the P− and T− violation in the effective Chern-Simons theory of
the Hall fluid.

This P− and T− violation also determine the cosmological arrow of time, as we
now argue. In the Hall analogue description of singular space-times, one introduces
a third dimension τ , which plays the rôle of an adiabatic evolution parameter. As
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explained in [5], τ can be interpreted as an inverse pseudo-“temperature” which de-
termines the phase structure of the universe through a BKT transition [29] from a
hot Euclidean to a cold Minkowski space-time. The irreversibility of this cosmolog-
ical evolution in pseudo-“temperature” is guaranteed by the T−violation induced
by the three-dimensional Chern-Simons theory. The associated P−violation implies
reflection non-invariance on the world-sheet which the embedding (10) elevates into
target-time irreversibility. The latter is associated with the irreversibility of the
renormalization group flow once the world-sheet cut-off mass-scale is identified with
the target time.

Thus the renormalization group flow down the Hall hierarchy [37] and the P−
and T− violation in the Hall vacuum correlate the cosmological arrow of time, the
decay of black holes, and a monotonic increase in entropy at the microscopic and
macroscopic levels. We plan to return in a future paper [49] to a more quantitative
study of this and other cosmological issues in string theory.
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