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ABSTRACT

We obtain a large class of smooth Lorentzian p-brane wormholes in supergravities in

various dimensions. They connect two asymptotically flat spacetimes. In cases where

there is no dilaton involved in the solution, the wormhole can connect an AdSn × Sm in

one asymptotic region to a flat spacetime in the other. We obtain explicit examples for

(n,m) = (4, 7), (7, 4), (5, 5), (3, 3), (3, 2). These geometries correspond to field theories with

UV conformal fixed points, and they undergo decompactification in the IR region. In the

case of AdS3, we compute the central charge of the corresponding conformal field theory.
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1 Introduction

Asymptotically AdS solutions in supergravities play an important rôle in the AdS/CFT

correspondence [1–3], since they provide supergravity duals to quantum field theories with

conformal fixed points in the UV region. In the bulk of such a solution, there are limited

possibilities. There can be a black hole horizon with non-zero (or zero) temperature, or

there can be an AdS horizon of different AdS radius, corresponding to a conformal field

fixed point in the IR region [4]. A third possibility is that the solution is solitonic, such

as an R-charged AdS bubble solution in an AdS gauged supergravity [5–7]. Most likely,

the solution will have a naked singularity. Examples include the large class of AdS domain

wall solutions with naked singularities constructed in [8,9], which are dual to the Coulomb

branch of the dual gauge theories.

A more intriguing situation is when there exists a wormhole in the bulk that connects

smoothly to different AdS boundaries. In Lorentzian signature such a geometry appears un-

likely, and disconnected boundaries can only be separated by horizons [10]. Thus the recent

studies of wormholes in string theory and in the context of the AdS/CFT correspondence

have so far concentrated on Euclidean-signature spaces [11–15].

In [16], Ricci-flat and charged Lorentzian wormholes in higher dimensions were obtained.

These include the previously-known D = 5 Ricci-flat case [17]. The wormholes are smooth

everywhere, and connect two asympotically flat Minkowski spacetimes. Although these

wormholes are not traversable geodesically (see [18, 19] and [16]), it was demonstrated

in [16] that there exist traversable accelerated timelike trajectories across the wormholes.

A class of magnetically-charged wormholes in D = 5 supergravity was also obtained

in [16]. It was shown that for appropriate choices of the parameters, the wormhole can

connect an AdS3 × S2 in one asympotic region to a Minkowski spacetime in the other.

This geometry then provides a supergravity dual of a two-dimensional field theory at the

boundary of the AdS3.

In this paper, we begin in section 2 with a review of the Ricci-flat wormhole solutions

that were obtained in [16]. We then construct p-brane wormhole solutions in section 3,

supported by a dilaton and n-form field strength. In non-dilatonic cases, these p-brane

wormholes connect an AdSn × Sm in one asymptotic region to a flat spacetime in the

other. We obtain explicit examples for (n,m) = (4, 7), (7, 4), (5, 5), (3, 3), (3, 2). These

geometries correspond to field theories with UV conformal fixed points, which undergo

decompactification in the IR region.

In section 4, we study the AdS3 wormhole obtained in [16] in detail and compute the
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central charge of the corresponding dual conformal field theory.

In sections 5 and 6, we examine AdS5, AdS4, AdS7 and another AdS3 wormhole in

detail. Included in these discussions is a calculation of the mass and momentum of the

configurations, as measured from the asymptotically AdS region. To do this, we make

use of a construction of conserved charges in asymptotically AdS spacetimes, which we

summarise in an appendix.

We conclude the paper in section 7.

2 Ricci-Flat Wormholes in D ≥ 5 Dimensions.

In this section, we review the Ricci-flat wormhole solutions in general dimensions obtained

in [16]; they are given by

ds2D = (r2 + a2)dΩ2
D−3 +

r2dr2

(r2 + a2) sin2 u
+ cos v(−dt2 + dz2) + 2 sin v dtdz , (2.1)

where v and u are functions of r, given by

v =

√
D − 3

2D − 8
(π − 2u) , (2.2)

and

u = arctan

√(
1 +

r2

a2

)D−4

− 1 . (2.3)

One can also rewrite the relation between u and r in the simpler form

cos2 u =

(
1 +

r2

a2

)4−D

. (2.4)

Note that u = 0 when r = 0. Neither (2.3) nor (2.4) satisfactorily exhibits the fact that as

r passes through zero, the sign of u should be correlated with the sign of r. Instead, we can

make this explicit by expanding the expression in (2.3) and writing

u = arctan


 r
a

√√√√
D−5∑

n=0

(
D − 4

n+ 1

)( r
a

)2n


 . (2.5)

Thus we see that as r ranges from −∞ to +∞, u ranges from −1
2π to +1

2π. For specific

values of D, there are sometimes simpler expressions for the relation between u and r, as

we shall see later.

It is sometimes useful to use u, rather than r, as the radial coordinate. The solution is

then given by

ds2D =
a2

(cos u)
2

D−4

( du2

(D − 4)2 cos2 u
+ dΩ2

D−3

)
+ cos v (−dt2 + dz2) + 2 sin v dt dz , (2.6)
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As was discussed in [16], the metric describes a smooth wormhole in D ≥ 5 dimensions

that connects two flat asymptotic spacetimes at r → ±∞. Note that the general Ricci-flat

wormhole metric (2.1) is related to that in [16] by a coordinate rotation in the (t, z) plane.

There are two asymptotic regions. In the r → +∞ region, we have u → 1
2π and hence

v → 0. It follows that the metric becomes

ds2 = −dt2 + dz2 + dr2 + r2dΩ2
D−3 , (2.7)

which is a flat Minkowskian spacetime in D dimensions. In the r → −∞ region, we ave

u→ −1
2π and

v → 2θ0 ≡ 2π

√
D − 3

2D − 8
. (2.8)

The metric becomes

ds2 = − cos(2θ0)(dt
2 − dz2) + 2 sin(2θ0) dtdz + dr2 + r2dΩ2

D−3 ,

= −dt̃2 + dz̃2 + dr2 + r2dΩ2
D−3 , (2.9)

where 
 t̃

z̃


 =


cos θ0 − sin θ0

sin θ0 cos θ0





t

z


 . (2.10)

Thus the solutions connect smoothly two flat asymptotic spacetimes. However, only for the

case of D = 5 do the two asymptotic regions have the same time coordinate. In higher

dimensions, the notion of asymptotic time is different in the two regions.

3 General p-Brane Wormholes

We construct charged wormholes as solutions to D̂-dimensional Einstein gravity coupled to

an n-form field strength, together with a dilaton. The Lagrangian has the following general

form

LD̂ =
√
−g

(
R− 1

2(∂φ)
2 − 1

2n!
eαφF 2

(n)

)
. (3.1)

where F(n) = dA(n−1). The constant α can be parameterised as

α2 = ∆− 2(n − 1)(D̂ − n− 1)

D̂ − 2
. (3.2)

The Langrangian (3.1) is of the form that typically arises as a truncation of the full Lan-

grangian in many supergravities, with ∆ being given by

∆ =
4

N
, (3.3)
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for integer N . The values of N that can arise depends on the spacetime dimensions; they

are classified in [20].

We may consider an electric “(n−2)-brane wormhole” in D̂ spacetime dimensions, based

on the D-dimensional wormhole solution (2.6) with

D̂ = D + n− 3 . (3.4)

We therefore make as an ansatz for the D̂-dimensional metric and the dilaton field

ds2
D̂

=
H

(n−1)N

(D̂−2)

(cos u)
2

D−4

( a2du2

(D − 4)2 cos2 u
+ a2dΩ2

D−3

)

+H

−(D−4)N

(D̂−2)
(
cos v (−dt2 + dz2) + 2 sin v dt dz + dxidxi

)
, (3.5)

eαφ = H
2− (n−1)(D−4)N

(D̂−2) ,

where the coordinates of the D-dimensional wormhole (2.6) have been augmented by (n−3)

additional world-volume coordinates xi. The function H is assumed to depend only on the

radial coordinate u. For the field strength F(n), we make the ansatz

F(n) =
√
N dt ∧ dz ∧ dn−3x ∧ dH−1 , (3.6)

Substituting into the equations of motion following from (3.1), we find that they are all

satisfied provided H ′′ = 0, and hence H is given by

H = c0 −
q

aD−4
u , (3.7)

where c0 and q are integration constants. Without loss of generality, let us take q to be

non-negative. (Note that taking a limit of a → 0 leads to BPS p-brane solutions to the

Lagrangian (3.1), obtained in general in [21].) It should again be emphasised that r ↔ −r
is not a symmetry, since the expression for u in terms of r is defined by (2.5), showing that

the signs of u and r are correlated. The function H in general approaches a constant when

r → ±∞, given by

r → +∞ : H ∼ c0 −
π q

2aD−4
+

q

rD−4
+ · · · ,

r → −∞ : H ∼ c0 +
π q

2aD−4
− (−1)[D/2] q

rD−4
. (3.8)

Thus provided that c0 > π q/(2aD−4), the p-brane wormholes link two asymptotically flat

spacetimes. When c0 = 1
2π qa

4−D, for the non-dilatonic case α = 0, AdS wormholes can
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arise that link AdS×Sphere in the r → +∞ asymptotic region to flat spacetime in the

r → −∞ region. We shall discuss these solutions case by case in the following sections.

Note that we can also consider “magnetic p-brane wormholes,” which are equivalent to

the previously-discussed electric cases, but constructed using the (D̂ − n)-form dual of the

n-form field strength F(n). In other words, we can introduce the dual field strength

F̃(ñ) = eαφ ∗F(n) , (3.9)

where ñ = D̂ − n, in terms of which the Lagrangian (3.1) can be rewritten as

LD̂ =
√
−g

(
R− 1

2(∂φ)
2 − 1

2 ñ!
e−αφF̃ 2

(ñ)

)
. (3.10)

where F̃(ñ) = dÃ(ñ−1). The electric solution (3.5) of (3.1), with F(n) given by (3.6), can then

then be reinterpreted as a magnetic solution of (3.10), with F̃(ñ) given by

F̃(ñ) =
√
N (D − 4) qΩD−3 . (3.11)

4 Magnetic String and AdS3 Wormholes

In this section, we consider the magnetically-charged wormhole solution in five-dimensional

U(1)3 supergravity that was obtained in [16]. It was observed that for appropriate choice

of the parameters, the solution smoothly connect AdS3 × S2 in one asymptotic region to

the flat spacetime in the other.

We begin by reviewing the solution. For simplicity, let us consider the special case where

all the three charges are equal. The corresponding minimal supergravity solution is given

by

ds25 = −H−1
(r2 − 2as r − a2

r2 + a2
dt2 +

4ac r

r2 + a2
dt dz − r2 + 2as r − a2

r2 + a2
dz2

)

+H2(dr2 + (r2 + a2)dΩ2
2) ,

F(2) =
√
3 qΩ(2) , H = c0 −

q

a
arctan(

r

a
) . (4.1)

It is straightforward to verify that this solution is contained in the general form of p-brane

wormhole (3.5) with D̂ = D = 5, n = 3 and N = 3. Compared with (3.5), a boost

parameter s = sinhβ (c = cosh β) is also introduced, as in [16]. The solution describes a

smooth charged wormhole as long as

c0 ≥
πq

2a
. (4.2)
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The coordinate r runs from −∞ to +∞, corresponding to two flat spacetimes when the

above inequality holds. Interesting things happen when c0 = πq/(2a). In this case, we have

r → +∞ : H ∼ q

r
− q a2

3r3
+
q a4

5r5
− q a6

7r7
+ · · · ,

r → −∞ : H ∼ q

a

(
π +

a

r
− a3

3r3
+

a5

5r5
− a7

7r7
+ · · ·

)
. (4.3)

Thus asymptotically as r → −∞, the spacetime is flat, whilst as r → +∞, the spacetime is

a direct product of AdS3 × S2.

Since the size of the S2 never vanishes, we can reduce the solution on the S2 and obtain

a smooth solution in D = 3. Such a breathing mode reduction was obtained in general

dimensions in [22]. The reduction ansatz is given by

ds25 = e2αϕds23 + e−αϕq2dΩ2
2 , F(2) =

√
3 qΩ(2) , (4.4)

with α = 1/
√
3. The D = 3 system contains the metric and a scalar, with the Lagrangian

given by

L3 =
√
−g(R− 1

2(∂φ)
2 − V ) , V = − 1

2q2
(4e3αϕ − 3e4αϕ) . (4.5)

The scalar potential contains an AdS fixed point ϕ = 0. The resulting three-dimensional

solution in the Einstein frame is given by

ds23 = q−4
[
(r2 + a2)2H6dr2 (4.6)

−(r2 + a2)H3
(
(r2 − 2as r − a2)dt2 + 4ac r dt dz − (r2 + 2as r − a2)dz2

)]
,

e−αφ = q−2(r2 + a2)H2 .

In the asymptotic region r → −∞, we have that H is constant, and the solutions becomes

ds23 ∼ r4(dr2 − dt2 + dz2) , ϕ→ −∞ . (4.7)

The metric is locally flat1 for r → −∞; however, the scalar describing the breathing mode

of the internal S2 diverges in this limit. This breathing mode singularity is just a lower-

dimensional artifact, reflecting the fact that the radius of the S2 becomes infinite. The

system should really be lifted to five dimensions in this limit.

1If we let xµ = (t, z) and define yµ = r2 xµ and w = r3/3, the metric (4.7) becomes

ds23 = dw2 + dyµ dyµ −
4

3w
yµdy

µ dw +
4

9w2
yµyµ dw2 ,

which is asymptotically flat when |w| >> |y|.
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In the r → +∞ limit, the metric approaches AdS3. We would like to compute the

central charge as in the work of Brown and Henneaux [23]. As a first step, we make the

following change of coordinates

r → r2

2q
, t→ t√

2
, z → z√

2
. (4.8)

Including the subleading term at asymptotic +∞, the metric (4.6) now has the following

form:

ds23 =
ℓ2

r2
dr2 − (1− 2a ℓ s

r2
)
r2

ℓ2
dt2 + (1 +

2a ℓ s

r2
)
r2

ℓ2
dz2 − 4ac

ℓ
dt dz , (4.9)

where ℓ = 2q. If we had considered the general three unequal charge solution, we would

have ℓ = 2(q1q2q3)
1/3. The traditional form of the Poincaré patch of the AdS3 metric is:

ds23 =
R2

r2
dr2 +

r2

R2

(
dz2 − dt2

)
. (4.10)

We can now directly compare with, say, [24, 25] and see that the central charge of the

system is

C = 3
2R = 3

2ℓ . (4.11)

Here, we use C rather than the more conventional c to denote the central charge, to avoid

confusion with the short-hand notation c = cosh β of this paper.

5 D3-brane and AdS5 Wormhole

It is perhaps more interesting to obtain an AdS5 wormhole in type IIB theory, which would

be expected to be dual to certain four-dimensional Yang-Mills theory. Since AdS5 appears

naturally in the type IIB theory in AdS5 × S5, the near horizon geometry of the D3-brane,

we consider the D3-brane wormhole solution. From (3.5) with D = 8, n = 5 and N = 1, we

find that the D3-brane wormhole solution is given by

ds210 =
( H

cos u

)1/2 [
a2dΩ2

5 +
a2du2

16 cos2 u

]

+H−1/2
(
cos v (−dt2 + dz2) + 2 sin v dt dz + dx21 + dx22

)
,

F(5) = G(5) + ∗10G(5) , G(5) = dt ∧ dz ∧ dx1 ∧ dx2 ∧ dH−1 , (5.1)

H = c0 −
q

a4
u , u = 2arcsin

(r(r2 + 2a2)1/2√
2(r2 + a2)

)
, v =

√
5
8 (π − 2u) .

Choosing the integration constant c0 = π q/(2a4), we have

r → +∞ : H ∼ q

r4
− 2a2q

r6
+ · · · ,

r → −∞ : H ∼ π q

a4
− q

r4
+ · · · . (5.2)
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Thus we have constructed a wormhole solution that is asymptically AdS5×S5 when r → +∞
and flat when r → −∞.

Since the solution obtained above is spherically symmetric, it can be dimensionally

reduced on S5 to give a solution in five dimensions. Using the results in [22], we can reduce

to the five-dimensional metric ds25 given by

ds210 = e2αϕ ds25 + e−
6α
5 ϕℓ2dΩ2

5 ,

G(5) = 4ℓ4 Ω(5) , (5.3)

where α =
√

5/48 and ℓ ≡ q1/4 is the AdS5 length. The five-dimensional system is then

Einstein gravity coupled to a dilaton with a scalar potential, namely

L5 =
√
−g

(
R− 1

2 (∂ϕ)
2 − V

)
, (5.4)

with the scalar potential given by

V = − 4

ℓ2
(5e

16
5 αϕ − 2e8αϕ) . (5.5)

Performing the S5 reduction on the solution, we find

ds25 =
(a
ℓ

) 10
3
{( H

cos u

)4/3 a2du2

16 cos2 u

+
H1/3

cos5/6 u

(
cos v (−dt2 + dz2) + 2 sin v dt dz + dx21 + dx22

)}
.

e−
6α
5 ϕ =

a2

ℓ2

√
H

cos u
. (5.6)

There is no metric singularity as u ranges from −1
2π to 1

2π, corresponding to r ranging from

−∞ to +∞. In the asymptotic region r → −∞, the solution becomes

ds25 ∼ π4/3
(r2
ℓ2

)5
3
( ℓ
a

)16/3[
dr2 +

1

π

(a
ℓ

)4
(−dt̃2 + dz̃2 + dx21 + dx22)

]
,

ϕ ∼ −∞ , (5.7)

where t̃ and z̃ are defined in (2.10). The metric is locally flat in this limit, in the sense

that the Riemann tensor tends to zero as r approaches −∞ (see footnote 1). The dilaton

is singular in the limit, but the scalar potential (5.5) goes to zero. Such a singularity, in

which the potential is bounded above, is called a “good singularity” in [26]. However, the

situation considered in [26] is when such a singularity occurs at a finite r = r0, where

gtt → 0, corresponding to non-trivial infrared physics in the dual field theory. In our case,

only the scalar becomes singular as r → −∞, with gtt ∼ ∞. From the supergravity point of
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view, this is clearly a “good singularity,” and is nothing but an artifact of the dimensional

reduction. It implies that the system decompactifies into ten dimensions.

In the asymptotic region r → +∞, the solution becomes,

ds25 ∼ ℓ2

r2
dr2 +

r2

ℓ2
(−dt2 + dz2 + dx21 + dx22) ,

ϕ ∼ 0 . (5.8)

(Note that in the limit of a→ 0, the solution becomes literally AdS5 for all r.)

The scalar potential (5.5) tends to zero as ϕ goes −∞, and diverges to +∞ as ϕ goes to

+∞. There is a minimum, Vmin = −12/ℓ2, which occurs at ϕ = 0. The wormhole solutions

corresponds to ϕ traversing from ϕ = −∞ in the asymptotically locally flat region to ϕ = 0

in the asymptotically AdS region, with Vmin determining the cosmological constant of AdS5.

Including subleading terms, the metric in the asymptotically AdS region is given by

ds25 ∼ ℓ2

r2
(1− 2a2

r2
)dr2 +

r2

ℓ2
(1 +

a2

r2
)[−dt2 + dz2 + dx21 + dx22 +

√
10a4

r4
dtdz] ,

ϕ ∼ −
5
√

5
3a

8

r8
. (5.9)

If we express the metric near r = +∞ in terms of a radial coordinate ρ, for which the metric

in the radial direction is ℓ2dρ2/ρ2, then the solution looks like

ds25 =
ℓ2

ρ2
dρ2 +

ρ2

ℓ2

[(
1− 25a8

24ρ8

)
(−dt2 + dz2) +

√
10 a4

ρ4
dtdz

+
(
1 +

5a8

24ρ8

)
(dx21 + dx22)

]
+ · · · (5.10)

Using the energy and momentum formulae obtained in appendix A, we can straightforwardly

to obtain the mass and linear momentum per unit 3-volume spanned over (z, x1, x2) for the

AdS5 wormhole, given by

E = 0 , P =

√
10 a4

8πℓ5
. (5.11)

Of course, we can boost the system along the (t, z) direction and obtain a non-zero mass;

however, we shall always have E2 − P 2 = −25a8/(16π2ℓ10) < 0.
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6 Further AdS Wormholes

6.1 M2-brane and AdS4 wormhole

We can obtain an M2-brane wormhole solution of eleven-dimensional supergravity, given by

(3.5) with D = 10, n = 4, N = 1:

ds211 =
( H

cos u

)1/3 [
a2dΩ2

7 +
a2 du2

36 cos2 u

]

+H−2/3
(
cos v (−dt2 + dz2) + 2 sin v dtdz + dx2

)
,

A =
1

H
dt ∧ dz ∧ dx , H = c0 −

q

a6
u , v =

√
7
12 (π − 2u) . (6.1)

The coordinate u is related to the original r coordinate by

u = arctan

√(
1 +

r2

a2

)6
− 1 , (6.2)

or, in other words,

cos u =
(
1 +

r2

a2

)−3
, sin 1

2u =
r(r4 + 3r2a2 + 3a4)1/2√

2(r2 + a2)3/2
. (6.3)

As r ranges from −∞ to +∞, u ranges from −1
2π to +1

2π.

Choosing c0 = πq/(2a6), we find that H has the asymptotic forms

r → +∞ : H =
q

r6
− 3a2q

r8
+ · · · ,

r → −∞ : H =
πq

a6
− q

r6
+

3a2q

r8
+ · · · . (6.4)

The metric approaches AdS4×S7 near r = +∞, while it becomes flat as r approaches −∞.

A breathing-mode reduction of eleven-dimensional supergravity on S7, in which the

metric and 4-form are written as

ds211 = e2αϕ ds24 + (2ℓ)2 e−
4α
7 ϕ dΩ2

7 ,

∗F(4) = 6(2ℓ)6 Ω7 , (6.5)

where α =
√
7/6, yields [22] the four-dimensional bosonic Lagrangian

L4 =
√
−g

(
R− 1

2(∂ϕ)
2 − V

)
, V = − 3

2ℓ2

(
7e

18α
7 ϕ − 3e6αϕ

)
. (6.6)

Reducing the solution (6.1), with 2ℓ = q1/6, therefore gives the four-dimensional solution

ds24 =
( a
2ℓ

)7 {( H

cos u

)3/2 a2du2

36 cos2 u

+
H1/2

cos7/6 u

(
cos v (−dt2 + dz2) + 2 sin v dtdz + dx2

)}
,

e−
4α
7 ϕ =

a2

4ℓ2

( H

cos u

)1/3
. (6.7)

11



In the limit of r → ∞, the metric including the subleading terms is given by

ds24 =
ℓ2

r̃2
(1− a2

2ℓr̃
)dr̃2 +

r̃2

ℓ2
(1 +

a2

2ℓr̃
)(−dt2 + dz2 + dx2 +

√
7/3 a6

ℓ3r̃3
dtdz) + · · · , (6.8)

where r̃ = r2/(4ℓ). Expressed instead in terms of a radial variable ρ for which the radial

term is exactly ℓ2dρ2/ρ2, the expansion at large r takes the form

ds24 =
ℓ2dρ2

ρ2
+
ρ2

ℓ2

[(
1− 7a12

215ℓ6ρ6

)
(−dt2+dz2)+

(
1+

7a12

3 · 215ℓ6ρ6
)
dx2+

√
7/3 a6

32ℓ3ρ3
dtdz

]
+ · · · .
(6.9)

Using the formulae in appendix A for the energy and z-momentum per unit area in the

(z, x) plane, we find

E = 0 , P =

√
21 a6

8π(2ℓ)7
. (6.10)

6.2 M5-brane and AdS7 wormhole

There is also an M5-brane wormhole solution in eleven-dimensional supergravity, given by

taking D = 7, n = 7, N = 1 in (3.5):

ds211 = (
H

cos u

)2/3[
a2dΩ2

4 +
a2du2

9 cos2 u

]

+H−1/3
(
cos v(−dt2 + dz2) + 2 sin v dtdz + dxidxi

)
,

F4 = 3qΩ4 , H = c0 −
q

a3
u , (6.11)

where

v =
2(π − 2u)√

6
. (6.12)

The index i ranges over 1 ≤ i ≤ 4.

The coordinate u is related to the original radial coordinate r by

cos u =
(
1 +

r2

a2

)−3/2
, sinu =

r(r4 + 3r2a2 + 3a4)1/2

(r2 + a2)3/2
. (6.13)

As usual, r ranges from −∞ to +∞, implying that u ranges from −1
2π to +1

2π.

With the choice c0 = πq/(2a3), the function H tends to zero at r = +∞ and it tends

to a constant at r = −∞:

r → +∞ : H =
q

r3
− 3qa2

2r5
+ · · · ,

r → −∞ : H =
πq

a3
− q

r3
+

3qa2

2r5
+ · · · . (6.14)

The metric approaches AdS7×S4 near r = +∞, while it becomes flat as r approaches −∞.
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The breathing-mode reduction of eleven-dimensional supergravity on S4, using the

ansatz

ds211 = e2αϕ ds27 + (12ℓ)
2 e−

5
2αϕ dΩ2

4 ,

F4 = 3(12ℓ)
3 Ω4 , (6.15)

with α = 2/(3
√
10), yields the seven-dimensional bosonic Lagrangian

L7 =
√
−g

(
R− 1

2(∂ϕ)
2 − V

)
, V = − 6

ℓ2

(
8e

9
2αϕ − 3e12αϕ

)
. (6.16)

The solution (6.11), with 1
2ℓ = q1/3, reduces to give

ds27 =
(2a
ℓ

)8/5 {( H

cos u

)6/5 a2du2

9 cos2 u

+
H1/5

cos8/15 u

(
cos v (−dt2 + dz2) + 2 sin v dtdz + dxidxi

)}
,

e−
5α
2 ϕ =

4a2

ℓ2

( H

cos u

)2/3
. (6.17)

Taking the limit r → ∞, the metric up to sub-leading order terms is

ds27 =
(
1− 8a2ℓ2

r̃4

)ℓ2dr̃2
r̃2

+
r̃2

ℓ2

(
1+

2a2ℓ2

r̃4

)(
−dt2+dz2+dxidxi+ 32

√
2/3 a3ℓ3

r̃6
dtdz

)
+ · · · ,
(6.18)

where r̃ is given by r = r̃2/(2ℓ). Expressed in terms of a radial coordinate ρ for which the

radial term in the metric is exactly ℓ2dρ2/ρ2, the expansion takes the form

ds27 =
ℓ2dρ2

ρ2
+
ρ2

ℓ2

[(
1− 384a6ℓ6

5ρ12

)
(−dt2 + dz2) +

(
1 +

128a6ℓ6

15ρ12

)
dxidxi

+
32
√

2/3 a3ℓ3

ρ6
dtdz

]
+ · · · . (6.19)

The energy and z-momentum per unit 5-volume spanned by (z, xi), calculated using the

results in appendix A, are given by

E = 0 , P =
2
√
6 a3

πℓ4
. (6.20)

6.3 Dyonic string and AdS3 wormholes

The dyonic string is a six dimensional solution supported by a 3-form field strength, corre-

sponding to the Lagrangian (3.1), but with D̂ = 6, n = 3 and N = 1. The solution can be

lifted to D = 10 and viewed as either the D1/D5 system or the NS-NS-1/NS-NS-5 system.
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There are two dyonic string wormhole solutions. The first one can be obtained by lifting

the magnetic string solution of the U(1)3 theory obtained in [16] to six dimensions. It is

given by

ds26 = (HeHm)−
1
2

(r2 − 2as r − a2

r2 + a2
dt2 +

4ac r

r2 + a2
dt dz − r2 + 2as r − a2

r2 + a2
dz2

)

+(HeHm)
1
2

(
f [dr2 + (r2 + a2)(dθ2 + sin2 θ dφ2)] + f−1a2(dψ + n cos θdφ)2

)
,

ϕ = 1√
2
log

(
He

Hm

)
, F(3) = dA(2) , A(2) =

1

He
dt ∧ dz + qma cos θdφ ∧ dψ ,

He = αe −
qe
a
arctan(

r

a
) , Hm = αm − qm

a
arctan(

r

a
) , f = α− n arctan(

r

a
) . (6.21)

In this solution, the level surface of the four-dimensional tranverse is not spherical symmet-

ric, but a squashed S3. This solution is effectively the same as the one discussed earlier,

and we shall not analyse it further.

There is another dyonic string wormhole solution that is spherically symmetric on the

S3, given by

ds26 =
(HeHm)

1
2

cos u

[
a2dΩ2

3 +
a2du2

4 cos2 u

]

+(HeHm)−
1
2

(
cos v (−dt2 + dz2) + 2 sin v dtdz

)
,

ϕ = 1√
2
log

(
He

Hm

)
, F(3) = dt ∧ dz ∧ dH−1

e + ∗6(dt ∧ dz ∧ dH−1
m ) ,

He = ce −
qe
a2
u , Hm = cm − qm

a2
u , v = 1

2

√
3(π − 2u) . (6.22)

The coordinate u is related to the original r coordinate by

sinu =
r
√
r2 + 2a2

r2 + a2
. (6.23)

In order for the metric to be asymptotic to AdS3 for r → ∞, it is necessary to choose ce =

πqe/(2a
2) and cm = πqm/(2a

2). For simplicity, let us consider the case with qe = q = qm.

We can reduce the solution on the three sphere, with the reduction ansatz given by

ds26 = e2αϕds23 + e−
2
3αϕq dΩ2

(3) , F3 = 2q(Ω(3) + q3/2 e4αϕǫ(3)) . (6.24)

The resulting three-dimensional Langrangian is given by

L3 =
√
−g(R− 1

2(∂ϕ)
2 − V ) , V = −q−1(6e

8
3αϕ − 4e4αϕ) . (6.25)

The corresponding D = 3 metric is given by

ds23 =
a6

ℓ6

[H4a2du2

4 cos6 u
+

H2

cos3 u
(cos v(−dt2 + dz2) + 2 sin v dtdz)

]
. (6.26)
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We now take the limit of r → ∞, and compare the solution with the metric in the Poincaré

patch. We find that the metric becomes

ds23 =
ℓ2

ρ2
dρ2 +

(
1− 3a2

4ρ4

)(
− ρ2

ℓ2
dt2 +

ρ2

ℓ2
dz2

)
− 2

√
3a2

ℓ2
dt dz + · · · , (6.27)

where ℓ2 = q.

Note that for general electric and magnetic charges (qe, qm), we have ℓ =
√
qeqm. Up to

the order of 1/ρ2 in the cross-term and 1/ρ4 in the rest, this is precisely the metric given

in (4.10).

7 Conclusions

In this paper, we have constructed various examples of smooth Lorentzian-signature worm-

holes in supergravity theories. In general, the solutions are supported by gravity, a dilatonic

scalar, and a p-form field strength, and the resulting wormhole connects two asymptotic

regions that are locally flat. Of particular interest are the cases where only the metric and

the p-form are involved. In these non-dilatonic cases, the parameters in the solution can be

adjusted so that one of the asymptotic regions approaches AdS.
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A Conformal Mass for Asymptotically AdS Geometries

In any spacetime that approaches AdS sufficiently rapidly at infinity, we can define conserved

charges associated with each of the asymptotic Killing vectors. In particular, by taking

the appropriate asymptotically timelike Killing vector, we can calculate the total mass,
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or energy, of the spacetime. There are various ways in which this can be done (see, for

example, [27] for a discussion), but the simplest and most straightforward is based on a

procedure involving a calculation on the conformal boundary of the spacetime, developed

by Ashtekar, Magnon and Das [28,29]. In this appendix, we show how this AMD approach

may be used to calculate the energy and the momentum of the AdS wormhole solutions

that we have constructed in this paper.

There are two types of boundary that are of particular interest when one considers an

asymptotically AdS spacetime. One of these is the boundary at large radius in a global

coordinate system, for which the boundary topology is R×Sphere. (It is assumed here that

we are working in the universal covering space CAdS of AdS, in which time ranges over the

entire real line rather than being periodically identified.) The other boundary of interest is

the one that arises when one considers the Poincaré patch of AdS, for which the boundary

is just Minkowski spacetime.

Descriptions of the bulk AdS metrics in these two cases can be given in a unified form,

by writing the D-dimensional metric, which satisfies Rµν = −(D − 1)ℓ−2 gµν , as

ds2D = −w2dt2 +
dr2

w2
+ r2dω2

D−2 , (A.1)

where

dω2
D−2 =

du2

1− k2u2
+ u2dΩ2

D−3 , w2 = k2 +
r2

ℓ2
. (A.2)

For any non-vanishing k, dω2
D−2 is the metric on a round sphere SD−2 of radius 1/k, and

(A.1) is a metric on AdSD in global coordinates. The scale size k can be absorbed by

means of coordinate rescalings so that any non-zero k can be set equal to 1 without loss

of generality. If k = 0, on the other hand, the metric (A.1) instead describes the Poincaré

patch of AdS.2

The use of the AMD method to calculate the mass of various higher-dimensional asymp-

totically AdS black holes was described in [30] and [27]. In all these examples, the black

hole metrics were asymptotic to global AdS. However, in the AdS wormhole solutions that

we have constructed in this paper, the asymptotic form approaches the Poincaré patch of

AdS. It is instructive, therefore, first to check how the AMD calculation of the mass works

in a simple k = 0 example.

2One can also take k2 to be negative, in which case the metric (A.1) describes de Sitter spacetime, and

dω2
D−2 is the metric on a hyperboloid of constant negative curvature. Including the possibility of negative

k2, one can always, by means of coordinate scalings, set k2 to be 0, 1 or −1, depending on whether it is

initially zero, positive or negative.
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The conformal boundary of AdS in either case can be brought in from infinity by rescal-

ing the metric with a conformal factor

Ω =
ℓ

r
, (A.3)

to give ḡµν = Ω2gµν . Let C̄µ
νρσ to be the Weyl tensor of the metric ḡµν and n̄µ = ∂µΩ.

The conserved charge Q[K] associated to the asympotic Killing vector K is then given by

Q[K] =
ℓ

8π(D − 3)

∮

Σ
Ēµ

νK
ν dΣ̄µ ,

Ēµ
ν = ℓ2Ω3−Dn̄ρn̄σC̄µ

ρνσ . (A.4)

In order to define the energy, one takes K = ∂/∂t, to give

E =
ℓ

8π(D − 3)

∮

Σ
Ē t

tdΣ̄t . (A.5)

In the case of our AdS wormhole solutions, we can also obtain the linear momentum along

the z direction, by taking K = ∂/∂z, giving

P =
1

8π(D − 3)

∮

Σ
Ē t

zdΣ̄t . (A.6)

A simple example that illustrates the calculation of the AMD mass for both the k = 1

and k = 0 cases is provided by charged non-rotating black holes in five-dimensional minimal

gauged supergravity. The solution can be written as

ds25 = f H−2 dt2 +H
(
f−1 dt2 + r2ds23

)
,

A =
√
3 (1−H−1)

√
µ+ k2q

q
dt , (A.7)

where

f = k2 − µ

r2
+ g2r2H3 , H = 1 +

q

r2
, (A.8)

and

ds23 =
du2

1− k2u2
+ u2dΩ2

2 . (A.9)

Here g = 1/ℓ. Note that ds23 is a metric on a 3-sphere of radius k−1. The solution is valid

for any k, including k = 0.

Calculating the thermodynamic quantities, we find

S =
π2 (q + r2+)

3/2

2k3
, T =

k2r4+ + g2(2r2+ − q)(q + r2+)
2

2πr2+(q + r2+)
3/2

,

Q =
π
√
3q

√
q + r2+

√
k2r2+ + g2(q + r2+)

2

k3r+
, Φ =

√
3q

√
k2r2+ + g2(q + r2+)

2

4r+

√
q + r2+

,

E =
3π

[
k2r2+(2q + r2+) + g2(q + r2+)

3
]

8k3r2+
, (A.10)
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where r+ is the largest root of f(r) = 0. E here is calculated using the AMD procedure.

These quantities satisfy the first law of thermodynamics,

dE = TdS +ΦdQ , (A.11)

for any arbitrary constant value for k, including k = 0.

All of E, S and Q have a factor k3 in the denominator. This is associated with the fact

that ds23 describes a 3-sphere of radius k−1. In the limit where k → 0, corresponding to the

black hole with flat horizon, we should multiply E, S and Q by k3 before taking the limit,

and interpret the rescaled quantities as the energy, entropy and charge per unit 3-volume.

(Or else, re-interpret the metric ds23 as being defined on T 3, and so take
∫ √

g3d
3x to be the

volume of the T 3.)
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