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Quantum Optics with Surface Plasmons

D.E. Chang,1 A. S. Sørensen,2 P.R. Hemmer,1, 3 and M.D. Lukin1, 4

1Physics Department, Harvard University, Cambridge, MA 02138

2Niels Bohr Institute, DK-2100 Copenhagen Ø, Denmark

3Electrical Engineering Department,

Texas A&M University, College Station, TX 77843

4ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138

(Dated: February 1, 2008)

Abstract

We describe a technique that enables strong, coherent coupling between individual optical emit-

ters and guided plasmon excitations in conducting nano-structures at optical frequencies. We show

that under realistic conditions, optical emission can be almost entirely directed into the plasmon

modes. As an example, we describe an application of this technique involving efficient generation of

single photons on demand, in which the plasmon is efficiently out-coupled to a dielectric waveguide.
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The fields of quantum computation and quantum information science have spurred sub-

stantial interest in generating strong, coherent interactions between individual quantum

emitters and photons. Such a mechanism would enable quantum information to be passed

over long distances, which is essential for quantum communication [1, 2] and would facilitate

the scalability of quantum computers [3]. The required coupling between emitters and pho-

tons is difficult but has been achieved in a number of systems that reach the so-called “strong-

coupling” regime of cavity quantum electrodynamics [4, 5]. Recently, several approaches to

reach this regime on a chip at microwave frequencies have been suggested [6, 7, 8, 9] and

experimentally observed [9]. A key feature of these approaches is the use of conductors to

reduce the effective mode volume Veff for the photons, thereby achieving a substantial in-

crease in the coupling strength g∝1/
√

Veff. Realization of analogous techniques with optical

photons would open the door to many potential applications in quantum communication

and in addition lead to smaller mode volumes and hence faster interaction times.

This Letter describes a method that enables strong, coherent coupling between individ-

ual emitters and electromagnetic excitations in conducting nano-structures at optical fre-

quencies, via excitation of guided plasmons localized to nanoscale dimensions. The strong

coupling is possible due to the small mode volume associated with this sub-wavelength con-

finement. We first examine the simple case of a conducting nanowire, where the relevant

physical mechanisms can be understood analytically, and then consider an optimized ge-

ometry of a metallic nanotip. Because of dissipative losses in metals the plasmon modes

themselves are not suitable as carriers of information over long distances. We show, however,

that the plasmon excitation can be efficiently out-coupled through evanescent coupling with

a nearby dielectric waveguide, as illustrated schematically in Fig. 1. This can be used, e.g.,

to create an efficient single photon source, or as part of an architecture to perform controlled

interactions between distant qubits. We find that single-photon efficiencies exceeding 95%

are possible using relatively simple implementations.

Surface plasmons [10] are bound, non-radiative electromagnetic excitations associated

with charge density waves propagating along the surface of a conducting object. For a

smooth, cylindrical nanowire, it is convenient to write the fields in terms of cylindrical coor-

dinates, Ej(r) = Ej,m(kj⊥ρ)eimφeik‖z, where j = 1, 2 denotes the regions outside and inside

the metal, respectively. The functions Ej,m are determined by Maxwell’s Equations along

with appropriate boundary conditions and are given in [11]. The modes are characterized by
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the longitudinal component of the wave vector k‖, which is related to the free-space wavevec-

tor k0 = ω0/c, dielectric permittivity ǫj , and imaginary transverse wave vector kj⊥ = iκj⊥

by ǫjk
2
0 = k2

‖ − κ2
j⊥. κj⊥ is related to the inverse decay length of the field away from the

surface. The dependence of k‖ for a conducting wire on its radius R is shown in Fig. 2(a),

for a few lowest order modes. Throughout this paper, all figures and numbers presented use

the optical properties of silver (ǫ2 = −50 + 0.6i) [17] at a vacuum wavelength λ0 = 1 µm,

and assume a surrounding dielectric ǫ1 = 2.

For a conducting nanowire (|√ǫi|k0R≪1, Re ǫ2 < 0), there exists one, fundamental TM

mode [12, 13] with axial symmetry (m = 0), while all higher-order modes are cut off. For

this mode, k‖, κj⊥≈C−1/R, indicating that the phase velocity vph∝ω0R is greatly reduced

while the transverse mode area Aeff ∝ R2 is localized to a region on the order of the wire

size. The proportionality constant C−1 depends only on ǫ1,2 and is given by

ǫ2

ǫ1
≈ 2

(γ − log 2 + log C−1)(C−1)2
, (1)

where γ≈0.577 is Euler’s constant. This sub-wavelength guiding of plasmons in metal

nanowires has recently been observed in a number of experiments [14, 15, 16].

At optical frequencies a conductor has finite losses characterized by Im ǫ2, resulting in

dissipation of the plasmon wave at a rate given by Im k‖. Due to the tighter localization,

Re k‖/Im k‖ decreases and approaches some non-zero value (≈140) as R→0, as shown in

the inset of Fig. 2(a) for the fundamental mode. Physically Re k‖/Im k‖ is proportional to

the number of plasmon wavelengths the plasmon will travel before decaying.

We now consider the emission properties near a nanowire of an oscillating dipole, which

physically can be formed by a single atom, a defect in a solid-state system, or any other sys-

tem with a dipole-allowed transition. This dipole can generally lose its excitation radiatively

by emitting a photon, non-radiatively through dissipation of currents induced by the dipole

in the metal, or into the guided plasmon modes. It is well-known that the corresponding

spontaneous emission rates can be obtained via classical calculations of the fields [18]. For

sub-wavelength systems this calculation further simplifies because it is sufficient to consider

the quasi-static (H = 0) field solutions [19], the derivation of which we outline here. Given

a point charge source at r′ outside the metal, we write the static potential outside in terms

of the free-space potential and a reflected component, Φ0(r, r
′) + Φr(r, r

′), while Φ2(r, r
′)

gives the potential inside the wire. Note that the potential due to a dipole p0 at r′ is easily

3



found from the point source potential via Φdip(r, r
′) = (p0 · ∇′) Φ(r, r′). Since Φr,2(r, r

′) are

solutions to the Laplace equation, ∇2Φr,2 = 0, we can expand Φr in an appropriate basis,

Φr(r, r
′) =

1

2π2ǫ0

∞
∑

m=0

(2−δm,0) cos m(φ − φ′)

∫ ∞

0

dh αm(h) cos h(z − z′)Km(hρ′)Im(hρ), (2)

where αm(h) are arbitrary coefficients, and K, Im are modified Bessel functions. A similar

expansion holds for Φ2, with the replacements αm → βm and Km→Im. Expanding Φ0 =

(4πǫ0ǫ1|r − r′|)−1 in a similar basis, algebraic equations for αm, βm result by requiring that

Φ0 + Φr = Φ2 at the boundary and that ǫE⊥ is continuous here. The solution for αm is

found to be

αm(h) =
1

ǫ1

(ǫ2 − ǫ1)I
′
m(hR)Im(hR)

ǫ1Im(hR)K ′
m(hR) − ǫ2Km(hR)I ′

m(hR)
. (3)

The radiative decay rate is determined by finding the dipole contribution ∼ δp·r
4πǫ1r3 to

Φdip,r≡ (p0 · ∇′) Φr at large distances r, which for a nanowire is due to the m = 1 term

in Eq. (2). Physically δp corresponds to an induced dipole moment in the nanowire, and

leads to a modified radiative decay rate Γrad ∝ |p0 + δp|2. The non-radiative and plasmon

decay rates can be calculated via Γtotal∝Im(p0 · E), where E = −∇Φdip(r, r
′)|r=r′ is the

total field at the dipole location. In the limit that the distance d between emitter and

wire edge approaches zero, one finds that E diverges due to a substantial contribution from

the sum over m in Eq. (2). This term is proportional to Im ǫ2 and can thus be identified

with non-radiative decay. At the same time, Eq. (3) exhibits a pole in α0 that corresponds

to excitation of the fundamental plasmon mode, and whose contribution to E yields the

plasmon decay rate. For a nanowire, the radiative and non-radiative decay rates for a dipole

oriented along ρ̂ are given by [19]

Γrad/Γ0 ≈
∣

∣

∣

∣

1 +
ǫ2 − ǫ1

ǫ2 + ǫ1

R2

(R + d)2

∣

∣

∣

∣

2

, (4)

Γnon-rad/Γ0 ≈ 3

16k3
0d

3ǫ
3/2
1

Im

(

ǫ2 − ǫ1

ǫ2 + ǫ1

)

, (5)

where Γ0 is the decay rate in uniform dielectric ǫ1 [20], while the plasmon decay rate is [21]

Γpl/Γ0 = αpl
K2

1 (κ1⊥(R + d))

(k0R)3
. (6)

αpl is a complicated expression but depends only on ǫ1,2.

The scalings of the various decay rates can be intuitively understood. Away from the

plasmon resonance (ǫ1 + ǫ2≈0), Γrad varies slightly from Γ0 due to a small change in the ra-

diative density of states near the nanowire, while the 1/d3 dependence in Γnon-rad reflects the
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dissipation of a divergent current induced in the nanowire by the near-field of the dipole. The

1/R3 scaling for Γpl can be understood from Fermi’s Golden Rule, Γpl = 2πg2(r, ω0)D(ω0),

where g(r, ω0) ∝ 1/
√

Aeff ∝ 1/R is the position-dependent coupling strength between emit-

ter and plasmon modes and D(ω0) ∝ (dω/dk‖)
−1 ∝ (ω0R)−1 is the plasmon density of states

on the wire.

The position dependence of the decay rates results in an optimal emitter distance do

for which the probability of decay into plasmons Γpl/(Γpl + Γ′) is maximized, where Γ′ =

Γrad + Γnon-rad denotes the total “non-plasmon” decay rate. For typical parameters, do is on

the order of several R as R→0, such that the emitter sits within the localized plasmon field

but is not too close to the wire that dissipation become dominant. In Fig. 2(b) we plot the

probability of emission into non-plasmon channels, 1 − Γpl/(Γ′ + Γpl), as a function of R

when the optimal do is chosen. This optimized “error” rate decreases monotonically as R→0

and approaches a small number ∝ Im ǫ/(Re ǫ)2 indicating that the efficiency of emission

into plasmons is ultimately limited by dissipative losses. As R→0, one can achieve effective

Purcell factors of Γpl/Γ′≈5.2×102 for a silver nanowire.

The nanowire is a simple system that illustrates the relevant properties of dipole emission

and plasmon propagation. One immediately sees, however, that the increase in coupling

achieved by letting R→0 is accompanied by a decrease in the plasmon propagation length,

which limits coherent processes of interest. Such limits can be circumvented with simple

design improvements, which we illustrate specifically for the case of a metallic nanotip,

assumed to have a paraboloidal profile given by ρ(z) =
√

vz (z > 0). One expects a similar

enhancement of plasmon emission due to the nanotip, yet the tip can quickly expand to

larger radii where losses can be significantly reduced. As in the nanowire case, one can

calculate the emission rates based on the quasi-static field solution of a dipole near a tip,

which is exactly solvable by working in parabolic coordinates. For an emitter located on-axis

at position z = −|d| < 0 and oriented along ẑ, we find that [21]

Γrad/Γ0 =

∣

∣

∣

∣

1 + (1 + 4d/v)−1

(

ǫ2

ǫ1

− 1

)
∣

∣

∣

∣

2

, (7)

Γnon-rad/Γ0 =
3

8ǫ
3/2
1 (k0d)3

Im

(

ǫ2 − ǫ1

ǫ2 + ǫ1

)

, (8)

Γpl/Γ0 = α′
pl

|K1(C−1

√

1 + 4d/v)|2
(k0v)3(1 + 4d/v)

. (9)

Here, α′
pl is a constant that again only depends on ǫ1,2, and C−1 is the solution to Eq. (1).
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From these decay rates one finds an optimized Purcell factor Γpl/Γ′≈2.5 × 103 as v→0, as

shown in Fig. 2(b), for the same material parameters as the nanowire calculation. In the

case of a nanotip, however, we are primarily interested in the probability that the plasmon

propagates up to some final radius R. We estimate this quantity by making an eikonal

approximation based on the nanowire solution [22]. In particular, we assume that the

plasmons are completely emitted into the end of the tip (z = 0) at a rate Γpl, while the rate

at which the plasmon emission successfully propagates to some larger radius R(z) is given

by

Γ̃pl(R) = Γplexp

(

−2

∫ z(R)

0

Imk‖(ρ(z))dz

)

. (10)

Here k‖(ρ) is the nanowire solution at radius ρ. In Fig. 2(b) we plot PE(R) = 1−Γ̃pl(R)/(Γ′+

Γpl) as a function of R, optimized over the emitter position and v. This quantity corresponds

to an effective error probability in which the plasmon mode is either not excited or fails to

successfully propagate to some final radius R. For k0R >∼ 0.05 the tip leads to significant

improvement in efficiency compared to nanowires of the same R. To check the validity of

these approximations we have performed numerical (electrodynamic) simulations of dipole

emission near a nanotip using boundary element method [23], with the resulting numerically

optimized PE(R) plotted in Fig. 2(b). It can be seen that the theory agrees well with the

numerics. Some typical simulation results are shown in Fig. 3(a). Here we plot for different

emitter positions the quantity |Re (E×H∗)|/Γtotal, which is proportional to the energy flux

of the system normalized by the total power output of the emitter. It can clearly be seen

that choosing the optimal position results in efficient excitation of the plasmons at final

radius R, while other positions can result in primarily non-radiative or radiative decay.

Because of losses, the plasmon modes are not suitable as carriers of information over long

distances. However, one can evanescently couple the plasmons to dielectric waveguide modes,

which can form an architecture for a device to generate single photons on demand. Noting

that the concepts behind single photon generation with a single emitter in a cavity have been

presented in detail elsewhere [24, 25, 26, 27], here we illustrate a potential novel realization of

a single photon device, shown in Fig. 1(a). In this architecture, a single, optically addressable

emitter such as a quantum dot sits atop a nanowire, which co-propagates over some length

Lex with a nearby dielectric waveguide. In order to maximize the transfer efficiency into

the waveguide, the longitudinal wavevectors k‖ of the plasmon and waveguide should be
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approximately matched, and Lex should be optimized. In practice, for a given wire radius

R, the matching condition results in some optimization of parameters such as the waveguide

size. A similar setup using a nanotip instead of a nanowire is illustrated in Fig. 1(b). Here

the nanotip maintains a paraboloidal profile up to some final radius R, at which point it

becomes a straight nanowire supporting plasmon modes with well-defined k‖ that can be

easily be mode-matched with the waveguide.

The out-coupling and single photon efficiencies can be calculated using standard mode-

coupled equations based on Lorentz reciprocity [28]. For simplicity, we take the dielectric

waveguide to be a cylindrical optical fiber, whose modes can be calculated analytically [11],

and set the surrounding and fiber core permittivities to be ǫ1 = 2, ǫc = 13. In Fig. 3(b), we

plot the optimized efficiency P for single photon generation as a function of R, for both the

nanowire and nanotip, based on the decay probabilities obtained above and coupled-mode

theory. We also include the predicted efficiencies using the boundary element method sim-

ulations combined with coupled-mode theory. These calculations take fully into account all

imperfections, including metal losses and imperfect waveguide coupling. We observe that

there is some optimal R where P is maximized, which corresponds to a balance between

achieving large coupling between emitter and nano-structure, and ensuring that the plas-

mon/guide coupling exceeds the enhanced losses at small R. We find that optimal single

photon efficiencies exceeding 95% are achievable in such a system.

Such an architecture for quantum communication based on plasmonic devices has several

important features. First, unlike typical methods of cavity QED, the plasmon excitation

covers a broad bandwidth and requires no special tuning to achieve resonance. The operation

speeds can also be quite high because of the sub-wavelength mode volumes associated with

the plasmons. Finally, we note that rapid advances in recent years in fabrication techniques

for nanowires [29, 30], nanotips [31], and sub-wavelength dielectric waveguides [32, 33] puts

such a system in experimental reach.
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FIG. 1: (a) An emitter coupled to a nanowire is optically excited and decays with high probability

into the plasmon modes of the nanowire. A single photon source is created by evanescently coupling

the nanowire to a nearby dielectric waveguide over a length Lex. (b) A similar setup, where a dipole

emitter is coupled to a metallic nanotip that expands to some final radius R and is then coupled

to a dielectric waveguide.

FIG. 2: (a) k‖ for plasmon modes on a silver nanowire as a function of wire radius R, in units of k1 =

ω0
√

ǫ1/c. The fundamental plasmon mode (in black) is characterized by a k‖∝1/R dependence.

Inset: the ratio Re k‖/Im k‖ for the fundamental mode. (b) Solid line: Probability of emission into

non-plasmon channels, 1−Γpl/(Γ
′+Γpl), for a nanowire as a function of R. Dashed line: probability

of emission into non-plasmon channels vs. v for a nanotip. Dotted line: 1 − Γ̃pl(R)/(Γ′ + Γpl) at

final radius R for a nanotip. Solid points: numerically optimized values of 1− Γ̃pl(R)/(Γ′ +Γpl) for

a nanotip, obtained via boundary element method simulations. Inset: same plot, zoomed in near

R, v = 0.
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FIG. 3: (a) Normalized energy flux for an emitter positioned (from top to bottom) at distances

k0d = 0.002, 0.2, 0.7 (denoted by the blue circles). The nanotip (whose surface is indicated by

the dotted lines) has final radius k0R = 0.3 and curvature parameter k0v = 0.022. The first

plot is mostly dark and indicates that the emitter decays primarily non-radiatively. The middle

plot demonstrates efficient excitation of guided plasmons at the final radius R, while the last plot

exhibits the typical lobe pattern associated with radiative decay. (b) Optimized efficiency of single

photon generation vs. R. We have assumed that coupling to waveguide modes other than the

fundamental mode is negligible, i.e., the waveguide is effectively in the single-mode regime. Solid

line: theoretical efficiency using a nanowire. Dotted line: theoretical efficiency using a nanotip.

Solid points: efficiency based on numerical simulations of emission near a nanotip, combined with

coupled-mode equations.
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