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Evidence of non-mean-field-like low-temperature behaviorin the Edwards-Anderson spin-glass
model
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The three-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are
studied via large-scale Monte Carlo simulations at low temperatures, deep within the spin-glass phase. Perform-
ing a careful statistical analysis of several thousand independent disorder realizations and using an observable
that detects peaks in the overlap distribution, we show thatthe Sherrington-Kirkpatrick and Edwards-Anderson
models have a distinctly different low-temperature behavior. The structure of the spin-glass overlap distribution
for the Edwards-Anderson model suggests that its low-temperature phase has only a single pair of pure states.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

Spin glasses [1] have been the subject of intense study and
controversy for decades. These models are perhaps the sim-
plest, physically-motivated examples of frustrated systems in
classical statistical mechanics. Given their wide applicability
across disciplines, it is important that their behavior is under-
stood. Despite four decades of research, the low-temperature
phase of short-range spin glasses is poorly understood. Here
we study both the three-dimensional (3D) Edwards-Anderson
(EA) Ising spin glass [2] and the Ising spin glass on a complete
graph—known as the Sherrington-Kirkpatrick (SK) model
[3]—in an effort to gain a deeper understanding of the low-
temperature spin-glass state. Our results suggest that these
models are qualitatively different at low temperatures.

Parisi’s solution of the SK model [4, 5] involves an unusual
form of symmetry breaking among replicas. These were orig-
inally introduced to carry out the disorder average of the loga-
rithm of the partition function. The low-temperature phaseof
the model within the replica symmetry breaking (RSB) solu-
tion [4, 5] has several unusual features such as the breakdown
of self-averaging and the co-existence of a countable infinity
of pure states in the thermodynamic limit.

P(q)

q
+qEA–qEA

(a)
P (q)

q
+qEA–qEA

(b)
J P(q)

q
+qEA–qEA

(c)

FIG. 1: (Color online) (a) In the droplet pictureP (q) is trivial with
one pair of pure states. (b) In the RSB picture individual samples
have many pairs of pure states (δ functions inPJ (q)). (c) In the
RSB pictureP (q) is nontrivial (continuous support for|q| < qEA).

There is no analytic theory for the EA model but it is well-
accepted on the basis of numerical simulations [6] that the
EA model undergoes a continuous phase transition. However,
the low-temperature broken-symmetry phase is not under-
stood, even qualitatively. Different mutually-exclusivesce-
narios have been proposed: The replica symmetry breaking
(RSB) picture is based on an analogy with the solution of the

SK model. It assumes that self-averaging breaks down and
that there are a countable infinity of pure states in the thermo-
dynamic limit. A qualitatively different and simpler picture
was proposed to describe the EA model by McMillan, Fisher
and Huse, as well as Bray and Moore [7–11]. In the “droplet
scaling” picture the low-temperature phase is described byone
pair of pure states related by a spin flip with low-lying excita-
tions that are isolated, compact droplets of the opposite phase.
A central difference between the RSB and droplet pictures for
the EA model is whether there is a single pair of pure states or
many pairs of pure states for large systems, see Fig. 1.

Newman and Stein [12–14] explained that the usual way
of constructing the thermodynamic limit cannot be applied to
finite-dimensional spin glasses because of the possibilityof
a chaotic system-size dependence in which different thermo-
dynamic states may appear for different system sizes. They
showed that the key ideas of RSB—non-self-averaging and
a countable infinity of pure states—cannot hold for the EA
model within the naı̈ve way that they were first proposed.
However, their results do not completely rule out a nonstan-
dard interpretation of RSB. They also proposed a more plau-
sible many-states “chaotic pairs” picture in which for a fixed
choice of couplings, there are many pure states but that in a
single finite volume only one pair is manifest.

Here we report the results of large-scale Monte Carlo simu-
lations of both the SK and EA models. Our objective is to shed
light on the qualitative nature of the low-temperature phase of
the EA model by comparing and contrasting to the SK model.
Previous numerical studies, e.g., [15] using the average spin
overlap distribution suggested that both the SK and EA mod-
els are well described by the RSB picture. However, for the
numerically-accessible system sizes the two main peaks are
still converging to±qEA (see Fig. 3) and therefore results
might be plagued by finite-size effects. On the other hand,
studies of the link overlap [15] distribution suggest agreement
with the droplet picture. The “trivial nontrivial” scenario [15–
17] reconciles these numerical results by postulating thatexci-
tations are compact, as in the droplet picture, but their energy
cost is independent of system size, as in the RSB picture. In
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an effort to resolve these discrepancies, here we introducea
statistic obtained from the spin overlap distribution thatde-
tects sharp peaks inindividual samples, inspired by a recent
study on the SK model [18]. This statistic clearly differenti-
ates the RSB and droplet pictures: it converges to zero in the
large-volume limit if there is a single pair of pure states and to
unity if there are countably many. Our results for this quantity
shows clear differences between the EA and SK models.

Models and Numerical Details.—The SK and EA models
are defined by the HamiltonianH = −

∑N
i,j=1

JijSiSj , with
Si ∈ {±1} Ising spins. For the EA model the sum is over
nearest neighbors on a cubic lattice of sizeN = L3 with peri-
odic boundaries. The couplingsJij are chosen from a Gaus-
sian distribution with zero mean and variance unity. A set of
couplingsJ = {Jij} defines a disorder realization or, simply,
a “sample.” For the SK model the sum is over all pairs of spins
and theJij are chosen from a Gaussian distribution with zero
mean and variance1/(N − 1).

Ordering in spin glasses is detected from the spin overlap
q = (1/N)

∑

i S
α
i S

β
i , where “α” and “β” indicate indepen-

dent spin configurations for the same sampleJ . The primary
observable we consider for fixedJ andN is the overlap prob-
ability density,PJ (q). In the high-temperature phase there is
a well-defined thermodynamic limit andPJ (q) → δ(q) for
N → ∞ for almost everyJ . The behavior ofPJ (q) for large
N andT < Tc, Tc the critical temperature, distinguishes the
RSB picture from other theories. If there is only a single pair
of states for each system size,PJ (q) consists for largeN of a
symmetric pair ofδ functions at the Edwards-Anderson order
parameterq = ±qEA, see Fig. 1(a). In the RSB picture there
are many sharp peaks symmetrically distributed in the range
−qEA < q < qEA as shown in Fig. 1(b), corresponding to
multiple pairs of pure states. In the RSB picture, the distribu-
tion of peaks depends onJ but the disorder averaged overlap
distributionP (q) exists, and for largeN is expected take the
form shown in Fig. 1(c).

We have carried out replica exchange Monte Carlo [19]
simulations of both models. Parameters are shown in Tables
I and II. For each sample we equilibrate two independent sets
of replicas to compute the overlap distribution. Equilibra-
tion is tested for the EA and SK models using the methods
of Refs.[15] and [20], respectively. The number of equilibra-
tion and data collection sweeps are chosen to be long enough
to ensure that samples are well equilibrated and thatPJ (q) is
accurately measured for each sample. We report results for
T = 0.42 [T = 0.4231] for the EA [SK] model. For the EA
model,Tc ≈ 0.96 [6], while for the SK modelTc = 1, so
our simulations are at∼ 0.4Tc, i.e., deep within the spin-glass
phase [21] where critical fluctuations are unimportant.

Results.— Figure 2 showsPJ (q) for three different EA
samples (N = 512 = 83, T = 0.42). Note thatPJ (q)
varies considerably between samples. Qualitatively similar
overlap distributions are seen for the SK model. Figure 3,
left panel [right panel], shows the disorder averaged overlap
distributionP (q) for the EA [SK] model for different system
sizes atT = 0.42 [T = 0.4231] [22]. At this low temper-

TABLE I: EA model simulation parameters. For each number of
spinsN = L3 we equilibrate and measure for2b Monte Carlo
sweeps.Tmin [Tmax] is the lowest [highest] temperature andNT is
the number of temperatures.Nsa is the number of disorder samples.

N L b Tmin Tmax NT Nsa

64 4 18 0.2000 2.0000 16 4891

216 6 24 0.2000 2.0000 16 4961

512 8 27 0.2000 2.0000 16 5130

1000 10 27 0.2000 2.0000 16 5027

1728 12 25 0.4200 1.8000 26 3257

TABLE II: Simulation parameters for the SK spin glass. See the
Table I for details.

N b Tmin Tmax NT Nsa

64 22 0.2000 1.5000 48 5068

128 22 0.2000 1.5000 48 5302

256 22 0.2000 1.5000 48 5085

512 18 0.2000 1.5000 48 4989

1024 18 0.2000 1.5000 48 3054

2048 16 0.4231 1.5000 34 3020

ature,P (q) consists of large peaks at the finite-size value of
the EA order parameter,±qEA(N). P (q) is reasonably flat,
non-zero, and nearly independent ofN in the approximate
range−0.4 . q . 0.4 for the sizes studied here. We can
quantify this observation by considering the integrated over-
lap,I(q0) =

∫

|q|<q0
P (q)dq. Figure 4 showsI(0.2) as a func-

tion of N for both the EA and SK models atT ≈ 0.4Tc [21].
Note thatI(0.2) is nearly independent ofN . We found qual-
itatively similar results for other values ofq0 up to q0 ≈ 0.5
and temperatures down to0.2Tc for smaller systems. The con-
stancy ofI(0.2) has been observed in a number of studies (see
Refs. [15] and [23]) and is among the strongest evidence in fa-
vor of the validity of the RSB picture for short-range systems.

AlthoughI(q0) in Fig. 4 is nearly constant over the range of
sizes simulated in this and other studies of the EA model, it is
also clear that, for these same sizes there are strong finite-size
effects. These corrections can be seen by looking at the size
dependence ofqEA(N). The peak moves to smaller values of
qEA asN increases, similar to recent results [23] for largerN .
The presence of these strong finite-size corrections makes the
absence of any significantN dependence ofP (q) for smallq
surprising. In the droplet picture,I(q0) is expected to decay
with a small power ofL, I(q0) ∼ TL−θ (θ ≈ 0.2 in 3D [24])
and this slow asymptotic behavior may not set in until large
sizes. Thus the behavior ofI(q0) shown in Fig. 4 may not
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FIG. 2: (Color online) Typical overlap distributionsPJ (q) for three
disorder realizations for the EA model withN = 83 andT = 0.42.
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FIG. 3: (Color online) Disorder-averaged overlap probability distri-
butionP (q) for different system sizes atT = 0.42 andT = 0.4231
for the EA model (left) and SK model (right), respectively.
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FIG. 4: (Color online) Disorder average of the weight of the overlap
distributionI(0.2) as a function ofN for T ≈ 0.4Tc for both the
EA and SK models.

be a sensitive indicator of the nature of the low-temperature
phase for system sizes currently accessible to simulation.

To better understand the size dependence of the overlap dis-
tributions, we go beyond disorder averages and consider other
statistics obtained fromPJ (q). In particular, we identify the
emergence, or not, ofδ functions in the range−qEA < q <
qEA asN increases, which would signal more than one pair
of pure states. A finite-size broadenedδ function atq is char-
acterized by a large value ofPJ (q). To detectδ-function-like
behavior for finiteN we consider the statistic

∆(q0, κ) = Prob

[

max
|q|<q0

{

1

2

(

PJ (q) + PJ (−q)
)

}

> κ

]

.

(1)
The probability is defined with respect toJ and∆(q0, κ) is
the fraction of samples with at least one peak greater thanκ in
PJ (q) in the range|q| < q0. κ is chosen to be large enough to
exclude some but not all samples. We refer to samples counted
in ∆(q0, κ) as “peaked.” For example, withκ = 1 the sample
with the central peaks (black line) in Fig. 2 is peaked forq0 &
0.1, whereas the two other samples are not forq0 . 0.5.

The droplet and RSB pictures make dramatically different
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FIG. 5: (Color online) Fraction of peaked samples∆(q0, κ) atT ≈
0.4Tc as a function ofN for κ = 1, q0 = 0.2 and0.4.
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FIG. 6: (Color online) Contours of constant∆ for the EA model
(left) and the SK model (right) as a function oflog10(N) and
log10(κ/κ0) with κ0 = 0.5 and 1.5 for q0 = 0.2 and 1.0, re-
spectively. The solid [dashed] lines are contours of constant ∆ for
q0 = 0.2 [q0 = 1.0] equally spaced in∆ [27].

predictions for∆(q0, κ). For the droplet or chaotic pairs pic-
ture there is only a single pair of states for any large volume
so that∆(q0, κ) → 0 for any κ > 0 and anyq0 < qEA

whenN → ∞. However, for the RSB picture one expects
δ functions inPJ (q) for any range ofq, i.e.,∆(q0, κ) → 1 as
N → ∞ for anyq0 andκ > 0.

Figure 5 shows∆(q0, κ) as a function of system size for
q0 = 0.2 and0.4, as well asκ = 1 [25]. We found qual-
itatively similar results for other values ofq0 andκ, as well
as for lower temperatures. Our most important observation is
that the fraction of peaked samples∆(q0, κ) is nearly constant
and small for the EA model while∆(q0, κ) is increasing over
the same range ofN for the SK model [26]. The result for the
SK model is expected from Parisi’s RSB solution. The con-
trasting result for the EA model suggests that the number of
pure states does not grow with the system size for lowT ; a
result consistent with the droplet and chaotic pairs pictures.

The difference in the behavior of∆ for the SK model in
comparison to the EA model might be explained by the fact
that peaks sharpen more quickly withN for the SK than for
the EA model (see Fig. 3 and Ref. [28]. To study this effect,
we compare∆ for the two values,q0 = 0.2 andq0 = 1, for
each model separately. Forq0 = 1, ∆ is controlled by the
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peaks at±qEA and must converge to unity for both models
because forN → ∞ theqEA peaks becomeδ functions. Fig-
ure 6, left [right] panel, shows contour plots of constant∆ for
the EA [SK] model. The horizontal axis is the logarithm of the
number of spins and the vertical axis is the logarithm ofκ/κ0

with κ0 = 0.5 for q0 = 0.2 andκ0 = 1.5 for q0 = 1. The
curves are lines of constant∆ obtained from a linear interpo-
lation of the data. Each set of curves are equally spaced in∆
[27] with ∆ decreasing asκ increases. The dashed contours
are forq0 = 1 and thus include theqEA peaks. As expected,
the dashed contours are clearly increasing functions forboth
models although they rise more rapidly for the SK model than
for the EA model. The solid curves are contours of constant
∆ for q0 = 0.2. Close inspection of the data reveals aquali-
tativedifference between both models. For largeN and large
∆, the SKq0 = 0.2 contours rise more steeply than the corre-
spondingq0 = 1 contours, suggesting that not only are peaks
sharpening, but the number of peaks is also increasing. In
fact, Ref. [18] shows that the number of peaks inPJ (q) should
scale asN1/6 for the SK model. On the other hand, for large
N and large∆, the EA contours forq0 = 0.2 are nearly flat,
rising less steeply than forq0 = 1, suggesting that the number
of peaks is either decreasing or staying constant.

Conclusions.— We introduce a statistic∆ that detects the
fraction of samples withδ function behavior inPJ (q) near the
origin and sharply distinguishes the RSB picture from scenar-
ios with only a single pair of states such as the droplet picture.
While our results for the SK model are consistent with RSB,
as expected, the EA model does not display a trend towards
many pairs of pure states. These results lend weight to the
droplet and chaotic pairs pictures It is also possible that for
the EA model,∆ increases very slowly inN and ultimately
converges to unity in agreement with the RSB picture. How-
ever, our data show no indication of such trend. It would be
interesting to perform a similar analysis with extremely large
data sets computed with special-purpose computers, such as
the Janus machine [29].
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