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ABSTRACT

We obtain the complete non-linear Kaluza-Klein ansatz for the reduction of the bosonic

sector of massive type IIA supergravity to the Romans F (4) gauged supergravity in six

dimensions. The latter arises as a consistent warped S4 reduction.
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The conjectured duality between supergravity on an anti-de Sitter (AdS) background

and a superconformal field theory (CFT) on its boundary [1, 2, 3, 4] has led to a renewed

interest in the mechanism whereby the relevant gauged supergravities can be obtained by

Kaluza-Klein reduction from higher dimensions. It has long been known that the maximal

gauged theories in D = 4 and D = 7 can be obtained by reduction of eleven-dimensional

supergravity on S7 or S4, and that the maximal gauged theory in D = 5 can be obtained

from an S5 reduction from type IIB supergravity. In each case, it is believed that the

reduction is consistent, in the sense that the reduction ansatz, with its truncation to the

fields of the supergravity multiplet, satisfies the higher-dimensional equations of motion

provided that the lower-dimensional equations of motion are satisfied. This is important

in the context of the AdS/CFT correspondence, since it implies that massive fields can be

ignored when calculating correlation functions in the conformal field theory [3].

A long-standing puzzle has been to obtain a higher-dimensional Kaluza-Klein interpre-

tation for the gauged supergravity theory in six dimensions [5], whose dual description on

its boundary is a five-dimensional N = 2 superconformal field theory [6, 7]. It was sug-

gested in [8] that it could be related to the ten-dimensional massive type IIA theory [9].

Recently, it was shown that the massive IIA theory admitted an AdS6 × S4 solution, with

a “warped-product” metric [10]. This was derived as the near-horizon limit of a localised

D4-D8 brane configuration [11].

In this letter we resolve the puzzle, by obtaining the complete non-linear bosonic Kaluza-

Klein ansatz for the reduction of the massive IIA theory on S4, and showing that it gives

a consistent truncation to the six-dimensional gauged theory. Our starting point is the

bosonic Lagrangian of massive type IIA supergravity [9]. In the language of differential

forms, it is given by [12]

L10 = R̂ ∗̂1l − 1

2
∗̂dφ̂ ∧ dφ̂ − 1

2
e
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φ̂ ∗̂F̂(2) ∧ F̂(2) − 1
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φ̂ ∗̂F̂(4) ∧ F̂(4)
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m dÂ(3) ∧ (Â(2))
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m2 (Â(2))
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m2 e
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2
φ̂ ∗̂1l , (1)

where the field strengths are given in terms of potentials by

F̂(2) = dÂ(1) + m Â(2) , F̂(3) = dÂ(2) ,

F̂(4) = dÂ(3) + Â(1) ∧ dÂ(2) + 1

2
m Â(2) ∧ Â(2) . (2)

In the above, we have used the hat symbol to denote the ten-dimensional fields and Hodge

dual, and subscripts on form fields indicate the degrees of the forms. It follows that the

equations of motion and Bianchi identities are

d(e
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dF̂(4) = F̂(2) ∧ F̂(3) , dF̂(3) = 0 , dF̂(2) = m F̂(3) , (3)

for the form fields and dilaton, together with the Einstein equation (in vielbein components)

R̂AB = 1
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.

We shall now describe how we can perform a 4-sphere reduction of the massive IIA

theory, with a consistent truncation to the fields of gauged N = 1, D = 6 supergravity. The

bosonic fields in this theory comprise the metric, a dilaton, a 2-form potential and a 1-form

potential, together with the gauge potentials of SU(2) Yang-Mills. The bosonic Lagrangian

[5], converted to the language of differential forms, is

L6 = R ∗1l − 1
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where F(3) = dA(2), F(2) = dA(1) + 2

3
g A(2) and F i

(2) = dAi
(1) + 1

2
g ǫijkA

j
(1) ∧Ak

(1). Here ∗ is the

six-dimensional Hodge dual.

We find that the reduction ansätze for the metric, form fields and dilaton of the ten-

dimensional massive type IIA theory are

dŝ2
10 = (sin ξ)

1
12 X

1
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]

,
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√
2g−3 s4/3 c4 ∆−2 X−3 dX ∧ ǫ(3)

−
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F̂(3) = s2/3 F(3) + g−1 s−1/3 cF(2) ∧ dξ ,

F̂(2) = 1√
2
s2/3 F(2) , eφ̂ = s−5/6 ∆1/4 X−5/4 ,

where X is related to the dilaton φ in (5) by X = e
− 1

2
√

2
φ
, and

∆ ≡ X cos2 ξ + X−3 sin2 ξ ,

U ≡ X−6 s2 − 3X2 c2 + 4X−2 c2 − 6X−2 . (7)

2



The quantities σi are left-invariant 1-forms on S3, which satisfy dσi = −1

2
ǫijk σj ∧ σk. We

have also defined hi ≡ σi −g Ai
(1), ǫ(3) ≡ h1∧h2∧h3, and s = sin ξ and c = cos ξ. The gauge

coupling constant g is related to the mass parameter m of the massive type IIA theory by

m =
√

2

3
g.

It is useful also to present the expressions for the ten-dimensional Hodge duals of the

form fields given above, and for dφ̂. We find that they are given by

e
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√
2

3
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√
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2

4
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2
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2
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e−φ̂ ∗̂F̂(3) = 1

2
g−4 s5/3 c3 ∆−1 X ∗F(3) ∧ dξ ∧ ǫ(3) − 1

4
g−3 s2/3 c4 ∆−1 X−1 ∗F(2) ∧ ǫ(3) ,

e
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2
φ̂ ∗̂F̂(2) = 1

2
√

2
g−4 s−1/3 c3 X−2 ∗F(2) ∧ dξ ∧ ǫ(3) , (8)

∗̂dφ̂ = −1

2
g−4 s1/3 c3 (X c2 + 2X−3 s2)∆−1 X−1 ∗dX ∧ dξ ∧ ǫ(3)

+ 1

16
g−2 s1/3 c3 (∆−1 ∂ξ∆ − 10

3
cot ξ)X−2 ǫ(6) ∧ ǫ(3) ,

where ǫ(6) is the volume form of the metric ds2
6.

If we set X = 1 and Ai
(1) = 0, then ds2

6 becomes an Einstein metric, which can, for

example, be AdS6. In this case, the ten-dimensional geometry becomes AdS6 × S4 with a

warp factor [10],

ds2
10 = (sin ξ)

1
12

[

ds2
AdS6

+ 2g−2

(

dξ2 + 1

4
cos2 ξ

∑

i

(σi)2
)]

, (9)

which is the near-horizon limit [10] of a localised D4-D8 brane configuration [11].1 The

configuration is a solution of the massive type IIA theory, where the AdS6 metric ds2
AdS6

has Ricci tensor Rab = −10

9
g2 gab and the 4-sphere metric 2g−2 (dξ2 + 1

4
cos2 ξ

∑

i(σ
i)2) has

Ricci tensor Rαβ = 3

2
g2 gαβ. It follows from the ansatz (6) that the ten-dimensional fields

F̂(4) and φ̂ take the non-vanishing forms

F̂(4) = 5
√

2

6
g−3 (sin ξ)1/3 cos3 ξ dξ ∧ ǫ(3) , eφ̂ = (sin ξ)−5/6 . (10)

When the fields X and Ai
(1) are excited, X parameterises inhomogeneous deformations of

the 4-sphere, leaving the foliating 3-spheres intact, while Ai
(1) describes deformations of the

3-spheres corresponding to right translations under SU(2).

1To be more precise, the S4 here is not really the entire 4-sphere, but rather just the upper hemisphere

of a 4-sphere, viewed as a foliation of 3-spheres [10]. This is because the conformal warp factor (sin ξ)1/12

approaches zero as the “latitude” coordinate ξ approaches the equatorial 3-sphere at ξ = 0, thus defining a

boundary to the 4-manifold.

3



Substituting the ansätze (6) into the equations of motion and Bianchi identities (3) for

the form fields and dilaton of the massive type IIA theory, we find that they are satisfied

provided the six-dimensional fields satisfy the following equations of motion:

d(X4 ∗F(3)) = −1

2
F(2) ∧ F(2) − 1

2
F i

(2) ∧ F i
(2) − 2

3
g X−2 ∗F(2) ,

d(X−2 ∗F(2)) = −F(2) ∧ F(3) , D(X−2 ∗F i
(2)) = −F i

(2) ∧ F(3) , (11)

d(X−1 ∗dX) = 1

8
X−2 (∗F(2) ∧ F(2) + ∗F i

(2) ∧ F i
(2)) − 1

4
X4 ∗F(3) ∧ F(3)

+g2 (1

6
X−6 − 2

3
X−2 + 1

2
X2) ∗1l ,

where D is the Yang-Mills gauge-covariant exterior derivative, D ωi = dωi + g ǫijk A
j
(1) ∧ωk.

Note that the Bianchi identities for F̂(3) and F̂(2) are satisfied identically, whilst that for F̂(4)

already implies the equations of motion for F(3) and F(2).

Evaluating the ten-dimensional Einstein equation (4) with the ansätze (6) is a more

exacting task. After doing so, we find that consistency again requires the equations of

motion for F i
(2) and X given in (11), and in addition it implies the six-dimensional Einstein

equation

Rµν = 4X−2 ∂µX ∂νX + g2 ( 1

18
X−6 − 2

3
X−2 − 1

2
X2) gµν + 1

4
X4 (F 2

(3)µν − 1

6
F 2

(3) gµν)

+1

2
X−2 (F 2

(2)µν − 1

8
F 2

(2) gµν) + 1

2
X−2 ((F i

(2))
2
µν − 1

8
(F i

(2))
2) gµν) . (12)

It is now straightforward to see that the full set of six-dimensional equations of motion (11)

and (12) are precisely those which follow from the Lagrangian (5) for N = 1, D = 6 gauged

supergravity.

In our derivation, the consistency of the reduction ansatz is definitively established, since

we have explicitly substituted it into the higher-dimensional equations of motion, and shown

that these equations are satisfied if and only if the lower-dimensional equations of motion

are satisfied. This is, by definition, what one means by a consistent Kaluza-Klein reduction.

The Kaluza-Klein reduction procedure is sometimes stated instead at the level of the action;

namely, that one would substitute the ansatz into the higher-dimensional action, integrate

over the internal directions, and thereby arrive at an action for the lower-dimensional fields.

Of course in such an approach, it would be necessary to construct an independent argument

for why the reduction ansatz was a consistent one. However, there are other reasons also

why substituting the ansatz into the Lagrangian might be problematical. To illustrate this,

it is instructive to look at the reduction we have considered in this letter, simplified initially

by restricting the fields to just the metric and the dilaton.

In the gravity-scalar sector, the ansatz for the field strengths can be rewritten in terms

of the potentials, since we can then write Â(3) = 1

4
√

2
g−3 s4/3 (3 + 2c2 ∆−1 X−3) ǫ(3), as may
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be seen from (6). Substituting this and the other non-zero ansätze into the ten-dimensional

Lagrangian (1) gives L10 = 1

2
g−4 s1/3 c3 (R − 1

2
(∂φ)2 + W )

√−g6, where

W = − 1

36
g2s−2 ∆−2 X−12

(

8s2 + 6s4(1 − 27s2)X4 + 6s2(4 − 45s2 + 38s4)X8

−c2(1 + 118s2 − 2s4)X12 − 72s2c4X16

)

. (13)

Although the R and (∂φ)2 terms have a uniform ξ-dependent prefactor, the term W , asso-

ciated with the scalar potential, does not. Integration over the internal coordinate ξ does

not really make sense, since there is a divergence at ξ = 0. One can make a suitable regu-

larisation and thereby obtain the scalar potential as given in (5), but this is unsatisfactory

since the result is scheme-dependent.2 Moreover, when the higher-degree fields of the six-

dimensional theory are included, it is no longer possible to rewrite the ansatz for F̂(4) in (6)

as an ansatz for Â(3). We thus expect in this case that one would not be able to obtain the

six-dimensional Lagrangian (5) by substituting the ansätze into the ten-dimensional one.

It should be emphasised, however, that this is not a drawback in the reduction procedure;

rather, it just serves to illustrate that Kaluza-Klein reduction is in general rather more

subtle than in the simple case of toroidal reduction. The key point is that given a consis-

tent reduction, one has a way of embedding solutions of the lower-dimensional equations of

motion as solutions of the higher-dimensional ones.

An example of such a six-dimensional solution is an AdS black hole, supported by a

single component of the SU(2) Yang-Mills fields. We find that the solution is given by

ds2
6 = −H−3/2 f dt2 + H1/2 (f−1 dr2 + r2 dΩ2

4,k) ,

φ = 1√
2

log H , A3
(1) =

√
2k(1 − H−1) coth β dt ,

f = k − µ

r3
+ 2

9
g2 r2 H2 , H = 1 +

µ sinh2 β

k r3
,

where we have, for definiteness, chosen to use the i = 3 component of the Yang-Mills fields

Ai
(1). Another example is a supersymmetric domain wall, supported by the scalar potential

[13]. It is straightforward to oxidise these solutions to ten dimensions, using our ansätze (6).

If the parameter µ is set to zero in the AdS black-hole solution, the six-dimensional metric

2The occurrence of the divergence is associated with the fact that the metric in (6) has the warp factor

(sin ξ)1/12, which vanishes at ξ = 0. This singular behaviour is an inherent feature of the massive type

IIA theory, resulting from the scalar potential e
5

2
φ̂, which has no stationary point. (Since the dilaton also

diverges as ξ aproaches zero, implying a passage to the strong-coupling regime of the type I string theory, the

effective supergravity will in any case receive modifications.) An analogous calculation in the S4 reduction of

eleven-dimensional supergravity, where no ξ-dependent warp factor arises, is free from any singular behaviour

[16].

5



becomes simply AdS6, and, as we remarked previously, the oxidation to D = 10 gives the

near-horizon limit of the localised D4-D8 brane configuration (in the case k = 0). When

µ is instead non-zero, we expect that the ten-dimensional interpretation will be that the

D4-D8 brane system will acquire a rotation, with angular frequency equal to the black-hole

charge, analogous to the cases discussed in [14, 15].

Another six-dimensional solution is the non-supersymmetric AdS6 [5], corresponding to

the second stationary point X = 3−1/4 of the potential. It is interesting to note that the

factor ∆ appearing in the metric anstaz (6), which takes the value ∆ = 1 in the X = 1

supersymmetric AdS6 solution, now takes the form ∆ = 3−1/4 (1 + 2 sin2 ξ), implying a

distortion of the 4-sphere.

To summarise, we have derived the gauged six-dimensional supergravity by performing

a consistent Kaluza-Klein reduction of massive type IIA supergravity. (For the sake of

simplicity, we concentrated on the full bosonic sector of the theories; the fermionic sector

will be addressed elsewhere.) The metric ansatz describes a warped product of the six-

dimensional spacetime and a 4-sphere. The warp factor depends on the latitude coordinate

of the 4-sphere, viewed as a foliation of 3-spheres. Since it vanishes on the equator, the

geometry of the internal space is really the upper hemisphere of the 4-sphere, with the

equator as boundary. (This is the region where type I string theory becomes strongly

coupled, and on the dual weakly coupled heterotic string theory side a gauge enhancement

takes place.) We presented examples of six-dimensional solutions that can now be re-

interpreted as solutions of the massive IIA theory. More generally, our construction opens

the door to the higher-dimensional re-interpretation of any solution of the six-dimensional

theory, including, for example, non-abelian configurations.
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