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ABSTRACT

We measure the cross-correlation between the galaxy density in the Dark Energy Survey

(DES) Science Verification data and the lensing of the cosmic microwave background (CMB)

as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using

the DES main galaxy sample over the full redshift range 0.2 < zphot < 1.2, a cross-correlation

signal is detected at 6σ and 4σ with SPT and Planck , respectively. We then divide the DES

galaxies into five photometric redshift bins, finding significant (>2σ ) detections in all bins.

Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal

matches expectations, although the amplitude is consistently lower than predicted across

redshift bins. We test for possible systematics that could affect our result and find no evidence

for significant contamination. Finally, we demonstrate how these measurements can be used
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to constrain the growth of structure across cosmic time. We find the data are fit by a model

in which the amplitude of structure in the z < 1.2 universe is 0.73 ± 0.16 times as large as

predicted in the � cold dark matter Planck cosmology, a 1.7σ deviation.

Key words: cosmic background radiation – gravitational lensing: weak – large-scale structure

of Universe.

1 IN T RO D U C T I O N

The cosmic microwave background (CMB) radiation, released at

the time of hydrogen recombination, provides a view of the Uni-

verse when it was only 380 000 yr old. However, this image has

been slightly altered since the last-scattering surface, as the CMB

photons had to travel through an inhomogeneous distribution of

matter before reaching us today. Beyond the simple background

cooling due to the Hubble expansion, the intervening large-scale

structure (LSS) of the Universe can alter the energies and paths of

the CMB photons, producing a range of effects beyond the primary

CMB power spectrum; these are collectively known as secondary

CMB anisotropies.

The CMB photons freely stream through neutral hydrogen after

recombination, but they can undergo Compton scattering once again

at late times in the re-ionized intergalactic medium or in the hot,

ionized gas in the potential wells of massive clusters of galaxies.

This latter phenomenon is known as the Sunyaev–Zel’dovich (SZ)

effect (see e.g. Sunyaev & Zeldovich 1980; Carlstrom, Holder &

Reese 2002). When travelling in and out of gravitational potential

wells, they may gain a net energy when the potentials are evolv-

ing in time (integrated Sachs–Wolfe, ISW effect; Sachs & Wolfe

1967; Rees & Sciama 1968; Crittenden & Turok 1996; Fosalba,

Gaztañaga & Castander 2003; Boughn & Crittenden 2004; Fosalba

& Gaztañaga 2004; Cabré et al. 2006; Giannantonio et al. 2006,

2008, 2012b, 2014). Finally, as they travel through the LSS, the

CMB photons are gravitationally deflected by the mass distribution

along their way, distorting the image we eventually observe. Here,

we focus on this last effect, CMB lensing.

As described in the review by Lewis & Challinor (2006), the typ-

ical gravitational deflections of the CMB photons are of the order of

a few arcminutes (Cole & Efstathiou 1989). These deflections, inte-

grated along the entire line of sight, alter the CMB anisotropies we

observe in a number of ways. First, lensing smooths out the peaks

and troughs in the temperature and polarization angular power spec-

tra on arcminute scales (Seljak 1996). Lensing leads to power leak-

age from large into smaller angular scales (Linder 1990), and from

E- to B-mode polarization (Zaldarriaga & Seljak 1998). Lensing also

introduces non-vanishing higher order statistics of the temperature

and polarization fields, which can be used to reconstruct the lensing

potential (Hirata & Seljak 2003; Okamoto & Hu 2003), provided

a sufficiently high-resolution and low-noise map is available. Such

reconstructed maps of the lensing potentials contain the integrated

information of the entire matter distribution in the Universe, out to

the surface of last scattering. In order to interpret this information

to optimally constrain cosmology, and in particular the evolution of

structure formation, it is desirable to study the lensing contribution

as a function of redshift: this can be achieved by cross-correlating

the full reconstructed CMB lensing maps and tracers of matter at

known redshift, such as galaxy surveys (Lewis & Challinor 2006).

By cross-correlating the CMB lensing potential with the LSS, we

can measure the growth of structure as a function of time in redshift

bins; this measurement can be used for example to help identify

the mechanism driving the current epoch of cosmic acceleration. In

addition, CMB lensing–galaxy correlations can be used to improve

the control of systematics in weak lensing analyses (Das, Errard &

Spergel 2013).

The power of the cross-correlation technique is made evident

by the early works in this field: while the CMB lensing potential

itself was only weakly detectable (at <2σ ) from the Wilkinson

Microwave Anisotropy Probe (WMAP) temperature maps, due to

their comparatively low resolution and high noise (Smidt et al.

2011; Feng et al. 2012), the first significant detection of CMB

lensing was achieved by Smith, Zahn & Doré (2007) at the 3.4σ

level by cross-correlating WMAP data with radio-galaxies from

the NRAO VLA Sky Survey (NVSS; Condon et al. 1998). This

was later extended by Hirata et al. (2008) using multiple galaxy

catalogues, in a first attempt at studying the redshift evolution of the

signal, finding a lower combined evidence of 2.5σ . The field is now

flourishing: CMB lensing has been detected not only indirectly from

the smearing of the CMB temperature power spectrum (Das et al.

2011b; Keisler et al. 2011; Story et al. 2013; Planck Collaboration

XVI 2014b), but also directly at high significance from the non-

Gaussianity of the CMB temperature field using high-resolution

data from ACT (Das et al. 2011a, 2014), SPT (van Engelen et al.

2012; Story et al. 2015) and Planck (Planck Collaboration XVII

2014c; Planck Collaboration XV 2015a). The latest analyses of

these experiments achieved detections of CMB lensing at the 4.6σ ,

14σ , and 40σ levels, respectively; the different significance levels

depend on the different beam resolutions, detector noise levels, and

sky coverage fractions. With respect to the last, the Planck satellite

has a clear advantage, thanks to its large sky coverage, even in the

galaxy-masked maps, while the small-scale resolution and noise are

superior for the ground-based surveys.

CMB lensing has also been detected through its impact on the

B-mode signal in CMB polarization data with BICEP2 (BICEP2

Collaboration 2014), with a joint BICEP2-Planck polarization anal-

ysis (BICEP2/Keck and Planck Collaborations 2015), the Keck

Array (Keck Array and BICEP2 Collaborations 2015), POLAR-

BEAR (POLARBEAR Collaboration 2014b), and SPT (Keisler

et al. 2015), as well as from the four-point function of POLAR-

BEAR polarization data (Ade et al. 2014).

The ACT lensing data, reconstructed over six regions within

the Sloan Digital Sky Survey (SDSS) Stripe 82 covering a total

of 320 deg2, has been used by Sherwin et al. (2012) for cross-

correlation with optically selected, photometric quasars from SDSS

(Bovy et al. 2011), finding a detection of significance 3.8σ . The

ACTPol data, including information from CMB polarization, were

cross-correlated by van Engelen et al. (2015) with cosmic infrared

background (CIB) maps reconstructed by Planck, finding a detec-

tion at the 9σ level.

The SPT lensing maps were cross-correlated by Bleem et al.

(2012) over four distinct fields of ∼50 deg2 each with optically

selected galaxies from the Blanco Cosmology Survey (Desai et al.

2012; Bleem et al. 2015), IR sources from SPT Spitzer Deep Field

(Ashby et al. 2009), and from the WISE all-sky IR survey (Wright

et al. 2010; Geach et al. 2013). Significant correlations (>4σ ) were

found in all cases, although the interpretation was complicated by
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the large uncertainties on the redshift of these sources. Additionally,

Holder et al. (2013) detected the correlation between the SPT lens-

ing maps and the diffuse CIB maps measured by Herschel/SPIRE

(Griffin et al. 2010), finding positive detections at significances

between 6.7σ and 8.8σ in three submm frequency bands. Cross-

correlation between SPTPol and the CIB was detected at 7.7σ by

Hanson et al. (2013). The CMB lensing-CIB correlation was also

detected with POLARBEAR data (POLARBEAR Collaboration

2014a). These works further demonstrate that the CIB is well suited

for CMB lensing cross-correlations, due to its broad and deep red-

shift distribution, leading to a significant overlap with the CMB

lensing kernel; on the other hand, the interpretation of the results

is more challenging than for resolved sources, due to the relative

uncertainty on the CIB redshift distribution.

The Planck team took immediate advantage of their data (Planck

Collaboration XVII 2014c), by cross correlating their CMB lensing

map with four tracers of the LSS: NVSS, SDSS LRGs (Ross et al.

2011b), SDSS clusters (Koester et al. 2007), and the WISE submm

satellite survey. These cross-correlations were measured at high

significance: 7σ for WISE and clusters, 10σ for the SDSS LRGs,

and 20σ for NVSS, thanks to the dramatic extension of sky cover-

age with respect to previous CMB lensing data. These results were

also confirmed by Giannantonio & Percival (2014) and extended

to the final photometric SDSS main galaxies (Aihara et al. 2011),

SDSS photometric quasars, X-ray background (Boldt 1987), and

the 2MASS IR survey (Skrutskie et al. 2006). The cross-correlation

between Planck lensing and quasars from WISE and SDSS was mea-

sured by Geach et al. (2013) and DiPompeo et al. (2015). A further

study of the cross-correlation between Planck lensing and Herschel

was performed recently by Bianchini et al. (2015), while Omori

& Holder (2015) measured at >5σ the cross-correlation with the

Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS)

galaxy number density.

However, none of the existing galaxy surveys has the depth and

density of sources over a contiguous area required for a comprehen-

sive tomographic analysis of the CMB lensing signal; this is finally

possible with the Dark Energy Survey (DES) and SPT (Vallinotto

2013), and it is the main focus of this work. The DES finished

its second of five years of operations in March 2015, and will

eventually image 5000 deg2 in the Southern hemisphere from the

Blanco Telescope in Chile, in the bands g, r, i, z, and Y using the

Dark Energy Camera (Flaugher et al. 2015). Its depth makes it well

suited for measuring CMB lensing tomography, because it allows

the survey to detect a larger fraction of the CMB lensing signal,

whose contribution peaks at redshifts z > 1. In this paper, we cross-

correlate the initial DES Science Verification (SV) data with the

CMB lensing maps reconstructed by the Planck and SPT surveys,

and report a detection of the correlation in broad agreement with

the expectations under the assumption of a concordance � cold

dark matter (�CDM) model, with a significance of 6σ and 4σ for

SPT and Planck, respectively. The DES SV data consist of near

full-depth imaging of ∼300 deg2, of which we use the ∼200 deg2

of the SPT-E field, which is reduced to 131 deg2 after masking. The

SPT lensing data we use were derived by van Engelen et al. (2012)

from the 2500 deg2 SPT-SZ survey (Story et al. 2013), which fully

overlaps by design with the DES footprint, while the Planck public

data (Planck Collaboration XVII 2014c; Planck Collaboration XV

2015a) cover the entire extragalactic sky. Motivated by the high sig-

nificance of the SPT detection, we measure this cross-correlation in

redshift bins, reconstructing the time evolution of CMB lensing.

The plan of this paper is as follows: after briefly reviewing the

theoretical expectations in Section 2, we present the data in Section 3

and the mocks we use to estimate the covariances in Section 4; we

then report our results in Section 5, tests for possible systematics

in Section 6, and present some basic cosmological implications in

Section 7, before concluding in Section 8.

2 T H E O RY

2.1 Power spectra

Gravitational lensing deflects the primordial CMB temperature

anisotropies, so that the temperature we observe in a direction n̂

corresponds to the primordial unlensed anisotropy in the direction

n̂ + ∇ϕ(n̂). Here, ϕ(n̂) is the CMB lensing potential, defined in a

flat universe as (Lewis & Challinor 2006)

ϕ(n̂) = −
∫ χ∗

0

dχ
χ∗ − χ

χ∗χ
[� + �] (χ n̂, η0 − χ ), (1)

where χ is the comoving distance, asterisks denote quantities eval-

uated at the last-scattering surface, η0 is the conformal time today,

and �, � are the matter and light gravitational potentials, which are

effectively equal in the standard �CDM model in linear theory. The

convergence field κ(n̂) can be used in place of the lensing potential

ϕ(n̂); the two are related in multipole space as

κℓm =
ℓ(ℓ + 1)

2
ϕℓm. (2)

By applying the Poisson equation, the CMB convergence in a di-

rection n̂ can be rewritten as a function of the matter overdensity δ

(see e.g. Bleem et al. 2012):

κ(n̂) =
3mH 2

0

2

∫ χ∗

0

dχ
χ2

a(χ )

χ∗ − χ

χ∗χ
δ(χ n̂, η0 − χ ), (3)

where H0 is the Hubble parameter today, m the matter energy

density and a(χ ) is the scale factor.

In the local bias model (Fry & Gaztanaga 1993), the smoothed

galaxy overdensity δg is related to the smoothed matter overden-

sity δ by a Taylor expansion, so that if the bias is assumed to

be deterministic, δg(x, z) =
∑∞

i=0 bi(z) δi(x, z)/i!. In the present

analysis of DES data, we will consider only scales where the linear

bias suffices, as demonstrated by Crocce et al. (2016). In this case,

δg(x, z) = b(z) δ(x, z). A galaxy catalogue with redshift distribu-

tion dn/dz(z) thus provides an estimate of the projected overdensity

in a direction n̂ as

δg(n̂) =
∫ ∞

0

b(z)
dn

dz
(z) δ(χ n̂, z) dz, (4)

where b(z) is the galaxy bias (assumed here linear, deterministic

and scale-independent) and δ the total matter overdensity field.

The two-point statistics of the galaxy–galaxy and galaxy–CMB

lensing correlations can be written in harmonic space as

C
gg

ℓ =
2

π

∫ ∞

0

dk k2 P (k) W
g

ℓ (k) W
g

ℓ (k) (5)

C
κg

ℓ =
2

π

∫ ∞

0

dk k2 P (k) W κ
ℓ (k) W

g

ℓ (k), (6)

where P(k) is the matter power spectrum at z = 0, and the kernels for

galaxies and CMB lensing convergence are in the standard model

(� = �) for a flat universe (Lewis & Challinor 2006; Bleem et al.

2012; Sherwin et al. 2012):

W
g

ℓ (k) =
∫ ∞

0

dz b(z)
dn

dz
(z) D(z) jℓ[kχ (z)] (7)
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W κ
ℓ (k) =

3mH 2
0

2

∫ ∞

0

dz
χ∗ − χ

χ∗χ
(z) D(z) jℓ[kχ (z)], (8)

where D(z) is the linear growth function defined so that δ(z) =
D(z) δ(z = 0), jℓ are the spherical Bessel functions, and we have

assumed c = 1; the lensing potential power spectra can be readily

obtained using equation (2). The equivalent expressions in real space

can be derived with a Legendre transformation. We will indicate in

the following the two-point statistics of generic fields a, b as Cab
ℓ ,

wab(ϑ), related by

wab(ϑ) =
∞

∑

ℓ=0

(

2ℓ + 1

4π

)

Pℓ(cos ϑ) Cab
ℓ , (9)

where Pℓ are the Legendre polynomials, and in practice the sum is

limited to ℓmax , chosen to be sufficiently high to ensure convergence.

From the definitions of equations (5), it is clear that to first ap-

proximation, valid in the limit of a narrow redshift range for local

and deterministic linear bias,

C
gg

ℓ (z) ∝ b2(z) D2(z), C
κg

ℓ (z) ∝ b(z) D2(z), (10)

so that a joint measurement of these two quantities can break the

degeneracy between bias and linear growth (see e.g. Gaztañaga et al.

2012). We develop this idea in Section 7 below.

2.2 Stochasticity

Alternatively, it is possible to assume cosmology to be fixed, and

to use the data to constrain galaxy bias instead. Non-linear bias

is expected at small scales, as well as a stochastic component due

to the discrete sampling and the physical processes affecting halo

collapse and galaxy formation. As bias non-linearities on the scales

considered have been excluded for our sample by Crocce et al.

(2016), we will consider stochasticity ǫ, which changes the biasing

law to (Tegmark & Peebles 1998; Pen 1998; Dekel & Lahav 1999)

δg(x, z) = b(z) δ(x, z) + ǫ(x, z), (11)

which leads to the power spectra

C
gg

ℓ (z) ≃ b2(z) Cmm
ℓ (z) + Cǫǫ

ℓ (z) (12)

C
κg

ℓ (z) ≃ b(z) Cκm
ℓ (z), (13)

where Cmm
ℓ and Cǫǫ

ℓ are the matter and stochasticity power spectra,

respectively. It is clear that, in the absence of non-linearity, a mea-

surement of the correlation coefficient r ≡ C
gm

ℓ /
(

√

Cmm
ℓ C

gg

ℓ

)

constrains the stochastic component, as

r =
[

1 +
Cǫǫ

l

b2 Cmm
l

]−1/2

≃ 1 −
Cǫǫ

l

2 b2 Cmm
l

. (14)

Notice that if stochasticity is present, the bias inferred from the

measured galaxy autocorrelation bauto =
√

C
gg

ℓ /Cmm
ℓ will absorb

the stochastic component, and it will thus be different from what is

obtained from the galaxy–CMB lensing cross-correlation bcross =
C

κg

ℓ /Cmm
ℓ ; the mismatch is simply given by r = bcross/bauto. In

the following, we will assume no stochasticity throughout, thus

assuming bcross = bauto = b, except from Section 7.4, where we

discuss the possible interpretation of our results as a measurement

of stochasticity.

Stochasticity has been studied with N-body simulations and con-

strained with observations. Recent simulation studies report a negli-

gible stochastic component, except on the smallest scales (Baldauf

et al. 2010; Cai, Bernstein & Sheth 2011; Manera & Gaztañaga

2011). Observational constraints have been obtained by combining

galaxy clustering with weak gravitational lensing data, using the

methods by Schneider (1998) and van Waerbeke (1998). The most

recent results were obtained by Jullo et al. (2012) using the Cos-

mological Evolution Survey (COSMOS), finding no evidence for

stochasticity; this is however in tension with the significant stochas-

ticity found by Hoekstra et al. (2002) using the Red-Sequence Clus-

ter Survey and the VIROS-DESCART survey, by Sheldon et al.

(2004) with the SDSS, and by Simon et al. (2007) with the Ga-

BoDS survey. The current and upcoming DES clustering and weak

lensing data, including CMB lensing, are well suited to obtain better

constraints on this issue.

We calculate all theoretical power spectra and correlation func-

tions using a full Boltzmann code implemented in CAMB (Lewis,

Challinor & Lasenby 2000; Challinor & Lewis 2011), including the

(small) effect of redshift–space distortions. We include the effects

of non-linear matter clustering using the HALOFIT formalism (Smith

et al. 2003; Takahashi et al. 2012). We have tested from the slopes

of the number counts that the effect of cosmic magnification (see

e.g. van Waerbeke 2010) is negligible for all cases considered in this

paper, so that we neglect this contribution. Unless otherwise spec-

ified, we assume a fiducial Planck 2013 (+ WMAP polarization +
ACT/SPT + BAO) best-fitting flat �CDM+ν (1 massive neutrino)

cosmology of parameters: ωb = 0.0222, ωc = 0.119, ων = 0.00064,

h = 0.678, τ = 0.0952, As = 2.21 × 10−9, ns = 0.961 at a pivot

scale k̄ = 0.05 Mpc−1, corresponding to σ 8 = 0.829, where h ≡
H0/100 km s−1 Mpc−1 and ωi ≡ih

2 for each species i (Planck Col-

laboration XVI 2014b). (We have checked that assuming a Planck

2015 cosmology has negligible impact on the results.)

2.3 Expected signal to noise

We first estimate the signal to noise expected for the detection

of the CMB lensing–galaxies cross-correlation with current and

upcoming data. We include the uncertainties from cosmic variance

and the noise, Nℓ, which is due to shot noise for the galaxy counts

and to the primary CMB, instrumental, and atmospheric noise for

the CMB lensing maps.

The top panel of Fig. 1 shows the noise Nκκ
ℓ compared with

the CMB lensing autospectrum Cκκ
ℓ , for currently available CMB

lensing data. We compare the Planck 2015 CMB lensing noise

(Planck Collaboration XV 2015a) with the mean noise level of the

SPT-SZ lensing maps we use. The effective SPT-SZ noise is lower

than Planck’s on most scales (ℓ > 100), while on larger scales the

2015 Planck lensing data have higher sensitivity. We also show

how future CMB data from the SPT-3G survey (Benson et al. 2014)

are expected to lower the lensing noise by an order of magnitude.

For SPT, we have assumed a minimum mode ℓmin = 30, given

the smaller sky coverage of this survey, while for Planck we use

ℓmin = 8, as specified by the public data provided. The SPT-3G

forecast is based on a minimum-variance lensing reconstruction up

to ℓ = 3000, without explicitly considering the effect of foreground

contaminations.

In the second panel of Fig. 1, we show the theoretical prediction

for the cross-spectrum C
κg

ℓ and the corresponding theoretical noise

per multipole (see e.g. Ross et al. 2011a)

σ
(

C
κg

ℓ

)

=
1

√

fsky(2ℓ + 1)

×
[

(

C
κg

ℓ

)2 +
(

Cκκ
ℓ + Nκκ

ℓ

) (

C
gg

ℓ + N
gg

ℓ

)

]1/2

, (15)
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Figure 1. Signal-to-noise forecasts for the DES-CMB lensing correlations,

for a range of different CMB and DES data sets. Top panel: the theoretical

CMB lensing autospectrum compared with the noise of Planck 2015 and

SPT-SZ as well as the projected noise of the upcoming SPT-3G survey. Cen-

tral panel: the theoretical CMB lensing–galaxy cross-spectrum compared

with the analytical errors estimated for the Planck and SPT cases, consid-

ering DES SV (top, darker colours) and 5-yr data (bottom, lighter colours).

The errors are large as they are shown per individual multipole ℓ, and are

correspondingly reduced once binned. Bottom panel: the cumulative signal-

to-noise ratio of the CMB lensing-galaxy cross-correlations for the same

cases, compared with the theoretical maximum fixed by cosmic variance.

Note that a 5σ–10σ detection is expected for SV data with the information

coming from ℓ < 2000. For the full DES 5-yr data, the measurement with

Planck is expected to yield a similar significance to SPT-SZ, given the larger

overlapping area. SPT-3G will achieve the most accurate measurement.

where fsky is the overlapping sky fraction of the surveys, the CMB

lensing noise Nκκ
ℓ is discussed above, and the galaxy noise is

N
gg

ℓ = 1/n, where n is the galaxy density per steradian. For the

signal-to-noise projection on the DES-SV area, we use the specifi-

cations of the real galaxy catalogue described below in Section 3:

we assume the real redshift distribution of the full sample, a galaxy

number density of 5.39 arcmin−2, and a sky coverage of 131 deg2,

fully overlapping both SPT and Planck. For the forecasts of the

DES 5-yr survey, we instead assume that galaxies follow the sim-

ple redshift distribution by Smail et al. (1995) with the original

proposed specifications of DES (The Dark Energy Survey Collab-

oration 2005), i.e. a median redshift z̄ = 0.7 and a galaxy num-

ber density of 10 arcmin−2. We further assume a sky coverage of

5000 deg2 (fully overlapping Planck, but of which only 50 per cent

overlaps SPT). We finally assume constant bias, equal to 1 at all

scales. In reality, galaxy bias will be estimated from the galaxy au-

tocorrelations; we show below in Section 5 that the bias for the DES

main galaxy sample is only marginally larger than 1. We can see

that the noise per multipole for DES-SV is large compared with the

theory, but this is significantly reduced once binning is used. The

noise per multipole is reduced to the same level of the signal with

DES 5-yr data; in this case, the noise level of Planck is lower than

SPT-SZ at low ℓ, given the larger area overlap with the full DES

footprint.

Finally, the expected signal-to-noise is

(

S

N

)2

κg

= fsky

ℓmax
∑

ℓ=ℓmin

(2ℓ + 1)

×
(

C
κg

ℓ

)2

(

C
κg

ℓ

)2 +
(

Cκκ
ℓ + Nκκ

ℓ

) (

C
gg

ℓ + N
gg

ℓ

)

. (16)

We show in the third panel of Fig. 1 the cumulative signal to noise

(S/N) using different assumptions for the CMB and galaxy data.

Here, we can see that using DES SV data only, an S/N ≃ 8 (5)

is expected using current SPT (Planck) data, thus motivating the

analysis in this study. Beyond the current analysis, we can see

that the theoretical maximum S/N determined by cosmic variance

is significantly larger than what is possible at present; we further

discuss in Section 8 the prospects for future improvements of this

measurement.

3 DATA

3.1 Galaxy catalogue

The DES SV data include imaging of ∼300 deg2 over multiple

disconnected fields; the largest contiguous areas are the SPT-E and

SPT-W fields, covering ∼200 and ∼50 deg2, respectively, which

overlap the SPT-SZ survey. We consider here the larger SPT-E field

only.

The SV area was imaged over 78 nights from 2012 November

until 2013 February, and includes ∼4 × 107 unique co-add objects.

The raw data were processed as described by Rykoff et al. (in prepa-

ration) and Crocce et al. (2016). From the DES-SV final (‘Gold’)

main galaxy catalogue (Rykoff et al., in preparation), we use the

‘Benchmark’ galaxy selection introduced by Crocce et al. (2016),

which we also briefly describe here.

The ‘Gold’ catalogue covers 254.4 deg2 with Dec. > −61◦ af-

ter masking, thus removing the Large Magellanic Cloud and R

Doradus regions, unsuitable for extragalactic science. Only re-

gions with at least one CCD coverage in each band (except Y)

were included. Star–galaxy separation is achieved with a cut in the

wavg_spread_model quantity (Crocce et al. 2016). The ‘Gold’

catalogue includes a total of 25 227 559 galaxies over the whole SV

area. From them, we select the ‘Benchmark’ galaxy sample over

the SPT-E field by imposing the following cuts:

(i) 18.0 < i < 22.5 (completeness, 10σ detection);

(ii) −1 < g − r < 3 and −1 < r − i < 2 and −1 < i − z < 2

(remove strong colours from diffraction artefacts);

(iii) wavg_spread_model(i) >0.003 (star–galaxy separa-

tion);

(iv) 60 < RA < 95 and −61 < Dec. < −40 (SPT-E field).
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Notice that we use two different choices of magnitude definition

for the completeness cut (slr_mag_auto) and for the colour cuts

(mag_detmodel); see details in Rykoff et al. (in preparation).

We have checked that using a different magnitude definition for

the completeness cuts does not change the results significantly;

likewise, the galaxy–CMB lensing cross-correlation results remain

consistent if using a different classifier for star–galaxy separation

(modest_class; Rykoff et al., in preparation). Finally, note that

our declination cut at Dec. > −61 is marginally less conservative

than the cut applied by Crocce et al. (2016) at Dec. > −60.

Photometric redshifts of DES galaxies were estimated using a

variety of techniques (Sánchez et al. 2014). We consider here the

machine learning ‘Trees for photometric redshifts’ (TPZ; Carrasco

Kind & Brunner 2013) and the template-based ‘Bayesian photo-

metric redshifts’ (BPZ; Benı́tez 2000) methods. TPZ was shown

to perform well compared with a validation sample of known red-

shifts (Sánchez et al. 2014), and we therefore use this method for

our main results. We show however in Section 6.2 below that us-

ing BPZ does not change our results significantly. Briefly, TPZ is a

machine-learning algorithm using prediction trees and a random for-

est method that was shown to minimize the number of catastrophic

outliers with respect to other techniques. The TPZ implementation

we use does not include information from Y-band observations. In

addition to the above-mentioned cuts, we discard the tails of the

photometric redshift distribution, by selecting galaxies with maxi-

mum likelihood photo-z 0.2 < zphot < 1.2 only, which reduces the

sample by ∼5 per cent. This leaves us with 3 207 934 objects. Our

selection agrees with Crocce et al. (2016) except from the small dif-

ference in the declination cut, so that the results of the two papers

can be directly compared.

We then pixelize the data on the sky using the HEALPIX scheme

(Górski et al. 2005) at resolution Nside = 2048 (the corresponding

pixel side is dpix ∼ 1.7 arcmin), which is sufficient to capture all the

information in both the SPT and Planck lensing data. The mask is

constructed by excluding regions of photometry shallower than the

completeness cut at i < 22.5; in addition, pixels are discarded unless

>80 per cent of their area has detections. After masking, the SPT-E

field is left with 2 544 276 objects. The sky fraction covered is fsky =
3.176 × 10−3, corresponding to 131.02 deg2, with number density

n = 6.37 · 107 sr−1, or 5.39 arcmin−2. Future DES catalogues will

be denser as the magnitude limit is pushed faintwards.

We refer to fig. 2 by Crocce et al. (2016) for the stacked proba-

bility distribution of the photometric redshifts of the ‘Benchmark’

main galaxies, for both TPZ and BPZ methods. In addition to the

full sample, we also use five redshift bins of width �zphot = 0.2 that

we use in the tomographic analysis below. Also in this case, the cuts

are applied on the maximum-likelihood photo-z; in all cases, the

stacked photo-z Probability distribution function has tails outside

the cut boundaries. The number of galaxies in each bin is: 509 456;

818 376; 673 881; 424 437; 118 126 from low-to-high z, respec-

tively. While the number of galaxies in the last bin is significantly

lower than in the others, we choose the current binning in order to

explore the clustering and the CMB lensing correlation up to the

highest redshifts that are accessible to DES.

We show the masked map of the DES galaxy sample we use in

our analysis in Fig. 2.

3.2 CMB lensing maps

We consider the lensing convergence maps reconstructed from ob-

servations of the CMB temperature anisotropies by the South Pole

telescope (SPT) and by the Planck satellite shown in Fig. 3. For each

Figure 2. Map of the main galaxies used for our analysis in the SPT-E

field, pixellated on the HEALPIX Nside = 2048 scheme (pixel side: 1.7 arcmin)

in Equatorial coordinates, after masking. The colour scale indicates the

number of galaxy counts in each pixel. The grid lines are 2.◦5 apart. Grey

areas indicate masked data or areas outside the SV footprint. The coordinates

(74.6, −52.7) indicate the position of the map centre.

Figure 3. Maps of the CMB lensing convergence in the SPT-E field for SPT

(left) and Planck (right), pixellated on the HEALPIX Nside = 2048 scheme (pixel

side: 1.7 arcmin) in Equatorial coordinates, smoothed on angular scales of

10 arcmin to improve visualization. The grid lines are 2.◦5 apart. Grey areas

indicate masked data. The DES mask has been applied for clarity, but we do

not impose it on to the CMB data in our cross-correlation estimation. The

Planck lensing map also includes the Planck lensing mask. Planck shows

higher amplitude variations, but this is due to higher noise caused by the

lower spatial resolution of its map.

experiment, we also use simulated CMB observations to character-

ize the noise properties in the cross-correlation analysis with the

DES data. We present in Fig. 9 below the angular power spectra of

the CMB lensing maps together with their noise properties inferred

from the mocks.
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3.2.1 The SPT lensing maps

The SPT-SZ survey was assembled from hundreds of individual

observations of each of 19 contiguous fields that together covered

the full survey area. For the SPT-E field a 25◦ × 25◦ 150 GHz map

was made by forming an inverse-variance weighted co-add of all

the overlapping observations. A lensing map was constructed from

this CMB map following the procedures described in detail by van

Engelen et al. (2012), which we briefly outline below.

Individual sources detected with signal to noise greater than 15

(in any of the three SPT frequencies) were masked, with the masked

regions in the CMB map filled in using Wiener interpolation. These

maps were filtered in Fourier space (using the flat-sky approxima-

tion) with an anisotropic filter that removed Fourier modes along

the scan direction with ℓx < 500, and an isotropic filter that removed

modes with ℓ > 4000. A flat-sky lensing map was generated from

the filtered maps using a quadratic estimator technique (Okamoto &

Hu 2003). This map was then projected into spherical coordinates

for the cross-correlation.

The details of point source masking, anisotropic noise, non-

stationary noise, and spatially varying beams are sufficiently com-

plex that calibrations and noise estimates were obtained from sim-

ulated data. Starting with 100 mock lensed skies and 100 mock

unlensed skies, synthetic time-streams were generated, masked and

filtered identically to the data. By cross-correlating the 100 lensed

output reconstructions with the known input lensing potential, a

lensing transfer function was estimated. This lensing transfer func-

tion was applied to both the data and the output from the unlensed

simulations, which provided 100 noise realizations to characterize

the noise properties of the cross-correlations.

We use multipoles between 30 < ℓ < 2000 in the SPT lensing

map, as including higher multipoles negligibly changes the overall

signal to noise in the SPT lensing data.

3.2.2 The Planck lensing maps

We use the 2015 CMB lensing map provided by the Planck collab-

oration (Planck Collaboration XV 2015a). As in the SPT case, this

was derived with the quadratic estimator by Okamoto & Hu (2003),

which was extended to use the combined information from both

CMB temperature and polarization, thus reducing the noise with re-

spect to the 2013 lensing map (Planck Collaboration XVII 2014c).

The Planck lensing map is provided as a table of spherical harmonic

coefficients up to ℓmax = 2048. The reconstructed map covers the

full sky, but the comparatively low sensitivity of Planck means that,

averaged over the full sky, the maps are noise-dominated on most

scales, as it can be seen in the first panel of Fig. 1. However, we

can see in Fig. 4 that Planck observed the DES-SV SPT-E area on

which we perform the current analysis with significantly better than

average accuracy, as the SPT-E area lies near the South Ecliptic Pole

that was repeatedly scanned at every rotation of the Planck satellite.

We therefore expect that the typical lensing noise over this region

will be significantly reduced with respect to its full-sky level; we

confirm this in Section 5.2.3 below. For the current analysis, we

apply the Planck mask provided with the lensing map shown in

grey in Fig. 4, which masks the Galactic plane and resolved point

sources. As this map does not include multipoles smaller than ℓ <

8, these modes are also removed from the modelling.

The Planck collaboration also provided 100 realizations of the

CMB lensing sky, either including only the cosmological signal

based on the fiducial �CDM model with relative fluctuations, or

together with the experimental Planck noise. We can therefore re-

Figure 4. Map of the hit counts in the 143 GHz Planck channel. The stripy

structure reflects the scanning strategy of the Planck satellite, with nodes

near the Ecliptic poles. We also show the Planck lensing mask (grey area)

and the outline of the DES-SV SPT-E area (black), on which we perform the

present analysis. The SPT-E region’s noise properties are clearly atypical,

as the field lies near the South Ecliptic Pole, where the Planck hit count is

approximately five times higher than the full-sky average.

construct 100 noise realizations by taking the difference between

the two.

4 M O C K S

Here, we describe the two approaches to build galaxy mocks that

we use to estimate covariance matrices in our analysis, as described

in Section 5.1.2. We use both methods to demonstrate robustness,

but we use the N-body mocks for our nominal results.

4.1 Monte Carlo Gaussian mocks

The first method to build simulated DES-SV galaxy mocks is based

on a Monte Carlo (MC) procedure. In this approach, we generate

Gaussian random realizations of the maps we use: galaxies, SPT

lensing, and Planck lensing, all with their (average) noise properties.

We produce 1000 random realizations using the SYNFAST code from

the HEALPIX package, using random seeds and based on the non-

linear Planck best-fitting fiducial theory described above, assuming

a linear, constant bias b = 1.15, which we find to be consistent

with our autocorrelation clustering measurements. In addition to

the fiducial cosmological power spectrum, the mock CMB lensing

maps also include fluctuations from the effective noise of SPT and

Planck, so that we can generate a larger number of MC mocks

than the number of realistic noise realizations available. We discuss

below in detail in Section 5.2.3 how the effective CMB lensing noise

levels over the DES-SV area compare with the simplified average

noise presented above in Section 2.

The random maps are generated in such a way to include their cor-

relations as described e.g. by Boughn, Crittenden & Turok (1998),

Cabré et al. (2007) and Giannantonio et al. (2008). For the galaxy

mocks, after generating random overdensity maps with the correct

statistical properties, we transform them into number count maps

assuming the actual galaxy number density of the real data. At this

point, we add the appropriate galaxy shot noise on each pixel by ran-

dom sampling from a Poisson distribution of expected value equal to

the pixel occupation number. We finally smooth all mock maps with

the same Gaussian beam used for the data: ϑFWHM = 5.4 arcmin

for the maps intended for the DES autocorrelation and DES-SPT

cross-correlation, and ϑFWHM = 10.8 arcmin for the DES-Planck

cross-correlation, respectively.
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We expect the MC method to yield covariances that are similar

to a purely analytic Gaussian estimate (see equation 15), except

for the effect of the angular survey mask, which adds non-trivial

correlations between angular multipoles. Such analytic and MC

covariances are expected to be more accurate in their diagonal el-

ements and on large (linear) scales where the fields are close to

Gaussian distributed (Cabré et al. 2007).

4.2 N-body mocks

The second method to produce simulated DES-SV galaxy mocks

uses N-body outputs from the MICE Grand Challenge N-body light-

cone simulation (MICE-GC hereafter). The MICE simulations are

based on the following fiducial cosmology: ωb = 0.02156, ωc =
0.10094, ων = 0, h = 0.7, As = 2.44 × 10−9, ns = 0.95, which

has a lower matter content than currently preferred Planck results.

For further details about this simulation see Fosalba et al. (2015b),

Crocce et al. (2015), Fosalba et al. (2015a).

We generate CMB lensing mocks by using an all-sky lensing

potential map of the MICE-GC. This map includes lenses at 0 <

z < 100 and sources at the last scattering surface (z ≃ 1100). We

have checked that lenses at z > 100 give a negligible contribution.

The lensing map has been pixelized in the HEALPIX scheme at Nside =
8192 (0.43 arcmin pixels) and downgraded to the required resolution

of our analysis (Nside = 2048) for covariance estimation.

As for the mock galaxy number density map, we match as closely

as possible the ‘Benchmark’ main galaxy sample. For this purpose,

we have used the dark-matter counts in the light-cone (i.e. unbiased

galaxies) as a good approximation to the overall DES-SV galaxy

population, given the low bias recovered from the main galaxies.

We have then weighted the dark-matter counts with the redshift

distribution and bias of our DES-SV galaxy sample in the range

0.2 < zphot < 1.2; we assume b = 1.15. The resulting mock galaxy

number density is projected on to a HEALPIX map of Nside = 8192, and

downgraded in the same way as the lensing map described above.

We add Poisson noise matching that of the SV galaxy sample to the

N-body mocks as described for the MC mocks above.

From the full sky, we produce 100 non-overlapping rotations of

the SPT-E mask. This procedure yields 100 effectively independent

realizations of the galaxy and CMB lensing fields, as described

and validated in Appendix A. On to each CMB lensing mock we

then add one mock CMB lensing noise realization, as provided by

the SPT and Planck collaborations. Finally, we apply a Gaussian

smoothing of ϑFWHM = 5.4 arcmin or 10.8 arcmin to all mock maps,

as we do to the data.

5 R ESULTS

We present here the results of the clustering analysis of the DES-

SV galaxies and their correlations with the CMB lensing data. For

robustness, we set up two independent analysis methods, measuring

all quantities in real and harmonic spaces.

As both SPT and Planck lensing data only contain meaningful in-

formation at multipoles ℓ < ℓmax , we enforce a cutoff in our analysis

by applying a Gaussian smoothing to all data maps and mocks. For

the DES autocorrelation and DES-SPT cross-correlation, we choose

a beam size ϑFWHM = 5.4 arcmin, which corresponds to a multipole

ℓFWHM ∼ π/ϑFWHM = 2000. For the DES-Planck cross-correlation,

given the lower resolution and sensitivity, we use instead ϑFWHM =
10.8 arcmin, corresponding to ℓFWHM ∼ π/ϑFWHM = 1000. We

explore in Section 6.3 below the robustness of the results for dif-

ferent choices of ℓmax . The theoretical power spectrum predictions

are thus suppressed by a Gaussian beam B2
ℓ = e−ℓ(ℓ+1)σ 2

, where

σ = ϑFWHM/
√

8 ln 2; we have checked that indeed this beam sup-

presses the signal by >85 per cent at ℓ = ℓFWHM. As we do not

enforce on the maps a sharp cutoff at ℓ < ℓmax , a small fraction of

heavily suppressed power from higher multipoles is retained in the

maps and consistently in the theoretical predictions.

A sharp cutoff at ℓ = ℓFWHM would also be a reasonable choice for

the harmonic space analysis, and we have indeed confirmed that our

results remain consistent with this choice; the real space analysis

on the other hand is ill-behaved for sharp cutoffs in ℓ, so that the

Gaussian smoothing is a better strategy for maintaining consistency

between the two methods.

Finally, we note that we apply the Gaussian smoothing on masked

data consistently by smoothing both the masked map and the mask

itself, and then dividing the smoothed masked map by the smoothed

mask. This method removes the effect of the mask from the smooth-

ing procedure, and we tested it is equivalent to first applying the

smoothing on full-sky mock data and later masking them.

5.1 Real space

We begin with the real space analysis, where we measure the pro-

jected two-point correlation functions w(ϑ) of the pixellated maps.

5.1.1 Correlation function estimators

Given the observed number of objects ni in each pixel i = 1, . . . ,

Npix, and given a binary coverage mask fi = {0, 1}, we first estimate

the average number density per pixel n̄. We can then use for the

correlation between two galaxy density maps a, b the estimator

ŵab(ϑ) =
1

Nab
ϑ

Npix
∑

i,j=1

f a
i (na

i − n̄a) f b
j (nb

j − n̄b)

n̄a n̄b
�i,j , (17)

where �i, j is 1 if the pixel pair i, j is at angular separation ϑ

within the bin size �ϑ , and 0 otherwise, and the number of pixel

pairs at angular separation ϑ is Nab
ϑ =

∑Npix

i,j=1 f a
i f b

j �i,j . The CMB

lensing maps κ i have zero mean, so that the correlation between a

galaxy density map and a convergence map can be estimated as

ŵκg(ϑ) =
1

N
κg
ϑ

Npix
∑

i,j=1

f
g

i (n
g

i − n̄g)

n̄g
f κ

j κj �i,j , (18)

where the coverages of galaxies and CMB lensing f
g

i , f κ
j are both

binary masks defining the sky area used.

We use this estimator to measure the correlations in p = 12 angu-

lar bins, equally spaced in logarithm between 0.◦04 (= 2.4 arcmin)

and 5◦. We have tested with mock data and analytical covariances

that this binning optimally recovers the maximum possible infor-

mation available for maps smoothed at ϑFWHM = 5.4 arcmin, as the

addition of extra bins does not increase the signal to noise any fur-

ther. Notice that the smallest angle we consider is ϑmin = 2.4 arcmin

< ϑFWHM, as the imposed cutoff on the maps is Gaussian and not

top-hat. Due to the Gaussian smoothing, the shot noise contribu-

tion to the galaxy autocorrelation functions affects angular scales

at separations ϑ > 0◦; we describe in detail in Appendix B how

we model the shot noise component, which we subtract from all

measured autocorrelation functions.
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5.1.2 Covariance matrix

We estimate the covariances with several different methods: MC

realizations, N-body mocks, an analytic method, and jack-knife

(JK) techniques. We describe these methods and demonstrate their

consistency in Appendix C. Differently from the MC and analytic

covariances, the N-body method fully reproduces the anisotropic

nature of the CMB lensing noise, and it also includes the non-

Gaussian contributions to the covariance matrix produced by non-

linear clustering, while being more stable than the JK estimator.

We thus deem the N-body method to be our most realistic noise

estimator, and we use this for our main results.

We estimate the covariance matrix from the mocks as follows.

We first measure the correlation functions of the mock maps, using

the same estimator and keeping the same angular binning as done

for the data. We use N = 1000 MC and 100 N-body realizations,

and the covariance matrix is then estimated from the scatter of the

mock correlations in each angular bin i: ŵab
α,i ≡ ŵab

α (ϑi), where α

labels a given realization:

Ĉab
ij =

1

N

N
∑

α=1

(

ŵab
α,i − w̄ab

i

) (

ŵab
α,j − w̄ab

j

)

, (19)

where w̄ab
i is the mean correlation function over all realizations in

the bin i. Notice that, for all covariance estimators based on multiple

realizations N, the unbiased estimator for the inverse covariance

matrix is not simply
(

Ĉab
ij

)−1
, but (Hartlap, Simon & Schneider

2007)

̂(
Cab

ij

)−1 = β
(

Ĉab
ij

)−1
, (20)

where β = (N − p − 2)/(N − 1) and p is the number of angular

bins; β tends to one in the limit of large N. We can also define the

correlation matrices as

Rab
ij ≡

Cab
ij

√

Cab
ii C

ab
jj

, (21)

which we show below in this section and in Appendix C. Note

that even a covariance matrix that is diagonal in harmonic space

corresponds to a real-space correlation matrix with significant off-

diagonal components.

If we assume the likelihood distribution to be Gaussian, the above

estimate of the inverse covariance matrix (equation 20) can then be

used to calculate the likelihood distribution of some parameters x

given the data ŵab
i as

L(x) = (2π)−p/2
[

det Ĉab
ij

]−1/2
exp

{

−
1

2

p
∑

i,j=1

̂(
Cab

ij

)−1

×
[

ŵab
i − wab

i (x)
] [

ŵab
j − wab

j (x)
]

}

, (22)

where wab
i (x) are the binned theoretical correlation functions pre-

dicted from the parameters x. As a consequence of the central limit

theorem, the Gaussian likelihood is a good approximation at all but

the largest angular scales, whose contribution to our measurement is

negligible. The effect of the uncertainty on the data covariance itself

on to the final parameters variance can be estimated (Dodelson &

Schneider 2013; Taylor, Joachimi & Kitching 2013; Percival et al.

2014). We have tested that this contribution is small throughout this

work; the central values of fit parameters are unchanged while error

bars are affected at the <10 per cent level.

In the following, we use a theory template based on the fiducial

(fid) Planck cosmology, and we fit its amplitude. We therefore have

for the auto- and cross-correlations:

w
gg

i = b2
(

w
gg

i

)

fid
, w

κg

i = A
(

w
κg

i

)

fid
. (23)

The amplitude of the autocorrelations is given by the galaxy bias

b2. The amplitude of the cross-correlations A depends on both the

galaxy bias and the actual amplitude of the CMB lensing signal

ALens, so that A = b ALens. If the underlying true cosmology matches

our fiducial �CDM model, so that 〈ALens〉 = 1, the expectation

value for the amplitude should be equal to the galaxy bias from

the autocorrelation 〈A〉 = b, if the same scales are considered; if

instead the scales considered do not match precisely, we expect this

to hold only approximately. A and b are the parameters that we fit

from our measurements on data and mocks below by calculating

the likelihood (equation 22) over a grid of parameter values.

5.1.3 Real-space results: full sample

We show in Fig. 5 the measured two-point correlation functions in

real space of the DES-SV main galaxies in the SPT-E field. The

three panels show, from top to bottom, the galaxy autocorrelation

function, and the cross-correlation functions with SPT and Planck

CMB lensing.

We compare the measurements with the predictions from our

fiducial cosmology, where we use the non-linear matter power spec-

trum from the HALOFIT formalism (Smith et al. 2003; Takahashi et al.

2012). We fit the amplitudes of auto- and cross-correlations given

this model, binned consistently with the data, with simple one-

parameter likelihood fits.

In the case of the autocorrelation, we determine the galaxy bias b,

assumed constant and linear. Given the comparatively large effect

of non-linearities compared with the statistical error bars, and in

order to obtain a physically meaningful value for the linear galaxy

bias, we restrict the fit to the bins at angular scales ϑ > ϑNL, where

ϑNL is defined as the scale where the non-linear autocorrelation

function diverges from the linear theory by >20 per cent. In the

case of the cross-correlations, our main purpose is instead to extract

as much signal as possible, and the theoretical uncertainties due

to non-linearities are much smaller than the statistical errors. For

these reasons, we fit in this case the overall amplitude A to the

galaxy–CMB lensing cross-correlation functions at all scales. For

the DES–Planck correlation, we exclude the first angular bin, as it

is ∼100 per cent correlated with the second bin due to the larger

smoothing applied.

We can see in Fig. 5 that the galaxy autocorrelation is in agree-

ment with our fiducial �CDM model with a linear bias b = 1.22 ±
0.03 (N-body covariance). The physically crude approximation of

an effective average bias across the full redshift range is actually able

to correctly model the observed autocorrelation of the full galaxy

sample; we study in our tomographic analysis below the actual red-

shift evolution of galaxy bias. The CMB lensing cross-correlations

prefer a lower amplitude: A = 0.84 ± 0.13 and 0.78 ± 0.21 using

the SPT and Planck maps, respectively. These results are quoted

for our most reliable covariance matrix (N-body), which we show

in Fig. 6 for the three correlation functions considered; we present

in Appendix C a detailed comparison of the four covariance matrix

estimators, where we demonstrate consistency and robustness of

both diagonal and off-diagonal elements.

We estimate the significance of the detections by evaluating the

best fits of the linear bias b ± σ b and amplitude A ± σ A for the
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Figure 5. Measured two-point correlation functions of DES-SV main

galaxies and their correlations with CMB lensing maps. The red dots show

the measured results using our full galaxy catalogue. The top panel shows the

galaxy autocorrelation, the central panel is the correlation with SPT lensing

convergence, while the bottom panel shows the same with Planck. The thick

lines show the theoretical expectations from our Planck fiducial cosmology,

rescaled by the best-fitting bias b to the autocorrelation (dashed) and best-

fitting amplitude A = bALens to the cross-correlation functions (solid). The

thin dotted lines refer to linear theory; the scale below which linear and non-

linear theories differ by >20 per cent, ϑNL, is marked in the first panel. The

dark and light grey bands represent the 1σ and 2σ uncertainties on the best

fit, respectively. The error bars are from the N-body covariance, and they

are highly correlated. The correlation shapes for DES-SPT and DES-Planck

correlations differ because the Planck map is smoothed on larger scales.

auto- and cross-correlations obtained with a simple one-parameter

χ2 fit from the measured correlation functions. We show a summary

of the results in the left section of Table 1, from which we can

already anticipate that the real and harmonic-space results presented

in Section 5.2.3 below yield consistent results in all cases. For both

SPT and Planck, the cross-correlation amplitude is lower than the

autocorrelation by 2σ–3σ . We later discuss possible explanations

for this result: in Section 6, we discuss systematic uncertainties, and

in Section 7, we discuss possible cosmological interpretations. If

we define the final significance of the detection to be A/σ A, we find

it to be ∼6σ for the DES-SPT and ∼4σ for the DES–Planck cases,

respectively. These numbers should be compared with the (ideal)

Figure 6. Correlation matrices for the three cases we consider, estimated

with the N-body method. The matrices refer to galaxy–galaxy, galaxy–

SPT, and galaxy–Planck lensing, respectively. The angular range is from

2.4 arcmin to 5◦ as in Fig. 5. We see that the galaxy–CMB lensing correlation

matrix is more diagonal than the galaxy–galaxy case, as the autocorrelation

theory is more non-linear, and thus more non-Gaussian and less diagonal.

Furthermore, all matrices become less diagonal in the first few angular

bins due to the introduction of the Gaussian smoothing to the maps, which

effectively blurs information on scales ϑ < ϑFWHM = 5.4 arcmin (DES-

SPT) and 10.8 arcmin (DES-Planck).

theoretical signal-to-noise levels to be expected from equation (15),

which are ∼8 and ∼5, respectively. Hence our results are consistent

with the expectations; the lower significance recovered is mainly

due to the actual best fit being lower than expected in the fiducial

model, and to the more realistic N-body covariance matrix we use.

Finally, we see that our best fits are in most cases good fits, as the

χ2 per degree of freedom is generally close to (or below) unity,

which confirms that our estimate of the covariance is realistic given

the scatter observed in the data.

5.1.4 Redshift tomography in real space

Given the significance of the recovered detection in the DES-SPT

case, we then study the evolution of the correlations as a function of

redshift. We measure the DES-SPT cross-correlations in each of the

photo-z bins, and we present the results in Fig. 7. The covariances

are estimated with the most reliable N-body method only, con-

structed for each redshift bin from its photo-z redshift distribution,

and assuming in each case a constant bias equal to the best fit to that

bin’s autocorrelation (we cross-checked that analytic covariances

yield consistent results on the scales we consider).

We fit from each bin autocorrelation the best-fitting bias b, con-

sidering only quasi-linear scales ϑ > ϑNL, where non-linearities

are less than 20 per cent of the total autocorrelation function; we see

that ϑNL decreases in redshift as expected, allowing us to consider

all data points in the highest redshift bin. We fit the cross-correlation

amplitude A = bALens from the DES-SPT lensing cross-correlations,

using in this case all the available scales, as discussed above for the

full sample.

We can see that the autocorrelation observations are in agreement

with our fiducial model and a set of constant linear bias parame-

ters that increase with redshift. The bias values we obtain are fully

consistent with the main results by Crocce et al. (2016), thus vali-

dating both analyses. In the cross-correlation case, we also find an

agreement with the same model, although the uncertainties and the

scatter are larger than what we find for the full sample, especially

at low redshift. Both auto- and cross-correlations agree less well

with the expectations in the first bin at 0.2 < zphot < 0.4; see Crocce

et al. (2016) for a more detailed discussion of the possible residual

systematics in this bin.

We summarize in Table 2 the best-fitting biases and amplitudes

of the cross-correlations with their errors, assumed Gaussian. We

see that we do recover a significant correlation (at >2σ ) in all bins
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Table 1. Summary of the results for the main galaxy sample for real (left) and harmonic (right) spaces: best-fitting linear bias b and

correlation amplitudes A = bALens for the three correlation functions and the N-body covariance estimator. The results are consistent

between each other and with respect to the theoretical expectations for our fiducial model, but the cross-correlation amplitude is

lower than the autocorrelation by 2σ–3σ . The recovered χ2 per degree of freedom indicates the models and covariance estimators

are in all cases appropriate for the data.

Full sample, 0.2 < zphot < 1.2 Real space Harmonic space

Correlation Covariance b ± σ b S/N χ2/ d.o.f. b ± σ b S/N χ2/ d.o.f.

Gal–Gal N-body 1.22 ± 0.03 41 3.8 / 8 1.22 ± 0.04 34 2.7 / 3

Correlation Covariance A ± σA S/N χ2/ d.o.f. A ± σA S/N χ2/ d.o.f.

Gal–SPT N-body 0.84 ± 0.13 6.3 8.4 / 11 0.84 ± 0.15 5.6 8.7 / 19

Gal–Planck 0.78 ± 0.21 3.7 11 / 10 0.81 ± 0.20 3.8 7.7 / 9

Figure 7. Measured auto- (left) and cross-correlation functions (right) of DES-SV main galaxies as a function of photometric redshift. The panels refer to thin

photo-z bins, from low-to-high redshift. The error bars are derived from the N-body covariance matrix. The lines show the fiducial Planck cosmology rescaled

by the best-fitting linear bias or amplitude obtained from the auto- (dashed) and from the cross-correlations (solid); for each case, the linear theory is shown

with thin dotted lines. The best-fitting bias values and their 1σ errors are also shown in each panel; the coloured bands represent 1σ and 2σ uncertainties on

the best fits. When fitting the autocorrelation bias, the points at ϑ < ϑNL have been excluded from the fit, consistently with Crocce et al. (2016), as they lie

in the non-linear regime where the non-linear corrections are >20 per cent. All points are included in the cross-correlation fits. The autocorrelation results are

presented and discussed in more detail by Crocce et al. (2016), including a further discussion on the anomalous behaviour of the lowest redshift bin at small

angular scales.

and >3σ in all but the lowest redshift bin; however, the best-fitting

cross-correlation amplitude recovered fluctuates significantly with

respect to the expectation, and with respect to the best-fitting bias.

We see that the trend of obtaining A(z) < b(z) is recovered in most

redshift bins, confirming what we find for the full sample. We also

show that the reduced χ2 associated with the best-fitting bias and

amplitudes are close to 1 in most cases, indicating that our estimate

of the covariances is realistic, and that our best-fitting model is
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Table 2. Summary of the main results of the redshift tomography in real and harmonic spaces. The top half of the table shows the

best-fitting biases b to the DES autocorrelations, while the lower half illustrates the best fits to the DES-SPT lensing cross-correlation

amplitudes A = bALens. All results are shown for the N-body covariance matrix. The real- and harmonic-space results are in good

agreement with few exceptions, such as most notably the third bin cross-correlation, which we discuss in Section 5.2.4 below. The

reduced χ2 values are consistent with 1 in most cases, except the autocorrelations in the first and last redshift bins.

Redshift tomography Real space Harmonic space

Correlation Covariance Photo-z bin b ± σ b S/N χ2/ d.o.f. b ± σ b S/N χ2/ d.o.f.

Gal–Gal N-body 0.2 < zphot < 0.4 1.03 ± 0.06 17 20 / 7 1.14 ± 0.05 22 1.4 / 1

0.4 < zphot < 0.6 1.28 ± 0.04 31 2.2 / 8 1.29 ± 0.05 28 0.6 / 3

0.6 < zphot < 0.8 1.32 ± 0.03 46 6.9 / 9 1.29 ± 0.03 40 2.7 / 5

0.8 < zphot < 1.0 1.57 ± 0.03 59 4.3 / 10 1.58 ± 0.03 54 2.5 / 7

1.0 < zphot < 1.2 1.95 ± 0.04 50 29 / 11 1.98 ± 0.05 44 26 / 9

Correlation Covariance Photo-z bin A ± σA S/N χ2/ d.o.f. A ± σA S/N χ2/ d.o.f.

Gal–SPT N-body 0.2 < zphot < 0.4 0.41 ± 0.21 2.0 10 / 11 0.57 ± 0.25 2.3 16 / 19

0.4 < zphot < 0.6 0.75 ± 0.25 3.1 11 / 11 0.91 ± 0.22 4.2 24 / 19

0.6 < zphot < 0.8 1.25 ± 0.25 5.1 9.5 / 11 0.68 ± 0.28 2.4 29 / 19

0.8 < zphot < 1.0 1.08 ± 0.29 3.8 7.3 / 11 1.02 ± 0.31 3.3 22 / 19

1.0 < zphot < 1.2 1.95 ± 0.37 5.3 9.3 / 11 1.83 ± 0.42 4.4 23 / 19

consistent with the observations. The only notable exceptions are

the galaxy autocorrelations in the first and last redshift bins. We

discuss below in Section 7 the cosmological implications of these

results.

5.2 Harmonic space analysis

While measurements of the angular correlation function are for-

mally fully equivalent to the information contained in the power

spectrum, there are fundamental differences that warrant a detailed

comparison. The harmonic space has some well-known advantages

over real space correlation estimators. The covariance matrix, for a

given survey mask, is more diagonal than in real space, and mea-

surements of the power spectrum in multipole bins are significantly

less correlated, so that it is more straightforward to isolate cluster-

ing contributions at different physical scales, and to apply band-pass

filters if required. None the less, harmonic space estimators need

to develop efficient ways to deconvolve the mask, which is more

difficult than in configuration space, thus making the analysis more

expensive. Different power spectrum estimators exist: computa-

tionally expensive optimal estimators that extract all information

contained in the data (Tegmark 1997; Bond, Jaffe & Knox 1998),

and pseudo-Cℓ estimators that are suboptimal, but have a much

lower computational complexity (e.g. Hivon et al. 2002; Chon et al.

2004).

5.2.1 Power spectrum estimators

In the following, we repeat our cross-correlation analysis in har-

monic space using two different estimators of the angular power

spectra Cℓ: the pseudo-Cℓ estimator POLSPICE (Szapudi, Prunet &

Colombi 2001; Chon et al. 2004; Fosalba & Szapudi 2004) for our

main results of Sections 5.2.2, 5.2.3, 5.2.4, and as a cross-check, a

quadratic maximum likelihood estimator described in Section 5.2.5.

Masks and data remain the same as for the real-space analysis pre-

sented above.

We measure here the power spectra Cℓ with the nearly opti-

mal and unbiased pseudo-Cℓ estimator implemented in the POLSPICE

code. This public code measures the two-point auto (or cross-) cor-

relation functions w(ϑ) and the angular auto- (or cross-) power

spectra Cℓ from one (or two) sky map(s). It is based on the fast

spherical harmonic transforms allowed by isolatitude pixelizations

such as HEALPIX for Npix pixels over the whole sky, and a Cℓ com-

puted up to ℓ = ℓmax , the POLSPICE complexity scales like N1/2
pix ℓ2

max

instead of Npix ℓ2
max. The algorithm corrects for the effects of the

masks and can deal with inhomogeneous weights given to the map

pixels. In detail, POLSPICE computes the (pseudo) Cℓ of the map

and weights/masks, calculates their (fast) Legendre transforms, i.e.,

the corresponding correlation functions, computes their ratio, ap-

plies apodization if needed, and transforms back to harmonic space,

where pixel deconvolution is simply applied to get the final Cℓ.

5.2.2 Covariance matrix

Similarly to the real space case presented in Section 5.1.2, we com-

pute covariance matrices in harmonic space. This involves com-

puting the covariance between different Cℓ multipoles, by formally

replacing the angular correlation function by the power spectrum in

equation (19) above.

We first estimate the covariance with the MC method. From our

analysis, we find that the covariance matrix of the galaxy–CMB

lensing cross-correlation is approximately diagonal up to ℓmax =
2000, for a multipole bin width �ℓ = 98. We only sample scales

down to ℓmin = 30 (i.e. ϑ < 6◦), as lower multipoles are poorly

constrained by DES-SV data over the SPT-E area. This yields 20

multipole bins in the ℓ range used.

We then estimate the covariance with the N-body method de-

scribed in Section 4.2, which provides us with 100 independent,

realistic realizations of the galaxy and CMB lensing maps in the

SPT-E field. We derive the correlation matrices using the normal-

ization of equation (21). We show in Fig. 8 the resulting binned

correlation matrices for galaxy–galaxy, galaxy–SPT and galaxy–

Planck lensing convergence. In particular, the covariances show

band-powers of ℓ(ℓ + 1)C
gg

ℓ and 2ℓ(ℓ + 1)C
gκ

ℓ . We find that the

galaxy–CMB lensing and CMB lensing–CMB lensing covariances

stay block diagonal even when non-linear growth is taken into ac-

count using N-body simulations. The galaxy–galaxy covariance,

however, displays large off-diagonal elements for ℓ � 200 (depend-

ing on the z bin) due to non-linear mode coupling that induces a

non-Gaussian contribution to the covariance, sourced by the gravi-

tational matter trispectrum. We show in Appendix C a comparison

of the different covariance matrix estimators in harmonic space,

where we demonstrate consistency of the results.
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Figure 8. Correlation matrices from N-body realizations in harmonic

space: we show correlations among Cℓ band-powers for the galaxy auto-,

galaxy–SPT lensing and galaxy–Planck cross-correlations, from left to right,

respectively. We use 10 linear multipole band-powers from ℓmin = 30 to

ℓmax = 2000, with �ℓ = 197, matching the bins of Fig. 10.

Figure 9. Autospectra measured from the CMB lensing convergence maps

(points with error bars) from Planck (blue squares) and SPT (black circles),

compared with the fiducial cosmological signal (magenta solid line). The

dashed lines describe the average of 100 mock realizations that fully char-

acterize the Planck and SPT maps, respectively. For the Planck case, we

show two sets of data: measured over the full Planck lensing mask (dotted

line and empty points), and over the intersection of the lensing mask with

the DES-SV SPT-E mask (dashed line, full points). We can see that the

convenient position of the DES-SV SPT-E area next to the South Ecliptic

Pole results in a 25 per cent noise reduction. No smoothing is applied to the

maps for this figure.

5.2.3 Harmonic-space results: full sample

We first show in Fig. 9 the CMB lensing autospectrum for SPT and

Planck. As we showed from the covariance analysis in Section 5.2.2,

we can bin the data in multipole bins of width �ℓ ≃ 100, in order to

get uncorrelated bandpower measurements. For plotting purposes,

we use broader (uncorrelated) bins with �ℓ ≃ 200, in order to

get smaller errors per bandpower. As the expected true spectrum

is smooth, this step is not expected to destroy any information. In

Fig. 9, we can see that for both surveys, the convergence maps are

noise-dominated at all scales, as the autospectrum is always larger

than the fiducial cosmological signal shown in magenta; SPT has

higher sensitivity at small scales ℓ > 300, while Planck has an

advantage on the largest angular scales. In the case of SPT, we see

that the convergence power spectrum of the data (black points) is

well characterized by the mean SPT noise over the 100 anisotropic

Figure 10. Auto- and cross-correlations between our DES main galaxy

sample and the CMB lensing convergence, in harmonic space. The first

panel shows the galaxy autospectrum, while the second and third panels

refer to the galaxy–SPT and galaxy–Planck CMB lensing cross-spectra,

respectively. The lines show our fiducial cosmology rescaled by the best-

fitting constant bias and amplitude to the autospectrum (dashed) and to the

cross-spectra (solid lines). Dotted lines refer to linear theory. The arrow in

the first panel indicates the multipole ℓNL after which the full non-linear

autocorrelation theory exceeds linear theory by >50 per cent, which is our

cutoff in the galaxy bias fit, while the arrow in the bottom panel indicates

our cutoff scale for the DES–Planck correlation at ℓ < 1000. The amplitude

of the cross-correlation is fit using 30 < ℓ < 2000 for DES-SPT and 30 <

ℓ < 1000 for DES–Planck. The error bars are the diagonal elements of the

N-body covariance. The different shape of the DES–Planck correlation is

due to the stronger smoothing we apply.

noise realizations (dashed black line). The small (∼10 per cent)

errors of the lensing autopower are due to the low level of scatter

among lensing noise realizations. In the case of Planck, we find that

the convergence spectrum over the DES-SV area (solid blue square

points) is ∼25 per cent lower than the spectrum over the full Planck

lensing mask (empty blue squares); this is confirmed by the mean

of the 100 mock Planck lensing realizations (dash–dotted lines for

the DES-SV area and full CMB lensing mask, respectively). We

can understand this given the especially convenient location of the

DES-SV footprint, shown in Fig. 4, which justifies the atypical noise

properties over this area. For our theoretical and MC covariances,

we use the convergence noise levels observed from the mocks over

the DES-SV area, as these are the most realistic noise estimations.

We then show in Fig. 10 the auto- and cross-correlations between

the DES-SV main galaxy sample and the SPT and Planck CMB

lensing convergence, with the diagonal errors from the N-body co-

variance. Using the measured spectra and the N-body covariance

matrices, we can estimate the best-fitting amplitudes and corre-

sponding detection significances for the cross-correlations. As in

the real-space analysis of Section 5.1, we apply a cut to the non-

linear scales when fitting the galaxy bias b from the autospectrum;

in this case, the scale of non-linearity ℓNL is defined so that the

non-linear theory exceeds the linear model by >50 per cent at ℓ >

ℓNL; this scale is marked with an arrow in Fig. 10. This threshold is
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Figure 11. Harmonic space redshift tomography of the auto- (left-hand column) and cross- (right-hand column) correlations. The panels from top to bottom

describe the results of photo-z bins of increasing redshift. The solid lines show our fiducial cosmology rescaled by the best-fitting linear bias b up to weakly

non-linear scales ℓNL marked with an arrow (for the autospectra) or the cross-correlation amplitudes A = bALens over the whole range of scales (cross-spectra);

the best-fitting biases and amplitudes are reported in the captions with their 1σ errors. The dotted lines are linear theory predictions, and the error bars are

from the full N-body covariance estimator. In agreement with the real-space analysis and with Crocce et al. (2016), the autocorrelation in the lowest (and less

significantly in the highest) redshift bins does not match the theoretical expectation on non-linear scales, which are discarded from our bias fits anyway.

less stringent than the 20 per cent we use in the real-space analysis

above; this is because, even with linear ℓ binning and logarithmic ϑ

binning, the harmonic space analysis is more sensitive to non-linear

scales than the real-space measurement, where information from

all scales is mixed. Applying a 20 per cent threshold in harmonic

space would leave only one data point in the galaxy autospectrum,

while using a 50 per cent criterion in real space would lead to the

inclusion of all data points. For the same motivations as above, we

do not apply such a scale cutoff (beyond our Gaussian smoothing

of the maps) when fitting the cross-correlation amplitudes A, so that

we do not expect a perfect match between the two amplitudes. The

upper panel of Fig. 10 shows that the galaxy autopower is best fitted

by our fiducial cosmology with linear galaxy bias b = 1.22 ± 0.04,

up to ℓNL (dashed line) and assuming the N-body covariance. From

the central panel, we see that the cross-correlation with SPT is best

fitted by a lower amplitude value, A = 0.84 ± 0.15 (solid line),

which is ∼2σ smaller. Likewise, the bottom panel shows that the

cross-correlation with Planck is also lower than expected from the

galaxy autospectrum: A = 0.81 ± 0.20.

We summarize our harmonic-space results in detail in the right

section of Table 1, where we show the results with the N-body

covariance matrix. The best-fitting linear galaxy bias from the au-

tospectrum is typically ∼2σ higher than the best-fitting amplitude

of the galaxy–CMB lensing cross-correlations, in agreement with

what we find in real space. The cross-correlation significance of a

detection is ∼6σ for SPT and ∼4σ for Planck; these numbers are

in agreement with the real-space analysis results. We note that we

do not expect a perfect agreement between the two analyses as they

involve different estimators that weight physical scales in a different

way; however, thanks to the Gaussian smoothing we apply to data

and mocks, which effectively makes both estimators band-limited,

we do manage to recover a good agreement. We test in Section 5.3

below the consistency between the real- and harmonic-space esti-

mators, and their degree of correlation. We can see from the χ2 per

degree of freedom that our best fits are good fits. Finally, we point to

Section 6.3 for an analysis of the stability of the results with respect

to different choices in the multipole range considered.

5.2.4 Redshift tomography in harmonic space

In analogy to the real space results discussed above, we then mea-

sure the redshift tomography of the auto- and cross-spectra. The

left-hand column of Fig. 11 shows the autopower of DES galaxies

for the five photo-z bins we consider. The solid lines show the best-

fitting linear galaxy bias to the measured spectra, and the error bars

are from the N-body estimator. In each case, we only include in the

bias fit data points that are to the left of the non-linear scale ℓNL,

marked with an arrow. We find that the recovered galaxy bias grows

smoothly with redshift, as expected, in agreement with Crocce et al.

(2016). We note that neighbouring photo-z bins are significantly

correlated, due to photo-z errors. In agreement with Crocce et al.

(2016) and consistently with the real-space analysis, we find that
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for the lowest photo-z bin (and more mildly for the highest one),

the autocorrelation on non-linear scales disagrees with the theo-

retical expectations. While the harmonic-space analysis highlights

this mismatch more significantly than what we see in Fig. 7 in real

space, we remind the reader that these scales are not used for finding

the best-fit bias. Crocce et al. (2016) attribute these discrepancies to

possible non-linear bias in the lowest redshift bin, and to systematic

contaminations related to inaccurate photo-z determination of blue

galaxies in the absence of u-band photometry.

In the right-hand column of Fig. 11, we show the corresponding

cross-correlations with SPT lensing. Although the signal is clearly

more noisy than the autospectra, we do find a 2σ–4σ detection

in every bin, and we also see that the cross-correlation amplitude

grows with redshift, as expected, although typically we find A(z) <

b(z), confirming the general trend observed in the analysis of the

full galaxy sample. Note also that the scatter seen in the Cℓs is

larger than that of the corresponding two-point correlation functions

shown in Fig. 7 above, since band-power measurements are much

less correlated than the real-space angular bins used.

All results are summarized in detail in Table 2, where they can

be directly compared with their real-space counterparts. From this

table, we can see that there is a good agreement between real- and

harmonic-space analyses. One point that stands out as marginally

inconsistent (at the >2σ level) is the cross-correlation amplitude

in the third photo-z bin (0.6 < zphot < 0.8), which is significantly

lower in harmonic space than in real space. By inspecting the data in

Fig. 11 for the third photo-z bin (green), it is clear that this anomaly

is driven by the low correlation observed in the first multipole bin at

ℓ < 300, also seen in real space in the form of an oscillating cross-

correlation function at scales ϑ > 0.◦5; we found that by discarding

this point, we obtain an excellent agreement also in this bin, but we

decide not to apply such a cut in our final result, to avoid any ad

hoc manipulation of the data.

5.2.5 Optimal quadratic estimator

As a cross check of the harmonic space results with an independent

pipeline, we now present the analysis using the optimal estimator

introduced by Tegmark (1997) in an implementation described in

Leistedt et al. (2013). In short, it computes the power spectrum esti-

mates from a quadratic combination of the data vector, normalized

by the Fisher matrix. It can be shown that the variance of the estima-

tor saturates the Cramér–Rao bound, i.e. the estimator is optimal.

As well as producing the power spectrum estimates themselves, the

algorithm also allows the mathematically exact calculation of the

Cℓ covariance matrix under the assumption of a Gaussian signal.

While some of the variance of the galaxy autopower spectrum will

not be captured (galaxy fields can more realistically be described

by a lognormal distribution), error bars of the galaxy–CMB lensing

convergence power spectrum are represented to sufficient accuracy

(see Section 5.1.2).

Unfortunately, the computations involved in constructing the op-

timal estimator scale with the third power of the number of pixels of

the input map, restricting its application to data vectors of moderate

size (Borrill 1999). To accommodate this requirement, we therefore

downgrade all maps to resolution Nside = 512. In downgrading the

mask, we set to zero all low-resolution pixels that contain a masked

pixel at the original resolution, thereby reducing the sky fraction

available. To avoid aliasing, we further bandpass filter the data by

applying a top-hat kernel in harmonic space that restricts fluctua-

tions to the multipole range used in the analysis, 30 ≤ ℓ ≤ 1210.

Figure 12. The power spectra derived with the optimal quadratic estima-

tor are in quantitative agreement with theoretical predictions and with the

pseudo-Cℓ estimator. We compare the galaxy–galaxy (upper panel) and the

galaxy–CMB lensing potential power spectra (middle panel) of SPT-E (blue

circles) to the theoretical model (black solid line). For comparison, we in-

clude results of the pseudo-Cℓ estimator (open grey symbols, plotted with a

small offset in ℓ for better visualization). Residuals of the cross-correlation

power spectrum, shown on linear scale (bottom panel), are consistent with

zero within the error bars.

Here, the lower limit reflects the restricted sky coverage of the ob-

served region, and the upper limit is a conservative estimate up to

which signals can be represented well at the given resolution pa-

rameter Nside. Since lowering the resolution comes at the expense of

a loss of information, we primarily use the method to demonstrate

robustness and independently verify the results presented in Section

5.2.3. We summarize the details of the implementation and test our

analysis pipeline on simulations in Appendix D.

In Fig. 12, we show results for the galaxy–galaxy and galaxy–

CMB lensing convergence power spectrum, convolved with the

window function of a Gaussian kernel with an full width at half-

maximum (FWHM) of 5.4 arcmin. We treat the bias parameter as

a free parameter and obtain its numerical value from a fit to the

galaxy–galaxy power spectrum assuming the best-fitting cosmo-

logical model of Planck. Using analytic covariance matrices, we

then compute χ2 values and reach a quantitative agreement with

the theoretical model in the multipole range probed. Compared to

the results derived with the pseudo-Cℓ estimator in Section 5.2.3,

we find a good agreement, in particular in the intermediate multi-

pole regime. On large scales, the optimal estimator has an advantage

since the effect of the mask is taken into account in a mathematically

exact way. At high multipoles, however, the lower computational

complexity of the pseudo-Cℓ estimator allows it to work at higher

map and mask resolution, yielding a larger effective sky area that

can be retained for analysis.
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Figure 13. Consistency of the results in real and harmonic spaces, assuming the fiducial Planck cosmology (left) and the MICE cosmology with which the

mocks were generated (right). In each case, the two scatter plots show a comparison of the best-fitting bias b from the galaxy autocorrelation (top) and best-fit

galaxy-CMB lensing cross-correlation amplitude A = bALens (bottom), obtained with the two methods. The red square points with error bars represent the

results from real data, while the grey circles refer to the 100 N-body mocks. The black empty circles with error bars show the mean of the mocks and their

standard deviation. The blue triangle is the input value for the simulations (b = A = 1.15). The results from real data are largely consistent with the distribution

of the mocks, although we see that the bias value assumed for the mocks is lower than the value recovered from DES galaxies autocorrelation, and higher than

what measured from the galaxy–CMB lensing cross-correlation. The harmonic and real space estimators are correlated, but a significant scatter exists. The

mock cross-correlation results are displaced from the fiducial input amplitude when they are interpreted with the Planck cosmology, but they agree with the

fiducial when interpreted assuming their own MICE cosmology. The data closely follow the behaviour of the mocks, which in turn suggests the data prefer a

lower ωmσ 8 than expected in the Planck cosmology. This is further discussed in terms of the linear growth estimator, DG, in Section 7.

Finally, keeping the cosmological parameters fixed, we compute

the likelihood function of the galaxy bias parameter, finding a Gaus-

sian distribution with mean and standard deviation b = 1.189 ±
0.015. For the DES-SPT cross-correlation amplitude, we find A ≡
bALens = 0.83 ± 0.19, i.e. a detection at the 4.5σ level. This result is

in agreement with the pseudo-Cℓ analysis of Section 5.2.3, although

with a larger error bar due to the smaller range of scales probed.

This further validates the robustness of our analysis.

5.3 Consistency of the results

In order to demonstrate the consistency of the results obtained with

different estimators in real and harmonic spaces, we repeat our

analysis, measuring auto- and cross-correlations of the 100 N-body

mock realizations available for the DES galaxy and the SPT lensing

convergence. We show in Fig. 13 the best-fitting bias obtained from

the galaxy autocorrelations and the best-fitting amplitude from the

DES-SPT lensing cross-correlations, comparing the real data and

N-body results in real and harmonic spaces. As the N-body mocks

we use were generated assuming the MICE cosmology, we repeat

this test assuming both Planck and MICE parameter values.

From these scatter plots, we first see that the harmonic and real-

space estimators are correlated as expected, but the scatter between

them is significant. Considering the 100 mock results, we obtain a

Pearson correlation coefficient rP = 0.7 for both auto- and cross-

correlations. Further, we see that the results from the real data

cross-correlations are largely consistent with being a random draw

from the distribution of the N-body results; however in the auto-

correlation case, the bias recovered from the real data (b ≃ 1.2) is

marginally higher than what we assumed for producing the mocks

(b = 1.15). While we could generate new mocks with a bias value

matching the data more closely, we expect this to have only a minor

effect on the covariance of the measurements: this is confirmed by

the observation that the current mocks and a JK method independent

of bias yield consistent results, as shown in Appendix C. Further-

more, as the bias recovered from the cross-correlation of real data

is actually b < 1.15, the current value can be seen as a compromise

choice. We then compare the results obtained assuming the two cos-

mologies. Here, we see that the mocks and their mean fully agree

with their input bias value when interpreted with their native MICE

cosmology, as expected. Instead, the values of b and A inferred from

the mocks naturally deviate from the fiducial if the different Planck

cosmology is assumed.
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If we focus again on the results from the real data, we notice that

their behaviour is not dissimilar from the MICE mocks: the tension

between b and A that is observed when the Planck cosmology is

assumed is significantly alleviated by the MICE model; we discuss

this point further in Section 7 below.

6 SYSTEMATIC TESTS

We summarize here a series of tests done to ensure the cross-

correlation signal we measure is not significantly affected by sys-

tematics. We first consider the impact of possible DES systematic

contaminants at the map and catalogue levels in Section 6.1, we then

assess the impact of photo-z uncertainties in 6.2, and we finally test

for possible CMB systematics in Section 6.3. With the exception of

the photo-z case, we perform these tests on the full redshift sample

only in the current work with DES-SV data. We will extend the

entire systematics analysis to the tomographic bins for future DES

data releases.

6.1 DES systematics

We consider a broad range of possible DES systematics, which in-

clude potential sources of contamination at both the map and cata-

logue levels. The first category includes extinction of distant sources

by dust in our galaxy, degradation of image quality due to the ob-

serving conditions such as atmospheric seeing, brightness level of

the sky and its fluctuations (sky sigma), and amount of air mass de-

pendent on the distance of the observed field from the zenith, while

the second category includes errors on galaxy magnitudes, photo-

z, amount of nearby bright stars, and goodness of the point spread

function (PSF) and magnitude determination. The values of all such

properties were mapped across the DES-SV area as described in a

companion paper (Leistedt et al. 2015); considering some of these

potential contaminants are mapped in different photometric bands,

the total number of maps we can consider amounts to 19. All were

checked and were found to be consistent with the null hypothesis of

no significant contamination to the DES-CMB cross-correlations.

We describe here for simplicity the null test results of four possible

systematics that are likely to bring strong contaminations: extinc-

tion from the Planck colour excess map (Planck Collaboration XI

2014a), seeing, sky brightness, and airmass in the DES i band. Our

aim is to demonstrate that the results are stable with respect to them.

We show in Fig. 14 the sky maps of these contaminants in the

masked region of the SPT-E field that we use for our analysis. We

study the properties of these potential systematics by plotting the

histogram of their pixel distributions, which we show in Fig. 15.

Here, we can see that typical contaminants have a tail in their

histogram distribution, corresponding to the most affected areas in

the map; for example in the extinction case, the tail at E(B − V) >

0.05 mag corresponds to the dusty region in the lower-left corner of

the map shown in Fig. 14.

A first method for assessing whether any of these potential con-

taminants has a significant impact on the results of the DES clus-

tering and the DES-CMB lensing correlation is to test whether the

results change significantly compared with the statistical uncer-

tainty when the worst-affected areas are masked. We thus measure

the DES auto- and DES-SPT cross-correlation functions applying

different cuts in these contaminants, in order to assess the stabil-

ity of our results. We show in Fig. 16 the correlation functions we

obtain when masking the 20 per cent worst-affected areas for each

potential systematic we consider. Here, we can see that the results

are stable, as the correlation functions of the cut data are consistent

Figure 14. Maps of the main potential DES systematics we consider, plotted

in the masked region of the SPT-E field we use for our analysis. We show in

order extinction as estimated by Planck (Planck Collaboration XI 2014a),

and seeing, sky brightness and airmass estimated from DES data by Leistedt

et al. (2015).

Figure 15. Pixel distributions of the potential DES systematics we consider.

The histograms show the number of pixels where each systematic assumes

the value shown in the abscissa. In addition, five possible cuts of the worst

affected areas are shown, ranging from 2 to 50 per cent.
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Figure 16. Measured DES auto- (top) and cross- (bottom) correlation func-

tions with SPT lensing obtained from the full mask (red dots) and applying

cuts in the main contaminants we consider (coloured lines). For each po-

tential systematic, we remove 20 per cent of the area, corresponding to the

most affected regions. The results are stable: the correlation functions do

not deviate significantly compared with the statistical error bars.

Table 3. Changes in the DES auto- and DES-SPT lensing cross-correlation

results when cuts or corrections for potential systematics are applied. The

top part of the table shows how the best-fitting bias and cross-correlation

amplitude from the real-space analysis change when the 20 per cent worst-

affected areas for each potential contaminant are cut. The bottom part of

the table shows the corresponding results when the effect of the systematics

is corrected, in harmonic space. All results refer to the full galaxy sample

at 0.2 < zphot < 1.2. The results shown are indicative of the full set of 19

systematic maps we have considered.

Systematic cuts, real space b ± σ b A ± σA

No cuts 1.22 ± 0.03 0.84 ± 0.13

Extinction 1.21 ± 0.03 0.75 ± 0.13

Seeing 1.19 ± 0.03 0.85 ± 0.13

Sky brightness 1.22 ± 0.03 0.86 ± 0.13

Airmass 1.20 ± 0.03 0.74 ± 0.13

Syst. corrections, harmonic space b ± σ b A ± σA

No corrections 1.22 ± 0.04 0.84 ± 0.15

Extinction 1.22 ± 0.04 0.79 ± 0.15

Seeing 1.18 ± 0.04 0.79 ± 0.15

Sky brightness 1.21 ± 0.04 0.84 ± 0.15

Airmass 1.22 ± 0.04 0.87 ± 0.15

with the full data, given the statistical errors. We report in the top

section of Table 3 how the best-fitting bias and cross-correlation

amplitude change when the cut maps are used. The same test in har-

monic space yields comparable results. These results are indicative

of the full set of 19 systematic maps considered. These tests are

reassuring and indicate that our claimed detection is not likely to be

dominated by this class of systematics.

A second method of controlling potential systematics involves

measuring cross-correlations with the systematics maps themselves;

these cross-correlations can then be used to correct the measure-

ments from contamination. We assume that some systematic source

s, whose value at a given angular position is given by δs, may add

Figure 17. The galaxy–galaxy (top) and galaxy–SPT lensing (bottom)

power spectra, including systematic corrections. Corrections are overall

small, and especially so for the cross-spectrum, with all data points within

1σ in this case. The best-fitting bias and level of detection are negligibly

changed when including these corrections.

a linear contribution to our maps of galaxy overdensity or lensing

potential. In the galaxy case, this assumption means (Ross et al.

2011b; Ho et al. 2012; Crocce et al. 2016)

δg,obs = δg,true +
∑

s

αsδs, (24)

if the corrections are small, with an identical treatment for the

lensing potential map. If we consider only one possible systematic

at a time, the true value of our measurements can be related to the

observed correlations between data and systematics. In the cross-

correlation case, this is given in harmonic space by

C
gκ

ℓ,true = C
gκ

ℓ,obs −
C

gs

ℓ Cκs
ℓ

Css
ℓ

, (25)

where the last term on the right represents a correction factor to

the measurements. We investigated the size of these corrections for

all potential systematic maps, consistently finding the corrections

to be small compared with the statistical uncertainties on the mea-

surements. We show in Fig. 17 the corrected power spectra for the

four systematic maps of Fig. 14, for both the DES auto- and the

DES-SPT lensing cross-power spectra in harmonic space. We sum-

marize in the bottom section of Table 3 the changes in the best-fitting

bias and cross-correlation amplitude when we apply the systematic

corrections. Also in this case, the results are robust.

We finally show in Fig. 18 the direct cross-correlations of the

SPT lensing maps with the contaminant maps, which enter into

equation (25). This figure shows that the cross-correlations are con-

sistent with zero, which is a good null test. For further details on the

minimization of potential systematics in the DES galaxy catalogue

see Crocce et al. (2016).

The systematics cuts shift the cross-correlation by less than 1σ

in all cases; thus we do not apply any of these cuts to the main

analysis.

A further possible source of systematics is stellar contamination

to the galaxy sample, which can potentially alter the measured au-

tocorrelations and dilute the cross-correlations. Crocce et al. (2016)

demonstrate by using a spectroscopic subset of DES galaxies de-

rived from the COSMOS survey that the amount of contamination
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Figure 18. Correlations between the SPT convergence map and the poten-

tial systematics maps. Data points are offset on the x-axis for clarity. The

galaxy–lensing correlation (red circles) is detected at 6σ , while the major-

ity of the SPT cross systematic maps data points are consistent with zero.

Correlating the SPT maps with DES potential systematic maps is expected

to produce a null result, which we recover.

to the ‘Benchmark’ galaxy sample is <2 per cent in all redshift bins,

so that we can ignore it for the present analysis.

We have also tested the stability of our results with respect to

a range of possible choices in the analysis method, finding over-

all stability in the recovered cross-correlation function. Additional

items that we tested include: measurement done on Galactic or

Equatorial coordinate maps; using cuts in a different magnitude

definition (mag_detmodel_i instead of slr_mag_auto_i);

using the intersection of the galaxy and CMB masks versus keeping

the two masks distinct; reducing the catalogue to a magnitude cut of

18 < i < 22.

6.2 Photo-z uncertainties

Another source of systematics can be introduced by potential inac-

curacies in the photometric redshifts of the galaxy sample.

6.2.1 Changes in the TPZ photo-z distribution

We first test the effect of smoothing the photo-z redshift distribution

for the full galaxy sample at 0.2 < zphot < 1.2. Smoothing this

distribution with a Gaussian kernel broad enough to remove its

oscillations does not affect the predicted cross-correlations, while

it affects the autocorrelation only marginally. This results in an

identical value of A and a value of b that is only ∼2 per cent higher

than our main result, so that our results are not significantly affected.

We further explore how wrong the photo-zs would need to be in

order to significantly change our results. We test this by warping

the fiducial redshift distribution, which we implement by first fitting

the actual TPZ distribution with a Gaussian, and then changing the

width of this Gaussian. We consider as two extreme cases a top hat

within 0.2 < z < 1.2, and a narrow distribution centred around the

median redshift z = 0.6, with σ = 0.1.

We find that the galaxy–CMB lensing cross-correlations are ex-

tremely robust with respect to such warping, due to the broadness

of the CMB lensing kernel. For all cases we tested, including the

top hat and the narrow Gaussian, the best-fitting amplitude A we

recover from the cross-correlation is within 5 per cent of the result

obtained assuming the TPZ distribution. This highlights that the

significance of our detection is robust with respect to changes in the

photo-zs.

In the case of the autocorrelations, we find that whenever the

redshift distribution becomes smoother and broader, the expected

autocorrelation becomes lower as the galaxies are in average further

apart in physical distance; conversely, the autocorrelation increases

for a more peaked redshift distribution. When assuming the top-hat

distribution, the recovered bias b increases by 15 per cent compared

with the TPZ distribution, while b decreases by 30 per cent if we

assume the narrow Gaussian. Therefore, it is in principle possible to

alleviate the observed tension between auto- and cross-correlations

by assuming that the true redshift distribution of the DES galaxies

is significantly narrower than what is determined with the TPZ

method. However, we find that in order to bring auto- and cross-

correlations in full agreement, we need to assume a warping of

∼50 per cent, i.e. we need to use a Gaussian distribution of width

σ = 0.15, which is twice as narrow as the TPZ distribution, of σ ≃
0.3. In other words, the stacked probability distribution produced

by the TPZ estimator for the full galaxy sample at 0.2 < zphot <

1.2 would need to be twice as broad as the true redshift distribution

of the DES galaxies. But such a dramatic error is unlikely, as the

mean rms error on the TPZ photo-zs was found to be σ̄z = 0.078 by

Sánchez et al. (2014); furthermore, the fraction of 3σ outliers was

found to be ≃ 2 per cent only, thus reducing the potential impact of

catastrophic redshift errors. Therefore, we consider our main results

to be robust, and we discard the photo-z errors as the main reason

of the discrepancy we observe.

6.2.2 Comparison of two photo-z estimators

We then demonstrate the robustness of the results with respect to a

different choice of photo-z estimator: besides our baseline choice of

TPZ, we also consider here a galaxy catalogue selected on photo-

zs obtained with the BPZ method. Given the radical differences

between the two methods (TPZ is a machine learning algorithm

while BPZ is template-based), it is important to test the robustness

of our results with respect to this change.

We therefore change the selection of the galaxy sample according

to the alternative BPZ estimator, and we derive modified theoretical

predictions with the corresponding BPZ redshift distribution. We

compare in Fig. 19 the measured DES auto- and DES-SPT lensing

cross-correlation functions with the different photo-z methods for

the full sample 0.2 < zphot < 1.2. Here, we can see that the re-

sults with TPZ (red points and curves) and BPZ (navy) photo-zs are

generally consistent. The change of the cross-correlation amplitude

is consistent with the statistical errors from A = 0.84 to 0.81, so

that the significance of our measurement remains unaffected. On

the other hand, the bias from the autocorrelation shifts more sig-

nificantly from b = 1.22 to 1.09. This happens because the BPZ

redshift distribution is narrower than TPZ, as BPZ assigns fewer

objects to high redshift. As discussed above in Section 6.2.1, this

causes the predicted autocorrelation to be higher, thus requiring a

lower bias to match the nearly identical data.

Using BPZ therefore removes approximately half of the observed

tension between auto- and cross-correlations for the full redshift

sample. However, we think it is unlikely that changes in the photo-z

alone can fully remove the tension: as shown below for the cross-

correlation and by Crocce et al. (2016) for the autocorrelation, the

recovered bias and amplitude values in the tomographic analysis

are significantly more robust. For the tomography, assuming TPZ

or BPZ yields consistent results for both auto- and cross-correlation
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Figure 19. Measured DES auto- (top) and DES-SPT lensing cross-

correlation (bottom) functions for two different choices of photometric

redshift estimators: our baseline TPZ choice is shown in red, while the

alternative BPZ catalogue is in navy blue. The theory lines are produced

accordingly to each catalogue’s redshift distribution. The recovered best-

fitting biases and cross-correlation amplitudes are shown in the caption for

both photo-z methods.

amplitudes. As the tension we find between auto- and cross-spectra

in the tomography is consistent with the full sample, our main

results do not appear to be dominated by the photo-z uncertainty.

Furthermore, the BPZ redshift distribution appears to be a poorer

description of the DES-SV galaxies than the TPZ one, given the

galaxy–galaxy cross-correlations observed by Crocce et al. (2016)

between different redshift bins are less consistent than what is seen

for TPZ.

We then test the robustness of the redshift tomography cross-

correlations, which we show in Fig. 20. Here, we see once again

that the change of photo-z selection method does not change signifi-

cantly the recovered best-fitting cross-correlation amplitudes in any

redshift bin. We show more quantitatively the resulting best-fitting

amplitudes for the full sample and tomography in Table 4. Here, we

can see that the fluctuations of the results are generally small. The

cross-correlations are stable, as the variations due to the photo-z dif-

ferences are small compared with the statistical error bars. Crocce

et al. (2016) show that the results of the autocorrelations tomog-

raphy are equally robust for changes between the TPZ and BPZ

distributions. This is because the lack of high-redshift objects in

BPZ, which makes the full distribution narrower, has no significant

effect on the narrow dn/dz of the five redshift bins. In fact, the bias

of the full redshift sample bfull is expected to be approximated by a

weighted average bavg over the number of pairs in the Nbin redshift

bins:

bfull ≃ bavg =
Nbin
∑

i=1

n2
i bi, (26)

Figure 20. Redshift tomography using two different photo-z methods: TPZ

(red) and BPZ (navy). The theoretical curves and best-fitting amplitudes for

the cross-correlations are also shown for each method. The recovered results

agree. See Crocce et al. (2016) for similar tests on the galaxy autocorrela-

tions. In the first photo-z bin at 0.2 < zphot < 0.4, the best-fitting curves do

not trace the data closely, given the mismatch between the measurements

and the template shape, and the high covariance between the points.

Table 4. Real-space comparison of the galaxy–CMB lensing

cross-correlations for two different photo-z estimators (TPZ ver-

sus BPZ) for the full sample and the redshift tomography, for

the case of N-body covariance. The recovered cross-correlation

amplitudes are consistent within the statistical errors. See Crocce

et al. (2016) for the corresponding results from the galaxy

autocorrelations.

Photo-z bin (A ± σA)TPZ (A ± σA)BPZ

0.2 < zphot < 1.2 0.84 ± 0.13 0.81 ± 0.14

0.2 < zphot < 0.4 0.41 ± 0.21 0.36 ± 0.22

0.4 < zphot < 0.6 0.75 ± 0.25 0.76 ± 0.24

0.6 < zphot < 0.8 1.25 ± 0.25 1.13 ± 0.25

0.8 < zphot < 1.0 1.08 ± 0.29 1.21 ± 0.29

1.0 < zphot < 1.2 1.95 ± 0.37 1.83 ± 0.34
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where ni is the number of galaxies in the bin i. We test whether

this consistency check is satisfied by the TPZ and BPZ estimators,

and we confirm it, by looking at the ratios for the full and averaged

biases between the two photo-z methods:

bTPZ
full /bBPZ

full = 1.11 ± 0.04

bTPZ
avg /bBPZ

avg = 1.08 ± 0.03. (27)

This results confirms that the larger bias change seen between TPZ

and BPZ for the full sample autocorrelation is not in disagreement

with the smaller bias changes seen in the tomography, which are

shown by Crocce et al. (2016). In this sense, the stability of the

autocorrelation tomography confirms that the tension we observe

between galaxy clustering and CMB lensing correlation is unlikely

to be fully removed by changes in the photo-z alone, since switching

from TPZ to BPZ removes only half the discrepancy (in the full

sample) and leaves the discrepancy unchanged (in the tomography).

We refer to Crocce et al. (2016) for a more detailed study of the

effect of the photometric redshifts to the determination of galaxy

bias.

6.3 CMB systematics and cuts in multipole range

We then investigate the sensitivity of the results to the range of

multipoles used. This is an important consistency check, and it

is especially useful to detect possible systematic contaminations

in the CMB lensing maps, as these would typically affect distinct

scales differently (Story et al. 2015). For example, a type of possible

systematics that could affect our results would be any residual fore-

ground contamination of the CMB lensing map that is correlated

with the galaxies, such as e.g. thermal SZ (tSZ). It was shown by van

Engelen et al. (2015) that using modes out to ℓ = 4000 in the origi-

nal CMB temperature map used for the lensing reconstruction could

lead to more than 5 per cent bias in the total CMB lensing signal;

such bias is more pronounced on the largest angular scales. Bleem

et al. (2012) also found a 5 per cent bias in their cross-correlation

sample based on cross-correlating mock galaxy catalogues with

simulated CMB lensing using a tSZ prescription. In general, any

remaining unsubtracted foregrounds will bias the cross-correlation

low; such bias will be worse for SPT than Planck because of the

smaller scales used for the lensing reconstruction. The bias could be

larger or smaller in our case, so that a more detailed quantification

of these effects will be necessary for future work along these lines.

While the most instructive test would be to apply cuts in the range of

multipoles used to reconstruct CMB lensing from the temperature

map, this is beyond the scope of this work, and we instead apply

cuts in the CMB lensing maps themselves.

We perform this test in harmonic space only, as cuts in the multi-

pole range are easier to implement in this case. We show the results

of this test in Table 5 for both the DES-SPT and DES-Planck cases

(for this test, we smooth both maps at the same scale of 5.4 ar-

cmin). We first see that both cross-correlations are detected at high

significance (S/N >3) in all cases.

Our method for selecting the multipole range to be used in the

main analysis is to keep a range as wide as possible, unless there is

evidence of inconsistencies such as large deviations of the results

(>1σ ) or significant outliers leading to a poor reduced χ2. More

accurately, it was shown by Planck Collaboration XI (2015b) that

the variance of a parameter between different data cuts should be

approximately given by the difference between the variances ob-

tained when using the two data sets. This criterion is satisfied in all

cases. For the SPT case, we find that the most aggressive choice of

Table 5. Stability of the cross-correlation results with respect to cuts in

the range of multipoles considered, for the DES-SPT (top) and DES-Planck

correlations (bottom). In this case, both maps are smoothed at 5.4 arcmin,

to permit the use of the entire multipole range. The cross-correlations are

significantly detected in all cases, and the amplitude of the cross-correlations

A = bALens is always significantly smaller than the best-fitting linear bias

b = 1.22 ± 0.03. In the DES-SPT case, we find that the most aggressive

choice of including all multipoles at 30 < ℓ < 2000 is robust, while in the

DES-Planck case this choice leads to a high S/N and a poor χ2, which is

due to the outlying points at ℓ > 1000. For this reason, we adopt the more

conservative cut 30 < ℓ < 1000 in this case. Bold font indicates the values

used in the main analysis.

Correlation ℓmin ℓmax A ± σA S/N χ2/ d.o.f.

Gal–SPT 30 2000 0.84 ± 0.15 5.6 8.7/19

30 1000 0.93 ± 0.17 5.5 5.5/9

30 520 0.72 ± 0.23 3.1 0.84/4

230 2000 0.93 ± 0.16 5.7 7.0/17

230 1000 1.06 ± 0.19 5.6 3.2/7

230 520 0.88 ± 0.30 2.9 0.20/2

Gal–Planck 30 2000 1.08 ± 0.20 5.5 31/19

30 1000 0.85 ± 0.21 4.1 8.8/9

30 520 1.00 ± 0.23 4.3 1.7/4

30 420 0.83 ± 0.24 3.5 1.7/3

230 2000 1.10 ± 0.22 4.9 32/17

230 1000 0.89 ± 0.25 3.6 8.7/7

230 520 1.14 ± 0.31 3.6 1.2/2

including all multipoles at 30 < ℓ < 2000 is robust, as the result only

fluctuates within the statistical error when more restrictive choices

are made. The χ2 per degree of freedom is also good in all cases.

We therefore adopt this choice for our main DES-SPT results.

In the case of the DES–Planck correlation, we already noticed

in Fig. 10 the presence of significant outliers at ℓ > 1000. We also

know from the Planck analysis (Planck Collaboration XV 2015a)

that, due to the lower sensitivity, the Planck CMB lensing maps are

fully noise-dominated at high multipoles, and the ‘conservative’

Planck analysis of the lensing autospectrum was performed at ℓ <

400 only, recovering most S/N available over the entire multipole

range. While we do expect both noise and systematics to be less

critical in a cross-correlation measurement, we need to take a con-

servative approach on the higher multipole range of these data. We

see in Table 5 that indeed the results including all 30 < ℓ < 2000

yield the highest best-fitting amplitude and S/N, but this is driven by

the significant outlier at ℓ ≃ 1500; the reduced χ2 is poor (χ2/ d.o.f.

=31/19, corresponding to a PTE = 4 per cent). The situation im-

proves significantly if a more conservative cut at 30 < ℓ < 1000 is

applied, which retains a nearly unchanged error bar while yielding a

much more reasonable χ2/d.o.f. = 8.8/9. Further cuts, down to the

most conservative case at 30 < ℓ < 420, give statistically consistent

results, and reasonable χ2 values. We therefore adopt the 30 < ℓ <

1000 multipole range for our main DES–Planck results.

7 C O S M O L O G I C A L I M P L I C AT I O N S

While a thorough study of the cosmological implications of the DES

CMB lensing tomography is deferred to future work with DES 1-yr

data, we present here a simple proof of concept of the potential

applications of lensing tomography measurements.
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7.1 Bias and growth estimators

From the theoretical form of the CMB lensing spectra presented

in Section 2, it is evident that CMB lensing tomography is a mea-

surement of structure growth across cosmic time, potentially con-

straining departures from the standard cosmological model at the

linear growth level. Indeed, it is clear that the joint measurement

of the auto and cross-correlations C
gg

ℓ , C
κg

ℓ allows one to break the

degeneracy that exists between bias and structure growth.

We use here the simplest possible assumptions, and consider

linear, local forms of both the galaxy bias and the growth function,

given by b(z), D(z), while keeping the cosmology fixed to the Planck

best-fitting fiducial model. A potential caveat of this analysis is

that, given the results from Section 6.2, the statistical errors on the

bias evolution obtained from the galaxy autocorrelations can be

comparable with systematic errors due to the uncertainties in the

photometric redshifts estimations, which are not taken into account

in this section. For a more complete analysis of the bias evolution

and a more detailed treatment of the systematics, see Crocce et al.

(2016).

Our estimator for the bias in the ith redshift bin is simply b̂i =
bi , i.e. the best-fitting value from each autocorrelation, while a

basic estimator for the growth function Di can be derived from the

ratio between the observed (obs) cross-spectrum and a normalizing

fiducial (the) cross-spectrum:

(

D̂0

)

i
≡

〈

√

√

√

√

(

C
κg

ℓ

)i

obs
(/

C
κg

ℓ

)i

the

〉

ℓ

, (28)

where the expression is averaged over all multipoles considered.

Here, we have defined with a slash the normalizing power spectrum
/

C
κg

ℓ , which we define as the usual power spectrum of Section 2,

where the kernels had the growth function removed:

/

C
κg

ℓ =
2

π

∫ ∞

0

dk k2 P (k)
/

W κ
ℓ (k)

/

W
g

ℓ (k) (29)

/

W
g

ℓ (k) =
∫ ∞

0

dz b(z)
dn

dz
(z) jℓ[kχ (z)] (30)

/

W κ
ℓ (k) =

3mH 2
0

2

∫ ∞

0

dz
χ∗ − χ

χ∗χ
(z) jℓ[kχ (z)]. (31)

Notice that, while the CMB convergence kernel is formally not

bound to the narrow redshift range where dn
dz

(z) �= 0, its overall

contribution to the cross-spectrum from redshifts outside this range

is negligible; this can be seen more clearly by using the Lim-

ber approximation. In this case, as shown e.g. by equation 27 in

Giannantonio et al. (2012a), the angular power spectrum is given

by a single integral over redshift, and when one of the two source

terms W κ
ℓ , W

g

ℓ vanishes, so does the total Cl. Therefore, the
(

D̂0

)

i

estimator correctly recovers the linear growth function in the red-

shift bin i.

In order to estimate the theoretical power spectrum at the denom-

inator of equation (28), we still need the galaxy bias. We can remove

the dependence on bias by introducing the following estimator:

(

D̂G

)

i
≡

〈

(

C
κg

ℓ

)i

obs
(/

C
κg

ℓ

)i

the

√

√
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√

(/

C
gg

ℓ

)i

the
(

C
gg

ℓ

)i

obs

〉

ℓ

. (32)

We can see that DG does not directly depend on the galaxy bias,

as its observed and theoretical values simplify exactly in the limit

of narrow redshift bins, and that it contains no direct dependence

on the theoretical growth function either: we therefore propose

this estimator as a novel simplified method for extracting cosmic

growth information. The DG estimator still includes a dependence

on the combination of cosmological parameters m H 2
0 σ8 from the

CMB lensing kernel of equations (29) and (31); this dependence

is degenerate with the growth function information in any redshift

bin, but the degeneracy can be broken by a multibin tomography.

We evaluate DG directly using the harmonic space bandpowers

and the real-space correlation functions; we further improve the es-

timator of equation (32) by weighting the averages with the diagonal

errors on the power spectra and correlation functions, respectively.

While the expectation value is 〈DG〉 = D on linear scales, we note

that the dependence on non-linearities will largely cancel between

the theoretical and observed parts of the estimator. We none the

less use scales at ℓ < 1000 only, to reduce potential contamination

by non-linear contributions. We estimate the errors on DG and the

full covariance matrix between the redshift bins by repeating the

DG calculation for our set of 100 N-body realizations of the galaxy

density and CMB lensing data.

Our estimator DG is related to, but different from, the EG esti-

mator introduced by Zhang et al. (2007), used to confirm GR with

observations by Reyes et al. (2010), and studied for projections

with future surveys by Pullen, Alam & Ho (2015). This alternative

estimator is defined as

EG ∝
C

κg

ℓ

C
θg

ℓ

=
C

κg

ℓ

β C
gg

ℓ

, (33)

where θ indicates the linear velocity perturbations, given by θ =
fδ, where f = d ln D/d ln a is the linear growth rate, and β = f/b

is observable from redshift space distortions (RSD). Both EG and

DG have the advantage of being independent from galaxy bias by

construction. EG has the additional bonus of being more easily

related to modified gravity theories, as it can be directly connected

to departures from the Poisson equation and the anisotropic stress;

furthermore, it is scale-independent in GR. On the other hand, EG

can only be accurately measured from a spectroscopic survey.

In the case of photometric data, such as DES, a further possible

alternative to EG would be to simply test the ratio C
κg

ℓ /C
gg

ℓ , which

would retain many of the desirable features of EG, as this is still

scale-independent in GR and easily related to modified gravity the-

ories. However, this simple ratio requires external information on

the galaxy bias, which is a serious drawback. For this reason, we

propose to use the DG estimator as an alternative for photometric

surveys.

7.2 Results and interpretation

By applying the DG estimator described above to our tomographic

data in real and harmonic space, we obtain the results shown in

Fig. 21. Here, we plot the redshift evolution of linear bias (top

panel), galaxy–CMB lensing cross-correlation amplitude (central

panel) and the linear growth function derived with the DG estimator

(bottom panel).

The evolution of galaxy bias is presented and discussed in more

detail by Crocce et al. (2016); we follow this study, and compare

the bias with a simple third-order polynomial fit, which was shown

in appendix A by Crocce et al. (2016) to be in good agreement with

results from the MICE N-body simulations:

b(z) = 1 + a1z + a2z
2 + a3z

3. (34)

We show in the top panel of Fig. 21 that the best-fitting model

by Crocce et al. (2016), of parameters a1 = 0.87, a2 = −1.83,
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Figure 21. Reconstructed measurements of the redshift evolution of linear

bias b(z) from galaxy autocorrelations, as also presented by Crocce et al.

(2016, top panel), galaxy–CMB lensing cross-correlation amplitudes A(z)

from the cross-correlations (central panel) and linear growth function from

the DG(z) estimator (bottom panel) from the combined tomography of galaxy

clustering and galaxy–CMB lensing correlations. The red (round) points are

derived from the correlation functions, while the blue (square) points are

from the angular power spectra. The purple dashed line shows the mean

best-fitting amplitude to DG with 1σ and 2σ uncertainty bands. We also

show for comparison the best-fitting bias model of equation (34) in the top

and central panels ( dotted lines), and the theoretical growth function for the

Planck fiducial cosmology in the bottom panel (thick solid line). The low

values of A we observe translate into a preference for a lower DG in most

redshift bins.

a3 = 1.77 is also an excellent fit to our measurements in both real

and harmonic spaces, further validating both analyses.

We show in the central panel of Fig. 21 the redshift evolution

of the galaxy–CMB lensing correlation amplitude A = bALens: as

shown above in Table 2, A is in most cases lower than the expected

value given the autocorrelations. We can see once again that real-

and harmonic-space results agree well, with the one exception of

the third bin cross-correlation, as discussed above in Section 5.2.4.

We then focus on the linear growth function: we show in the

bottom panel of Fig. 21 the results from the DG estimator of equation

(32) for real and harmonic spaces, where we use scales at ℓ < 1000

only. We see that the data prefer a smaller growth of structure than

what is expected in the fiducial Planck �CDM model; this result is

driven by the lower than expected values of the observed galaxy–

CMB lensing correlations. The estimators in real and harmonic

space agree well in most bins.

If we assume the template shape of DG(z) to be fixed by the

fiducial Planck cosmology and we fit its amplitude AD, so that

DG(z) = AD [DG(z)]fid , (35)

we find AD = 0.76 ± 0.17 from the real-space analysis and AD =
0.70 ± 0.15 in harmonic space. As the two results are consistent

and there is no reason to prefer one over the other, we take their

mean as our main result

AD = 0.73 ± 0.16, (36)

where the error is also the mean of the errors, as the two methods

are based on the same data. This result includes the full covariance

between the photo-z bins, which is typically 30 per cent between

neighbours. We note that, as discussed above in Section 6.2, if the

real redshift distribution of the galaxies in all bins is narrower than

our assumption, the tension could be alleviated, but the photo-z

alone are unlikely to be responsible for this discrepancy in full.

In particular, we have tested that, if we use the alternative BPZ

photo-zs, we obtain AD = 0.70 ± 0.16, in agreement with the TPZ

results.

We can then assess the significance of the discrepancy with re-

spect to the fiducial Planck cosmology. From the point of view of

template fitting, the mean best-fitting value is 1.7σ away from the

fiducial value AD = 1. Alternatively, we perform a null hypothesis

test and find that the χ2 difference between the best fit and the fidu-

cial model is �χ2 = 7.2 in real space (10.5 in harmonic space) for

4 degrees of freedom, corresponding to a PTE = 13 per cent in real

space (3.3 per cent in harmonic space). We therefore conclude that

the observed tension is only weakly significant. We discuss how-

ever in the following what the implications could be, if the lower

AD persists with more accurate measurements.

The DG estimator retains a dependence on the ratio between the

real and the fiducial values of the background parameters mh2σ 8

≡ ωmσ 8; it is thus in principle possible to attribute the observed mis-

match to a preference for different parameter values. The parameter

shift required is large compared with the current CMB constraints

from Planck (Planck Collaboration XIII 2015c): in order to shift

the amplitude AD from its best-fitting value 0.73 ± 0.16 to 1, would

require a fractional decrease in ωmσ 8 of 27 per cent.

It is worth mentioning that in the last few years several indepen-

dent measurements of LSS probes have hinted at low significance

towards low growth in recent times, including measurements of σ 8

from galaxy clusters (Bocquet et al. 2015), weak lensing (MacCrann

et al. 2015), RSD (Beutler et al. 2014), and a combination of probes

(Ruiz & Huterer 2015). It is important to stress that, in most cases,

alternative analyses showing weaker or no tension do exist, e.g.

by Samushia et al. (2014) for RSD, and by Mantz et al. (2015)

for galaxy clusters. Only better data in the near future will clar-

ify whether statistical flukes, systematic effects or new physics are

behind these observations; we prefer for the moment to avoid over-

interpreting the results, and we defer to the upcoming DES 1-yr

data a more detailed study that will include a more rigorous quan-

tification of the photo-z and SZ systematic uncertainties, varying

cosmological parameters and the full covariance between all data.

7.3 Relaxing cosmology

Motivated by the results of the previous section, we test how the

interpretation of our results changes when we assume a different

fiducial cosmology. We first adopt the baseline MICE cosmology

defined above in Section 4; notably, in this case m = 0.25, so

that a significant reduction of the tension between auto- and cross-

correlations is expected. We repeat the amplitude fitting of Section

5 to the measured auto- and cross-correlations in real and harmonic

spaces, and we find for the full redshift sample the best-fitting values

of Table 6. Here, we can see that indeed the change in the fiducial
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Table 6. Summary of the results obtained when assuming the low-matter

density MICE cosmology in real and harmonic spaces. We use the N-body

covariance matrix in all cases. Assuming this fiducial model relieves most

of the tension: the disagreement between auto- and cross-correlation best-

fitting amplitudes is in this case at the ∼1σ level only.

MICE cosmology, full sample, 0.2 < zphot < 1.2

Correlation Space b ± σ b S/N χ2/ d.o.f.

Gal–Gal Harmonic 1.27 ± 0.04 34 1.6 / 3

Real 1.27 ± 0.03 41 4.2 / 8

Correlation Space A ± σA S/N χ2/ d.o.f.

Gal–SPT Harmonic 1.06 ± 0.19 5.5 9.3 / 19

Real 1.06 ± 0.17 6.3 8.2 / 11

Gal–Planck Harmonic 0.98 ± 0.25 4.0 7.6 / 9

Real 1.03 ± 0.30 3.4 7.1 / 10

cosmology relieves most of this tension: the remaining differences

are at the 1σ level only. We further proceed to a revised interpretation

of the growth function estimator DG, based on the MICE cosmology.

We find that as expected the tension is significantly alleviated: we

obtain AD = 0.86 ± 0.19, which is consistent within 1σ with the

MICE cosmology expectations. In order to shift the best-fitting

value to AD = 1 would require in this case a fractional decrease in

ωmσ 8 by 14 per cent. In the upper panel of Fig. 22, we illustrate how

shifting from the Planck best fit to other �CDM cosmologies could

bring the theoretical model closer to the observations. We consider

here the MICE cosmology used in our N-body simulations (m =
0.25, h = 0.70, σ 8 = 0.80) and the best-fitting �CDM model to the

CFHTLenS + WMAP 7 data by Heymans et al. (2013, m = 0.255,

h = 0.717, σ 8 = 0.794). Note that for the Planck cosmology, we

normalize DG = 1 today, while for any other model i, DG is rescaled

by the factor (ωmσ8)i / (ωmσ8)Planck, as the fiducial Planck value for

ωmσ 8 was assumed in the measured DG.

A further interesting possibility is to use the growth function

measurement to constrain modified gravity theories. We compare

in the lower panel of Fig. 22 our data with a selection of parametrized

departures from the �CDM model. In order to avoid the ambiguities

related to scale-dependent growth for simplicity, we only consider

models where the growth function remains approximately scale-

independent. These include Linder’s γ parametrization (Linder &

Cahn 2007), in which the growth of structure evolves as f (z) ∝ γ
m,

where γ ≃ 0.55 in �CDM; a dark energy model with equation of

state w(z) = w0 + waz/(1 + z) (Chevallier & Polarski 2001); and

two modifications of gravity at the perturbative level as described

by Battye & Pearson (2013) and recently constrained by Soergel

et al. (2015), in which the dark fluid is described by an entropy

perturbation (wŴ model) or anisotropic stress (w� model). For

all models i, their growth function D is normalized to recover the

�CDM behaviour at early times; in addition, DG is rescaled by the

factor (ωmσ8)i / (ωmσ8)Planck. We can see that some of these models

succeed in explaining the low-growth behaviour at low redshifts,

although clearly the current data are not accurate enough for a solid

model selection, which we defer to future DES data releases.

7.4 Stochasticity

Crocce et al. (2016) demonstrate that bias non-linearities can be

excluded for the DES-SV ‘Benchmark’ galaxy sample on the scales

we consider. In this case, as discussed in Section 2 above, it is pos-

sible to interpret our results by assuming that any tension between

auto- and cross-correlations is due to stochasticity. If we do so and

assume cosmology is fixed to our fiducial model, we can directly

Figure 22. The red circles and blue squares show our growth function

measurements with the DG estimator, compared with the fiducial Planck

best-fitting �CDM prediction (thick black line), different choices of the

�CDM parameters (top panel), and a selection of dark energy and modified

gravity models (bottom panel). Top panel: The green dashed line shows

the prediction for the MICE cosmology, while the orange dot–dashed line

refers to the best-fitting �CDM model to the CFHTLenS + WMAP 7 data

by Heymans et al. (2013). Bottom panel: The coloured lines display in

the order: a Linder γ model (Linder & Cahn 2007), a dark energy model

parametrized by w0, wa (Chevallier & Polarski 2001), and two models of

modified gravity at the perturbative level: entropy perturbation (wŴ) and

anisotropic stress models (w�), as described by Battye & Pearson (2013).

interpret our constraint on DG as a constraint on r, as this quantity

defined in equation (14) can be simply estimated as r = bcross/bauto.

Thus, under the assumption of the Planck fiducial cosmology, our

measurement at face value translates to r = 0.73 ± 0.16. Such result

would indicate a 1.7σ preference for non-negligible stochasticity in

our sample; this appears to be close to the early results by Hoekstra

et al. (2002), but in disagreement with the more recent work by

Jullo et al. (2012).

None the less, an analysis of stochasticity from the galaxy–

matter correlation function of the MICE-GC simulations, which

were shown to reproduce most aspects of the DES-SV data cor-

rectly, find r = 1 to 1 per cent precision on all scales of interest

(Crocce et al. 2016), which strongly suggests that the mismatch

between auto- and cross-correlation amplitudes cannot be entirely

due to stochasticity.

8 C O N C L U S I O N S

We have detected the cross-correlation between the matter over-

densities in the Universe as traced by the DES-SV galaxies and

the CMB lensing maps reconstructed by the SPT and Planck
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collaborations. The total significance of the detections is 6σ for

the SPT case and 4σ for Planck when using the DES main galaxies

in the SPT-E field over 130 deg2.

Given the sufficient signal to noise available, and the well-tested

photometric redshifts for our galaxy sample, we have studied the

redshift evolution of the cross-correlation signal. Ours is the first

study to examine this evolution from a single survey. We divided

the DES main galaxies into five photometric redshift bins of width

�z = 0.2. We found that the auto- and cross-correlations evolve

in redshift as expected, recovering a significant detection at >2σ

in all bins and >3σ in all but the lowest redshift bin. We have

finally applied these tomographic measurements of auto- and cross-

correlations to reconstruct the evolution of galaxy bias and the linear

growth of structure in our redshift range.

While the results are overall consistent with the �CDM expec-

tations, we do find a ∼2σ tension (including statistical errors only)

between the observed amplitudes of the auto- and cross-correlations

when using the full galaxy sample at 0.2 < zphot < 1.2, which we

confirm with two fully independent analyses in real and harmonic

space. This tension is observed when using either the DES-SPT or

DES-Planck cross-correlations. When dividing the galaxy sample

into five redshift bins, we also found the amplitude of the DES-SPT

cross-correlations is consistently lower than expected from the DES

autocorrelations.

We then introduced a new linear growth estimator, DG(z), which

combines auto- and cross-correlations, so that it is independent of

galaxy bias on linear scales. Using this new estimator, we measured

the evolution of the linear growth function in five redshift bins.

We then compared the DG(z) measurements with a template, based

on the fiducial �CDM cosmology with a free constant amplitude

AD, obtaining AD = 0.73 ± 0.16, which is the final result of this

work. This result shows a weak (1.7σ ) tension with the fiducial

�CDM cosmology based on Planck.

We have quantified the impact of photo-zs on our results by re-

peating the analysis with two photo-z estimators: TPZ and BPZ.

We have found that using either method leaves the significance of

the cross-correlation detections unaffected. If assuming BPZ, the

inferred tension between auto- and cross-correlations of the full

galaxy sample is reduced by ∼50 per cent, but the results are nearly

unchanged in the tomography. In particular, our final result on the

growth function estimator DG is unaffected by the choice of BPZ,

as in this case we find AD = 0.70 ± 0.16. Further work with the

upcoming DES and SPT data of extended coverage and sensitivity

will be accompanied by more thorough tests of the possible system-

atics, including a quantitative estimation of the systematic errors

from photometric redshifts and from foreground contamination by

the SZ effect.

If taken at face value, the mild tension we observe can be in-

terpreted as the data favouring a lower growth of structure in the

late universe than expected from the fiducial model, or equivalently

a lower value of ωmσ 8 with respect to what is fixed by the CMB

at recombination. An alternative possibility that would eliminate

the tension we observe is a significant stochastic component in the

galaxy density of the DES-SV sample; this interpretation leads at

face value to a correlation coefficient r = 0.73 ± 0.16, assuming

non-linear bias can be safely ignored on the scales of interest see

(see Crocce et al. 2016, for a companion analysis supporting this

assumption). However, this is at variance with the most recent re-

sults on the subject from observations (Jullo et al. 2012) and N-body

simulations (Crocce et al. 2016).

The inferred low amplitude of the cross-correlation signal can

be compared with the literature that reports a wide range of A

values. Some authors (e.g. van Engelen et al. 2015) found A to be

consistent with the expectations, while others have found values

of the CMB lensing amplitude that are <1 with modest statistical

significance, such as Liu & Hill (2015), who cross-correlated the

CMB lensing map from Planck and the cosmic shear map from

CFHTLenS, and Omori & Holder (2015), who correlated Planck

lensing and CFHTLens galaxy density data.

We have tested that our significance levels are reliable by running

two independent analysis pipelines in real and harmonic spaces, and

by estimating the covariances with four different methods. We have

checked that the results are robust by estimating the impact of 19

possible DES systematics, by exploring the stability of the signal

with a broad range of cuts in the scales considered, and with different

estimators of the photometric redshifts, showing that their impact

on our measurements is not statistically significant.

The CMB lensing tomography with DES will improve dramati-

cally in the upcoming years. As shown in Fig. 1, the area increase

alone from SV to the full survey (5000 deg2) is expected to boost

the signal-to-noise to ∼30σ with either Planck or SPT data, as the

lower level of noise in SPT is compensated by the larger overlap

between DES and Planck. Notably, this projection does not account

for improvements in the CMB lensing data. If we include the ex-

pected advances from the upcoming SPT-3G survey, we obtain a

signal to noise of ∼90σ with the final DES data. The ACT sur-

vey and its successor are also of interest. There is modest overlap

with the DES footprint already, and with the Advanced ACT survey

we expect to have close to complete overlap, allowing for promis-

ing cross-correlation studies similar to the SPT-3G survey. Similar

sensitivity will also be achievable with the Simons Array (Arnold

et al. 2014). Looking forward to the future, it is most likely that

an optimal reconstruction of the CMB lensing-matter correlation

will be accomplished by a multiprobe, multiwavelength approach:

optical galaxy surveys (such as DES now, the Dark Energy Spec-

troscopic Instrument, the Euclid satellite and the Large Synoptic

Survey Telescope in the future) will probe the full LSS up to a

redshift ∼2, while the higher redshift matter distribution will be

reconstructed with other techniques, such as CIB, and later 21cm

radiation intensity mapping. This multiprobe approach will eventu-

ally allow a full reconstruction of the process of structure formation

across cosmic time, and determine the nature of dark energy and

gravity on cosmological scales.
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Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and

the Collaborating Institutions in the DES. The DES data manage-

ment system is supported by the National Science Foundation under

Grant Number AST-1138766.

The Collaborating Institutions are Argonne National Labora-

tory, the University of California at Santa Cruz, the University

of Cambridge, Centro de Investigaciones Enérgeticas, Medioambi-

entales y Tecnológicas-Madrid, the University of Chicago, Univer-

sity College London, the DES-Brazil Consortium, the University
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MNRAS, 435, 1857

Leistedt B. et al., 2015, preprint (arXiv:1507.05647)

Lewis A., Challinor A., 2006, Phys. Rep., 429, 1

Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473

Linder E. V., 1990, MNRAS, 243, 353

Linder E. V., Cahn R. N., 2007, Astropart. Phys., 28, 481

Liu J., Hill J. C., 2015, Phys. Rev. D, 92, 063517

MacCrann N., Zuntz J., Bridle S., Jain B., Becker M. R., 2015, MNRAS,

451, 2877
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A P P E N D I X A : M O C K S G E N E R AT I O N

A N D VA L I DAT I O N

From the full sky projection of the MICE-GC N-body simulations

described in Section 4.2, we produce 100 non-overlapping rotations

of the SPT-E mask. We then rotate instead the simulated overdensity

map 100 times into the real DES SV mask, thus generating 100

independent realizations of the data. We do the same for the MICE

CMB lensing map, which also covers the full sky and includes the

lensing effect of all sources at z < 100. On to each CMB lensing

mock we then add one mock CMB lensing noise realization, as

provided by the SPT or Planck collaboration. In the Planck case,

what is provided are actually 100 realizations of the full observable

signal, which include both cosmological signal and noise, and the

corresponding 100 realizations of the cosmological signal only, so

that we reconstruct 100 noise-only maps by taking the difference

between the two.

We have checked using the MC realizations that this method of

all-sky map rotations yields the same covariance matrix as a sta-

tistically independent set of realizations. Furthermore, the method

yields an unbiased estimate of the auto- and cross-correlations. By

this, we mean that the average correlations (or power spectra) of the

suite of rotated mocks are equal to those of the unrotated all-sky

map, as shown in Fig. A1.

We have performed a similar validation procedure in real space,

also obtaining consistent results.

After generating the mock galaxy maps, we add Poisson noise

on each pixel by randomly resampling each pixel number density

from a Poisson distribution. Finally, we smooth the mock maps with

the same Gaussian beam we apply to the real data. We demonstrate

in Fig. A2 that the mean auto- and cross-power spectra of the

mocks and their scatter agree well with the properties of the real

data.

APPENDI X B: SHOT N OI SE

As we estimate the matter overdensity via the number of observed

galaxies per unit area, shot noise is introduced in the analysis. In
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Figure A1. Comparison between the rotated and unrotated (all-sky) power

spectra (from top to bottom: galaxy–galaxy, galaxy–CMB lensing, and

lensing–lensing). Rotated mocks (in blue and red for Nside = 1024, 2048, re-

spectively) yield unbiased results with respect to the unrotated maps (black).

The Gaussian smoothing was not applied for this particular test.

Figure A2. Comparison between the data and the mocks. The red points

show the measured auto- and cross-spectra of the real DES, SPT and Planck

data, while the black dashed and solid lines describe the mean value and

the 1σ scatter of the same spectra measured on our N-body mocks. The

different shapes of the SPT and Planck cross-spectra are due to the different

smoothing we apply.

harmonic space, this is described in the ideal case by the contribution

N
gg

ℓ = 1/n mentioned in Section 2; this is constant on the full sky,

but it is affected in the same way as the cosmological signal C
gg

ℓ by

the effects of survey mask, pixellation, and any additional smoothing

applied to the map.

In a real-space analysis of a pixellated map, shot noise only

affects the autocorrelation function at zero lag, by adding to the

cosmological signal wgg(ϑ) a contribution

wshot(0 deg) = 1/n̄pix, (B1)

where n̄pix is the number density of galaxies per pixel. However,

as in our analysis we apply an additional Gaussian smoothing, the

effect of shot noise is diluted on to angular separations ϑ > 0◦. The

effective autocorrelation can be written as

w
gg+shot
smooth (ϑ) = w

gg

smooth(ϑ) + wshot
smooth(ϑ), (B2)

where w
gg

smooth(ϑ) is the smoothed galaxy autocorrelation of cos-

mological origin, while the shot noise contribution is (Boughn,

Crittenden & Koehrsen 2002)

wshot
smooth(ϑ) = Ashot

1

n̄pix

e
− ϑ2

4σ2 . (B3)

The constant Ashot depends on the relative size of the pixel dpix and

the smoothing beam: for σ ≪ dpix, Ashot → 1 and the shot noise is

returned to the zero-lag limit, while the dilution will affect larger

scales, and Ashot → 0, if σ ≫ dpix.

We determine Ashot from our set of N-body simulations as follows.

We first estimate the shot noise contribution in each angular bin by

averaging over the 100 mock maps as

ŵshot
smooth(ϑ) =

〈

ŵi
smooth(ϑ) − ŵi(ϑ)

w
gg

smooth(ϑ)

wgg(ϑ)

〉

i

, (B4)

where ŵi
smooth(ϑ) is the measured autocorrelation from the smoothed

mock i, ŵi(ϑ) is the measured autocorrelation from the unsmoothed

mock i, and w
gg

smooth(ϑ)/wgg(ϑ) is the ratio between the smoothed

and unsmoothed theoretical predictions for the cosmological signal.

We focus on the highest redshift bin 1.0 < zphot < 1.2, which

has the lowest number density, and thus the highest shot noise.

We then derive Ashot with a one-parameter likelihood fit, minimizing

the χ2 between the mock data of equation (B4) and the model

of equation (B3), using the full covariance matrix from the same

mocks. We thus obtain Ashot = 0.047 ± 0.002.

As we can see in Fig. B1, this model is in good agreement with

the measured autocorrelations of the smoothed mocks. We have

confirmed that the same value of Ashot is accurate for all redshift

bins as expected. We use this model to subtract the shot-noise con-

tribution from all measured real-space autocorrelations. The cross-

correlations are naturally unaffected.

A P P E N D I X C : RO BU S T N E S S O F T H E

C OVA R I A N C E M AT R I X E S T I M AT I O N

We demonstrate in this section the robustness of our covariance

matrix estimation in real and harmonic spaces.

We estimate the covariance matrix of the results in four different

ways. In addition to the MC and N-body methods described above

in Section 5.1.2, we first use an analytic approach: we (optimisti-

cally) assume a diagonal covariance in harmonic space, including

the uncertainties from cosmic variance, shot noise in the galaxy

counts, and CMB lensing noise, as described in equation (15). The

galaxy shot noise is determined by the observed galaxy number

density in our sample, and we use for the CMB lensing noise its

level as determined from the CMB lensing maps autospectrum, as

discussed below in Section 5.2.3. For any pair of maps a, b, the

harmonic space covariance σ 2
(

Cab
ℓ

)

defined above in Section 2 is

readily transformed to real space (Crocce, Cabré & Gaztañaga 2011;
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Figure B1. Modelling the shot noise contribution to a smoothed galaxy

map. The mean autocorrelation function of 100 unsmoothed galaxy mocks

(green circles) in the redshift bin 1.0 < zphot < 1.2 is in good agreement

with the fiducial cosmological model wgg(ϑ) (green dashed line); the effect

of shot noise is limited to an additional contribution at zero separation, not

shown in the plot. When the mocks are smoothed, the shot noise compo-

nent spreads to non-zero angles: the observed mean autocorrelation (orange

squares) does not match the smoothed cosmological model w
gg

smooth(ϑ) (dot–

dashed red curve), as the shot noise contribution is missing from the model.

We plot with blue triangles the shot noise component measured from the

mocks with the estimator of equation (B4), which is well fitted by the model

wshot
smooth(ϑ) with an amplitude Ashot = 0.047 (dotted blue line). By adding

this to the smoothed cosmological theory, we obtain the full model of equa-

tion (B2) (black solid line), which is a good match to the smoothed mocks.

Ross et al. 2011a):
(

Ĉab
ij

)

TH
≡ Cov[wab](ϑi, ϑj ) =

=
∞

∑

l=0

(2ℓ + 1)2

(4π)2
Pℓ(cos ϑi)Pℓ(cos ϑj ) σ 2

(

Cab
ℓ

)

. (C1)

Notice the sum goes in principle up to infinity, but it is in practice

possible to truncate it to a finite value given the Gaussian smoothing

we apply.

We also estimate the covariance matrices with a JK technique.

This consists of removing in turn NJK subsets of the data, to obtain

NJK pseudo-random realizations of the correlations, whose scatter

can be used to estimate the covariance as in equation (19), but with

an additional factor:

(

Ĉab
ij

)

JK
=

NJK − 1

NJK

NJK
∑

α=1

(

ŵab
α,i − w̄ab

i

) (

ŵab
α,j − w̄ab

j

)

. (C2)

The advantage in this case is that the method is completely model-

independent; it is nevertheless not uniquely defined, as the number

of patches that it is possible to remove is limited, and it typically

yields different results depending on the particular procedure cho-

sen. Also in this case, we use the β correction of the inverse covari-

ance (equation 20); while not mathematically exact in the case of

non-independent realizations, it was shown by Hartlap et al. (2007)

to yield accurate results also in this case. We tested several JK meth-

ods; we show below the results for a scheme where we have divided

the galaxy mask into NJK = 100 mostly contiguous patches with

the same number of pixels. We have achieved this by selecting 100

sets of pixels whose pixel ID is contiguous in the HEALPIX nested

scheme; this ensures the patches are mostly contiguous.

We summarize in Table C1 the best-fitting results obtained using

the four covariance estimators in real and harmonic spaces, where

we can see that all methods agree, and they all yield realistic reduced

χ2 values. The only exception is the DES–Planck case with the

theoretical covariance estimator (PTE: <1 per cent); the N-body

covariance yields anyway a typical χ2 (PTE: 35 per cent).

We then show in Fig. C1 the real-space diagonal error bars ob-

tained with the four estimators we consider: theoretical prediction,

JK, MC, and full N-body. The error bars obtained with all methods

are in excellent agreement: we can see that all methods fully agree

for the cross-correlations, while in the autocorrelation the N-body

errors are larger than the others; this is reasonable as this is the

only method, besides the less stable JK, that incorporates the non-

Gaussian variance produced on small scales by non-linear structure

formation. In order to also compare the off-diagonal part of the

covariance matrices, we show in Fig. C2 the real-space correlation

Table C1. Summary of the results for the main galaxy sample for real (left) and harmonic (right) spaces: best-fitting linear bias b

and correlation amplitudes A = bALens for the three correlation functions and four covariance estimators. The results are consistent

between each other and with respect to the theoretical expectations for our fiducial model, but the cross-correlation amplitude is

lower than the autocorrelation by 2σ–3σ . The recovered χ2 per degree of freedom indicates the models and covariance estimators

are in all cases appropriate for the data, with the only exception of the DES–Planck theoretical covariance in real space.

Full sample, 0.2 < zphot < 1.2 Real space Harmonic space

Correlation Covariance b ± σ b S/N χ2/ d.o.f. b ± σ b S/N χ2/ d.o.f.

Gal–Gal N-body 1.22 ± 0.03 41 3.8 / 8 1.22 ± 0.04 34 2.7 / 3

Theory 1.23 ± 0.02 51 5.8 / 8 1.26 ± 0.03 51 1.3 / 3

MC 1.23 ± 0.03 47 5.8 / 8 1.26 ± 0.04 33 0.54 / 3

JK 1.22 ± 0.03 48 5.4 / 8 – – –

Correlation Covariance A ± σA S/N χ2/ d.o.f. A ± σA S/N χ2/ d.o.f.

Gal–SPT N-body 0.84 ± 0.13 6.3 8.4 / 11 0.84 ± 0.15 5.6 8.7 / 19

Theory 0.86 ± 0.13 6.6 13 / 11 0.85 ± 0.13 6.6 11 / 19

MC 0.91 ± 0.13 6.9 9.2 / 11 0.81 ± 0.15 5.4 15 / 19

JK 0.91 ± 0.14 6.5 5.3 / 11 – – –

Gal–Planck N-body 0.78 ± 0.21 3.7 11 / 10 0.81 ± 0.20 3.8 7.7 / 9

Theory 0.86 ± 0.24 3.6 25 / 10 0.82 ± 0.21 3.8 8.3 / 9

MC 0.77 ± 0.20 3.8 10 / 10 0.82 ± 0.25 3.3 5.3 / 3

JK 0.77 ± 0.18 4.4 7.8 / 10 – – –
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Figure C1. Comparison of the real-space diagonal error bars for our four

estimators of the covariance matrix: theoretical (orange dashed), MC (green

dot–dashed), JK (red dotted) and from N-body simulations (blue solid).

The three panels refer from top to bottom to galaxy autocorrelation, and

the cross-correlations with SPT and Planck. The different methods agree

for the cross-correlations, while the N-body covariance yields marginally

larger error bars for the autocorrelation as expected due to the effect of

non-Gaussianities. We use the N-body errors for our main results.

matrices of the three correlations we study, obtained with all four

methods we consider. We can see that the agreement between the

methods is excellent; the JK results are marginally noisier, but the

general behaviour consistently shows a high off-diagonal covariance

for the galaxy autocorrelation on small scales, and lower covariance

for the cross-correlations.

Finally, we show in Fig. C3 a comparison of the harmonic-space

correlation matrices. In this case, the theoretical correlation matrix

is fully diagonal, as the effect of the survey mask is not included,

so we do not show it, but we limit the comparison to the MC

and N-body estimators. We find that the MC covariances are still

mostly diagonal, while more significant off-diagonal contributions

emerge in the case of the full N-body estimator, especially for

the autospectrum case. This is expected, and it is due to the sig-

nificant non-Gaussianities produced by non-linearities, which are

non-negligible on these scales.

A P P E N D I X D : T H E O P T I M A L QUA D R AT I C Cℓ

ESTIMATO R

D1 Implementation

In the following, we briefly reiterate the basic equations of the

optimal quadratic estimator proposed by Tegmark (1997). We then

summarize the necessary extensions for power spectrum estimation

Figure C2. Comparison of four correlation matrix estimators in real space,

for the three correlations we consider. The first row refers to the theoretical

covariance, the second row is obtained from 1000 MC realizations, the third

row is the JK method (100 regions), and the final row shows the 100 N-body

realizations. The three columns refer to galaxy–galaxy, galaxy–SPT and

galaxy–Planck lensing convergence correlations, respectively. The angular

range is from 2.4 arcmin to 5◦ as in Fig. 5. The different methods produce

consistent covariances; by comparing the different correlation matrices, we

see that the galaxy–CMB lensing correlation matrices are more diagonal

than the galaxy–galaxy case, which is related to the autocorrelation theory

being more non-linear, and thus more non-Gaussian and covariant, at these

scales. Furthermore, all matrices become more covariant in the first few

angular bins due to the introduction of the Gaussian smoothing to the maps,

which effectively blurs information on scales ϑ < ϑFWHM = 5.4 arcmin

(DES-SPT) and ϑ < ϑFWHM = 10.8 arcmin (DES-Planck).

in wide multipole bins, and discuss a simple regularization approach

for bandpass filtered data.

We start by defining the npix × npix data covariance matrix in pixel

space as a sum of contributions from signal and noise, C = S + N.

For an isotropic signal with power spectrum Cℓ,

Snn′ =
ℓmax
∑

ℓ=ℓmin

2ℓ + 1

4π
CℓPℓ(n̂ · n̂′), (D1)

where we have introduced the Legendre polynomials Pℓ with the

argument given by the dot product between the normal vectors of
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Figure C3. Comparison of two different correlation matrix estimators in

harmonic space: the first row shows the results from MC realizations,

while the second row refers to 100 N-body realizations. We show corre-

lations among Cℓ band-powers for the galaxy auto-, galaxy–SPT lensing

and galaxy–Planck cross-correlations, from left to right, respectively. We

use 10 linear multipole band-powers from ℓmin = 30 to ℓmax = 2000, with

�ℓ = 197, matching the bins of Fig. 10.

pixels n and n′. Then, the optimal power spectrum estimate Ĉℓ is

given by a quadratic combination of the data vector d,

Ĉℓ =
1

2

∑

ℓ′

(

F−1
)

ℓℓ′ d
†

Eℓ′ d, (D2)

where

Eℓ = C
−1 ∂C

∂Cℓ

C
−1, (D3)

and the Fisher matrix is

Fℓℓ′ =
1

2
tr

(

C
−1 ∂C

∂Cℓ

C
−1 ∂C

∂Cℓ′

)

. (D4)

For unbiased power spectrum estimation in multipole bins b, we

now extend equation (D1) by introducing weight functions wℓ,

Snn′ =
∑

b

Cb

∑

ℓ∈b

2ℓ + 1

4π

1

wℓ

Pℓ(n̂ · n̂′), (D5)

where the equality holds if Cb = wℓCℓ = constant within each bin.

We therefore choose the weights wℓ ∝ 1/Cℓ, normalized to unity.

The derivative with respect to individual power spectrum elements

in equation (D3) is then simply replaced by ∂/∂Cb. We note that

to compare power spectrum estimates to a theoretical model, the

model has to be binned with the same weight function wℓ.

For a signal covariance matrix with a smaller number of Fourier

modes than pixels, equation (D1) will return a rank deficient ma-

trix. In case the same holds true for the noise covariance matrix

(e.g. for bandpass filtered noise), the inverse of the covariance ma-

trix does not exist. One way to solve this problem is to restrict all

computations to the non-singular subspace of C. Here, we adopt

the simpler approach of regularization. We multiply the diagonal

elements of the covariance matrix, C̃nn = (1 + ǫ) · Cnn, where typi-

cally ǫ ≈ 10−7. In the next section, we demonstrate that our pipeline

as described here produces reliable results.

Figure D1. The optimal quadratic estimator is unbiased. We compare the

power spectra estimates, averaged over all 1000 simulations, to the input

power spectrum (top panel). We also plot the residuals after dividing by

the fiducial model (bottom panel) together with the 1σ and 2σ error on the

mean (grey regions), i.e. the error bars of an individual simulation divided

by
√

1000. We find no evidence for a detectable bias, even in the highest

multipole bins close to the resolution limit of a HEALPIX map at Nside = 512.

D2 Verification

We generated 1000 realizations of a Gaussian random field at Nside =
2048 and ℓmax = 2500 from the theoretical model of the SPT-E

galaxy × galaxy power spectrum. We added an isotropic contri-

bution of white noise at a level of Nℓ = 2.1 × 10−8 to the maps,

roughly consistent with the observed level of shot noise in this field.

For each simulated map, we computed autopower spectra at a

downgraded resolution of Nside = 512 using the SPT-E mask in 10

uniform multipole bins up to the applied bandpass limit of ℓmax =
1500. We further calculated the Cℓ Fisher matrix using its mathe-

matically exact analytical formula.

In Fig. D1, we show the results of our comparison. We plot the

averaged power spectrum estimates and compare them to the inputs

and find no evidence for a significant bias.
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