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ABSTRACT

We construct an anomaly-free theory of chiral Wj gravity, with an arbitrary number
n > 2 of scalar matter fields.
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The problem of formulating a consistent d = 2 quantum theory with gauged W-algebra
symmetry revolves around the various types of anomalies that can occur. Indeed, the problem
of anomalies has played a prominent réle in discussions of W-gravity theories from the first
papers on the subject [1-7]. This problem becomes significantly simpler in the quantisation
of wy, gravity, where it has recently been shown [7] that the removal of matter-dependent
anomalies has the inevitable consequence that the we, symmetry [8] is renormalised to a Wy
symmetry [9]. This relative simplicity is due to the linearity of these algebras, in contrast
to the nonlinear structure of the Wy algebras [10,11] for finite N. After the removal of the
matter-dependent anomalies in the W case, there remain the “universal” anomalies, which
depend only on the gauge fields and are subject to a simple anomalous Ward identity [7].
These latter can, formally at least, be removed by treating the gauge fields as quantum fields
in their own right and consequently applying the usual BRST procedure with the inclusion
of the corresponding ghost fields.

The anomaly cancellation may also be viewed from the standpoint of the BRST operator
@, satisfying the fundamental nilpotency condition @% = 0 [12]. For a linear algebra such as
the Virasoro algebra or W, it is known that this requirement entails both that the matter
currents close properly to form an algebra and that the central charge take the appropriate
critical value. The analogue of the ¢ = 26 result for the matter currents in the Virasoro
algebra is, after regularisation, ¢ = —2 in the case of Wy [13,14]. This is precisely the
central charge in the case of the single-scalar realisation of Wy, gravity considered in (7).

In this paper, we shall show that W3 gravity may be handled in an exactly parallel
fashion. The first requirement is to obtain a BRST operator ¢ that is nilpotent. In the W
case, a necessary condition is that ¢ = 100 for the matter currents {15]. Thus, to construct
a quantum theory of W3 gravity, one must first find matter currents that satisfy the full
quantum operator-product algebra with cpay = 100. Such realisations have been constructed
for arbitrary numbers n > 2 of scalar fields [16], generalising the n = 2 realisation of [11].
In all cases, in order to achieve cpat = 100 (or indeed any ¢ # 2) it is necessary to include
background charges*. Previous attempts [4—6] at constructing an anomaly-free Wj-gravity
theory have not succeded either because the matter currents were not renormalised to close
on the W algebra at the quantum level, or because the central charge was not set equal to
100.

The BRST operator for a chiral W; theory in d = 2 dimensions has the form [13]

@ = s (ol + 1Ti0) + 1 (Wommt + $Wa)), 0

* Only for 2 scalars can background charges be omitted, yielding a ¢ = 2 realisation of W3. In

particular, background charges are necessary even for the ¢ = 100 realisation in terms of n = 100 scalars.
Moreover, because the algebra is nonlinear, one cannot make new realisations simply by tensoring together
more elementary ones.



where Thmat and Wrat must generate the W3 algebra with central charge cmat = 100. The
ghost currents Ty, and Wy are given by [15]

Tgn = —2b08c — Obc — 3,8 Oy — 208~ (2a)
Wen = —88c—388c— 56T [a(b'y Tmat) + b8y Tmat]
+ g3 (27 6% + 997 6% + 1567 86 + 108°y b), (2b)

where the ghost-antighost pairs {¢,b) and (v,8) correspond respectively to the T and W
generators. Note that the BRST operator (1) contains ghosts but no gauge fields, since the
latter have no kinetic terms in the d = 2 theories we are considering. The factor of 537 that
appears in (2b) and throughout the following has its origin in a factor of (22 + Scpat) that
would appear in the case of a general central charge cyys.

The matter currents Tipes and Wyt are required to generate the Wj algebra [10]

aTma,t('w) +2Tmat(w) +h Cmat/z
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h_IW t(z)W t(w) ~ 1 lﬁa T, t( ) + —LBA(w)
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1 (3.0 32
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with central charge cmar = 100. In (3¢), A is a composite current;

A= (TmntTmat) - %haszata (4)

where the normal ordering is taken with respect to the modes of the currents Tp,,¢, according

to the prescription [17]
dz

Z—w

(UB)(w) = § 2 AG)B(w). (5)

We consider general realisations of the spin-2 and spin-3 currents in terms of n scalar

fields ¢*:

Tmat = 30000 + Va6, (6a)
Winat = 3dij500' 09 00" + Vhe;00'0%07 + L f;6%¢", (6d)
where ¢* satisfies the OPE
B (2)8 b
P (0) ~ @
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It should be noted that in (6a,d), and throughout the paper, normal ordering with respect
to the modes of fundamental fields is understood. It was shown in ref. [7] that in chiral
Lorentz-invariant theories of the type considered in this paper, all infinities are removed by
this normal-ordering procedure.

As shown in [16], the currents {6a,b) generate the W; algebra at the quantum level if
and only if the constants ey, d;;;, ei; and f; satisfy

dij; — 6eija; +6f; =0 (8a)
€(is) — dijzar =0 (8b)
3fi —aje;; =0 (8¢)
diredjne + 6dijn fr — Bespen = 3655 (8d)
m 8
dii; " drgym = m%ﬂkz) (8e)
16
dijeleq — 2etdpg = ———biiey. 8
iie(ear — exe) + 2e("dj)re (22 7 Boma) U (81)
Two useful consequences of this complete set of equations are
] e (Cmat_z) o
€ikCkI = 5090 + bogar) O (9a)
32 2(cmat — 2)
ij i€k = Tog T + o 0ij.
Odihfi ¥ €kicki = (on 5 )%+ 22 + Somm) (98)
The central charge cp,t is given by
cmat = 1 — 12040, (10)
where n is the number of scalars. We shall take
Cmat = 100 (11)

in equations (8a—f) and (9¢,d), and in the rest of this paper, in order to achieve nilpotence
of the BRST operator.

It was shown in [15] (and discussed further in [18]) that for matter currents Tinat and Wat
constructed with coefficients satisfying eqns (8a—f) with cpae = 100, the BRST operator (1)
is nilpotent, i.e. the full quantum operator will satisfy @? = 0. Correspondingly, we may
now write down the fully-renormalised action and transformation rules for W3 gravity, for
which the quantum effective action I' will be BRST invariant, i.e. the Slavnov-Taylor-Ward
identity for the BRST symmetry will be satisfied. The complete action for chiral anomaly-
free W3 gravity is therefore given by I = 1/ [ d?zL, where the renormalised Lagrangian
is

L =38'8¢" ~ bdc ~ B8 + my(h — huack) + 74(B ~ Boack)

(12)
- h(Tmat + Tgh) - B(Wma.t + Wgh)'
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The quantum spin-2 and spin-3 gauge fields 4 and B are gauge fixed by the conditions
h = hpacx and B = Bpack, which are imposed by the Lagrange multipliers 7, and 75. The
classical action is given by the h-independent terms in (12). The A-dependent terms in (12}
are the counterterms, which, we shall see below, are exactly those needed to cancel all the
anomalies. Thus, we have

Ly = 10¢*0¢' — bBc — BBy + my(h — hack) + 73(B ~ Brack)
— h(}0¢'6¢" — 2b6c — Bbc — 396y — 208 7) (13)
B (%d;jkagoiagojagak — 08¢ — 380c — 52 [8(by84' D) + bdy BBt ])
and
Leouater = VA{ = hau™' — Bleijop'a%o ~ ot (8(70%F) + by 641 |}
+ a{ _B [f.-a%' + 2 (27 8%b + 98 8%b + 158%y 8b + 108% b)] }

In these equations all field products are understood to be normal ordered to implement the

(14)

infinite renormalisation, as we have already discussed.

The transformation rules for the matter fields ' and the ghosts ¢ and 4 are obtained in
the standard way using 6¢* = {Q, '}, etc. The transformation rules for the gauge fields A
and B follow by requiring BRST invariance. Thus we have

8¢t = cO0¢' + ~vdijx Op? p* + 7irby 37390
+ \/E( ~ il + (e — e;i)y6? @l — e;i0710¢ — zg—la,-a(b'yafy)) + hfi0%y, (15a)
§h = Bc+ cOh — Bch + 551 L (vOB — 8vB)0p' ' + 261 h(v0B — 8vB)a;0%'
+ 53514 (270° B ~ 3079°B + 36%y 0B - 201 B), (15b)
6B =8y +¢cBB —20cB +2y0h — Oy b, (15¢)
de=cdc+ 23—17 By Bp' B + %wfﬁan By 8% + 536 261 h(2y 0%~ — 30v0%y), (15d)
&y = c 0y — 20¢c, (15€)
8b = 3, bmy =0, (15¢)
68 =mg, émg = 0. (15f)
The h-independent terms in (15a-f) correspond to the classical BRST symmetry of the
classical action given by (13)*. The h-dependent terms in (15a—f) correspond to renormal-

isations of the classical transformation rules which, together with the counterterms Lcounter
given in (14), ensure full quantum BRST invariance of the effective action.

*  The coefficient 537 in (18), and related coefficients in (15a,b,d), reflect the fact that our classical
normalisations are those inherited from the conventicnally-normalised quantum Wi algebra (3a—¢), upon
taking the classical limit # = 0. At the classical level, one could rescale the fields B, v, 8, 75 and the
parameters d;;x, in order to remove all such factors. We choose to retain the normalisations of (13), (14)
and (15a—f), in order to end up with the conventionally-normalised Wj algebra at the quantum level.
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Note that from the field-theoretic point of view, the occurrence of terms proportional to
V% in the counterterms (14) and the transformation rules (15a-f) may seem strange. This,
however, has already been seen in the renormalisation of ws gravity to W gravity [7],
where it played a crucial role in the cancellation of anomalies. In both that example and the
present paper, the v/ corrections have their origin in the occurrence of background charges
in the matter currents. These terms are natural generalisations of the standard background-
charge terms in the stress tensor. Since (' has dimensions of /%, these terms, involving
fewer fields than the leading term at a given spin, necessarily carry appropriate half-integer
powers of A,

At this stage, it is guaranteed by construction that the action (12) describes anomaly-free
W3 gravity, by virtue of the nilpotence of the BRST charge. In other words, it is guaranteed
that the BRST variation of the effective action I' is BRST-trivial. In fact, as we shall
now demonstrate, the particular choices of counterterms (14) and renormalisations of the
transformation rules (15a—f) ensure that I is actually invariant, and so the anomaly-freedom
is made manifest.

In order to illustrate the BRST invariance of the effective action, we shall consider some
representative potentially-anomalous Feynman diagrams, to show how the anomalies in fact
cancel. Before considering loop diagrams, we note that the A-independent terms in the
variation cancel by virtue of (8¢) [1]. The terms proportional to v/% in the variation of the
effective action cancel amongst themselves by virtue of the relations (86) and (8f). Turning
now to loops, we comsider first diagrams that could have given rise to matter-dependent
anomalies. The first of these is given in Fig. 1. It can be calculated by evaluating the
double contractions in the operator product expansion of 1/(2%) [ d22h(2)8¢'0¢'(z) times
1/(3%) [ d*wB(w)d;;300' 807 0" (w). The resulting contribution to the effective action is

h 1 ;
ThBe = ﬂ_—zd.:jj fdzzdzw h{z)B(w) )45:,9'(1.0)

(z —w

3 ,
= — ey [ ot hz)B) 364z — w)0 ()

= _%dm / d’z (%h(z)) B(2)0¢"(2). (16)

Under the leading order inhomogeneous terms in the BRST transformations (156, c), (6h =
bc+ -+, 6B = Oy + ---) the anomalous variation of LrBy is

A .
Arpe = —g—dijj / d*2(B8c — 18°h)dy". (17)

Note that in the derivation of this result, one may drop terms proportional to the ¢* field
equation, since these cancel in the quantum Slavnov-Taylor-Ward identity [19] against terms
involving operator insertions of the ¢* transformations into the relevant one-loop diagrams.
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The anomalous variation (17) must be cancelled by the O(%) contributions coming from
the counterterms and quantum corrections to the transformation rules. Specifically, there
are contributions:

81 Lo = —hf; h8p'8%,
6%L% = —haoy h 62 ((G{j - e,—,—)yachj — ;07 acpj), (18)
§oL1 = —hf; B O (chy') — ;%0 (c 8B — 28c B + 27 8h — By h),
where the subscripts on § and L indicate their order in %4. Collecting these contributions
together with (17), we find that the anomalies indeed cancel, by virtue of the relations (8a)
and (8¢).
The next two diagrams, Figs. 2a,b, comprise two types of contribution to the anomalies,

with the same external-field structure. Evaluating these contributions in the same manner
as above, we find that the total anomalous variation coming from Figs. 2a,b is

A I- -

ABpyy = —gdikzdjkz f d%z B 8'8° (v 8¢")
__4n

2617

)
f &2(28%1 6B — 201 8°B - §°1 B + §10°B) o' 0"

There is a new feature that appears for the first time in the anomalies associated with
these diagrams, owing to the nonlinearity on the right-hand side of (4c). The anomalies in
a quantum field theory are actually anomalies in the BRST Slavnov-Taylor-Ward identity,
which has the form

2. 0T T_n
/d 5oy (=T =0, (20)

where @7 denotes all the fields. In a theory with linear field transformations, (20) reduces
simply to the statement that the effective action must be invariant under the renormalised
symmetry transformations. In the nonlinear case, however, the Slavnov-Taylor-Ward iden-
tity (20) includes terms where the 6@ 1T generating functionals include contributions from
insertions of the variation operators §®; into 1-particle-irreducible loop diagrams.
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In the specific case of the anomalies associated with the diagrams of Figs. 2a,b, there is
a Slavnov-Taylor-Ward contribution depicted in Fig. 3 [6]. This corresponds to the contri-
bution from the operator 6¢*(z) = ¢(2)d¢*(2) in f dzz——g—("z—) *(2)*T'y, where the subscripts

on I' indicate the orders in %. As a result, we obtain the local contribution

Bvone = =g [ d'2(v08 - 01 B)0gied (21)

which must be added to the anomalous variation (19). Including the relevant contributions
from counterterms and quantum corrections to the transformation rules, we find that all

the potentially-anomalous structures associated with Figs 2 and 3 cancel, by virtue of the
conditions (84), (9a) and (95).

Turning now to the potential universal anomalies, we consider two classes of diagrams;
one class corresponding to the (spin-2)-(spin-2) sector, and the other class corresponding to
the (spin-3)-(spin-3) sector. For the spin-2 case, contributions arise from 1-loop shish-kebab
diagrams with two external  fields and either matter fields or ghost fields in the loop (Fig.
4). There is also a § L L 1 contribution at the same order. These contributions give a total
anomalous variation

Ans = ﬁ(a,a,— 2+ ) / &z h e (22)

From (10), we see that the coefficient can be written as (100 — cpat)/12, and thus it vanishes
at cpat = 100.

In the (spin-3)-(spin-3) sector, contributions arise from the two-loop beach-ball diagram
(Fig. 5) with two external B fields and matter in the loops; 1-loop diagrams with the same
external structure and either matter or ghosts in the loop (the extra factors of % or vVAVE
arise from counterterm vertices); and a tree diagram of the form 6;L;. These give a total
anomalous variation

sz

885 = ~Tggr

(d,;jkd,'jk — Qe e — ﬁegjej,t + 180, f; — 50) /dzzB 35"}’. (23)
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For cmat = 100, the total coefficient vanishes, by virtue of the relations (8a—d). In the mixed
(spin-2)-(spin-3) sector, potential anomalies of the form —L#%/%(ey; — o f;) f d22(Bd%c —
hd*v) vanish by virtue of (8a-c).

We have now demonstrated that our action (12) defines an anomaly-free chiral quantum
W3 gravity theory. Anomaly-freedom was guaranteed by the nilpotence of the BRST operator
(1). Our diagramatic analysis has demonstrated that the counterterms (14) and quantum
corrections to the transformation rules (15) are the correct ones for explicitly removing the
anomalies in the sectors that we have examined. In fact the conditions on the coefficients a;,
dijk, € and f; needed for the above cancellations coincide precisely with the conditions (8a-
f) and (11) needed for nilpotence of the BRST operator. On dimensional grounds there can
be no further counterterms, and so it follows that the action (12) gives an explicitly anomaly-
free theory. Note that this can be achieved for any number of scalars n > 2, provided that
Cmat 18 given the value 100 by choosing the background-charge parameters appropriately.

It should be emphasised that the algebra that we have been gauging in this paper is
precisely the full W; algebra of Zamolodchikov [10], at the quantum level, with ¢ = 100.
That this algebra is closed, albeit in a nonlinear manner, is a consequence of the fact that
the composite spin-4 current A arising on the right-hand side of (3¢) is defined entirely in
terms of the abstract currents T and W. In other words, one may verify the consistency
of the algebra without reference to the underlying field-theoretic substructure. In the field-
theoretic renormalisation programme, we have used normal ordering with respect to the
field modes in order to remove the infinities. In the field-theoretic realisation, the composite
current A would naturally arise in a form written using field normal ordering, with ¢
appearing explicitly, but this may straightforwardly be rearranged into the form (4). Thus
there is no conflict between writing the W3 algebra in terms of the current normal ordering
of (4), and realising W3 in a field-theoretic context with infinities subtracted by means of
field normal ordering.

Given a nilpotent BRST operator, the construction that we have used in this paper can
equally be applied for gauging other algebras. Thus, for example, the problem of obtaining
an anomaly-free Wy gravity is reduced to the problem of constructing a nilpotent quantum
BRST operator for the Wy algebra.

The anomaly-free Wj gravity that we have constructed in this paper is a natural gener-
alisation of critical two-dimensional gravity, or, equivalently, D = 26 critical string theory.
It is natural to speculate on the possibility of a similar spacetime interpretation in our case.
The most general known n-scalar solutions of the conditions (8a—f) and (11) can, without
loss of generality, be chosen so that only two of the scalar fields have background charges
[16]. Thus we may write the matter currents Tipat and Wrat as [16]

Toat = T + %(3901)2 + 3(Bp2)? + Vh(a10%01 + 020%¢2) (24a)
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2
Wt = m{%(&mf — B1(8pa)? + VA(01018%01 ~ 2000010%p5 — 1 04020%p,)

+h(3010%01 — a1030°03) — 20001 T — al‘/ﬁaT}a (240)

where T' is a stress tensor for D = n — 2 scalar fields without background charges,

D
T=}) 6X*ox* (25)
p=1

and the background charges a; and a3 for ¢1 and 9 are given by

o1=-% (26)
of = £(D -4

These conditions on the background charges ensure that
mat = D + (1 — 1203) + (1 — 12a3) = 100. (27)

The fact that 1, and, if D is chosen to satisfy D < 24, a9, are imaginary, suggests that
¢1, and, when appropriate, @3, should be redefined according to ¢ — iy, inducing a corre-
sponding change in the signature of the scalar-field metric.

The remaining D = n—2 scalars X* enter the currents Tipt and Wy only through their
Poincaré-invariant stress tensor 7', given by (23) [16]). Thus it is natural to try to associate
these scalars with the coordinates of a D-dimensional flat target space [20]. One is free to
replace one (or more) of the coordinates X# by iX#, in order to have an indefinite-signature
target spacetime. The anomaly-free W3 gravity theory that we have constructed in this
paper may tentatively be adopted as a starting point for a critical W3-string theory.
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Note added:

After this work was completed, we received an interesting paper by C.M. Hull and L.
Palacios [21], in which background-charge terms are considered in a field-theoretic realisation
without ghosts, starting from the classical W3 algebra, in order to remove matter-dependent
anomalies. They follow a different approach from ours, in which the renormalised quantum
currents would close on an algebra that is different from the Zamolodchikov W3 algebra.
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