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ABSTRACT

We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE)
for ultrasound-modulated multiply scattered light, which can be used to calculate the ultrasound-modulated
optical intensity in an optically scattering medium with a nonuniform ultrasound field and a heterogeneous
distribution of optical parameters. We present an analytical solution based on the CDE for scattering of the
temporal autocorrelation function from a cylinder of ultrasound in an optically scattering slab. The CDE is valid
for moderate ultrasound pressures on a scale comparable with the optical transport mean free path, which must
be greater than the ultrasound wavelength and smaller than or comparable to the sizes of both ultrasonic and
optical inhomogeneities. These equations should be applicable to a wide spectrum of conditions for ultrasound-
modulated optical tomography of soft biological tissues.
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diffusion approximation, turbid medium

1. INTRODUCTION

The optical properties of tissues in visible and near-infrared regions are related to their molecular structure.
Radiation at these wavelengths is nonionizing with potential for the functional imaging and detection of tissue
abnormalities. However, due to the diffusion of light, it is difficult to simultaneously achieve both good spatial
resolution and good imaging depth with the pure optical imaging modalities, such as optical coherence tomogra-
phy or diffuse optical tomography. Therefore, much effort has recently been expended to advance soft biological
tissue imaging based on ultrasound-modulated multiply scattered light.

Ultrasound-modulated optical tomography (UOT) is a hybrid technique which combines ultrasonic resolution
and optical contrast. It is being proposed in order to provide better resolution for the optical imaging of soft
biological tissues at imaging depths where light is completely diffused. With this technique,>? optical radiation,
which has high temporal coherence, and focused ultrasound are applied simultaneously to soft biological tissue.
The intensity of the ultrasound-modulated optical radiation is related to the optical properties of the tissue in
the interaction region of the ultrasonic and electromagnetic waves.

Efficient detection of ultrasound-modulated optical intensity is challenging because of the diffused light propa-
gation and the uncorrelated phases among the optical speckles. At present, the development of effective detection
systems is the subject of intense research.> 19 Also, the exact nature of the ultrasound-modulation of light in
a highly optically scattering medium is still not totally understood due to the complicated light-ultrasound in-
teraction in the presence of optical scatterers. Similarly to dynamic light scattering by scatterers undergoing
Brownian motion,’! dynamic scattering by optical scatterers oscillating in an ultrasound field causes optical
frequency shifts.'? '3 Optical frequency shifts are also produced due to ultrasound-induced changes in the opti-
cal index of refraction.'®® A theoretical model,'®> which combines both mechanisms of modulation, has been
subsequently extended to account for anisotropic optical scattering,'® and Brownian motion.'%17 Additional
extensions of the theoretical model include pulsed ultrasound'® and strong correlations between the ultrasound-
induced optical phase increments which exist when the optical transport mean free path [;,. is smaller than the
ultrasound wavelength \,.'® A Monte Carlo algorithm has also been developed,'® which can be adapted to
explore complex geometries.

Existing theoretical models are based on the diffusing-wave spectroscopy (DWS) approach,'t:2° where the

interaction of a plane ultrasound wave with diffused light is considered in an infinite scattering medium. As
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a result, analytical solutions are limited to simple geometries where the ultrasound field can be approximated
as a plane wave and where the probability density function of the optical path length is analytically known.
Consequently, only transmission through,® 618 and reflection from,'”'® an infinite scattering slab filled with
ultrasound have been analytically studied. In practice, however, the ultrasound field is focused and the optical
parameters are distributed heterogeneously. Therefore, a more general theoretical model is needed.

In this proceeding, we formally derive a temporal correlation transfer equation (CTE) and a temporal corre-
lation diffusion equation (CDE) for ultrasound-modulated multiply scattered light for isotropic optical scattering
and kqly- > 1, where k, = 27/, is the magnitude of the ultrasound wave vector. These equations can be used
to obtain both analytical and numerical solutions for the distribution of the modulated light intensity in scatter-
ing samples with heterogeneous optical parameters and a nonuniform ultrasound field. In addition, the simple
form of the CDE benefits from all of the mathematical tools available for the diffusion equation. A derivation
of a more complex CTE based on the ladder approximation of the Bethe-Sapleter equation will be presented
elsewhere.?!

2. DEVELOPMENT OF THE CORRELATION TRANSFER EQUATION

We consider the interaction of ultrasound with monochromatic light that diffuses through the medium with
discrete, uncorrelated optical scatterers. The scattering is assumed to be independent, and, for simplicity, we
further neglect the polarization of the electrical field. Under the weak scattering approximation that the optical
mean free path is much greater than the optical wavelength, the transfer of light can be described by ladder
diagrams.?? 1In our case, this also involves calculation of the optical phase increments due to both mechanisms
of the ultrasound modulation along the optical paths. The phase increments are generally correlated if they
originate at positions separated by less than I; or A,,'® which creates difficulties in the derivation of a simple
transfer-like equation for the temporal correlation of ultrasound-modulated light.?! However, a simple form
of CTE can be obtained when k.l > 1. At scales larger than [y, the effect of ultrasound modulation can
be calculated by assuming isotropic scattering, where l;. is used instead of the mean-free path.'6:18:19  The
condition kglg > 1 then ensures that the ultrasound-induced optical phase increments associated with the
different scattering events are independent. The only correlation between phase increments which then exists is
between (1) the phase increment that is due to index of refraction changes along the free path and (2) the phase
increments that are due to displacements of these two scatterers along the free path.'® This allows for a simple
form of the CTE that is valid for optical and ultrasonic inhomogeneities comparable with ;.. In soft biological
tissues, Iy &~ 1 mm for visible and near infrared optical wavelengths, and k.l > 10 for ultrasound frequencies
greater than 2.4 MHz.

Consider optical scatterers at resting positions r, and ry, and assume that the ultrasound field can be locally
approximated as by P(7,t) = Pycos(wat — ko - r + ¢), where k, = koS, and Py, wg, 4, and ¢ are the
pressure amplitude, angular frequency, propagation direction of the ultrasound (|Qa| = 1), and local initial
phase, respectively. With not very high ultrasound pressures, the optical index of refraction experiences a small
perturbation approximated by n(r,t) = no[l + nP(r,t)/(pv?)], where p is the fluid density; v, is the ultrasound
speed; and 7 is the elasto-optical coefficient. We obtain the increment & = kono|ry — ro| + @ap(t) of the optical
phase along the free path between r, and r; by integrating the kon(r,t) along the path, where

ry

aslt) = oo fles(t)— ea (0] +-7 [ Plr.jar. 1)
PV, rg

and ko is the optical wave number in a vacuum. In Eq. (1), we approximate the distance between scatterers with

Ity — ro| + Q- [ep(t) — eq(t)], where Qr, — 14| = 15 — 14, €s(t) = QuPoSs/(kapv?) sin(wat — kg - Ts + ¢ — da)

is the ultrasound-induced displacement of the optical scatterer at ry (s = a,b), and S, and ¢, are, respectively,

deviations of the amplitude and the phase of the scatterer from the motion of the surrounding fluid.'®* The

second term on the right-hand side of Eq. (1) is the phase increment that is due to ultrasound-induced optical

index of refraction changes.

We assume that the electrical field mutual coherence function I'(r, ,t;r,r,t + 7) = (E(ry , t)E*(ry,t + 7))
for two closely spaced points r;; and r,~ is quasi-uniform, and we relate it to the time-varying specific intensity
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I(ry, Q.t, 7) by a spatial Fourier transform over the difference variable r,s —r, in the center-of-gravity coordinate
system,?* 2% where 1, = (r,; + 1, )/2, and () denotes the ensemble averaging. Let E(r,,t) be the partial wave
scattered at r, toward ry. For isotropic scattering and kqly >> 1, there is no correlation between ¢, 4(t) and the
other ultrasound-induced optical phase increments accumulated in FE(r,,t), and I(r, Q, t,7) is independent of
time ¢. The phase term Ay = g 4(t + 7) — q,5(t) is given by

1 —r, - 1 .
Ay = 2A sin <§wa7'> sin (ka-rb r) {san-nasm (wat+§wa7—ka TabPo 4 qsa)

2
1 a
—Q'Lﬂasin (wat+§wa7—ka-r ;rb+¢>}, (2)

where A = 2kgnoPy/(kapv?). For I &~ 1 mm and Py < 10° Pa, the phase term Ay satisfies Ap < 1, and we
approximate exp[iAg] with 1 — |rp — ra|u (A@?),,. /2. Here, py = pis + fta, and gy, ps, and pu, are the optical
extinction, scattering, and absorption coefficients, respectively. (Ap?);,, is the average value of Ap? in volume
Vo ~ I3, per mean optical free path. The average of Ay? over the center-of-gravity coordinate (r, + rp)/2 in
volume Vj is given by

1 —r, a2
(Ag?)y, = 2A% sin? <§wa7'> sin® <ka - ) S2(0- ) + ﬁ — 2Sancos(da) ¢ (3)
Q-Q,

and from the probability density of the free path I, which is I;,* exp[—1/l;,], we obtain

(likg - 2)2

1
Ap?Y),, = A?sin? <—wa7>
(B 2" ) 11 (lrke - Q)2

Q.)?

The three terms in square brackets in Eq. (4) are related to the two mechanisms of modulation and the correlation
between the phase increments produced by these mechanisms along the same free path, respectively.'® The
increment of the intensity I(rp, Q, 7) that is due to the contribution of I(r, Q' T), which is scattered at r, into
direction €2, is equal to AT = I(ry, 2, 7) exp(—pe|rs — ra|)[1 — £ — ro|pe(Ap?)y,, /2]. By accumulating all of
the increments along the Q direction starting from some distant rg, we have

S2(S1- Qa)u(ﬂ_";— 25, cos(qba)] : (4)

I(ry, 2, 7) = Io(ry, Q2,7 //usp Q)AlLd|r, —r,|dSY (5)

ro 47

where Iy(ry, Q,7) is due to the unscattered field.2* After applying £ - V to Eq. (5), we obtain the CTE as

A N N ’

Q-VI(r,Q2,7) = —(ta +NS)I(er’7—) + S(I‘,Q) +H5A p(ﬂ’ﬂl)[ <A90 Do L (r, 2, 7)d (6)

In Eq. (6), p(2,Q) = 1/(4n) is the isotropic scattering phase function, and S(r,) is the monochromatic
source term. Like in the case of Brownian motion,?® this equation can be obtained by pre-averaging the phase
increments in a more rigorously derived CTE.?!

To obtain the CDE, we apply the standard approximation I(r, 2, 7) ~ [®(r, 7) 4+ 3Q-J(r, 7)]/(47) in Eq. (6).
®(r,7) is actually the temporal field autocorrelation function related to the optical intensity spectrum by the
temporal Fourier transform. The CDE is

V- [DVB(r, )] — [t + s ()]0, ) 4 Solo) = 0. ™)
In Eq. (7), D = (3us)~ !, and $(7) is given by

o) = %M sin? <%wa7> [nz(kaltr)tanl(kaltr) + %5'3 — 218, cos(pg) | - (8)
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Figure 1. Modulation depth of the ultrasound-modulated light for an ultrasound cylinder in a scattering slab at z = 0
mm. The white circle marks the ultrasound cross section.

3. CYLINDER OF ULTRASOUND IN OPTICALLY SCATTERING SLAB

In infinite media, the solution of Eq. (7) for monochromatic point source Sy at the origin is

atpsp(T
5 exp (—r [ MDsa( ))

(I) =
") = 4D r ’

(9)

which can be used to analytically study various configurations of ultrasound within scattering media. In finite
media, the boundary conditions are identical to those in the diffusion equation used in radiative transfer.?” For
matched optical properties, continuity requires that ®(r,7) and DO®(r, 7)/On are constant across the boundary,
where 1 is an unity vector perpendicular to the boundary. For a scattering half space (z > 0) filled with ultrasound
and irradiated by a pencil source from the free space, the boundary condition is ®(r,7) = 2D9®(r,7)/0z, which
leads to the extrapolated zero boundary position at z = —2D.

We consider an infinitely wide scattering slab, with surface planes at = 0 mm and z = 20 mm. We assume
v, = 1480 m/s, p = 103 kg/m3, n = 0.32, ug = 0.1 cm™!; isotropic scattering with I, = 1 mm, no = 1.33 in
whole space; S, = 1, and ¢, = 0, as typical values for soft biological tissues and for visible and near-infrared
optical wavelengths.'® A cylinder of radius a = 3.175 mm, infinitely long in the Z direction, with an axis at
(z,7) = (10 mm, 0 mm), is filled with a 5 MHz continuous-wave ultrasound of pressure amplitude Py = 10° Pa
traveling in the Z direction. A pencil light source Sy of wavelength A\g = 532 nm irradiates the slab along the
X direction at (z,y,2) = (0mm,10mm,0mm). Eq. (7) has solutions ®;,.(rq,7), Psc(rq, 7), and Py, (rq, 7),
which are for the autocorrelation functions incident from the source, scattered from the cylinder, and inside the
cylinder, respectively.?? If the cylinder axis is at the origin, then we have
+o00 +o00
B () = 3 con(nd) [ cos(pz) ¥ ) (10)
n=0
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where Wipe(p) = Hy(25)1n(2<), Vse(p) = Bn(p)Kn(z), and ¥in(p) = Cn(p)In(y); ts = (ps, bs,25) and rq =
(pd, bd, z4) are positions of the point source and the detector in the cylindrical coordinates, and I,, and K,, are
modified Bessel functions of the first and second kind, respectively; r< = p</p? — k2,45 p< = min(max)|ps, pal;

& = paN/D? = ks Yy = paN/D? — ks ki, = —lpta + psp(1)]/ D k3 = —pa/D; By and C,, are given by

— _H.(» wo,, () L () — oL, (o) Ln (1)
Bule) = ) e e ) — T, () Ko ()
_ wo L, (20) K (1) — @y K, (w0) I (1)
Onlo) = ) e e L) — T () Ron)

where H,(zp) = [(sgn(n) + 1)So K (2)]/(272D), 2, = a\/p* — k2, yp = a/p? — k2,, 25 = ps\/D? — k2, and
sgn(n) is the sign function. We use Eq. (10) to obtain values for the modulation depth, defined as the amplitude
ratio of the first to the zero harmonic of the modulated light. Three pairs of independent cylinder images?®
are used to satisfy the boundary conditions. The modulation depth is calculated in the whole volume of the
scattering slab, and Fig. 1 presents its values in the z = 0 mm plane. The results show that the modulation
depth is higher away from the source, in the shadow of the cylinder, due to the counteracting contributions of
the modulated and unmodulated light.

4. CONCLUSION

In conclusion, we derived the CTE and the CDE for ultrasound-modulated light, which are valid for optical
and ultrasound spatial inhomogeneities on the order of Iy, for moderate ultrasound pressures and frequencies
satisfying kyly- > 1. The CDE is of use for the estimation of sensitivity and signal-to-noise ratios in UOT, where
both heterogeneous ultrasound fields and optical parameters are encountered. It can be solved analytically or
numerically by the many methods developed for the diffusion equation. Based on the CDE, we obtained an
analytical solution for the modulation depth of ultrasound-modulated light produced by a cylinder of ultrasound
placed in an optically scattering slab. More challenging setups, with highly focused ultrasound and very high
ultrasound pressure, should be the subject of further theoretical investigations.

This project was sponsored by NIH grant R33 CA 094267.
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