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ABSTRACT

We report contributions to cosmic infrared background (CIB) intensities originating from known galaxies and their
faint companions at submillimeter wavelengths. Using the publicly available UltraVISTA catalog and maps at 250,
350, and 500 μm from the Herschel Multi-tiered Extragalactic Survey, we perform a novel measurement that
exploits the fact that uncataloged sources may bias stacked flux densities—particularly if the resolution of the
image is poor—and intentionally smooth the images before stacking and summing intensities. By smoothing the
maps we are capturing the contribution of faint (undetected in K 23.4S ~ ) sources that are physically associated, or
correlated, with the detected sources. We find that the cumulative CIB increases with increased smoothing,
reaching 9.82 ± 0.78, 5.77 ± 0.43 and 2.32 0.19 nWm sr2 1 - - at 250, 350, and 500 μm at 300 arcsec FWHM.
This corresponds to a fraction of the fiducial CIB of 0.94 ± 0.23, 1.07 ± 0.31, and 0.97 ± 0.26 at 250, 350, and
500 μm, where the uncertainties are dominated by those of the absolute CIB. We then propose, with a simple
model combining parametric descriptions for stacked flux densities and stellar mass functions, that emission from
galaxies with log(M M 8.5) > can account for most of the measured total intensities and argue against
contributions from extended, diffuse emission. Finally, we discuss prospects for future survey instruments to
improve the estimates of the absolute CIB levels, and observe any potentially remaining emission at z 4> .

Key words: cosmology: observations – galaxies: evolution – infrared: galaxies – large-scale structure of universe –
submillimeter: galaxies

1. INTRODUCTION

Of all the light that has been emitted by stars, about half has
been absorbed by interstellar dust and thermally re-radiated at
far-infrared to submillimeter wavelengths, appearing as a
diffuse, extragalactic, cosmic infrared background spanning
1–1000 μm (CIB; Hauser & Dwek 2001; Dole et al. 2006).
Statistically characterizing the sources responsible for this

background is necessary to gain a full understanding of galaxy
formation and cosmology, and thus remains an ongoing
pursuit.
The CIB was first detected in spectroscopy with the Far

Infrared Absolute Spectrophotometer (FIRAS; Puget
et al. 1996; Mather et al. 1999). Observations of local starburst
galaxies with IRAS (Soifer et al. 1984) showed that galaxies
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could emit a surprisingly large part of their energy in the far-
infrared, and ground-based measurements later confirmed the
existence of a rare population of extremely luminous
submillimeter galaxies (Blain et al. 2002). While these bright
objects generated tremendous excitement, and in fact constitute
a significant fraction of the total star-formation rate density at
z 3> (e.g., Le Floc’h et al. 2005; Murphy et al. 2011), their
low abundance only accounts for a small fraction of the
total CIB.

The arrival of the Herschel Space Observatory—whose
instruments the Photodetector Array Camera and Spectrometer
(PACS; 70, 100, and 160 μm; Poglitsch et al. 2010) and the
Spectral and Photometric Imaging REceiver (SPIRE; 250, 350,
and 500 μm; Griffin et al. 2010) bracket the peak of the thermal
spectrum of dust emission—brought the promise of directly
detecting less luminous and far more numerous dusty star-
forming galaxies (DSFGs). However, source confusion result-
ing from the relatively large point-spread functions (PSFs; e.g.,
Nguyen et al. 2010) limited the number of galaxies that could
be individually resolved by PACS at 100 and 160 μm to 75%
(Magnelli et al. 2013) and 74% (Berta et al. 2011) of the CIB,
respectively, and by SPIRE at 250 μm to 15% (Béthermin
et al. 2012; Oliver et al. 2012). Statistical methods such as
stacking (e.g., Béthermin et al. 2012; Viero et al. 2013a) and
P(D) (Glenn et al. 2010; Berta et al. 2011) performed better,
resolving 70% at 250, 350, and 500 μm for the former, and
89% and 70% of the CIB at 100 and 250 μm for the latter.

The origin of the rest of the CIB remained unclear. Viero
et al. (2013a) suggested that the missing flux could be tied up in
faint sources—faint either because they are low mass, at high
redshift, or extremely dusty. Another possible source is diffuse
emission from the dust that is known to be distributed in the
halos of galaxies (Ménard et al. 2010; Hildebrandt et al. 2013)
and could be heated by stripped stars (e.g., Tal & van
Dokkum 2011; Zemcov et al. 2014).

Here we present a technique to demonstrate that most, if not
all, of the CIB can be accounted for by the combined emission
from galaxies detected in current near-infrared surveys, and
their faint companion objects, at z 4< . We show with a simple
model that galaxies alone are the most plausible source of this
signal, and argue that any remaining CIB likely originates from
galaxies at still higher redshifts.

2. DATA

2.1. UltraVISTA Catalog

We perform our analysis on catalogs and images located in
the COSMOS field (Scoville et al. 2007), centered at
10 00 26 , 2 13 00h m s +  ¢ . We use the K 23.4 ABS ( )= -selected,
publicly available28 catalog from Muzzin et al. (2013b),
UltraVISTA, which consists of a 1.62 deg2 subset of the full
COSMOS field, where both near-infrared and optical wave-
lengths are available (30 bands in all). The catalog contains
photometric redshifts computed with EAZY (Brammer
et al. 2008), and stellar masses computed with FAST (Kriek
et al. 2009). Galaxies are split into star-forming or quiescent
based on their positions in the rest-frame U V- versus V J-
color–color diagram (UVJ; Williams et al. 2009).

2.2. Herschel/HerMES Submillimeter Maps

We use submillimeter maps observed with the SPIRE
(Griffin et al. 2010) at 250, 350, and 500 μm from the Herschel
Multi-tiered Extragalactic Survey (HerMES; Oliver
et al. 2012). COSMOS is a level 5 field, consisting of 4 repeat
observations to an instrumental depth of 15.9, 13.3, and
19.1 mJy (5σ), with confusion adding an additional noise term
of 24.0, 27.5, and 30.5 mJy (5σ) at 250, 350, and 500 μm,
respectively (Nguyen et al. 2010). Absolute calibration is
detailed in Griffin et al. (2013), with calibration uncertainties of
5%. Maps are made with 4 arcsec pixels at all wavelengths
using the SMAP (Levenson et al. 2010; Viero et al. 2013b)
pipeline.
SPIRE maps are chosen specifically for this study because

their wavelengths probe the rest-frame peak of thermal dust
emission at z = 1–3 (Madau & Dickinson 2014) and because
large-scale features can be reconstructed with minimal filtering
(Pascale et al. 2011).

3. METHOD

We now present a novel method to estimate the extent to
which known sources and their faint companions contribute to
the CIB. We do this by exploiting an inherent weakness of
stacking: that stacking on images with poor angular resolution
can result in a boosted (or biased) average flux density arising
from faint, uncataloged, companion galaxies (e.g., Serjeant
et al. 2008; Fernandez-Conde et al. 2010; Kurczynski &
Gawiser 2010; Heinis et al. 2013; Viero et al. 2013a). The trick
is in recognizing that only correlated (i.e., clustered) sources
will bias the stacked flux density (for an in-depth discussion see
Marsden et al. 2009; Viero et al. 2013a), so that summed
intensities estimated with increasingly smoothed maps places
limits on the full intensity in a given redshift range. Meanwhile,
emission that is not correlated—say, emission coming from
sources at redshifts greater than those of our catalog objects—
will not influence the primary measurement, except as a
potential noise term.
For this analysis we use the publicly available

SIMSTACK code,29 which is described in detail in Viero et al.
(2013a). Briefly, synthetic images of the sky are constructed
from correlated subsets of catalogs (i.e., objects in the same
redshift range) with the assumption that galaxies that are
physically similar—in this case quiescent or star-forming
galaxies within a stellar mass bin—have comparable infrared
luminosities and submillimeter flux densities. Synthetic images
are then convolved with the PSF of the instrument, and are fit
simultaneously to the actual sky map to retrieve the mean flux
densities of the subsample.
To induce a bias we smooth the maps by convolving them

with Gaussians whose widths are the geometric differences
of the nominal SPIRE and effective beams, i.e.,

smooth eff
2

SPIRE
2s s s= - , where the nominal SPIRE resolutions

are 17.5, 23.7, and 34.6 arcsec FWHM at 250, 350, and
500 μm, respectively, and the effective resolutions are 20, 30,
40, 60, 80, 110, 140, 180, 220, 260, and 300 arcsec FWHM.
Above 300 arcsec, statistical uncertainties become consistent
with zero (see Section 1). All synthetic images and sky maps
are mean-subtracted before stacking.

28 http://www.strw.leidenuniv.nl/galaxyevolution/ULTRAVISTA 29 http://www.stanford.edu/~viero/downloads.html
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Following Viero et al. (2013a), we split the sample into
8 × 8 bins of redshift (z= 0 to 4 with z 0.5D = ) and stellar
mass (5 star-forming and 3 quiescent), and stack the
subsamples with SIMSTACK at each smoothing scale. Stacked
flux densities are then color-corrected to account for the
observed spectral shape of the sources through the passbands,
with temperatures taken from Viero et al. (2013a, Equation
(18)). Color corrections range between 1.006–0.984,
0.993–0.977, and 1.007–0.991 at 250, 350, and 500 μm,
respectively.

We use simulations to check that stacking and smoothing
with a Gaussian, as opposed to the measured SPIRE beam or
any other kernel, is a reasonable approximation, finding a bias
of less than 4% for the largest smoothing kernel, which we
include in the reported errors. We test that the method does not
introduce unintended biases by performing 100 null tests for
each set of synthetic images and maps. Null tests involve
running the identical stacking pipeline with the same binning of
sources, but after randomizing the positions of the sources in
the catalogs. Because the map and images are mean-subtracted,
we expect the stacked flux densities of the null tests to be
consistent with zero. In Section 4.1 we show that this is
the case.

We note that this method has the advantage that missing
sources are not double-counted, meaning that the flux density
from a single missing object will be distributed among the
synthetic images, rather than appearing multiple times (as
would be the case in thumbnail stacking). Also note that
stacked flux densities are intentionally not corrected for
completeness because it is precisely the flux densities of the
missing (i.e., incomplete, but similarly applies to misclassified
active galactic nucleus or DSFGs) sources that we are
attempting to measure by degrading the effective resolution
of the map. As a result, this technique is not limited to CIB
studies, but is applicable to any study where estimates of the
level of faint, correlated emission are in question.

4. RESULTS

We report total intensities of our stacking measurement as
the cumulative sum over redshift (from z= 0 to the redshifts
labeled with different color lines) versus the effective
resolution of the image, in Figure 1.30 At lower redshifts
(z 1< ) the fractional CIB that is measured increases weakly
with increasing effective beam size, which is expected given
that the completeness of the catalog at these redshifts is near
unity for stellar masses log(M M 9)  . Conversely, at higher
redshifts the fractional CIB that is measured increases rapidly
with increased smoothing. The maximum CIB we resolve is
9.82 ± 0.78, 5.77 ± 0.43, 2.32 0.19 nWm sr2 1 - - at 250,
350, and 500 μm. We note slightly different behaviors between
the three bands; particularly at 500 μm, which appears to have
not converged, and may be indicative of higher redshift
contributions to the CIB.
Estimates of the exact measured fraction of the absolute CIB

are limited by the uncertainties in the reported absolute values
of the CIB derived from FIRAS spectra by Fixsen et al. (1998)
and Lagache et al. (1999), which range between 22% and 30%.
The Fixsen et al. (1998) levels (10.4± 2.3, 5.4± 1.6,
2.6± 0.6; hereafter chosen to represent the fiducial values)
are shown as dashed lines in Figure 1, and the Lagache et al.
(1999) levels (11.8± 2.9, 6.4± 1.6, 2.7± 0.7) are shown as 3-
dot–dashed lines. Additionally, Béthermin et al. (2012; dot–
dashed lines) provide estimates of the total CIB by extrapolat-
ing their measured counts, finding they agreed with FIRAS
with similarly large uncertainties. In total we find that the
fraction of the Fixsen et al. (1998) fiducial CIB we resolve is
0.94 ± 0.23, 1.07 ± 0.31, and 0.97 ± 0.26 at 250, 350, and
500 μm, respectively.
The full set of 100 null tests at each effective beam size are

shown as gray dotted lines in Figure 1, with the 1σ limits

Figure 1. Cumulative measured CIB vs. size of the effective image resolution (in arcsec, FWHM) at 250 (left panel), 350 (center panel), and 500 μm (right panel). The
(Fixsen et al. 1998) FIRAS values and 1σ errors are shown as dashed lines with gray hatched regions, while the Lagache et al. (1999) FIRAS values are shown as 3-
dot–dashed lines, and the Béthermin et al. (2012) model estimates are shown as dot–dashed lines. Colors represent the sum over all bins up to the given z. Gray dotted
lines show the full set of null tests, and shaded regions the 1σ uncertainties, for the z 4< case. The cumulative CIB vs. effective resolution increases more rapidly at
higher redshift, where the catalog in increasingly incomplete. The flattening of the curve at the highest redshift suggests that any potential remaining intensity lies at
higher redshifts.

30 Tabulated values for the intensities in Figure 1 can be found at https://web.
stanford.edu/~viero/downloads.html
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represented by the shaded gray region. For clarity only the tests
for z 4< are shown. As expected, the results of the null tests
fluctuate around zero, with the magnitude of that fluctuation
increasing with increasing effective beam size. Additional
systematic uncertainties include calibration and beam area
uncertainties, and cosmic variance, which is estimated follow-
ing Moster et al. (2011).

5. DISCUSSION

The CIB can be divided into three components: (i) the
contribution from the sources in the parent K 23.4S  catalog;
(ii) the contribution from correlated companion sources that for
some reason do not make the catalog cut but are recovered with
our smoothing-stacking method; and (iii) uncorrelated emis-
sion, including and likely dominated by sources lying at z 4> .

It is interesting to consider the nature of (ii), the undetected
sources that are captured by our smoothing procedure: are they
very low-mass galaxies, massive but dusty galaxies that evade
detection in current deep K-selected catalogs, or some other
unknown component?

We now propose—through a simple model that combines a
parametric description of the stellar mass function with simple
fits to nominal stacked flux densities—that the galaxies that
make up the stellar mass function are alone able to describe our
measurement, and that by extension the missing CIB can
reasonably be attributed to galaxies in the low-mass end of the
stellar mass function.

5.1. A Model of the CIB

The first component of the model adopts the (Leja
et al. 2015, Equation (1)) parameterization of the Tomczak
et al. (2014) stellar mass function. The rightmost panel of
Figure 2 illustrates the performance of the Leja et al. (2015)
model (solid lines) against the Tomczak et al. (2014) data
(circles). We find that it diverges from the measurements at
higher redshifts and so we add a modification at z 2.5>
(dotted lines) by simply interpolating between the model and
the measured stellar mass functions of Muzzin et al. (2013a) to
z = 4. We check that the exact value of faint-end slope at high-
z negligibly affects the integral, and set it to −1.6.

Similarly, the second component of the model consists of
power-law fits to the stacked flux densities versus lookback

time for each stellar mass bin, with the added condition that the
mass dependence of the slopes and offsets themselves follow
smooth functions. The three left panels of Figure 2 show the
stacked flux densities and best-fit power laws as open circles
with error bars, and dotted lines, respectively. Finally, the
model is integrated over the redshift range z = 0.1–4, and
stellar mass range log(M M 8) = –14; although the contribu-
tion from galaxies below log(M M 8.5) < is found to be
negligible.
Figure 3 compares the resulting model (solid lines) with the

full CIB measurements (open circles) at all three wavelengths.
Note that the model is not a fit, yet it describes the
measurement remarkably well, demonstrating that the faint-
end of the mass function can plausibly explain the recovered
CIB. Also in good agreement are the Bethermin et al. (2012,
gray squares) estimates derived through extrapolation of
their number counts. We note some tension with the
Planck Collaboration et al. (2014) intensity at 350 μm

Figure 2. Left three panels: stacked flux densities (measured with nominal PSFs) in divisions of stellar mass vs. redshift for star-forming galaxies. Power-law model
fits (described in Section 5.1) are shown as dotted lines. Right panel: parametric model for the stellar mass functions of star-forming galaxies, which combines the
parameterization of the Tomczak et al. (2014, circles) data by Leja et al. (2015, solid lines) at z 2.5 , and at modification at z 2.5> (dashed lines) which interpolates
to measurements from Muzzin et al. (2013a, exes).

Figure 3. Measurements (open circles) and models (solid lines) for cumulative
CIB intensities vs. redshift. Measurements are the cumulative sums for images
stacked at the highest effective beam size of 300 arcsec FWHM. The models,
described in Section 5.1, combine parametric descriptions for the stacked flux
densities (at the native resolution of the images) and the stellar mass functions
(see Figure 2). Extrapolated counts from Béthermin et al. (2012) are shown as
gray squares. Also shown are cumulative CIB intensities vs. redshift on stacks
made with the native (i.e., non-smoothed) SPIRE images (diamonds), and the
models after they have been modified to reflect the incompleteness of the actual
catalog (dashed lines).
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(7.7 0.2 nWm 2 - ), which is an output of their halo model fit
to CIB power spectra; although their 550 μm estimate from the
same model is in relative agreement (2.3 0.1 nWm 2 - ).

Also shown (as diamonds) are measurements made when
stacking on the native SPIRE images (i.e., no smoothing). They
are again compared to the model (dashed lines), but this time
the model is modified so that the low-mass limit of the integral
over the mass function effectively begins at higher masses with
increasing redshift, reflecting the completeness behavior of the
catalog. The difference between the solid and dashed lines can
be interpreted as a measure of how much of the CIB originates
from the parent sample, and how much from companion
sources is not detected at this KS limit. If, for arguments sake,
the catalog were 100% complete at all stellar masses and all
redshifts, then the dashed and solid lines would overlap.

Arguments for additional, diffuse, sources of CIB, in
particular dust in the extended halos of galaxies (Ménard
et al. 2010), are thus disfavored.

5.2. A CIB Beyond z of 4?

While our measurements are consistent with the fiducial
levels of the total CIB, the existing uncertainties on the
absolute level are so large that it is difficult to convincingly
estimate how much CIB is still unresolved. Any missing CIB is
more likely to occur at longer wavelengths, which are more
sensitive to higher redshifts (because of the negative K-
correction; Blain et al. 2003), where we would expect
uncorrelated emission to originate from.

Indeed, several exceptional ULIRG-like galaxies have been
identified at z 4> , albeit with low abundances (e.g., Riechers
et al. 2013; Vieira et al. 2013; Dowell et al. 2014; Swinbank
et al. 2014). However, extrapolations of the contribution of
ULIRGs to the star formation rate density at z 4> (e.g.,
Murphy et al. 2011; Viero et al. 2013a) point to them
dominating the far-infrared emission at this epoch. Determining
the relative levels that they and less luminous galaxies
contribute to is a key question going forward.

To resolve these high-z questions, more data are required;
particularly: (1) an update of the absolute CIB; (2) deeper
catalogs with stellar masses and redshifts to redshifts greater
than 4; (3) submillimeter surveys (350–1000 μm) with large
angular-scale fidelity and smaller PSFs in the regions of those
deep catalogs—particularly at longer wavelengths, which are
more sensitive to galaxies at higher redshifts. The former can
only be achieved with space-based missions to measure the DC
level above atmospheric foregrounds. The second requirement
is steadily growing from multiple current or upcoming efforts
(e.g., SDSS/BOSS, CANDLES, DES, LSST), although the
photometric redshifts for very dusty galaxies may remain quite
uncertain (see Spitler et al. 2014). The last point will require a
ground-based submillimeter observatory similar in scope to
CCAT (Sebring et al. 2006).

6. CONCLUSION

We find that most of the CIB at 250, 350, and 500 μm can be
accounted for by galaxies detected in current near-infrared
surveys of moderate depth (K 23.4S » ), and galaxies correlated
with them. We report total intensities of 9.82 ± 0.78, 5.77 ±
0.43, and 2.32 0.19 nWm sr2 1 - - at 250, 350, and 500 μm,
which correspond to a fraction of the Fixsen et al. (1998)
absolute CIB of 0.94 ± 0.23, 1.07 ± 0.31, and 0.97 ± 0.26.

We find that a simple model combining parametric
descriptions for the stellar mass function and stacked flux
densities for log(M M 8.5) > and z 4< is able to convin-
cingly reproduce the measurements, supporting the argument
that the sources in the faint end of the mass function make up
the previously missing CIB. We note that emission from
objects that are not in the catalog and are either uncorrelated
with catalog objects or exists at scales greater than 300 arcsec
would be missed. However unlikely, this cannot be ruled out
without a better absolute measurement to compare against.
Finally, we propose that any remaining CIB likely originates

from galaxies at z 4> , and, if so, should be detectable at
submillimeter and millimeter wavelengths.
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