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ABSTRACT

We construct exact time-dependent solutions of the supergravity equations of motion

in which two initially non-singular branes, one with positive and the other with negative

tension, move together and annihilate each other in an all-enveloping spacetime singular-

ity. Among our solutions are the Hořava-Witten solution of heterotic M-theory and a

Randall-Sundrum I type solution, both of which are supersymmetric, i.e. BPS, in the time-

independent case. In the absence of branes our solutions are of Kasner type, and the source

of instability may ascribed to a failure to stabilise some of the modulus fields of the com-

pactification. It also raises questions about the viability of models based on some sorts of

negative tension brane.
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1 Introduction

One of the most popular current models relating M-theory to phenomenology is that of

Hořava andWitten [1], in which an eleven-dimensional spacetime is the product of a compact

Calabi-Yau manifold with a 5-dimensional spacetime consisting of two parallel 3-branes or

domain walls, one with negative tension and one with positive tension. Alternatively one

may think of the five-dimensional reduced spacetime as the warped product of Minkowski

spacetime with an interval, i.e. E3,1 × S1/Z2.

If one performs a generalised dimensional reduction of the eleven-dimensional theory,

of the kind introduced in [2] in which the 4-form has non-vanishing flux on a Calabi-Yau

internal space, one obtains a five-dimensional supergravity theory [3] which admits an exact

static supersymmetric solution of the form

ds25 = H̃ (−dt2 + dx2) + H̃4 dỹ2 ,

H̃ = 1 + k̃ |ỹ| , φ = −3 log H̃ , (1)

where k̃ is a constant. The scalar field φ characterises the size of the internal Calabi-Yau

space. The equations of motion for the metric and φ may be consistently obtained from the

Lagrangian

L5 =
√−g(R− 1

2(∂φ)
2 −m2 e2φ) , (2)

with k̃2 = 2m2/3, where the exponential potential is the remnant of the 4-form field

strength. Note that if the solution is lifted back to D = 11, it can be viewed, in the

orbifold limit, as an intersection of three equal-charge M5-branes [2].

In the Hořava-Witten picture a second domain wall is introduce, at y = L, by taking

y to be periodic with period 2L, such that y = L is identified with y = −L. Furthermore,

one makes the Z2 identification y ↔ −y. This solution has been proposed as a model for

our universe [3], and so the question of its stability is of obvious interest.

The Hořava-Witten model based on the solution (1) is not completely physically realistic

because it is static, while our expanding universe is time dependent. For that reason, many

attempts have been made to incorporate the Hořava-Witten model into a cosmological,

so-called brane-world, scenario, in which the positions of the 3-branes or domains walls are

not fixed but allowed to move in time. Notable among these attempts are the Ekpyrotic

scenario [4], in which the big bang is ascribed to the collision of an external brane with our

universe, and the Cyclic model [5], in which the distance between the two branes oscillates

in time.
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Brane scenario cosmologies, particularly those based on collisions, represent a rather rad-

ical departure from previous models, and offer a novel perspective on many long-standing

problems and puzzles, but they also present new ones of their own. Understandably there

has been a great deal of interest in them. However, much of the recent work has been based

on effective four-dimensional theories, typically involving a so-called radion field. Once the

theory has been brought to this form it is almost indistinguishable from conventional four-

dimensional models involving scalar fields; only the names have been changed. If brane

scenarios are to be observationally tested it must be via features that are essentially higher

dimensional. In particular, in the case of collision models we need a much better under-

standing of the higher-dimensional collision dynamics derived from a consistent underlying

framework such as M-theory. Since at present we lack a complete theoretical formulation

of M-theory, any such further understanding at present must come from incomplete or ap-

proximate theories such as low-energy supergravity limits or Dirac-Born-Infeld actions. This

paper is concerned with the former approach. For some ideas on topology and signature

change using the latter, see [6].

In the light of the comments made above, it is clearly worthwhile to obtain time-

dependent solutions of the equations of motion coming from (2), and to relate the analysis

of stability to the suggestions of [4] and [5]. In a recent paper [7], exact solutions of the

supergravity equations of motion representing colliding D3-branes of Type IIB theory mov-

ing in ten spacetime dimensions were obtained.1 By dimensionally reducing these solutions,

a class of five-dimensional time-dependent solutions was obtained for a similar Lagrangian

to (2) (but with a different power of the dilaton exponential potential) [7]. The static so-

lutions were supersymmetric, but the time-dependent generalisations represent a positive

and a negative tension brane moving towards one another, and leading to the complete dis-

appearance of the universe in a spacetime singularity [7]. In this paper, we shall construct

exact solutions of the equations of motion coming from precisely the Lagrangian (2) of the

heterotic brane model of [3], with the same type of time-dependent properties. Their exis-

tence clearly raises questions about the validity of the general belief that supersymmetric

ground states should be stable.

We should say at the outset that in what follows we shall be concerned only with

the exact classical supergravity equations of [3], and any effects arising from quantum

1Time-dependent four-dimensional charged black-hole solutions in a de Sitter background were earlier

obtained in [8], and generalistions to higher-dimensional charged black holes with a pure exponential scalar

potential were found in [9].
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considerations, which can induce potentials for the various massless scalar fields in the theory

(see, for example, [10] and [11, 12]), are not taken into account. Clearly, such potentials

would modify considerably the discussion that follows.

We shall begin by obtaining a five-dimensional time-dependent domain-wall solution for

precisely the Lagrangian (2) that arose in the heterotic brane model of [3]. We shall include

a detailed discussion of the nature of the time dependence, and also we shall make analogy

with the issue of the stability of ordinary Minkowski spacetime. In subsequent sections

we shall obtain more general classes of time-dependent domain-wall solutions in arbitrary

dimensions, and we shall also discuss the brane-source terms that arise in all the cases.

2 Time-Dependent Heterotic Brane in D = 5

2.1 The local time-dependent solution

As well as admitting the static 3-brane solution (1), we find that the five-dimensional theory

described by the Lagrangian (2) also admits a time-dependent 3-brane solution, given by

ds25 = H1/2 (−dt2 + dx2) +H dy2 ,

H = h t+ k |y| , φ = −3
2 logH , (3)

where k2 = 8m2/3, and h is an arbitrary constant.

Note that if we turn off the time dependence (by setting h = 0), the relation to the

previous static solution is seen by making a coordinate transformation of the form y = ỹ2.

Substituting this into (3), we recover (1), after some simple constant rescalings. If, on the

other hand, we set the parameter m in the Lagrangian to zero, the solution describes a

Kasner universe.

When we lift the solution back to D = 11, the metric becomes

ds211 = H−1/2(−dt2 + dx2) +H1/2 ds2CY6
+ dy2 , (4)

The static solution, in the orbifold limit, can be viewed as an intersection of three equal-

charge M5-branes [2]. Turning off the brane charge, the time-dependent metric describes a

direct product of a ten-dimensional Kasner universe and a line segment.

2.2 Local static Killing vectors and Killing horizons

Although we have presented the solution (3) in an ostensibly time-dependent form, one

might worry that in fact it was not truly time-dependent at all, since locally one can
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eliminate the time dependence by means of a coordinate transformation. If we temporarily

drop the modulus sign around y in (3), then the coordinate transformation from t and y to

t̃ and r given by

dt = dt̃− hr1/2

k2 f
dr , H = r , f = 1− h2 r1/2

k2
(5)

transforms the solution into the static form

ds25 = r1/2
(
− f dt̃2 + dx2 + r1/2

dr2

k2 f

)
,

φ = −3
2 log r . (6)

This can be recognised as a black 3-brane, with an horizon at f = 0. However, as we

shall discuss below, the introduction of the modulus sign on y in (3) changes the conclusion

completely.

First, it is useful to continue temporarily with the modulus sign omitted, and to look at

the Killing symmetries of the solution. It depends on t and y only though the combination

H = ht+ ky, and so if one adopts H and another combination of t and y, say v = ht− ky,

as new coordinates, then the solution is independent of v. Thus

K = Kµ ∂

∂xµ
= k

∂

∂t
− h

∂

∂y
, (7)

is a Killing vector field which lies in the hypersufaces H = constant, and which has norm

g(K,K) ≡ gµνK
µKν = −k2H

1
2 + h2H . (8)

In other words

K(H) ≡ Kµ∂µH = 0 . (9)

Thus, if one moves such that ht+ky = constant, the domain wall appears to be independent

of the “time” coordinate v. IfH < k4

h4 , then the Killing vector is timelike and v is a genuinely

timelike coordinate, but if H > k4

h4 it is spacelike, and v becomes a spacelike coordinate.

On the hypersurface N given by H = k4

h4 , the Killing vector field is null,

g(K,K) = gµνK
µKν = 0 . (10)

Thus the hypersurface N is itself null, and the orbits of K were its null generators. Such

hypersurfaces are called Killing horizons by Carter [13].

As mentioned above, our domain-wall solution (3) is in fact genuinely time dependent,

despite being locally static, and the time dependence is not a mere coordinate artefact. The
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crucial point is the inclusion of the modulus sign in (3), which introduces a physical domain

wall at y = 0. If we sit on this wall, the metric is explicitly time dependent because the

function H is not constant at the wall. In other words the domain wall does not move along

the orbits of the Killing vector K.

In fact the hypersurfaces H = constant have a kink at y = 0. The vector K suffers a

jump in slope at y = 0, and thus the one-parameter group of translations which it generates

is discontinuous at y = 0.

The fact that the metric is locally static outside a domain wall is a rather general

phenomenon. For example in the thin-wall approximation, a four-dimensional domain wall

spacetime consists of two pieces of flat Minkowski spacetime inside the timelike hyperboloid

x2 + y2 + z2 − t2 = a2 , (11)

which are glued back to back, thus compactifying spacetime. On either side of the domain

wall the metric is static, but the domain wall itself is moving with respect to any of the

doubly-infinite number of static coordinate systems related by SO(3, 1) transformations on

either side. However there is no global static coordinate system [14]. The domain wall itself,

and the universe containing it, are expanding (or contracting), and in terms of a proper-

time parameter τ the expansion is exponential. In other words, the universe is inflating

because of the presence of the domain wall. In fact the induced metric on the domain wall

is precisely that of 2+1 dimensional de Sitter spacetime,

ds2 = −dτ2 + a2 cosh2
τ

a
(dθ2 + sin2 θdφ2) . (12)

Analogously, our 3-brane is also a thin domain wall solution, which is locally static outside

the wall. If we could smooth out the kink and replace the |y| profile in (3) by a smooth

trough, then the solution would no longer be even locally static.

Having established that our 3-brane solution is indeed genuinely time-dependent, it is

appropriate to discuss the nature of its time evolution in more detail. This discussion is

closely analogous to the evolution of the time-dependent 3-brane considered in [7].

2.3 Global structure of the time-dependent Hořava-Witten spacetime

In this section we shall discuss the global structure of the time-dependent generalisation

of the Hořava-Witten model. This corresponds to taking the time-dependent solution (3)

and passing to the case of the S1/Z2 orbifold. Thus we consider a solution of the form (3)

for −L < y < L. The solution is then extended outside this interval by demanding that it
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be periodic with period 2L. This leads to a negative-tension brane located at y = 0 and

a positive-tension brane located at y = L. The interval 0 ≤ y ≤ L may be though of as

S1/Z2 , where the S1 occupies −L ≤ y ≤ L and the Z2 action is y → −y.

Now if, as in [7], h is taken to be negative, H will be positive but decreasing, for all

negative values of t and the spacetime occupies the strip 0 ≤ y ≤ L when t < 0. Evidently

the proper length of the interval is time dependent, and the universe is contracting, but not

exponentially. The proper length of the interval is

ℓ =

∫ L

0
dyH1/2 =

2

3k

[
(ht+ kL)3/2 − (ht)3/2

]
. (13)

At large negative t we have

ℓ ≈ (ht)1/2L , (14)

and at t = 0, the proper length is ℓ = 2
3k

1/2L3/2.

For t positive, H vanishes along the straight line

− ht = ky . (15)

This represents a singularity which starts from the negative tension brane and moves towards

the positive tension brane, reaching it at time t = kL
(−h) . The spacetime cannot be extended

beyond this, because the scalar field φ diverges, giving rise to a curvature singularity. This

can be seen from the calculation presented in (51) in the appendix; the curvature clearly

diverges at H = 0. It can also be seen from the metric (4) in D = 11, which becomes

complex when H is less than zero.

To summarise, the separation of the two 3-branes decreases monotonically as t increases

towards zero, but before they actually collide a power-law curvature singularity develops

on negative-tension brane at t = 0, which spreads out and eventually envelopes the entire

spacetime including the positive-tension brane, at time t = kL
(−h) .

The norm of the local Killing vector is

H1/2(h2(ht− ky)1/2 − k2) . (16)

For large negative t the Killing field is spacelike. For small negative t is becomes timelike

near the negative tension brane. For L < k3

h2 , it has become timelike along the entire interval

before t = 0.

The Einstein conformal frame metric induced on the branes is

ds2 = H(−dt2 + dx2) . (17)
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For the brane at y = 0 and negative values of t, the proper time on the brane is τ = 2
3(ht)

1/2t.

The metric becomes

ds2 = −dτ2 + a2(τ)dx2 , a(τ) ∝ τ1/3 . (18)

The contraction towards the Big Crunch at τ = 0 is power law, with the expected power

due to a massless scalar field. A similar contraction takes place on the positive tension

brane, simply shifted in time by an amount kL
(−h) .

The natural interpretation of the solution is that the collision of the negative tension

brane with the positive tension brane brings about the complete annihilation of the universe.

From the D = 11 point of view, the interpretation is different in detail but the same in

essence. As we can see from (4), the coordinate y itself measures proper distance in D = 11.

The solution can be viewed as an M5-brane wrapped on the supersymmetric 2-cycles of CY6

in a Kasner spacetime. If we turn off the brane charge k, the metric is a direct product

of a ten-dimensional Kasner universe and a line segment. Thus the coordinate y describes

precisely the original Hořava-Witten line-segment of S1/Z2, except that in the original

Hořava-Witten picture, the ten-dimensional spacetime is (Minkowski)4 × CY6 instead of a

Kasner universe with the spatial sections being E
3 × CY6.

When the M5-brane charge is turned on, the wrapped M5-branes are perpendicular to

the y direction. The distance between the branes stays fixed in D = 11, since y is a proper-

distance coordinate. The metric becomes singular when H = 0, in which case the volume

of the Calabi-Yau manifold shrinks to zero. The metric cannot be extended to H < 0 since

it would then become complex. If there is only a single brane, so that y is an infinite line,

then there are always regions of y, for any given t, for which the metric is well-defined.

However in the Hořava-Witten model, where y is a line segment with a brane at each end,

the universe is totally annihilated at the time t = kL/(−h), after which H becomes negative

for all y in the interval S1/Z2.

We have shown that the usual static heterotic five-dimensional 3-brane solution found

in [3] has a time-dependent generalisation that is highly singular. It describes the subsequent

time evolution if one sets the two 3-branes in motion towards each other with a small

velocity. It is appropriate therefore to address in more detail the question of whether this

represents an inherent instability of the static 3-brane. In fact a useful analogy is to consider

first certain singular time-dependent generalisations of the Minkowski metric itself, and the

question of whether their existence is indicative of an instability of flat spacetime. We

address this question in the following subsection, as a prelude to discussing the stability of

the Hořava-Witten spacetime itself in the subsequent subsection.
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2.4 Stability versus instability of flat spacetime

It may be useful to begin by recalling some elementary and widely appreciated facts about

the stability of flat spacetime. Of course there is no doubt that in theories with fields which

can carry only positive energy, flat spacetime is stable against perturbations of finite total

energy, such as might be produced in a terrestrial laboratory. Cosmologically however, the

situation is different because there is no obvious reason why we should impose a condition

of finite total energy, and indeed to do so would seem to violate the so-called Cosmological

Principle, which rules out privileged spatial locations in the universe. A perturbation would

need to fall off quite sharply away from where it is largest in order to be of finite total energy.

In fact if the flat spacetime were spatially compact, for example if the spatial sections were

tori, then presumably all perturbations are of finite (but possibly vanishing) total energy.

But this raises a problem with stability.

Consider, for example, the exact Kasner solutions of the vacuum Einstein equations,

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 , (19)

where p1, p2, p3 are constants such that

p1 + p2 + p3 = 1 = p21 + p22 + p23 . (20)

Unless one of the pi is equal to 1, these metrics have a singularity at t = 0. If we set

t = 1 − t′, then the metric near t = 1 starts out looking like a small deformation of the

flat metric, with a small homogeneous mode growing linearly with t′. Ultimately, however,

non-linear effects take over and the universe ends in a Big Crunch at t′ = 1, i.e. t = 0.

This instability is universal in gravity theories, and is closely related to the modulus

problem in theories with extra dimensions. Consider, for example, the exact ten-dimensional

Ricci-flat metric

ds2 = t1/2(−dt2 + dx2) + t1/2gmn(y)dy
mdyn, (21)

where gmn(y) is a six-dimensional metric on a Calabi-Yau space K. This starts off at t = 1

looking like E
3,1 ×K with a small perturbation growing linearly in t′ = 1 − t. However by

the time it reaches t′ = 1, t = 0, the solution has evolved to give a spacetime singularity.

From the point of view of the four-dimensional reduced theory, the logarithm of the volume

of the Calabi-Yau behaves like a massless scalar field – the modulus field which is sometimes

thought of as a kind of Goldstone mode for a spontaneously-broken global scaling symmetry.

This causes an isotropic expansion or contraction of the three spatial dimensions, with the
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scale factor a(τ) going like τ
1
3 , which is what one expects for a fluid whose energy density

equals its pressure.

It is clear that no argument based on the local energy density of the effective three-

dimensional theory, or on the fact that E
3,1 × K is supersymmetric, i.e. admits Killing

spinors, can eliminate this source of instability. It is intrinsic to the situation being consid-

ered, and to the fact that nothing sets the scale of the Calabi-Yau manifold. The same is

true of the Kasner type instability of flat space described previously. If one imagines reduc-

ing the Kasner solution on all the spatial dimensions, leaving just the time direction, one

has three modulus fields or Goldstone modes, corresponding to the three arbitrary length

scales. Note further that if we do identify the spatial directions, any global energy or su-

percharge functional will automatically vanish, because they may be expressed as boundary

terms of a space with no boundary. Thus arguments based on Witten identities, etc., cannot

be applied in this case.

2.5 Stability of Hořava-Witten spacetime

With the discussion above in mind, we can return to the issue of stability for the brane

solutions. The situation is rather similar to the Kasner instability of flat spacetime. Indeed

our solution reduces to a Kasner type solution if we set k = 0, i.e. in the absence of the

branes.

As always in physics, whether we say a system is stable or unstable depends upon what

boundary conditions we are prepared to allow in the past. In the case of an environmental

science like cosmology this is well understood to be problematic. It becomes even more so in

brane cosmology since imposing a boundary condition in the past is tantamount to declaring

what influences are allowed on our universe from “outer space,” that is in, our case, from

higher dimensions. What our calculations clearly show is that if no such restrictions are

imposed, then the Hořava-Witten spacetime is certainly unstable. Any argument showing it

to be stable must therefore be an argument based on a theory about the initial conditions.

In this respect, the parallel with the debate between Catastrophists and Uniformitarians

among nineteenth century geologists trying to unravel the history of the earth is rather

striking [15].

2.6 Relation to Chamblin-Reall’s work

In this section we shall review the catastrophe awaiting the denizens of a Hořava-Witten

brane-world in the manner of Chamblin and Reall [16]. They focus on the locally static
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form of the metric and regard the 3-branes as moving in it, rather than using the co-moving

description we have adopted. One starts from the full Kruskal-type extension of the locally

static manifold. This is constructed by first introducing advanced and retarded Eddington-

Finkelstein coordinates (u, v) for the locally-static metric given in (6):

dv = k dt̃+
r1/4 dr

f
, dv = k dt̃− r1/4 dr

f
. (22)

Next, Kruskal coordinates are defined by

V = e−κv , U = eκu . (23)

where κ is a constant to be determined shortly.

The metric now takes the form

ds2 =
r

1
2 f

k2κ2UV
dUdV + r

1
2dx2 , (24)

where r should be regarded as a function of UV . The SO(1, 1))0 ≡ R+ symmetry2 of the

metric is now manifest since it is invariant under the boosts U → λU , V → λ−1V , whose

orbits in the U−V plane are hyperbolae UV = constant ⇔ r ≡ H = constant. The thus-far

arbitrary constant κ is now chosen so that f
UV is non-zero and analytic in UV on the past

and future horizons, which are at UV = 0 ⇔ r = k4

h4 . This implies that we should take

κ =
h4

4k4
. (25)

(The full Kruskal manifold is illustrated in Fig. 4 below.) Every point represents a copy

of three-dimensional Euclidean space E
3 with coordinates x. The metric is invariant under

the full O(1, 1) group including time reversal and space reflections. It is bounded on the

left and right hand sides by the two hyperbolae r ≡ H = 0, at which the metric is singular.

There are four regions, denoted by I, II, III and IV. In regions II and IV, the orbits of the

boosts are spacelike. In region I they are future-directed and timelike, and in region III

they are past-directed and timelike. On the two Killing horizons UV = 0, the orbits are

lightlike. The two horizons cross on the Boyer axis at the origin U = 0 = V .

In the time-independent limit, that is h = 0, the picture is rather different. The metric is

globally static, and there are no horizons. The spacetime is bounded by a single singularity

at r = 0. The time independent Hořava-Witten spacetime then occupies only a portion of

2The subscript 0 denotes the component connected to the identity. The group R+ is the group of positive

reals under multiplication.
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the full static manifold, between two values of r. In Fig. 1 we have sketched the Hořava-

Witten interval in co-moving (t, y) coordinates. It extends infinitely far in the positive and

negative time directions. Also shown are some representative orbits of the time translation

Killing vector field. In Fig. 2 the Hořava-Witten interval is shown lying between two orbits

of the static Killing vector field ∂
∂t .

t

y

BraneBrane
Negative−tension Positive−tension

Figure 1: The time-independent Hořava-Witten spacetime in (t, y) coordinates. Also shown are some

typical orbits of the timelike Killing vector field ∂/∂t.

In Fig. 3 we have shown the time-dependent Hořava-Witten interval in co-moving co-

ordinates (t, y). Also indicated are the orbits of the timelike Killing field, which lie in the

surfaces H = constant. In the past (i.e. in region IV), it is spacelike. In the future (i.e. in

region I), it is future-directed timelike. These two regions are separated by a null surface –

the Killing horizon.

In Fig. 4 we have shown how the Hořava-Witten interval is inserted into the full Kruskal

manifold. It lies between two 3-branes, which appear in the Kruskal diagram as two world

lines, initially starting in region IV, passing through the past horizon into region I, and

coming to an end on the spacetime singularity at r ≡ H = 0.

It is interesting that the global Kruskal spacetime picture resembles the situation in de

Sitter spacetime, except in that case the origin r = 0 is non-singular. The horizons then

have more of the character of cosmological horizons than black hole horizons, at least for

observers who remain in regions I or III. In particular, if we reverse the direction of time,

then the Hořava-Witten interval emerges from a spacetime singularity in the past and then

inflates, passing through a future Killing horizon. If we confine our attention to the Hořava-

Witten interval however, this Killing horizon is not a future event horizon for denizens of
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BraneBrane
Negative−tension Positive−tension

Singularity

Figure 2: The full globally-static spacetime of the time-independent Hořava-Witten solution. There is a

single singularity on the left, at r = 0. Some representative orbits of the timelike Killing vector field are

indicated. The Hořava-Witten interval lies between two such orbits.

the negative tension brane or indeed of the bulk.

3 General Time-Dependent Domain-Wall Solutions

Here we obtain generalisations of our time-dependent solution (3), to the case of domain-wall

solutions in dilaton gravity in arbitrary dimensions.

Let us consider a general case of Einstein-scalar system with an exponential potential:

L =
√−g

(
R− 1

2(∂φ)
2 − 2Λ eaφ

)
, (26)

where the constant a is parameterised by a2 = ∆ + 2(D−1)
D−2 [17]. It is straightforward to

verify that the system admits the following solution

ds2 = H
8

(∆+4)(D−2)
(
− dt2 + dx2 +H

2∆
∆+4 dy2

)
,

φ = − 4a

∆+ 4
logH , H = h t+ k |y| , (27)

where h is an arbitrary constant and k is determined by

k = 1
2 (∆ + 4)

√
Λ

∆
. (28)

It is interesting to note that for ∆ > 0, which is typical in massive supergravities, with

∆ = 4/N and N taking integer values from 1 to 8 depending on the dimensions [17,

12



Singularity

Negative−tension
Brane

Positive−tension
Brane

t

y

I

IV

Figure 3: The time-dependent Hořava-Witten spacetime in co-moving (t, y) coordinates. The red line

indicating the singularity occurs at H = 0. Also indicated are some of the orbits of the Killing vector ∂/∂t.

In region I the orbits are timelike and in region IV they are spacelike. These two regions are separated by a

Killing horizon on which the orbits are lightlike.

18], Λ is positive. Thus k is real. On the other hand, if ∆ < 0, which is typical for

gauged supergravities, Λ is negative. This again implies that k is real. In particular, for

purely Einstein theory with a cosmological constant, we have ∆ = −2(D− 1)/(D − 2), the

cosmological constant is negative, and so k is real.

There are two ways of viewing the above solutions as generalisations of previously-known

solutions. One is to show that when h = 0, the solutions reduce to standard domain-wall

solutions, supported by a purely exponential scalar potential.

The other way of viewing the new solutions as generalisations of old ones is to consider

the limit Λ = 0, under which the solutions become Ricci-flat Kasner metrics with a (D−2, 1)

spatial splitting.

Locally, where the modulus sign on y is removed, it is possible to make the coordinate

transformation

dt = dt̃− h r2∆/(∆+4)

k2 f
dr , H = r ,

f = 1− h2

k2
r

2∆
∆+4 , (29)
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Figure 4: The full Kruskal manifold for the time-dependent Hořava-Witten spacetime. Some typical orbits

of the Killing vector ∂/∂t, which are hyperbolae in the Kruskal coordinates U , V , are shown. The orbits are

future-directed timelike in region I, past-directed timelike in region III, and spacelike in regions II and IV.

Also shown, shaded in blue, is the Hořava-Witten manifold, bounded by the negative and positive tension

branes, which move from region IV into region I and then annihilate in the singularity.

under which the solution (27) becomes static, given by

ds2 = r
8

(∆+4)(D−2)
(
− f dt̃2 + dx2 + r

2∆
∆+4

dr2

k2 f

)
,

φ = − 4a

∆+ 4
log r , (30)

This can be viewed as a static black brane. As we discussed in section 2.2, the mere fact

that one can find a local coordinate transformation that renders the metric static does not

imply that it is globally static, and in fact again, it is the modulus sign on y in the function

H that implies the solutions are genuinely time dependent.

3.1 AdS case

A special case of the above results is when a = 0, in which case the scalar-potential term

in the Lagrangian (26) becomes a pure cosmological constant. It corresponds to setting

14



∆ = −2(D − 1)/(D − 2). The solution becomes

ds2 = H
4

D−3 (−dt2 + dx2) +
dy2

H2
, (31)

It follows from the curvature calculation (51) that if the solution is static, with h = 0,

the metric has only a delta-function singularity at the location of the brane. When h is

non-vanishing, the metric has also a power-law singularity at H = 0.

If one were to remove the modulus sign on y, the metric could be locally transformed

using (29) into the AdS black brane:

ds2 = r
− 4
D−3 (−f dt2 + dx2) +

dr2

k2 r2 f
. (32)

Again, it is the inclusion of the modulus sign that renders our solution (31) genuinely time-

dependent. Thus we see that even anti-de Sitter spacetime itself is not immune to the

Kasner-type instabilities that we have exhibited in the general domain-wall solutions, once

the branes with their delta-function sources are introduced. This raises a question about

the stability of the Randall-Sundrum scenarios.

4 Brane Sources

To obtain the full description of our solutions, with a source brane action, it is useful first to

dualise the cosmological constant to a D-form field strength FD = dAD−1. The full action

can be written as

I =

∫
dDx

√−g
(
R− 1

2(∂φ)
2 − 1

2D!e
−aφF 2

(D)

)

−T

∫
dD−1ξ

√−γ
(
γij∂ix

M∂jx
N g̃MN − (D − 3)

)

+
(D − 2)

(D − 1)!

∫
dD−1ξ εi1···iD−1∂i1x

M1 · · · ∂iD−1
xMD−1AM1···MD−1

, (33)

where g̃MN = e
a

D−1 φ
gMN is the metric in the brane frame.3 This frame has the defining

property that the Einstein term and the F 2
D

term in the bulk Lagrangian have the same

dilaton coupling, and the bulk Lagrangian density takes the form

L = e−
1
2aφ (D−2)/(D−1)

(
R̃− 1

2D!F
2
(D) + · · ·

)
. (34)

Varying the brane-action term in (33) with respect to the metric gMN gives a brane

contribution to the energy momentum tensor

TMN
brane = T

∫
dD−1ξ

√−γ γij eaφ/(D−1) ∂ix
M ∂jx

N δD(x− x(ξ))√−g
. (35)

3See [20] for a discussion of the coupling of the dilaton in the brane action.
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Making the static gauge choice Xµ = ξµ (0 ≤ µ ≤ D − 2) implies that we have

T µν

brane
= T eaφ/(D−1)

√−γ√−g
γµνδ(y) , (36)

where γµν = g̃µν = eaφ/(D−1) gµν . Substituting the solution (27) into this expression yields

Tbraneµν = T H−(3∆+4)/(∆+4) ηµν δ(y) . (37)

This singular brane source is precisely compatible with the Ricci curvature singularities

that we find for the metric in (27), resulting from the discontinuity in the gradient of H at

y = 0. Specifically, we find that there is a singular term in the Einstein tensor, given by

Rµν − 1
2Rgµν = − 8k

∆+ 4
H−(3∆+4)/(∆+4) ηµν δ(y) + regular terms . (38)

Comparing with Tµν , we find that the powers of H match precisely, and so the brane tension

T can then be read off as

T = − 8k

∆+ 4
. (39)

This shows that the 3-brane at y = 0 has negative tension. If y is assigned period 2L and y

is identified with −y, the second 3-brane at y = L in the resulting S1/Z2 orbifold will have

positive tension.

One can also check the dilaton equation of motion, which, including the source term

coming from the brane action in (33), becomes

φ+
a

2D!
e−aφ F 2

(D) = aT

√−γ√−g
δ(y) . (40)

It is straightforward to verify that with the discontinuity in the gradient of φ implied by

(27), the dilaton equation is indeed satisfied, again with the brane tension T given by (39).

5 Further Time-Dependent Solutions

5.1 Solutions with single-exponential potentials

We can obtain another type of time-dependent brane solution as follows. Consider the

extremal static domain-wall solution for the theory (26). By an appropriate choice of the y

coordinate it can be written in the conformally-flat frame

ds2 = H
2

(∆+2)(D−2)

(
− dt2 + dy2 + dx2

)
, (41)
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where H = k̃ y, with k̃ = 2(∆ + 2)k/(∆ + 4). Now we can make a simple Lorentz boost,

namely t → c t+ s y and s → s t+ c y, where c2− s2 = 1, which implies that H is now given

by

H = k̃s t+ k̃cy . (42)

Of course at this point there is no genuine time-dependence, since it was merely obtained

by a (globally-defined) coordinate transformation.

If, however, we introduce a brane, by adding a modulus sign to y and writing

H = k̃s t+ k̃c|y| , (43)

then the time-dependence is no longer artificial, and the solution describes a moving brane.

As usual, one could also extend to the S1/Z2 orbifold in the standard fashion. An analysis of

the global structure of these solutions shows that they exhibit the same essential behaviour

as the previous examples, with the branes moving towards each other and a power-law

singularity developing that eventually engulfs the entire spacetime.

5.2 Scalar potential with an extremum

So far we have considered supergravity domain-wall solutions ((D − 2)-branes) supported

by a single exponential potential, which therefore has no extremum. Here, we consider

a more general scalar potential that does have an extremum. It is obtained from an S5

reduction of type IIB supergravity in which the breathing mode is retained, and the 5-form

field strength has a non-trivial flux. The relevant scalar Lagrangian is given by [19]

L5 =
√−g(R− 1

2(∂φ)
2 − V (φ)) , (44)

with V = 8m2e8αφ − R5 e
16αφ/5 and α =

√
15/12. Here m measures the strength of the

5-form flux and R5 is the Ricci scalar of the internal S5. The scalar potential supports a

static domain-wall solution [19]

ds25 = (b1H
2/7 + b2H

5/7)−1/2 (−dt2 + dx2) + (b1H
2/7 + b2H

5/7)−2dy2 ,

φ = −
√
15
7 logH , H = c+ k|y| , (45)

where b21 = (28m/3k)2 and b22 = 196R5/45. The local stability of the solution was recently

analysed in [21], where it was shown that subject to certain boundary conditions, the

configuration is stable despite the presence of the negative-tension brane.

However, as we have emphasised earlier, it is not clear that one is entitled to impose

the kind of energy-localising boundary conditions that are needed in order to argue for
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stability, if one is considering brane-world cosmological model. Thus we may again look

for a time-dependent generalisation of the static solution, in order to study the stability

question from a viewpoint that is more in accordance with the cosmological principle. We

find the following time-dependent domain-wall solution:

ds25 = (b2H
3/7 + b1)

1/2(ht(H3/7 − q) + q)1/3(−dt2 + dx2)

+(b2H
3/7 + b1)

−2(ht(H3/7 − q) + q)4/3H−8/7dy2 ,

φ = −
√

5
3 log

(
ht(H3/7 + q)− q

)
, (46)

where q = −b1/b2, and h is an arbitrary constant. The static limit can be achieved by

sending t → t+ 1/h and then sending h → 0, whereupon the solution reduces to (45).

Making the coordinate transformation H3/7 =
R2

5
400r

4+q, the solution (46) can be written

as

ds25 = (W r4)5/6
(
W−1/2(−dt̃2 + dx̃2) +W 1/2dr2

)
,

φ = −
√

5
3 log(ht̃ r

4 + q̃) , (47)

where W = ht̃ + q̃/r4 and q̃ = 400q/R2
5, x̃

µ = b
1/4
2 xµ. The r coordinate ranges over an

interval 0 < r1 ≤ r ≤ r2, where r1 and r2 are the values corresponding to the brane locations

at y = 0 and y = L respectively. With h taken to be negative, as usual, we again have

the situation that the solution is well-defined for sufficiently negative times t̃, with the two

3-branes moving towards each other, but as t̃ increases in the positive direction, a time is

reached at which W ≤ 0 for all r1 ≤ r ≤ r2, at which point the annihilation of the universe

is complete.

Lifting back to D = 10, (47) becomes

ds25 = (ht̃+
q̃

r4
)−1/2(−dt̃2 + dx̃2) + (ht̃+

q̃

r4
)1/2(dr2 + r2dΩ2

5) ,

F5 = d4x̃ ∧ dW−1 + ∗d4x ∧ dW−1 . (48)

This solution was obtained in [7], describing a time-dependent D3-brane.

Analogous time-dependent domain-wall solutions can also be found in D = 4 and D = 7,

which can be obtained from S7 and S4 reductions of time-dependent M2-branes and M5-

branes respectively.

6 Conclusions

In this paper, we have constructed time-dependent solutions of dilaton gravity with an expo-

nential potential, which can be viewed as generalisations of the static domain-wall solutions

18



of supergravities in various dimensions. Included in these solutions are time-dependent gen-

eralisations of the five-dimensional heterotic 3-brane that was proposed in [3] as a model for

our universe, and of the AdS 3-brane of the Randall-Sundrum scenarios. The case of prin-

ciple interest is where the fifth dimension is a line segment, with a positive-tension brane

at one end and a negative-tension brane at the other. The time-dependent solution starts

out in the distant past in a non-singular regime in which the metric approximates a Kasner

model far from the Kasner singularity. The solution evolves to a singularity in which the

entire spacetime is annihilated. The existence of this time-dependent solution can be taken

as an indication of an inherent classical instability in brane-world models where there are

positive-tension and negative-tension branes present. Analogous conclusions can be drawn

for brane models of this type in other dimensions, and also in certain more general cases

where there is a scalar potential with an extremum. Some support for the idea that Kasner

singularities arise in the general case is given by the numerical work reported in [22]. Fur-

ther support comes from (2+1)-dimensional models [23]. The thermodynamics of negative

tension branes has been discussed in [24].

The singular behaviour of solutions may be ascribed to a failure to stabilise some of

the modulus fields of the compactification. This is an old problem, and we have little

that is new to say about it. By introducing a potential (as for example in [10–12]) the

situation should improve. However in the cases we have considered the modulus problem

is compounded by the presence of negative tension branes. Such negative tension branes

are almost inevitable in any warped compactification [25]. It is by no means obvious that

they can be stabilised by additional potentials. Moreover, ideally, one would want not so

much a stable static solution, but rather a stable Friedman-Lemaitre expanding solution,

and, ideally, it should behave like an “attractor,” as was attempted in the early days

of Kaluza-Klein cosmology [26, 27]. In this respect, an unstable static solution might be

thought of as an advantage since otherwise the universe could be trapped in limbo in a

stable static universe. Unfortunately at present no higher-dimensional field equations using

the potentials found in [10] and [11,12] appear to be available to test this idea.
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APPENDIX

A Curvature of the Domain-Wall Metrics

All the domain-wall metrics that we have been considering in this paper have the general

form

ds2 = H2α (−dt2 + dx2) +H2β dy2 , (49)

where α and β are constants. We shall make the obvious choice of orthonormal frame,

defining

e0 = Hα dt , ei = Hα dxi , ey = Hβ dy . (50)

The orthonormal frame components of the Riemann tensor are then given by

R0i0j = αH−2α
(Ḣ2

H2
− Ḧ

H

)
δij + α2 H−2β−2 H ′2 δij ,

R0ijy = αH−α−β
(Ḣ ′

H
− (1 + β)

Ḣ H ′

H2

)
δij ,

R0y0y = αH−2β
(H ′′

H
+ (α− β − 1)

H ′2

H2

)
− β H−2α

(Ḧ
H

+ (β − α− 1)
Ḣ2

H2

)
,

Rijkℓ = α2
(
H−2α Ḣ2

H2
−H−2β H ′2

H2

)
(δik δjℓ − δiℓ δjk) ,

Riyjy = αβ H−2α−2 Ḣ2 δij − αH−2β
(H ′′

H
+ (α− β − 1)

H ′2

H2

)
δij . (51)
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[17] H. Lü and C.N. Pope, p-brane solitons in maximal supergravities, Nucl. Phys. B465,

127 (1996), hep-th/9512012.
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