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on manifolds of special holonomy, which deform the metric away from the original holon-

omy. Nevertheless, in many such cases, including Calabi-Yau compactifications of string

theory and G2-compactifications of M-theory, it has been shown that the deformation

preserves supersymmetry because of associated corrections to the supersymmetry transfor-

mation rules, Here, we consider Spin(7) compactifications in string theory and M-theory,

and a class of non-compact SU(5) backgrounds in M-theory. Supersymmetry survives in

all these cases too, despite the fact that the original special holonomy is perturbed into

general holonomy in each case.
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1. Introduction

An important question in superstring theory is whether there are compactifications to a

lower-dimensional Minkowski spacetime that preserve some fraction of the supersymmetry

of the 10-dimensional Minkowski vacuum. At string tree-level, this question can be ad-

dressed within the α′ expansion of the effective supergravity theory; we shall consider only

type-II string theories for which the leading α′ correction occurs at order α′3 and has an

R4 structure. If fermions are omitted, then the corrected action for the metric and dilaton

takes the form

L =
√−g e−2φ

(
R + 4(∂φ)2 − c α′3 Y

)
(1.1)

for a known constant c, proportional to ζ(3), and a known scalar Y that is quartic in the

Riemann tensor of the 10-dimensional spacetime.
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We shall primarily be concerned with solutions to the equations of motion of this action

for which the dilaton is constant to lowest order and the 10-dimensional spacetime is the

product of 2-dimensional Minkowski spacetime with some initially Ricci-flat riemannian

8-dimensional manifold M8, with curvature tensor Rijk`. In this case,

Y =
1

64

(
ti1···i8 tj1···j8 − 1

4
εi1···i8 εj1···j8

)
Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 Ri7i8j7j8 . (1.2)

≡ Y0 − Y2 , (1.3)

where the SO(8)-invariant t-tensor is defined by

ti1···i8 Mi1i2 . . . Mi7i8 = 24Mi
j Mj

k Mk
` M`

i − 6(Mi
j Mj

i)2 (1.4)

for an arbitrary antisymmetric tensor Mi1i2. Note that in the decomposition Y = Y0 − Y2

in (1.3), the subscripts on Y0 and Y2 indicate that these are the terms built with 0 and 2

epsilon tensors respectively.

If M8 is assumed to be compact, then consistency with the initially nondilatonic struc-

ture requires [1, 2] ∫

M8

Y = O
(
α′) . (1.5)

The simplest way to satisfy this criterion is to demand that Y = 0 to leading order in the

α′ expansion, and this is satisfied if M8 = K8 for some manifold K8 of special holonomy

(which is necessarily Ricci-flat). This is also what one needs for the lowest-order solution

to preserve supersymmetry. The number of supersymmetries preserved equals the number

of linearly-independent Killing spinors; i.e., real SO(8) spinors ψ0 satisfying

Rijk`Γ̃
k`ψ0 = 0 . (1.6)

where Γ̃i are the 16 × 16 real SO(8) Dirac matrices (the notation is chosen to agree with

that of [2]).

To see why one has Y = 0 when M8 = K8 of special holonomy, we note that Y can be

expressed as a Berezin integral [1]

Y ∝
∫

d16ψ exp
[(

ψ̄−Γ̃ij ψ−
) (

ψ̄+Γ̃k` ψ+

)
Rijk`

]
, (1.7)

where ψ̄ = ψT and the integration is over the 16 components of a real anticommuting

constant SO(8) spinor or, equivalently, over all 16 linearly-independent SO(8) spinors ψ.

We can write ψ = ψ++ψ−, where ψ± are the chiral and antichiral projections of ψ. If there

are any Killing spinors amongst them, as there will be if M8 = K8 of special holonomy,

then the rules of Berezin integration imply that Y = 0.

If we use α and α̇ to denote 8-component right-handed and left-handed spinor indices

respectively, then up to an inessential constant factor, (1.7) can be rewritten as

Y = εα1···α8 εβ̇1···β̇8 Γi1i2
α1α2

· · ·Γi7i8
α7α8

Γj1j2

β̇1β̇2
· · ·Γj7j8

β̇7β̇8
×

×Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 Ri7i8j7j8 . (1.8)
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It is straightforward to show that

1

256
εα1···α8 Γi1i2

α1α2
Γi3i3

α3α3
Γi6i6

α5α6
Γi7i8

α7α8
≡ ti1···i8+ = ti1···i8 +

1

2
εi1···i8 , (1.9)

1

256
εβ̇1···β̇8 Γj1j2

β̇1β̇2
Γj3j4

β̇3β̇4
Γj5j6

β̇5β̇6
Γj7j8

β̇7β̇8
≡ ti1···i8− = tj1···j8 − 1

2
εj1···j8 , (1.10)

(with one overall convention choice determining which right-hand side has the plus sign,

and which the minus). Thus we see that (1.7) is of the form t− t+ R4, and hence gives rise

to (1.2).

It might appear from this result that configurations with constant dilaton and a space-

time of the form E
(1,1)×K8 will automatically continue to be solutions of the α′3-corrected

field equations, in which case one would expect the special holonomy of K8 to guarantee

that supersymmetry is preserved. This is true if K8 = T 4 × K4 for a 4-manifold of SU(2)

holonomy (i.e., a hyper-Kähler manifold) but it is false in general because, although Y van-

ishes for a manifold of special holonomy, its variation with respect to the metric yields a

tensor Xij as a source in the corrected Einstein equations, and this tensor may be non-zero

even though Y = 0. Specifically, under the circumstances described, the corrected Einstein

and dilaton equations are to O(α′3)

Rij + 2∇i∇j φ = c α′3 Xij ,

R + 4∇2φ = 0 . (1.11)

When K8 = T 2×K6 for a 6-dimensional manifold of SU(3) holonomy; i.e., when K6 is

a Calabi-Yau (CY) manifold, the correction due to the tensor Xij deforms the leading-order

CY metric to one of U(3) holonomy [3]. However, as shown in [4], this deformation does

not break the supersymmetry of the undeformed solution because there is a compensating

α′3 correction to the gravitino supersymmetry transformation law or, equivalently, to the

covariant derivative acting on spinors. More precisely, it was shown that there is a possible

corrected covariant derivative that has this property; it is expected that this will be needed

for a construction of the supersymmetric extension of the lagrangian (1.1), but this complete

construction has yet to be carried out in sufficient detail. Nevertheless, this perspective

makes it clear that any proposed corrections to the supersymmetry transformations must

be expressible in purely riemannian terms, without the use of any special structures arising

from special holonomy. The proposal of [4] passes this test, which is quite non-trivial in

view of the fact that the methods used (details of which can be found in the review [5]) relie

heavily on the Kähler properties of CY manifolds. It turns out that the purely riemannian

form of the corrected covariant derivative has an obvious extension to 8-manifolds, which

is all that will be needed here, and the result can then be summarised by saying that the

standard covariant derivative ∇i acting on SO(8) spinors must be replaced by

∇̂i = ∇i −
3c

4
α′3

[
(∇j Rikm1m2)Rj`m3m4 Rk`

m5m6

]
Γ̃m1···m6 + O

(
α′4) (1.12)

It is important to appreciate that it was not claimed in [4] that this is the only correction

of relevance to this order in the α′ expansion, but rather that this term is sufficient for

– 3 –
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lowest-order backgrounds of the form E
(1,3) ×K6 and its related toroidal compactifications

such as E
(1,1) × T 2 × K6. In particular, there could be additional terms that are non-zero

for a spacetime of the form E
(1,1) × M8 but which vanish when M8 = T 2 × K6.

It is also important to appreciate that the question of whether or not the special-

holonomy backgrounds continue to be supersymmetric in the face of α′3 corrections is

one that cannot be addressed unless one has knowledge of the order α′3 correction to the

gravitino transformation rule.1 At perturbation orders higher than α′3, there will also

certainly be further corrections. In the present paper, however, we limit the discussion to

at most this order.

Similar issues arise when K8 = S1 × K7 for a 7-manifold K7 of G2 holonomy, as one

would expect since the special case K7 = S1 × K6 yields K8 = T 2 × K6. In particular,

the α′3R4 corrections to supergravity arising from the exchange of massive string states

must deform any lowest-order compactification on a manifold of initial G2 holonomy to a

compactification on a manifold of generic SO(7) holonomy, and it is far from obvious that

such a solution will continue to preserve supersymmetry. Moreover, as G2-manifolds are

not Kähler, the methods used to address this issue in the CY case are no longer available.

However, using the existence of the associative 3-form on a G2 manifold, we were able to

show in a previous paper [2] that there is a simple correction to the covariant derivative

on spinors that implies supersymmetry preservation of the modified solution, and we used

this result to determine the explicit form of the correction for most of the known classes

of cohomogeneity-one 7-metrics with G2 structures (as was done for an analogous class

of CY metrics in [7]). Despite the fact that our simple form of the corrected covariant

derivative made explicit use of the associative 3-form available only for G2 manifolds, it

was again found possible (by making crucial use of properties of G2 manifolds) to rewrite

this corrected covariant derivative in purely riemannian terms. There is again an obvious

extension to 8-manifolds, and the resulting covariant derivative acting on SO(8) spinors

was once again found to be (1.12).

Corrections to the effective supergravity action of the form R4 arise not only at tree

level in string theory but also at the one-loop level. This correction is related by dualities

to an analogous R4 M-theory correction to 11-dimensional supergravity. The latter has a

structure that differs from the R4 tree-level string-theory correction, and it also includes

an A ∧ X8 Chern-Simons (CS) term that is absent at tree level in string theory. However,

for G2 compactifications, these differences are unimportant, so we were able to lift our

string-theory results directly to M-theory. There was a subtlety, however, arising from

the fact that an α′3 correction to the dilaton was needed at tree-level in string theory

whereas there is no dilaton in 11 dimensions. However, the effect of the dilaton in string

theory can be achieved in M-theory by a modification of the R4 invariant via a field

redefinition. We were thus able to show (i) that M-theory implies a modification of G2

compactifications of 11-dimensional supergravity in which the 7-metric of G2 holonomy is

1After the completion of the first version of this paper, but before its submission to the archives, there

appeared a paper [6] having some overlap with our Spin(7) results, but without any discussion of the order

α′3 corrections to the supersymmetry transformation rules that are needed to address the question that is

central here; i.e., whether supersymmetry is maintained in the corrected background.
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deformed to one of generic, SO(7), holonomy, and (ii) that (N = 1) supersymmetry of

the effective four-dimensional theory is maintained, despite this deformation, at least to

order α′3.

One purpose of this paper is to extend our results on G2 compactifications, as sum-

marised above, to Spin(7) compactifications. In this respect this should be considered as

a companion paper to [2]. At tree-level in string theory our Spin(7) results are similar

to those obtained in [2], although there are some additional technical difficulties and sub-

tleties. We also determine explicit supersymmetry-preserving α′3 corrections for some of

the known classes of cohomogeneity-one 8-metrics with Spin(7) structures. At one-loop in

string theory, or in M-theory, however, there are more substantial differences arising from

the necessity to take into account the Chern-Simons terms associated with the R4 correc-

tions, and for compact K8 there is also a topological constraint that must be taken into

account. We find that there is nevertheless a supersymmetric deformation of Spin(7) com-

pactifications of M-theory, and hence of 1-loop corrected IIA superstring theory, whether

or not the Spin(7) manifold is actually compact.

Another purpose of this paper is to consider the effects of the R4 corrections of M-

theory on compactifications of eleven-dimensional supergravity on ten-manifolds of SU(5)

holonomy. This is of considerable interest because it probes aspects of M-theory lying

beyond those that are accessible from perturbative string theory. We find corrections to the

leading-order backgrounds, and we also consider their supersymmetry. As for the Spin(7)

compactifications, there is a topological constraint to take into account. This constraint

arises for any SU(5)-holonomy 10-manifold K10 with non-trivial homology group H8. As

H8 is isomorphic to H2 for any compact 10-manifold (by Poincaré duality) and since H2 is

obviously non-trivial (because K10 is Kähler), there is a topological constraint on SU(5)-

holonomy compactifications of M-theory, and this constraint even applies to non-compact

backgrounds if H8 is non-trivial. The implications for supersymmetry of of this topological

constraint are not at present fully clear to us, so we shall restrict ourselves here to the class

of non-compact 10-manifolds K10 of SU(5) holonomy for which H8 is trivial and for which

the topological constraint is therefore trivially satisfied. Even so, our results for this case are

worthy of note; we find that the same correction to the gravitino transformation rule that

ensured the continued supersymmetry of the Spin(7) holonomy backgrounds also implies

that the corrected SU(5) holonomy backgrounds maintain supersymmetry. Interestingly,

the corrected SU(5) background is no longer even Kähler, but it is still a complex manifold

of vanishing first Chern class.

2. Spin(7) preliminaries

As pointed out in [2], the structure of the R4 invariant Y implies that the tensor Xij , which

arises from the variation of Y and which appears in the corrected Einstein field equation,

takes the form

Xij = X̃ij + ∇k∇`Xijk` (2.1)

for a tensor X̃ij , quartic in the curvatures and a tensor Xijk` that is cubic in curvatures.

We will show in this section that if the variational expression Xij is then evaluated in a

– 5 –
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background that has Spin(7) holonomy, then

X̃ij = 0 (2.2)

and in fact Xij is given by

Xij =
1

2
cmnk

(i cpq`
j) ∇k ∇` Zmnpq + ∇k ∇` Zmnk(i c

mn`
j) , (2.3)

where cijk` is the calibrating 4-form on the Spin(7) holonomy background, and

Zmnpq =
1

64
εmni1···i6 εpqj1···j6 Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 . (2.4)

2.1 Properties of Spin(7) manifolds

We begin with some basic results about Spin(7) manifolds. There is a single real (commut-

ing) Killing spinor, η, that is either chiral or anti-chiral. We choose conventions in which

η is anti-chiral, corresponding to the Spin(7) decomposition

8+ −→ 8 , 8− −→ 7 + 1 . (2.5)

of the chiral/anti-chiral spinor irreps of SO(8). Note that the vector representation of

SO(8) remains irreducible:

8v −→ 8 . (2.6)

We shall normalise the commuting Killing spinor η so that η̄ η = 1 (where η̄ = ηT ).

Given this normalisation, and introducing Γ9 as the (real) SO(8) chirality matrix, we have

the identities

Γi η η̄ Γi =
�
+ , η η̄ − 1

8
Γij η η̄ Γij =

�
− (2.7)

where
�
± ≡ 1

2
(
�± Γ9) , (2.8)

which is the identity operator projected into the chiral or anti-chiral spin bundle.

The calibrating 4-form has components that are expressible as

cijk` = η̄ Γijk` η . (2.9)

It is straightforward to establish the following identities:

cijk` Γk` η = −6Γij η , (2.10)

cijkp c`mnp = 6δ`mn
ijk − 36δ[i

[` cjk]
mn] . (2.11)

Recalling the Killing spinor integrability condition Rijk`Γ̃
k`η = 0, one can also show that

Rijk` ck`
mn = 2Rijmn ; (2.12)

this is the condition for Spin(7) holonomy.

– 6 –
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2.2 Correction to the Einstein equations

In order to derive the α′3 corrections to the Einstein equations at string tree level, we need

to evaluate the variation of the quartic-curvature term Y . This was relatively straightfor-

ward in the case of corrections to six-dimensional Calabi-Yau backgrounds K6, [3], and for

corrections to seven-dimensional G2-holonomy backgrounds K7 [2]. The reason for this is

that in each case, one has SO(8) Killing spinors of both chiralities in the K8 = R
2 × K6,

or K8 = R × K7 eight-dimensional transverse space. This means that when one varies the

metrics or vielbeins in the Berezin integral (1.7), the only terms that can survive are those

where the metrics in one of the Riemann tensors itself are varied. This is because they

are the only terms where one does not inevitably end up with Killing spinors linked to an

unvaried Riemann tensor and thus vanishing by virtue of (1.6).

Additionally, because of the non-chiral nature of the Killing spinors in K8 in the

previous cases, it was straightforward to express the variation of Y , originally written in

terms of spinors in the Berezin integral (1.7), in terms of tensorial quantities built from

Riemann tensors and the Kähler form of K6 or the associative 3-form of K7. This stemmed

from the fact that for both chiral and antichiral SO(8) spinors, one had decompositions

under SU(3) or G2 that provided a one-to-one mapping between the vector and the spinor

representation in K6 or K7.

In the case of Spin(7) holonomy manifolds K8 things are more subtle for two reasons.

Firstly, we have a Killing spinor of only one eight-dimensional chirality, which we are taking,

by convention choice, to be antichiral. This means that we could, a priori, encounter non-

vanishing terms in the variation of Y , defined in (1.7), in which vielbeins used in contracting

the Riemann tensors onto the Dirac matrices are varied, leaving all four Riemann tensors

unvaried.

Secondly, we can see from (2.5) and (2.6) that, while the 8+ spinor representation of

SO(8) is indeed isomorphic to the 8v vector representation in a Spin(7) background, the

8− spinor representation is not. This could lead to obstacles in rewriting the variation of

Y , given by (1.7), in a purely tensorial form.

To address these problems, it is helpful to introduce two further quartic-curvature

invariants, which we shall call Y− and Y+. These are defined in terms of Berezin integrals

analogous to (1.7), except that now we have

Y+ ∝
∫

d8ψ+ d8χ+ exp
[(

ψ̄+Γ̃ij ψ+

)(
χ̄+Γ̃k` χ+

)
Rijk`

]
. (2.13)

Y− ∝
∫

d8ψ− d8χ− exp
[(

ψ̄−Γ̃ij ψ−
)(

χ̄−Γ̃k` χ−
)

Rijk`

]
, (2.14)

The integration in (2.13) is over two independent sets of chiral SO(8) spinors, while in (2.14)

it is over independent two sets of antichiral spinors. From (1.9) and (1.10), we see that Y+

and Y− are given by

Y± =
1

64
ti1···i8± tj1···j8± Ri1i2j1j2 · · ·Ri7i8j7j8 ,

=
1

64

(
ti1···i8 tj1···j8 ± ti1···i8 εj1···j8 +

1

4
εi1···i8 εj1···j8

)
Ri1i2j1j2 · · ·Ri7i8j7j8 , (2.15)

– 7 –
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≡ Y0 ± Y1 + Y2 , (2.16)

where Y0 and Y2 are the same as in (1.3), and Y1 is the term in (2.15) that is linear in the

epsilon tensor.

A crucial property of the invariants Y± is that they differ from the actual effective

action contribution Y by terms that are purely topological in D = 8:

Y± − Y = ±Y1 + 2Y2 =

(
±ti1···i8 +

1

2
εi1···i8

)
εj1···j8 Ri1i2j1j2 · · ·Ri7i8j7j8 . (2.17)

As an 8-form, written in terms of the curvature 2-forms Θij , the difference is given by

∗(Y± − Y ) = 16

(
±ti1···i8 +

1

2
εi1···i8

)
Θi1i2 ∧ · · · ∧ Θi7i8 , (2.18)

which makes the topological nature manifest. Because of this, the integrals of Y , Y+ and

Y− all have the same variation,2 evaluated on an eight-dimensional curved background,

and so we can use either Y+ or Y− in place of Y for the purpose of computing the variation

Xij (even though Y+ does not vanish in the special-holonomy background).3

Each of the Y± has its own advantages and disadvantages, when used in place of Y

to calculate the variation Xij . If we vary Y−, then it is manifest that no terms from the

variation of the bare vielbeins contracting Riemann tensors Rµ
νρσ onto Dirac matrices Γij

will survive in the Berezin integration. This is because we will always have a contribution

either of the form Rijk` Γk` η or Γijη Rijk` in every term where the explicit vielbeins are

varied, and these then vanish by virtue of the integrability condition for the (antichiral)

Killing spinor. Thus only terms arising from the variation of metrics contained within the

connections from which Rµ
νρσ is composed will survive. This means that, after integration

by parts, the variation of Y− will necessarily involve only terms constructed from two

covariant derivatives acting on (Riemann)3 structures, and that there will be no terms

quartic in Riemann tensors without derivatives. The drawback to using Y−, however, is

that there is no isomorphism between the decompositions of the 8− and 8v representations

of SO(8) under restriction to Spin(7), and therefore we do not have a simple direct way of

re-expressing δY− in purely bosonic tensorial terms.

On the other hand, if we vary Y+ then the isomorphism between the irreducible 8+

and 8v representations of SO(8) under restriction to Spin(7) does in this case provide us

2To be precise, when we say that Y , Y+ and Y− all have the same variation, we mean that their

variations differ by total derivatives. At string tree level, where these quantities are multiplied by e−2φ,

the total derivatives will integrate by parts to give contributions involving derivatives of the dilaton when

comparing the corrected Einstein equations. However, since the Y term is accompanied by an explicit

α′3 factor, and since the dilaton is constant in the leading-order background these extra derivative terms

contribute at best at order α′6 in the corrected Einstein equations, and thus they may be neglected at the

α′3 order to which we are working. At string one-loop, or in M-theory, there is no dilaton prefactor, and

so the integration by parts simply gives zero.
3We should note, because a failure to do so has caused some confusion in the earlier literature, that the

computed result for the Berezin integral for Y that is given in ref. [1] is actually the result obtained by

computing the Berezin integral for Y+, but since Y+ = Y for the CY compactifications considered there,

and since the variations are also the same, the distinction was unimportant there. In our case, however,

the distinction is important.
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with a simple way to recast δY+ in purely bosonic tensorial terms. The drawback to using

Y+, however, is that there are no spinor zero modes at all in the Berezin integral (2.13),

and so it is not immediately manifest that the terms coming from the variation of the bare

vielbeins that contract Riemann tensors Rµ
νρσ onto Dirac matrices Γij will not contribute.

Indeed, Y+ itself does not even vanish in the Spin(7) background.

We can however make use of the complementary properties that are manifested in

the different expressions Y , Y+ and Y−, and thereby “have our cake and eat it too.” In

particular, we note that the difference Y+ − Y− is also topological,

Y+ − Y− = 2ti1···i8 εj1···j8 Ri1i2j1j2 · · ·Ri7i8j7j8 , (2.19)

which means that after the varied expression is specialised to a Spin(7) background, we must

have it that δY− and δY+ give the same contribution to the corrected Einstein equations,

at order α′3. In particular, we can see that (2.19) may be written in terms of Riemann

tensors Rµ
νρσ without the use of any bare metrics or vielbeins. We can now invoke the

above observation that the variation of Y− does not contain any terms coming from the

variation of bare vielbeins to see that there will be no such terms in the variation of Y+

either. Then, we are in a position to exploit the isomorphism between the decompositions

of the 8+ and 8v representations of SO(8) under restriction to Spin(7) to obtain a simple

tensorial expression for δY+, and hence δY .

It follows from (1.9) and (2.15) that we shall have

Y+ ∝ εα1···α8 εβ1···β8 Γi1i2
α1α2

· · ·Γi7i8
α7α8

Γj1j2
β1β2

· · ·Γj7j8
β7β8

×
×Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 Ri7i8j7j8 . (2.20)

Because the 8+ and 8v representation become the same irreducible representation of

Spin(7), the expression (2.20) can be rewritten such that only vector indices are needed.

Specifically, the mapping between 8+ and 8v is implemented by

νi
α = Γi

αβ̇
ηβ̇ . (2.21)

This matrix has unit determinant, and so we can write

εα1···α8 = να1
i1

· · · να8
i8

εi1···i8 . (2.22)

Since we have argued that there will be no contributions coming from varying the bare

vielbeins in (2.20), after specialising the varied expression to a Spin(7) background, we

need only vary the metrics in the connections from which the Riemann tensors themselves

are constructed. Up to a constant factor, which is as yet inessential to our discussion, we

therefore have

δY+ = 4εα1···α8 εβ1···β8 (Γi1i2)α1α2 · · · (Γi7i8)α7α8 (Γj1j2)β1β2 · · · (Γj7j8)β7β8 ×
×Ri1i2j1j2 · · ·Ri5i6j5j6 δRi7i8j7j8 ,

= 8εα1···α8 εβ1···β8 (Γi1i2)α1α2 · · · (Γi7i8)α7α8 (Γj1j2)β1β2 · · · (Γj7j8)β7β8 ×
×Ri1i2j1j2 · · ·Ri5i6j5j6 ∇i7∇j7 δgi8j8 . (2.23)

where δRi7i8j7j8 denotes the variation of the Riemann tensor with respect to the metric.
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From the properties (2.10) and (2.11), one easily shows that

η̄ Γi Γk` Γj η = cij
k` + 2δk`

ij , (2.24)

and hence, using (2.12) repeatedly, we see that up to a further inessential overall factor

(and specialised to the Spin(7) background) we have

δY+ = Zmnpq (cmn
ij + 2δij

mn) (cpq
k` + 2δk`

pq) δRijk` (2.25)

where

Zmnpq =
1

64
εmni1···i6 εpqj1···j6 Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 . (2.26)

The following useful properties of Zmnpq can easily be established:

Zmnpq = Zpqmn = −Znmpq = −Zmnqp ,

∇m Zmnpq = 0 , cmnpr Zmnpq = 0 . (2.27)

We therefore conclude that the variation of Y gives

Xij =
1

2
cmnk

(i c
pq`

j) ∇k ∇` Zmnpq + ∇k ∇` Zmnk(i cmn`
j) . (2.28)

Note that a simple calculation using (2.10), (2.11), (2.12) and (2.27) shows that

gij Xij = ¤Z , (2.29)

and hence from (1.11) we learn that

Rij = c α′3 (Xij + ∇i∇j Z) , (2.30)

φ = −1

2
c α′3 Z . (2.31)

3. Correction to the supersymmetry transformation rule

Since the effect of the α′3 corrections is to deform the original Spin(7) metric to one that

is no longer Ricci flat, it follows that it will no longer have Spin(7) holonomy and so

it will no longer admit a covariantly constant spinor. However, one knows that at the

same time as the α′3 corrections to the string effective action set in, there also will be

corresponding corrections to the supersymmetry transformation rules at the α′3 order.

These were discussed in the context of six-dimensional Calabi-Yau backgrounds in refs. [4,

5], where it was indeed shown that the deformed metrics, which acquire an extra U(1)

factor to their original undeformed SU(3) holonomy, have the feature of still admitting

spinors that are constant with respect to a modified covariant derivative. This O(α′3)
modification can be understood as the necessary correction to the gravitino transformation

rule at this order. This issue was discussed further for Calabi-Yau backgrounds in [7], and

for seven-dimensional backgrounds with G2 holonomy in [2].4

4It should be emphasised that if these order α′3 corrections to the supersymmetry transformation rule

are not included, then one will not be able to demonstrate the preservation of supersymmetry in the

α′3-corrected backgrounds.
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Here, we shall begin by introducing the following modified covariant derivative,5

Di ≡ ∇i + Qi = ∇i +
1

4
c α′3 cijk` ∇j Zk`mn Γmn . (3.1)

where the Z-tensor is the one defined in (2.26). After some algebra, which involves making

extensive use of properties given in subsection 2.1, one finds that the integrability condition

[Di,Dj ] η = 0 for the existence of a spinor satisfying Di η = 0 precisely implies that (2.30)

holds. This, therefore, is our candidate expression for the modification to the gravitino

transformation rule in an originally Spin(7) background; δψi = Di ε.

As it stands, (3.1) is written using the special tensor cijk` specific to a Spin(7) back-

ground. One knows, of course, that the modified supersymmetry transformation rules

(and also the modified equations of motion) should all be expressible in fully covariant

riemannian terms, making no use of additional invariant tensors that exist only in special

backgrounds. This question has been addressed for Calabi-Yau and G2 backgrounds in

the previous literature [4, 2], and indeed the candidate expressions for the modified su-

persymmetry transformation rules that were written down in [4, 5] were fully riemannian

expressions that were shown to be compatible with special forms written in Kähler lan-

guage. In [2], it was shown that the riemannian expressions in [4, 5] were also compatible

with a special form written using the calibrating 3-form in a G2 background.

Here, we shall show that the modified derivative Di defined in (3.1) can be re-expressed

without the use of the special tensor cijk` of a Spin(7) background, and that in fact (3.1) is

nothing but the Spin(7) specialisation of the riemannian results conjectured in refs. [4, 5].

To do this, it is useful first to note that we have

cijk` εk`i1···i6 = η̄ Γijk Γ` η εk`i1···i6 = η̄ Γijk Γkii···i6η ,

= −4δ
[i1i2
ij ci3i4i5i6] , (3.2)

and hence

Qi =
1

64
c α′3 δ

[i1i2
ij ci3i4i5i6] εmnj1···j6 ∇j (Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6) Γmn (3.3)

Since all the permutations of the indices {i1 · · · i6} involve at least one of the Riemann

tensors having a double contraction with cijk`, it follows that we can make use (2.12)

and thereby absorb all occurrences of this special tensor. After performing the necessary

combinatoric manipulations, and some further simplifications using the Bianchi identity

for the Riemann tensor, we arrive at the result

Qi = −3

4
c α′3 (∇j Rikm1m2)Rj`m3m4 Rk`

m5m6 Γm1···m6 . (3.4)

In this form, Qi can be recognised as precisely the same modification to the Killing spinor

condition that was proposed in [4]. In that case, the proposal was based on a consideration

5Note that for our present purposes, where we are simply concerned with establishing the circumstances

under which a Killing spinor exists, we may view two formulations of a gravitino transformation rule as

equivalent if they agree when acting on the putative Killing spinor. Here, as in much of the previous

literature, we shall commonly adopt this viewpoint.
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of deformations from SU(3) holonomy for six-dimensional Calabi-Yau backgrounds. It was

also shown in [2] that the more stringent conditions arising for G2 backgrounds lead to

exactly the same modification to the Killing spinor condition. Here, we have shown that

the yet more stringent conditions of a Spin(7) background again yield the same result,

confirming the validity of the riemannian expression (3.4) that was conjectured in [4].

Of course since a six-dimensional space of SU(3) holonomy (times a line or circle) is

just a special case of a G2 manifold, and a seven-dimensional space of G2 holonomy (times

a line or circle) is a special case of a Spin(7) manifold, it follows that our derivation here

encompasses the previous SU(3) and G2 results in [4] and [2].

4. α
′3 corrections for eight-dimensional Kähler metrics

An eight-dimensional Ricci-flat Kähler metric is a Spin(7) metric, since its SU(4) holonomy

is contained within Spin(7). Specifically, the embedding can be seen by examining the

decomposition of the three eight-dimensional representations of the SO(8) tangent-space

group first to Spin(7) and then to SU(4):

SO(8) Spin(7) SU(4)

8+ −→ 8 −→ 4 + 4

8− −→ 7 + 1 −→ 6 + 1 + 1

8v −→ 8 −→ 4 + 4

The two singlets in the decomposition of the 8− under SU(4) indicate that there are

two covariantly-constant left-handed Majorana-Weyl spinors, say η1 and η2, in the SU(4)-

holonomy metric, which we may normalise to η̄A ηB = δAB . From these, we may define

complex left-handed spinors η± and η̄± as

η± ≡ 1√
2

(η1 ± i η2) , η̄± ≡ 1√
2

(η̄1 ± i η̄2) . (4.1)

We shall then have

Jij = i η̄+ Γij η− = η̄1 Γij η2 , 3J[ij Jk`] = η̄+ Γijk` η− ,

Ωijk` = η̄+ Γijk` η+ , Ωijk` = η̄− Γijk` η− , (4.2)

where Jij is the Kähler form, and Ωijk` is the holomorphic 4-form, with its complex con-

jugate Ωijk`.

We may take the calibrating 4-form cijk` of the SU(4) metric, viewed as a Spin(7)

metric, to be given by cijk` = η̄1 Γijk` η1. It then follows from (4.2) that we shall have

cijk` =
1

2
(Ωijk` + Ωijk`) + 3J[ij Jk`] . (4.3)

In a Kähler metric, the only non-vanishing components of the Riemann tensor are “mixed”

on both the first index-pair and the second index-pair. In other words if the i index on Rijk`

is holomorphic then j must be antiholomorphic, and vice versa, with a similar property for
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k and `. From the definition (2.26) of Zmnpq, it then follows that this tensor must similarly

be mixed on its mn indices and in its pq indices. From this, it follows that

Ωijmn Zmnpq = 0 , (4.4)

together with similar relations following from symmetries and from conjugation. A Kähler

metric also has the property that

Jk
m J`

n Rijmn = Rijk` , (4.5)

together with the analogous property on the first index-pair. These expressions can be

written more elegantly using the “hat” notation introduce in [8], where, for any vector Vi,

one defines

Vî ≡ Ji
j Vj . (4.6)

Thus (4.5) becomes Rîĵk` = Rijk`. From (2.26), it therefore follows that

Z îĵpq = Zijpq , Zmnîĵ = Zmnij . (4.7)

Using the above results, it is now straightforward to show that the expression for Xij

that we obtained for a Spin(7) background in (2.28) reduces to

Xij =
1

2
∇î ∇ĵ (Jmn Jpq Zmnpq) (4.8)

in an eight-dimensional Ricci-flat Kähler background. After a little further manipulation,

we find that the result (2.30) for the α′3 correction to the Ricci-flatness condition in a

Spin(7) background reduces for an eight-dimensional Ricci-flat Kähler background to the

corrected condition

Rij = c α′3 (∇î ∇ĵ + ∇i ∇j)Z , (4.9)

where, as before, we have defined Z ≡ Zmn
mn. This is in agreement with the standard

result that one obtains from the calculation of the supersymmetric sigma-model beta-

function at four loops.

In a similar manner, we can specialise the Spin(7) correction term Qi in the spinor

covariant derivative Di = ∇i + Qi to the case of an eight-dimensional Ricci-flat Kähler

metric. Using the properties discussed above, we find that Qi defined in (3.1) reduces to

Qi =
1

4
c α′3 ∇î (Jk` Zk`mn) Γmn . (4.10)

It was shown in [7] that when acting on a covariantly-constant spinor in a Kähler back-

ground one has

(Γij + Γîĵ) η = 2iJij η , (4.11)

and hence it follows that when acting on η, the modified covariant derivative in the de-

formed background reduces to

Di η = ∇i η +
i

4
c α′3 ∇î (Jk` Jmn Zk`mn) η ,

= ∇i η +
i

2
c α′3 (∇î Z) η . (4.12)

This last expression agrees with the one given in refs. [4, 7].
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5. Explicit examples

5.1 S7 principal orbits

Following [9], we introduce left-invariant 1-forms LAB for the group manifold SO(5). These

satisfy LAB = −LBA, and

dLAB = LAC ∧ LCB . (5.1)

The 7-sphere is then given by the coset SO(5)/SU(2)L, where we take the obvious SO(4)

subgroup of SO(5), and write it (locally) as SU(2)L × SU(2)R.

If we take the indices A and B in LAB to range over the values 0 ≤ A ≤ 4, and split

them as A = (a, 4), with 0 ≤ a ≤ 3, then the SO(4) subgroup is given by Lab. This is

decomposed as SU(2)L ×SU(2)R, with the two sets of SU(2) 1-forms given by the self-dual

and anti-self-dual combinations:

Ri =
1

2

(
L0i +

1

2
εijk Ljk

)
, Li =

1

2

(
L0i −

1

2
εijk Ljk

)
, (5.2)

where 1 ≤ i ≤ 3. Thus the seven 1-forms in the S7 coset will be

Pa ≡ La4 , R1 , R2 , R3 . (5.3)

The most general cohomogeneity-one metric ansatz for these S7 principal orbits is

ds2
8 = dt2 + a2

i R2
i + b2 P 2

a . (5.4)

Several complete nonsingular Spin(7) metrics are contained within this class, including

the original asymptotically conical (AC) example found in refs. [10, 11], which is uniaxial,

a1 = a2 = a3, and the family of asymptotically locally conical (ALC) examples found

in [12], which are biaxial, with (say) a1 = a2.

In the natural orthonormal basis for (5.4), namely

e0 = dt , ei = ai Ri , ea = b Pa , (5.5)

the calibrating 4-form has components cijk` given by

1 = −c0123 = c0145 = c0167 = c0246 = −c0257 = c0347 = c0356 ,

= c1247 = c1256 = −c1346 = c1357 = c2345 = c2367 = −c4567 , (5.6)

where we have assigned explicit index values i = 1, 2, 3 and a = 4, 5, 6, 7. It is now a

straightforward mechanical exercise, most easily implemented by computer, to solve first

for the covariantly-constant spinor η in the unmodified Spin(7) background, yielding first-

order equations for the metric functions ai and b, and then to find the α′3-corrected first-

order equations that follow from imposing Di η = 0, where Di is given in (3.1).6 The

6Note that when we do this, we assume that η retains the identical form that it had in the uncorrected

Ricci-flat background. The test of the validity of this assumption is that the corrected first-order equations

we obtain under this assumption do indeed imply that the corrected second-order Einstein equations (1.11)

are satisfied.
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first-order equations in the general triaxial case are rather complicated, and are not easily

presentable in this paper. Here, we shall just give our results in the uniaxial special case,

where the three metric functions ai are set equal, ai = a. We then find that a and b must

satisfy
ȧ

a
=

1

a
− a

2b2
− c α′3 Ṡ1 ,

ḃ

b
=

3a

4b2
− c α′3 Ṡ2 , (5.7)

where c is the usual constant that we introduced in (1.1), and

S1 =
64239a6 − 227052a4b2 + 269712a2b4 − 101440b6

1064b12
,

S2 =
3(−4389a6 + 16821a4b2 − 20997a2b4 + 8756b6)

133b12
. (5.8)

We can integrate the equations (5.7) to give

b(r)2 =
3

2
e−2c α′3 S̄2(r)

∫ r

e2c α′3 S̄2(r′) dr′ ,

a(r)2 = 2b(r)−
4
3 e−c α′3 (2S̄1(r)+ 4

3
S̄2(r))

∫ r

b(r′)
4
3 ec α′3 (2S̄1(r′)+ 4

3
S̄2(r′))dr′ , (5.9)

where the variable r is defined by dr = a dt and the bars on S1 and S2 denote that these

quantities are evaluated in the leading-order background.

5.2 SU(3)/U(1) principal orbits

The cosets SU(3)/U(1), known as Aloff-Wallach spaces N(k, `), are characterised by two

integers k and `, which define the embedding of the U(1) subgroup h of SU(3) matrices

according to

h = diag(ei k θ, ei ` θ, e−i (k+`) θ) . (5.10)

If one defines m = −k − `, it is evident that there is an S3 symmetry given by the

permutations of (k, `,−k − `).

We define left-invariant 1-forms LA
B for SU(3), where A = 1, 2, 3, LA

A = 0, (LA
B)† =

LB
A and dLA

B = iLA
C ∧ LC

B, and introduce the combinations

σ ≡ L1
3 , Σ ≡ L2

3 , ν ≡ L1
2 ,

λ ≡
√

2 cos δ̃ L1
1 +

√
2 sin δ̃ L2

2 ,

Q ≡ −
√

2 sin δ̃ L1
1 +

√
2 cos δ̃ L2

2 , (5.11)

where Q is taken to be the U(1) generator lying outside the SU(3)/U(1) coset, and

k

`
= − tan δ̃ . (5.12)

Thus δ̃ is restricted to an infinite discrete set of values.

We shall follow [12] and use real left-invariant 1-forms defined by σ = σ1 + iσ2, Σ =

Σ1 + iΣ2 and ν = ν1 + i ν2. The cohomogeneity one metrics can then be written as

ds2
8 = dt2 + a2 σ2

i + b2 Σ2
i + c2 ν2

i + f2 λ2 , (5.13)
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where a, b, c and f are functions of the radial coordinate t. Using the Killing spinor

equations that we have derived in this paper, we obtain the first-order equations for this

system up to α′3 order, given by

ȧ

a
=

b2 + c2 − a2

abc
−

√
2 f cos δ̃

a2
− α′3 K1 ,

ḃ

b
=

a2 + c2 − b2

abc
+

√
2 f cos δ̃

b2
− α′3 K2 ,

ċ

c
=

a2 + b2 − c2

abc
+

√
2 f (cos δ̃ − sin δ̃)

c2
− α′3 K3 ,

ḟ

f
= −

√
2 f (cos δ̃ − sin δ̃)

c2
+

√
2 f cos δ̃

a2
−

√
2 f sin δ̃

b2
− α3 K4 , (5.14)

where the Ki’s are polynomial functions in a, b, c and f . (We have temporarily absorbed

the constant c into α′3 in the discussion of this example, to avoid confusion with the

metric function c.) We have explicitly verified that these first-order equations satisfy the

generalised higher-order second-order Einstein equations. Owing to the complexity of the

expressions for the Ki’s, we shall not present their general form, but give only a certain

specific example.

Local solutions of the first-order equations for Spin(7) holonomy exist for all values of

k and ` [12]. In general these have conical singularities, but in the special case N(1, 0), or

its permutation-related cousins N(0, 1) or N(1,−1), then the solution, first found in [13],

is complete and non-singular. The solution is given by

ā =
√

(r − 1)(r + 5) , b̄ = (r + 1) , c̄ =
√

r2 − 9 , f̄ = −
√

9(r − 3)(r + 5)

2(r + 3)(r − 1)
,

(5.15)

where the coordinate r is related to t by dt = hdr ≡ − 3√
2
f−1 dr. Note that we use barred

notation to denote the background variables. For this specific metric, we find that

K1 =
162(4r8 − 13r7 − 83r6 − 409r5 + 81r4 − 1351r3 − 3993r2 − 39955r − 97641

h (r − 1)8(r + 3)7
,

K2 =
648(r + 1)(r6 + 6r5 − 18r4 − 112r3 − 91r2 + 58r − 5604)

h (r − 1)7(r + 3)7
,

K3 =
162(4r8+ 77r7+ 547r6+ 2297r5+ 7311r4+ 19527r3+ 34761r2+ 69491r − 11135)

h (r − 1)7(r + 3)8
,

K4 =
2592(r + 1)(r2 + 2r − 43)(3r4 + 12r3 − 170r2 − 364r − 1049)

h (r − 1)8(r + 3)8
. (5.16)

6. Deformation of Spin(7) compactifications of M-theory

In this section, we now consider analogous corrections to an initial (Minkowski)3 × K8

background in M-theory, which is related by dimensional reduction to type-IIA string

theory at the one string-loop level. To begin, we give a general discussion of the known

correction terms in the M-theory effective action.
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6.1 Corrections to (Minkowski)3 × K8 backgrounds

The corrections to the D = 11 bosonic lagrangian, which correspond to the lift of 1-loop

corrections in the type-IIA string, take the form

L1 = − β

1152
(Ŷ + 2Ŷ2 + · · ·) ∗̂� + β (2π)4 Â(3) ∧ X̂(8) , (6.1)

where X̂(8) is given by

X̂(8) =
1

192 (2π)4

[
tr Θ̂4 − 1

4
(tr Θ̂2)2

]
, (6.2)

and Ŷ and Ŷ2 are eleven-dimensional analogues of the ten-dimensional quantities Y and

Y2 described in section 2, but now with the summation index ranges extended to 11 rather

than 10 values. In particular, Ŷ2 is proportional to the covariant generalisation of the

eight-dimensional Euler integrand,

Ŷ2 =
315

2
R̂[M1M2

M1M2 · · · R̂M7M8]
M7M8 . (6.3)

The constant β now takes on the rôle played by α′3 in string theory, and we shall work to

order β in the subsequent discussion.

The ellipses in (6.1) represent terms that vanish by use of the leading-order field equa-

tions, and which therefore can be adjusted by choice of field variables. These changes of

variable do not, of course, affect the physics, but they can be used to advantage in order

to make the discussion more elegant. By adding a specific term of this type, we shall be

able to ensure that the corrected equations of motion describing the modification to the

Spin(7) holonomy internal space are the same as those that we found at tree-level in string

theory. To achieve this, we shall take the bracketed volume term in (6.1) to be

Ŵ = Ŷ + 2Ŷ2 − R̂ Ẑ , (6.4)

and so

L1 = − β

1152
Ŵ ∗̂� + (2π)4 β Â(3) ∧ X̂(8) , (6.5)

The additional R̂ Ẑ term is introduced for convenience by a field rededinition of the metric,

as in [2], to compensate for the absence of a dilaton in M-theory. It does not change the

physics, but it renders the equations more elegant.

The variation δ
∫ √−ĝ Ŷ d11x ≡

∫ √−ĝ ŶMN δĝMN d11x yields

Ŷµν = 0 , Ŷij = Xij , (6.6)

in the 3-dimensional spacetime and the internal 8-dimensional manifold respectively, af-

ter imposing the leading-order (Minkowski)3 × M8 background conditions, where M8 is a

Spin(7) manifold. The tensor Xij is given by (2.28). Varying Ŷ ′ ≡ (Ŷ − R̂ Ẑ) instead of

Ŷ , we find

Ŷ ′
µν = −gµν ¤Z , Ŷ ′

ij = Xij + ∇i∇jZ − gij ¤Z , (6.7)
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after imposing the (Minkowski)3 × M8 background equations. The variation of the addi-

tional D = 8 Euler integrand term 2Ŷ2
√−ĝ yields a contribution −ĝµν Ŷ2 in the 3 spacetime

directions, and zero in the internal directions (since Ŷ2 is topological in eight dimensions).

The variation of the full Ŵ term in the M-theory effective action therefore leads to the

corrected Einstein equations

R̂µν − 1

2
R̂ ĝµν = − β

1152
(¤Z + Y2) gµν , (6.8)

R̂ij −
1

2
R̂ ĝij =

β

1152
(Xij + ∇i∇j Z − gij ¤Z) , (6.9)

after imposing the (Minkowski)3 ×M8 structure in the β correction terms. We do not need

to include the energy-momentum tensor of the 4-form here, since F̂(4) is taken to vanish at

leading order, and thus it itself will be of order β in the corrected solutions and so it would

contribute only at order β2 in the Einstein equations. For the same reason, we do not

need to include the contribution to the Einstein equation that would come from varying

the metrics in the Â3 ∧ X̂8 term in (6.5), since it already carries a factor of β, and since

the resulting F̂4 will also be small, of order β.

The corrected field equation for F̂(4) is

d∗̂F̂(4) =
1

2
F̂(4) ∧ F̂(4) + (2π)4 β X̂(8) . (6.10)

The 4-form and the eleven-dimensional metric will be required to have the 3-dimensional

Poincaré invariance of the leading-order solution, which implies that we can write

dŝ2
11 = e2A ηµν dxµ dxν + e−A ds2

8 , (6.11)

F̂4 = d3x ∧ df + G(4) , (6.12)

where A and f are functions only of the coordinates on M8, and G(4) is a 4-form residing

purely in the internal space.

6.2 Spin(7) non-compact solutions

The discussion that follows will be similar to one given in ref. [15]. Since we are working

only to order β in this discussion, we can consider separately the contributions of the two

terms in the field-strength ansatz (6.12). The former is obligatory, in the sense that the

local equation of motion (6.10) forces f to become non-zero (and of order β). In contrast,

the inclusion of the second term G(4) in (6.12) is optional if the “internal” space K8 is

non-compact; in particular it can be chosen to be zero. To proceed, we consider this case

first, subsequently returning to consider the modifications needed for compact K8.

The Ricci tensor of the metric (6.11) has non-vanishing coordinate-frame components

given by

R̂µν = −e3A
¤Aηµν , (6.13)

R̂ij = Rij +
1

2
¤Agij −

9

2
∇iA∇jA , (6.14)

– 18 –



J
H
E
P
0
7
(
2
0
0
5
)
0
7
5

where Rij is the Ricci tensor of ds2
8 = gij dyi dyj . Note that since we shall be working to

order β, and since the leading-order background is dŝ2
11 = ηµν dxµ dxν + ds2

8 where ds2
8 is

Ricci-flat, we may neglect the terms quadratic in ∇A in the expression for R̂ij, since we

shall have

A = 0 + O(β) . (6.15)

Similarly, exponential factors of eA that multiply quantities that are already of order β may

be replaced by 1. We shall drop all such higher-order terms in what follows. In particular,

we may write (6.14) simply as

R̂µν = −¤Aηµν , (6.16)

R̂ij = Rij +
1

2
¤Agij . (6.17)

From (6.16) and (6.17) we find R̂ = R+¤A, and hence by substituting (6.17) into (6.9)

we find

Rij −
1

2
R gij =

β

1152
(Xij + ∇i∇j Z − gij ¤Z) . (6.18)

Taking the trace gives R = (β/576)¤Z, and hence (6.18) yields

Rij =
β

1152
(Xij + ∇i∇j Z) . (6.19)

From (6.8) we then find

¤A =
β

1728
Y2 . (6.20)

Equations (6.19) and (6.20) comprise the final expressions that follow from the cor-

rected Einstein equations (6.8) and (6.9). It is important to note that all terms involving

¤Z have cancelled.7 This depends, in particular, on the fact that Xij gij = ¤Z, which was

shown for a Spin(7) background in (2.29). Note that the correction to the Ricci-flatness

of the leading-order Spin(7) manifold, described by (6.19), is identical to the corrected

equation (1.11) that we obtained at tree level in string theory.

Again working to order β, substitution of the ansatz (6.12) into the corrected 4-form

equation (6.10) yields d∗df = β (2π)4 X8, or, after dualization

¤ f = β (2π)4 ∗X8 . (6.21)

If the internal space M8 admits a nowhere-vanishing spinor, as is always the case on

a space of special holonomy, there is a topological relation between the Euler class E8 and

the combination of P2 and P 2
1 Pontryagin classes that arises in X8 [19, 20]. This translates

into the statement that

Y2 = 576(2π)4 ∗X8 . (6.22)

7The analogous cancellation did not occur in the discussion presented in [15] for deformations of eight-

dimensional Ricci-flat Kähler backgrounds, but this is simply because a different choice of field variables

was used there. Earlier papers, including [14, 16, 18], did not include the contributions from the volume

terms Ŷ and Ŷ2 in (6.5) at all, and so the “M2-brane like” metric ansatz (6.11) that was made in those

papers would have been in conflict with the Einstein equations in the spacetime directions at order β

(see (6.13), (6.14), (6.16) and (6.17)).
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Comparing (6.20) and (6.21), this implies (for non-singular solutions without δ-function

sources) that we must have

f = 3A . (6.23)

As we shall now show, this is in fact precisely the condition that is needed in order to

ensure that the deformed solution will still be supersymmetric.

6.3 Supersymmetry of the deformed (Minkowski)3 × K8 background

The classical gravitino transformation rule in eleven-dimensional supergravity takes the

form

δψ̂M = ∇̂M ε̂ − 1

288
F̂N1···N4

Γ̂M
N1···N4 ε̂ +

1

36
F̂MN1···N3

Γ̂N1···N3 ε̂ . (6.24)

We shall use the following 11 = 3 + 8 decomposition of the eleven-dimensional Dirac

matrices Γ̂M :

Γ̂µ = γµ ⊗ Γ9 , Γ̂i =
�⊗ Γi , (6.25)

where Γ9 is the chirality operator in the eight-dimensional internal space. To the order β

that we are working, it suffices to retain the contributions from the field strength F̂(4) and

the metric warp factor A only up to linear order. From (6.11), we therefore find that in the

natural choice of spinor frame, the covariant derivative ∇̂M in the spacetime and internal

directions is given by

∇̂µ = ∂µ ⊗ �
+

1

2
∂iAγµ ⊗ Γ9Γ

i , ∇̂i =
�⊗∇i −

1

4
∂jA

�⊗ Γi
j . (6.26)

Including the contribution of the 4-form, which is given by (6.12), we therefore have the

supersymmetry transformation δψ̂M = D̂M ε̂, where

D̂µ = ∂µ − 1

2
∂iAγµ ⊗ Γi Γ9 −

1

6
∂if γµ ⊗ Γi ,

D̂i =
�⊗∇i −

1

4
∂jA

�× Γi
j − 1

12
∂jf

�⊗ Γi
j Γ9 +

1

6
∂if

�⊗ Γ9 +
�⊗ Qi , (6.27)

and Qi is the correction to the supersymmetry transformation discussed in section 3. It is

straightforward to verify that the Killing spinor condition D̂M ε̂ = 0 is satisfied if we write

ε̂ = e
1
2
A ε ⊗ η , (6.28)

where ε is a constant spinor in the 3-dimensional Minkowski spacetime, and η is a chiral

spinor in the internal 8-dimensional space, Γ9 η = −η, which satisfies the usual modified

covariant-constancy condition

∇i η + Qi η = 0 (6.29)

that we discussed previously in the context of tree-level string corrections.

Note that the additional ingredients in the current M-theory discussion, in comparison

to our previous tree-level string discussion, are associated with the warp factor appearing

in the metric (6.11), and the field strength (6.12) that is forced to be non-zero because of

the Â3 ∧ X̂8 term in the effective action. These two contributions in the supercovariant

derivatives (6.27) cancel against each other, by virtue of (6.23), in exactly the same way

as one finds in a standard M2-brane solution [21] of eleven-dimensional supergravity.
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6.4 Compact K8

When the internal manifold K8 is non-compact then the inclusion of the term G(4) in

the field-strength ansatz (6.12) is optional. However, when K8 is a compact manifold of

non-zero Euler number there is an additional topological condition that follows by inte-

grating (6.10), namely [16]

∫

K8

G(4) ∧ G(4) =
(2π)4 β

12
χ , (6.30)

where χ is the Euler number of K8. Under these circumstances, the inclusion of the term

G(4) in (6.12) becomes obligatory; clearly we must take

G(4) =
√

β ω(4) (6.31)

where ω(4) is a closed 4-form on K8 that we take to be β-independent. It must also be

co-closed in order to avoid an order
√

β correction in (6.10). There is also a potential order√
β correction to the supercovariant derivatives (6.27), namely

D̂µ −→ D̂µ −
√

β
1

288
ωj1···j4 γµ ⊗ Γj1···j4 ,

D̂i −→ D̂i −
√

β
1

288

�⊗
(
ωj1···j4 Γi

j1···j4 − 8ωij1···j3 Γj1···j3) . (6.32)

The
√

β corrections cancel if

ωij1···j3 Γj1···j3 η = 0 (6.33)

is satisfied. This can be viewed as a supersymmetry-preservation condition on the internal

4-form ω(4). It implies that ω(4) must be self-dual [14, 16, 17] (which is the same sense of

duality as for the calibrating 4-form c(4) given by (2.9)), and hence that it must be closed as

well as co-closed. In other words, ω4 must be a self-dual harmonic 4-form. Note, however,

that c(4) is not a suitable candidate for ω(4) because if we left-multiply (6.33) by η̄Γi we get

ωijk` cijk` = 0, and this is not satisfied by ω4 = c4. What this shows is that ω4 must be a

self-dual harmonic 4-form that is orthogonal to c(4).

It is useful at this point to look at the decomposition of the SO(8) tangent-space

representations of 4-forms under the Spin(7) holonomy group. We have

35+ −→ 1 + 7 + 27 , 35− −→ 35 , (6.34)

for self-dual and anti-self-dual 4-forms respectively. Since this decomposition is made with

respect to the invariant calibrating 4-form, which defines the Spin(7) embedding in SO(8),

it follows that the decomposition commutes with covariant differentiation. This allows a

refinement of the cohomology for self-dual 4-forms, in which we may write [24]

H4
+(K8, R) = H4

1 (K8, R) + H4
7 (K8, R) + H4

27(K8, R) . (6.35)

Correspondingly, we have for the Betti numbers b4 = b+
4 + b−4 , with b+

4 = b
(1)
4 + b

(7)
4 + b

(27)
4 .

It is shown in [24] that for any compact Spin(7) manifold, b
(7)
4 = 0, and b

(1)
4 = 1. This last
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identity corresponds to the fact that the calibrating 4-form is the unique Spin(7)-invariant

self-dual harmonic form. Thus we have that

b+
4 = 1 + b

(27)
4 , (6.36)

and so any self-dual harmonic 4-form other than the calibrating 4-form can provide a

solution that satisfies the supersymmetry condition (6.33).8

The fact that ω(4) is closed takes care of any order
√

β terms in (6.10), but we must

now take into account the order β contribution from the F̂4 ∧ F̂4 term. This has the effect

of modifying (6.21) to

¤ f = β [(2π)4 ∗X8 +
1

48
|ω(4)|2] , (6.37)

where we have used the self-duality of ω(4) to write the dual of ω(4)∧ω(4) as 1
24 |ω(4)|2. There

is a similar order β correction to the stress-tensor for F̂4 (which we were previously able to

set to zero). This modifies the source for the Einstein equations on K8, but the only effect

of this is a modification of the source term of the Poisson equation (6.20), which becomes

¤A = β

[
1

1728
Y2 +

1

144
|ω(4)|2

]
. (6.38)

Fortunately, the consistency of (6.37) and (6.38) is again assured because of (6.22), and

again we find that f = 3A, just as we found for a non-compact K8 with vanishing G4. As

we saw in the non-compact case, the equality f = 3A is crucial for the supersymmetry of

the deformed background. Note that this is also the relation found in ref. [25] from direct

consideration of supersymmetry in the R4 — Chern Simons system.

To summarise, we have shown that if G(4) is taken to be proportional to any self-dual

harmonic 4-form other than the calibrating 4-form (i.e. any self-dual harmonic 4-form in

the 27 of Spin(7)), the local equations of motion and the supersymmetry conditions are

still satisfied by the deformed Spin(7) holonomy background, up to order β. Furthermore,

one can always satisfy the global topological constraint (6.30), by normalising the harmonic

self-dual 4-form appropriately, namely so that

∫

K8

|G(4)|2 = 2(2π)4 β χ , (6.39)

In [24], many examples of compact manifolds with Spin(7) holonomy are constructed,

typically with large values of the Betti number b+
4 of self-dual harmonic 4-forms. In fact

from (6.36), we see that whenever b+
4 is greater than 1, there will exist suitable self-dual

harmonic 4-forms that allow the global condition (6.30) to be satisfied.

It is also worth noting that if K8 is non-compact, in which case the inclusion of a

non-vanishing G(4) is optional rather than obligatory, explicit constructions of self-dual

harmonic forms that satisfy the supersymmetry condition (6.33) are known [11, 26, 27].

8In fact, a more detailed investigation of (6.33) reveals that it already selects precisely self-dual 4-forms

in the 27 representation of Spin(7), quite independently of the above discussion of the refined cohomology.
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7. Deformation of SU(5) holonomy solutions of M-theory

We now turn to compactifications of M-theory on ten-dimensional manifolds K10 which, at

leading order, are Ricci-flat and Kähler. It should be emphasised that such backgrounds

probe aspects of M-theory that go beyond anything that can be directly deduced from

light-cone string-theory computations, which, in practice, have provided most of the con-

crete information about the structure of M-theory. In fact, SU(5) holonomy backgrounds

cannot be discussed at all in perturbative string theory, since there are only nine euclidean-

signature dimensions. Thus not only do SU(5) holonomy backgrounds go beyond what can

be learned from light-cone string-theory calculations, they go beyond perturbative string

theory itself, and are intrinsic to M-theory. Nevertheless, it has been argued that the in-

formation learned from light-cone string calculations, and elsewhere, can be extrapolated

to genuinely eleven-dimensional results about the structure of M-theory. It is therefore of

interest to see what happens if one tries to “push the envelope” and apply these eleven-

dimensional results to SU(5) holonomy backgrounds.

7.1 Leading-order preliminaries

To set up our discussion of corrections to SU(5)-holonomy compactifications of M-theory,

we will begin with a brief discussion of the leading-order SU(5)-holonomy compactifications

of 11-dimensional supergravity. The (undeformed) solutions of interest have vanishing

fermions, vanishing 4-form field strength F , and a metric of the form

ds2 ≡ gMNdxMdxN = −dt2 + gijdxidxj (7.1)

where the 10-metric gij on K10 has SU(5) holonomy. The 11D Dirac matrices can be taken

to be

Γ̂0 = iγ11 , Γ̂i = γi (7.2)

where γi are the SO(10) Dirac matrices, and γ11 is the chirality operator on SO(10) spinors,

γ11 = iγ1γ2 · · · γ10 . (7.3)

We will assume (in accordance with the usual custom) that the 11D Dirac matrices Γ̂M

are hermitian, in which case the SO(10) Dirac matrices γi are hermitian.

The supersymmetry-preservation condition for solutions of 11D supergravity is the

vanishing of the supersymmetry variation of the gravitino. For purely gravitational back-

grounds this reduces to

D̂M ε̂ = 0 (7.4)

where DM is the covariant derivative on spinors and ε̂ is a Majorana spinor; i.e., it satisfies

ε̂† = ε̂T ĈΓ̂0 (7.5)

where Ĉ is the antisymmetric SO(1, 10) charge conjugation matrix. For compactifications

on K10, the condition (7.4) reduces to the equation

Diε̂ = 0, (7.6)
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where ε̂ is now a time-independent SO(10) spinor on K10 and Di is the covariant derivative

on such spinors. The 11D Majorana condition (7.5) becomes

ε̂∗ = Cε̂ , C = ĈΓ̂0 (7.7)

where C is the real symmetric SO(10) charge conjugation matrix, with the property that

CγiC
−1 = γT

i . (7.8)

Equivalently, since the matrices γi are hermitian,

CγiC
−1 = γ∗

i . (7.9)

One also has C2 = 1, so one may choose a basis such that C = 1, in which case the matrices

γi are real, as are Majorana spinors. However, in this basis γ11 is pure imaginary, so the

Majorana condition is not compatible with a chirality condition. This result is, of course,

basis independent, so a ‘minimal’ SO(10) spinor is either Majorana or complex chiral.

For some purposes it is simpler to work with complex chiral SO(10) spinors. In par-

ticular, a 10-manifold of SU(5) holonomy admits one covariantly constant complex chiral

spinor, as follows from the decomposition

16 = 10⊕ 5 ⊕ 1 (7.10)

of the spinor irrep of Spin(10) into irreps of SU(5). Let η be this one chiral spinor; we

choose conventions such that the chirality condition is

γ11η = −η . (7.11)

Note that the charge conjugate spinor

ηc := C−1η∗ (7.12)

satisfies the anti-chirality condition γ11η
c = ηc as a consequence of the identity (for hermi-

tian Dirac matrices)

Cγ11C
−1 = −γ∗

11 . (7.13)

Moreover, as a consequence of the identity

CγijC
−1 = γ∗

ij , (7.14)

the spinor ηc is covariantly constant if η is covariantly constant. An alternative way

to see this is to note that the covariant derivative is real in a real basis for the Dirac

matrices, so that in such a basis the real and imaginary parts of a covariantly constant

complex spinor are covariantly constant Majorana spinors. In particular, the existence of

one covariantly constant chiral spinor η implies the existence of two linearly independent

covariantly constant Majorana spinors, defined by

ε1 =
1

2
(η + ηc) , ε2 = − i

2
(η − ηc) . (7.15)
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Using C2 = 1, it is easily verified that these spinors are Majorana. They are covariantly

constant because Diη = 0 implies Diη
c = 0. Note that

η = ε1 + iε2 (7.16)

which is the decomposition of a complex spinor into two Majorana spinors; in a real basis,

for which C = 1, the Majorana spinors ε1 and ε2 are just the real and imaginary parts of

the complex spinor η. If η is a chiral spinor, satisfying (7.11) then

ε2 = iγ11ε1 . (7.17)

However, the Majorana spinors ε1 and ε2 are still linearly independent over the reals because

the linear combination (a + ibγ11)ε1 vanishes for real numbers a, b, and non-zero ε1, if and

only if a = b = 0.

We have thus shown that, when K10 is a manifold of SU(5) holonomy, there are two

linearly-independent Majorana spinor solutions of (7.6), and hence of the supersymmetry

preservation condition (7.4), and that this statement is equivalent to the statement that

K10 admits a single complex chiral Killing spinor.

For future use we also note that

γĵ η = i γj η , (γij + γîĵ) η = 2iJij η , (7.18)

where Jij is the Kähler form, and we are using the “hat” notation of [8], defined in (4.6).

Other useful properties following from these are

η̄ γij η = iJij , η̄ γijk` η = −Jij Jk` − Jik J`j − Ji` Jjk . (7.19)

7.2 Corrections to (Minkowski)1 × K10 backgrounds

The relevant O(β) corrections to the equations of motion again follow from (6.5). The

contributions from the eight-dimensional Euler integrand term Ŷ2
√−ĝ can be determined

by varying the explicit metrics needed to write
√−ĝ times the right-hand side of (6.3) in

terms of canonical Riemann tensors R̂M
NPQ with one index up and three down. (One does

not need to vary the metrics from which R̂M
NPQ is constructed, since these variation terms

will be of the form of a total derivative, and hence will not contribute in the equations of

motion.9) Thus defining δ
∫

Ŷ2
√−ĝ =

∫ √−ĝ ÊMN δĝMN , one finds (see, for example, [22])

ÊM
N = − 9!

29
δ

NN1···N8
MM1···M8

R̂M1M2
N1N2

· · · R̂M7M8
N7N8

, (7.20)

where the Kronecker deltas are of unit strength (δ
N1···Nn
M1···Mn

ωN1···Nn = ωM1···Mn for any anti-

symmetric tensor ωM1···Mn).

9In the same way, the terms from the metrics in RMN = RP
MPN do not contribute when one varies

the two-dimensional Euler integrand gMN RMN

√
−g (the Einstein-Hilbert action) to obtain the Einstein

tensor.
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The eleven-dimensional Einstein equations, with their O(β) corrections, are given by

R̂00 −
1

2
R̂ ĝ00 = − β

1152
¤Z g00 +

β

576
Ê00 , (7.21)

R̂ij −
1

2
R̂ ĝij =

β

1152
(Xij + ∇i∇j Z − gij ¤Z) +

β

576
Êij , (7.22)

where

Z = Rijk` Rk`mn Rmn
ij − 2Rikj` Rkm`n Rm

i
n

j , (7.23)

after imposing the (Minkowski)1 × K10 Ricci-flat Kähler background conditions in the

correction terms on the right-hand sides. Note that we shall have

Ê00 =
1

2
Y2 ,

Êi
j = Ei

j ≡ − 9!

29
δjj1···j8
ii1···i8 Ri1i2

j1j2 · · ·Ri7i8
j7j8 , (7.24)

in the (Minkowski)1 × K10 background. The new feature that we encounter here, in com-

parison to the (Minkowski)3×K8 backgrounds described by (6.8) and (6.9), is that in (7.22)

we have the non-zero contribution Êij coming from the variation of the eight-dimensional

Euler integrand. It is manifest from its form, given in (7.24), that this would vanish in an

8-dimensional curved background, owing to the antisymmetrisation over 9 indices.

As in the case of (Minkowski)3 × K8 backgrounds, we expect that the effect of the

order β corrections to the (Minkowski)1 × K10 background will be to introduce a warp

factor in the eleven-dimensional metric, as well as causing the originally-vanishing 4-form

to become non-zero. For the metric, we therefore write

dŝ2
11 = −e2A dt2 + e−

1
4
A ds2

10 , (7.25)

where the function A in the warp factor depends only on the coordinates of K10. The rela-

tive powers of the warp factor in the two terms in (7.25) are motivated by the expectation

of a “0-brane” structure in the deformed solution. At the linearised level, which suffices

for our purposes since we are perturbing around the original background with A = 0 and

K10 Ricci-flat and Kähler, we find that the non-vanishing Riemann tensor components for

the metric (7.25) are given by

R̂0i0j = ∇i∇jA , (7.26)

R̂ijk` = Rijk` −
1

8
(gi` ∇j∇kA − gik ∇j∇`A + gjk ∇i∇`A − gj` ∇i∇kA) , (7.27)

and the non-vanishing components of the Ricci tensor are given by

R̂00 = ¤A , R̂ij = Rij +
1

8
gij ¤A . (7.28)

Taking the eleven-dimensional trace gives R̂ = R + 1
4¤A, and substituting this into (7.22)

and tracing leads to

R =
β

576
¤Z − β

2304
Ei

i . (7.29)
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Equation (7.22) then gives

Rij =
β

1152

(
Xij + ∇i∇j Z + 2Eij −

1

4
Ek

k gij

)
. (7.30)

Note that Xij , coming from the variation of the “string tree-level” term Ŷ , is given by Xij =

∇î∇ĵ Z ≡ Ji
k Jj

` ∇k∇` Z, as usual in a Kähler background. Note also that from (7.20) we

shall have

Ek
k = −Y2 . (7.31)

The remaining content of the Einstein equations is contained in (7.21). From (7.29)

and (7.31), we find that this implies

¤A =
β

1728
Y2 . (7.32)

After using (7.31), equation (7.30) can be written as

Rij =
β

1152

(
∇

î
∇

ĵ
Z + ∇i∇j Z + 2Eij +

1

4
Y2 gij

)
. (7.33)

Equations (7.32) and (7.33) determine the warp factor and the Ricci tensor of the

corrected ten-dimensional Kähler metric, respectively. The field equation (6.10) will govern

the structure of the non-vanishing 4-form that is required at order β. In order to maintain

the 1-dimensional “Poincaré symmetry” of the original uncorrected background, it must

be that

F̂(4) = G(3) ∧ dt + G(4) , (7.34)

where G(3) and G(4) are 3-form and 4-form fields on K10. We may, to begin with, assume

that G(4) = 0. The 4-form equation of motion (6.10) then implies, up to order β, that we

shall have

d∗G(3) = (2π)4 β X8 , (7.35)

where the unhatted ∗ denotes Hodge dualization in K10.

Since the integrability condition obtained by taking the exterior derivative of this

equation is trivially satisfied, we are guaranteed to be able to find a local solution of (7.35).

However, integration over any 8-cycle C8 of K10 leads to

∫

C8

X8 = 0 , (7.36)

which must be satisfied for all 8-cycles C8. This is a topological constraint on K10 that

will not in general be satisfied unless H8(K10) is trivial. As Poincaré duality implies that

H8
∼= H2 for any compact 10-manifold, and as H2 is necessarily non-trivial for any Kähler

manifold, the topological constraint is not satisfied by any compact Kähler 10-manifold;

in other words, it is not satisfied by any compact manifold K10 of SU(5)-holonomy. What

this means is that it is inconsistent to set G(4) to zero (as we have been doing) when K10

is compact. In principle, we could attempt to take this into account as we did in the

Spin(7) case by allowing for a non-zero G(4) of order
√

β. However, the implications for
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supersymmetry are much less straightforward than they were for Spin(7) compactifications,

so we shall not attempt an analysis along these lines here. Instead, we shall simply restrict

discussion to the class of SU(5)-holonomy manifolds K10 for which H8 is trivial. This

implies that K10 is non-compact, so we are restricted to a special class of SU(5)-holonomy

‘non-compactifications’.

With this restriction understood, the results above show that we can obtain an M-

theory corrected solution, at order β, to the original (Minkowski)1×K10 vacuum of D = 11

supergravity. The corrected metric is of the form of a warped product (7.25), with the warp

factor given by (7.32), and the Ricci tensor of K10 given by (7.33). In the next subsection,

we shall analyse the question of whether this M-theory corrected solution preserves the

supersymmetry of the original Ricci-flat Kähler solution of D = 11 supergravity.

7.3 Supersymmetry of the deformed (Minkowski)1 × K10 backgrounds

We have seen in the previous subsection that the Ricci tensor of the originally Ricci-flat

ten-dimensional Kähler space K10 suffers a more substantial deformation than has been

seen hitherto for spaces Kn of special holonomy with n ≤ 8, on account of the Eij and

Y2 gij terms in (7.33) that come from the variation of the Euler integrand Ŷ2.

It is of interest now to study the supersymmetry of the corrected (Minkowski)1 ×K10

backgrounds. Here, we are on somewhat less solid ground. Although there has been a lot of

work on the detailed structure of the higher-order corrections to supergravities in ten and

eleven dimensions (see, for example, [23]), there are not, as far as we are aware, complete

and explicit results for the corrections to the supersymmetry transformation rules at order

α′3 (or order β). The only explicit results are those introduced in [4] in the context of

corrections to six-dimensional Calabi-Yau compactifications, their extension in [2] to G2-

holonomy compactifications, and their extension in the present paper to Spin(7)-holonomy

compactifications. These corrections were deduced on the basis of requiring that the un-

broken supersymmetry of the leading-order background should persist in the face of the α′3

corrections.10 Remarkably, the same riemannian expression (3.4) that was first proposed

in [4] in the six-dimensional Calabi-Yau context has turned out to be sufficient to achieve

a preservation of supersymmetry for the G2 holonomy and Spin(7) holonomy backgrounds.

For an SU(5)-holonomy supergravity solution of 11D supergravity, we would again

expect the M-theory correction to the gravitino transformation rule to lead to a modified

covariant derivative (∇i +Qi), where Qi is of order β. If we assume that Qi takes the same

purely riemannian form11 as in (3.4) then, using properties of SU(5) holonomy manifolds,

10This might seem somewhat circular as an argument for demonstrating that supersymmetry is preserved

in the corrected special-holonomy backgrounds. However, the fact that one is able at all to find a candidate

fully-riemannian correction to the gravitino transformation rule that is consistent with the preservation

of supersymmetry of the corrected backgrounds is already quite remarkable. And since no other explicit

results for the gravitino transformation rules have been obtained by direct calculation in the intervening 18

years since [4] appeared, we are forced, faute de mieux, to make do with this at present.
11Note that with the correction (3.4) the modified Killing spinor operator (∇i + Qi) retains the same

reality properties as at the classical level, so the equivalence between a pair of Majorana spinors and a

complex chiral spinor as explained in subsection 7.1 persists in the presence of the corrections.
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one can show that

Qi =
iβ

2304
∇îZ , (7.37)

where Z is given by (7.23). There is no a priori reason why this assumption should be

correct; there could be further terms whose presence would not be probed if one looked only

at (Minkowski)3 × K8 backgrounds, but which would be relevant to (Minkowski)1 × K10

backgrounds. However, we shall show that this assumption nonetheless leads to the con-

clusion that supersymmetry of the corrected SU(5) holonomy backgounds is maintained,

despite the loss of SU(5) holonomy. This is a posteriori evidence that the assumption is cor-

rect since one would hardly expect this conclusion to follow from an incorrect assumption,

irrespective of whether supersymmetry is in fact preserved.

We begin by considering the integrability condition for the existence of a Killing spinor

that satisfies D̂M ε̂ = 0, obtained from the commutator of supercovariant derivatives. Since

we are working only to linear order in β, and since the field strength F̂(4) vanishes at zeroth

order, becoming non-vanishing only at order β, we can omit terms quadratic in F̂(4) in our

discussion. We shall also suppress for now the O(β) Qi correction to the supercovariant

derivative; in other words, for now we shall just consider the “classical” terms in the

integrability condition of D = 11 supergravity, with the added simplification of omitting

the terms quadratic in F̂(4). The contribution from Qi will be included later, when we

present our results. We therefore have for now that

[D̂M , D̂N ]0 =
1

4
R̂MNPQ Γ̂PQ +

1

144
Γ̂[M

P1···P4 ∇̂N] F̂P1···P4
+

1

18
∇̂[M F̂N]P1P2P3

Γ̂P1P2P3 , (7.38)

where the subscript “0” on the commutator indicates the omission of the Qi correction

term.

It is helpful to analyse the integrability conditions in stages. First, we may note that

upon left-multiplication and contraction with Γ̂N , one obtains from Γ̂N [D̂M , D̂N ] ε̂ = 0

a system of field equations that can be compared with those already derived from the

variation of the action. Thus if a Killing spinor ε̂ exists, one should find consistency

between the already-established bosonic equations of motion, and those that follow from

Γ̂N [D̂M , D̂N ] ε̂ = 0. Establishing this consistency does not of itself prove that a Killing

spinor ε̂ exists (and thus that the deformed solution is supersymmetric), since the left-

multiplication of the integrability condition by Γ̂N projects into a subset of the full content

of [D̂M , D̂N ] ε̂ = 0, but it already provides a non-trivial check.

It is easy to see from (7.38) that we shall have

Γ̂N [D̂M , D̂N ]0 = −1

2
R̂MN Γ̂N − 1

72
Γ̂M

N1···N4 ∇̂N1 F̂N1···N4
+

1

12
∇̂N F̂NMPQ Γ̂PQ . (7.39)

The field equation (6.10) implies that

∇̂M F̂ MN1N2N3 = α ε̂N1N2N3P1···P8 X̂P1···P8
, (7.40)

where we have, for convenience, defined

α =
(2π)4 β

8!
, (7.41)
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and where X̂M1···M8
denotes the components of the 8-form X̂(8), i.e.

X̂M1···M8 =
105

8(2π)4

(
RN1

N2[M1M2
RN2 |N3|M3M4

RN3 |N4|M5M6
RN4 |N1|M7M8] −

− 1

4
RN1

N2[M1M2
RN2 |N1|M3M4

RN3 |N4|M5M6
RN4 |N3|M7M8]

)
. (7.42)

It is convenient also to define

ĤN1N2N3 ≡ α ε̂N1N2N3P1···P8 X̂P1···P8
, (7.43)

so that the field equation (7.40) reads

∇̂M F̂ MN1N2N3 = ĤN1N2N3 . (7.44)

Since we are working only to linear order in β (and hence α), we are allowed to use the

zeroth-order background conditions when evaluating ĤN1N2N3 . We therefore have that the

only non-vanishing components of ĤN1N2N3
are given by

Ĥ0ij = α εijk1···k8 Xk1···k8 . (7.45)

together with those related by antisymmetry, where εi1···i10 is the ten-dimensional Levi-

Civita tensor.

For a Kähler metric on K10, the Riemann tensor Rijk` satisfies

Rijk` = R
îĵk`

= R
ijk̂ˆ̀ . (7.46)

Taking into account the Riemann tensor symmetries, this implies that H0ij given in (7.45)

will satisfy

H0̂iĵ = H0ij . (7.47)

Taking the index value M = 0 in (7.39) gives

R̂00 Γ̂0 ε̂ − 1

6
H0ij Γ̂ij ε̂ = 0 . (7.48)

Following the discussion in section 7.1 we may replace the real spinor ε̂ by the chiral complex

spinor η. Contracting on the left with η̄, where η is taken to be a Killing spinor, and using

its properties as summarised in section 7.1, we deduce that R̂00 = 1
6H0ij J ij and hence that

R̂00 =
1

6
α J ij εijk1···k8 Xk1···k8 . (7.49)

Taking M = i instead in (7.39), we find after some algebra that

R̂ij =
1

12
α gij Jmn εmnk1···k8 Xk1···k8 − 1

2
α Ji

m εjmk1···k8 Xk1···k8 . (7.50)

Equations (7.49) and (7.50) represent the gravitational field equations that follow from

the integrability conditions for the existence of a Killing spinor. Using (7.28), and now
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restoring the contribution from the Qi term in the modified supercovariant derivative, we

therefore find that

¤A =
1

6
α J ij εijk1···k8 Xk1···k8 , (7.51)

Rij =
1

16
αgij Jmn εmnk1···k8 Xk1···k8 − 1

2
αJi

m εjmk1···k8 Xk1···k8 +

+
β

1152
(∇î∇ĵ Z + ∇i∇j Z) . (7.52)

From the relations between Y2 and X8 in a Ricci-flat Kähler manifold, we can show that

these equations are identical to (7.32) and (7.33). This establishes consistency, at least,

between the bosonic field equations and the conditions that follow from the assumption of

supersymmetry persistence in the deformed background.

We now turn to consideration of the full supersymmetry integrability conditions with-

out taking the Γ̂N contraction; these can be read off upon substituting F̂4 = G(3) ∧ dt

into (7.38), and including also the contribution from the Qi modification. There are two

cases to consider: taking the free indices M and N in (7.38) to be either (MN) = (0i) or

(MN) = (ij). From (MN) = (0i), we find

∇i∇jAΓj η = − i

18
∇iGk`m Γk`m η . (7.53)

From this, we find that G(3) is expressible as

G(3) =
3

4
J ∧ dA + G̃(3) , (7.54)

where G̃(3) is an arbitrary 3-form that is orthogonal to the Kähler form J , in the sense that

Jjk G̃ijk = 0 . (7.55)

From the (MN) = (ij) components of the integrability condition we find, after sub-

stituting (7.54), that

Rijk` Γk` η+
3i

4
(∇i∇ĵ

A−∇j∇î
A) η+i∇[iG̃j]k` Γk` η+

iβ

576
(∇i∇ĵ

Z−∇j∇î
Z) = 0 . (7.56)

Multiplying by η̄, we learn that the Ricci form %ij is given by

%ij ≡
1

2
Rijk` Jk` = −3

8
(∇i∇ĵ

A −∇j∇î
A) − β

1152
(∇i∇ĵ

Z −∇j∇î
Z) . (7.57)

Multiplying (7.56) instead by η̄ Γmn, we obtain two equations, from the real and imag-

inary parts. The imaginary part yields

R
ijk̂`

= −R
ijk ˆ̀+ ∇[iG̃j]k` −∇[iG̃j]k̂ˆ̀ , (7.58)
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while the real part, after making use of (7.58), again yields (7.57).12 By making use of the

cyclic identity for the Riemann tensor, we can show from (7.58) that

Riĵ = −1

2
Rijk` Jk` − 1

2
∇kG̃

iĵk̂
+

1

2
∇kG̃ijk . (7.59)

Note that the Bianchi identity dF̂4 = 0 implies, from (7.54), that dG̃(3) = 0, and hence

from (7.55) we find that ∇kG̃
ijk̂

= 0, implying that (7.59) reduces to

Riĵ = −1

2
Rijk` Jk` +

1

2
∇kG̃ijk . (7.60)

Substituting (7.57) into (7.60), and hatting the j index, we obtain the equation

Rij =
3

8
(∇i∇jA + ∇î∇ĵA) +

β

1152
(∇i∇jZ + ∇î∇ĵZ) − 1

2
∇kG̃iĵk . (7.61)

In order to verify that our assumption of supersymmetry preservation in the deformed

system is consistent, we must show that (7.61) is indeed consistent with the previous

expression for the deformed Ricci tensor as given in (7.30), or, equivalently, in (7.52). This

can be done by considering the equation of motion for the 4-form field F̂(4) = G(3) ∧ dt,

namely ∇kGijk = α εij`1···`8 X`1···`8. Using (7.54), this implies

3

4
gij ¤A − 3

4
(∇i∇jA + ∇î∇ĵA) + ∇kG̃iĵk = α εiĵ`1···`8 X`1···`8 . (7.62)

Substituting this into (7.61), we obtain precisely the previous expression (7.52) for the

deformed Ricci tensor.

Having verified consistency with the integrability conditions for supersymmetry, it is

instructive to examine the supercovariant derivative itself, in the deformed SU(5) holon-

omy background. In the natural orthonormal frame ê0 = eA dt, êi = e−
1
8
A ei for the

metric (7.25), we find that to linear order in the O(β) warp function A, the torsion-free

spin connection is given by

ω̂0i = −∇iA ê0 , ω̂ij = ωij +
1

8
(∇iA êj −∇jA êi) , (7.63)

and hence from (6.24), with the correction term (3.4) which specialises to (7.37) in the

leading-order SU(5) holonomy background, the supercovariant derivative D̂A in the de-

formed background is given by

D̂0 = ∂0 −
i

2
∇iAγi γ11 −

1

36
Gijk γijk ,

D̂i = ∇i −
1

16
∇jAγij +

i

72
Gjk` γiγ

jk` γ11 −
i

8
Gijk γjk γ11 +

iβ

2304
∇îZ , (7.64)

12Equation (7.58) shows that the deformed metric is no longer Kähler (at least with respect to the original

Kähler form Jij = −i η̄Γijη), since if it were, the integrability condition for the covariant constancy of Jij ,

namely [∇i,∇j ] Jk` = 0, would imply that Rijk̂` = −Rijk ˆ̀. It is perhaps useful to emphasise here that when

looking at the Riemann tensor that arises from the commutation of covariant derivatives, the perturbative

scheme in which we are working to order β requires that we must keep terms of order β that represent

the deformation away from the leading-order special-holonomy background. By contrast, Riemann tensors

appearing in the O(β) correction terms need only be evaluated in the original undeformed special-holonomy

background.
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when expressed in terms of the ten-dimensional SO(10) Dirac matrices γi, and the ten-

dimensional chirality operator γ11.

Using these results, we find that the complex spinor η̂ = e
1
2
A η satisfies the D = 11

Killing spinor equation D̂A η̂ = 0 provided that η obeys the ten-dimensional equation

Diη ≡ ∇iη + i (∇îh) η +
i

8
G̃ijk γjkη = 0 , (7.65)

where

h =
3

16
A +

β

2304
Z (7.66)

together with

γ11 η = −η , G̃ijk γijk η = 0 . (7.67)

As discussed in section 7.1, this result implies the existence of two linearly-independent

Majorana Killing spinors of the M-theory background; obtained, in a real representation

of the Dirac matrices, by taking the real and imaginary parts of η̂.

We will now show that this supersymmetry preservation by the M-theory corrections

occurs despite a deformation away from SU(5) holonomy. A straightforward calculation

from (7.67) shows that G̃ijk is the sum of a (1, 2) and (2, 1) form, with no purely holomor-

phic or anti-holomorphic (3, 0) or (0, 3) form components. In other words,

(δ`
i + iJi

`)(δm
j + iJj

m)(δn
k + iJk

n)G̃`mn = 0 , (7.68)

which translates, in the hatted-index notation, into the statement that

G̃ijk = G̃
iĵk̂

+ G̃
îjk̂

+ G̃îĵk . (7.69)

Using (7.65), it is straightforward to evaluate ∇jJi
k to linear order in the deformation of

the metric, where Jij = −i η̄Γijη, yielding

∇jJi
k =

1

2
G̃ij

k − 1

2
G̃îj

k̂ . (7.70)

This shows that the loss of Kählerity of the leading-order SU(5) holonomy background is

associated with the non-vanishing of the 3-form G̃ijk. Calculating the Nijenhuis tensor

Nij
k = ∂[jJi]

k − Ji
` Jj

k ∂[mJ`]
k , (7.71)

we then find from (7.70) that it is given by

Nij
k =

1

2

(
G̃ij

k − G̃iĵ
k̂ − G̃îj

k̂ − G̃îĵ
k
)

, (7.72)

and so from (7.69) we see that the Nijenhuis tensor vanishes. This implies that although

the deformed space is no longer Kähler, it is still a complex manifold.

It is worth remarking that although the correction to the SU(5) holonomy background

deforms K10 into a space that is not only non-Ricci-flat but also non-Kähler, it does have

the feature of preserving the vanishing of the first Chern class. This can be seen from the

fact that the Ricci form, given by (7.57), is exact.
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8. Conclusions

In this paper, we have extended the investigation of string and M-theory corrections to

special holonomy backgrounds that was begun in refs. [3, 4, 7] for six-dimensional Calabi-

Yau compactifications, and subsequently developed for seven-dimensional G2 holonomy

compactifications in [2]. In the present paper, we have considered the corrections at order

α′3 in string theory for backgrounds of the form (Minkowski)2×K8, where K8 is a manifold

of Spin(7) holonomy. The calculations are considerably more subtle than in the previous

cases, because now there are potential contributions to the corrected Einstein equations

of a type that would vanish identically by over-antisymmetrisation in the case of curved

backgrounds of fewer than eight dimensions. After handling these subtleties, we find that

the corrected Einstein equations take a rather simple form, described by (2.28) and (2.30).

We have also considered the structure of the order α′3 corrections to the supersymmetry

transformation rules for an originally Spin(7) holonomy background. Consideration of

these corrections is essential if one wants to test whether or not the corrected background

remains supersymmetric. We found the simple expression (3.1) for the corrected covariant

derivative in the gravitino transformation rule. This expression, which is constructed using

the calibrating 4-form of the Spin(7) background, can be recast in a purely riemannian

form, where no special tensors existing only in special holonomy backgrounds are needed.

Remarkably, the riemannian expression, given in (3.4), turns out to be identical to the one

first proposed in [4], whose form was deduced from the (considerably weaker) requirement

of supersymmetry preservation for corrected Calabi-Yau six-manifold compactifications.

Using the corrected gravitino transformation rule, we illustrated with examples the way in

which one can derive corrected first-order equations for metrics that have Spin(7) holonomy

at leading order.

We also extended our results to Spin(7) compactifications of M-theory, This was con-

siderably more complicated than the analysis at tree-level in string theory, partly because

of the Chern-Simons terms that had to be taken into account and partly because of the

topological constraint that forces form fields to become non-vanishing when the Spin(7)

manifold is compact (as implied by the term ‘compactification’). We gave a complete dis-

cussion of the corrections to (Minkowski)3 × K8 backgrounds, including for the first time

a complete demonstration of supersymmetry preservation in the deformed solutions. Our

M-theory result implies a similar result for one-loop corrected Spin(7) compactifications of

IIA superstring theory. It would be of interest to extend this to the one-loop corrected IIB

superstring theory, but we would not expect this to introduce any essentially new features.

We also considered the case of (Minkowski)1 × K10 backgrounds in M-theory, where

at leading order the manifold K10 has a Ricci-flat Kähler metric with SU(5) holonomy.

This case is of particular interest because it probes features of M-theory that go beyond

those that can be directly accessed from perturbative string theory. In order to avoid the

complications arising from a topological constraint, we assumed that H8(K10) is trivial,

which implies that K10 is non-compact. Under this assumption, we were able to obtain

equations for the corrections to the leading-order background. Remarkably, we found that

the corrected SU(5) holonomy backgrounds maintain their supersymmetry, assuming only
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that the previously-known correction term in the gravitino transformation rule plays a rôle.

The corrected metric on K10 is no longer Kähler, but it is still complex, with vanishing

first Chern class. Of course, it would be of considerable interest to extend these results to

compact K10.

Finally, we wish to emphasise again the remarkable fact that the form of the correc-

tion to the supersymmetry transformation rule first proposed in [4] for string theory in

the context of six-dimensional Calabi-Yau compactifications continues to be sufficient to

guarantee supersymmetry preservation for compactifications on Spin(7) manifolds. It is

also sufficient for Spin(7) compactifications, and certain SU(5) ‘non-compactifications’ of

M-theory. This suggests that it should be taken seriously as a candidate for the complete

gravitational part of the string or M-theory correction to the gravitino supersymmetry

transformation rule.
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[2] H. Lü, C.N. Pope, K.S. Stelle and P.K. Townsend, Supersymmetric deformations of G2

manifolds from higher-order corrections to string and M-theory, JHEP 10 (2004) 019

[hep-th/0312002].

[3] M.D. Freeman and C.N. Pope, Beta functions and superstring compactifications, Phys. Lett.

B 174 (1986) 48.

[4] P. Candelas, M.D. Freeman, C.N. Pope, M.F. Sohnius and K.S. Stelle, Higher order

corrections to supersymmetry and compactifications of the heterotic string, Phys. Lett. B 177

(1986) 341.

[5] M.D. Freeman, C.N. Pope, M.F. Sohnius and K.S. Stelle, Supersymmetry in compactifications

of the heterotic string, in Paris-Meudon Colloq. (1986) 271.

[6] D. Constantin, M-theory vacua from warped compactifications on Spin(7) manifolds, Nucl.

Phys. B 706 (2005) 221 [hep-th/0410157].
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[27] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, New complete non-compact Spin(7)

manifolds, Nucl. Phys. B 620 (2002) 29 [hep-th/0103155].

– 36 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C106004
http://xxx.lanl.gov/abs/hep-th/0108245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=DUMJA%2C58%2C829
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C127%2C529
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB620%2C29
http://xxx.lanl.gov/abs/hep-th/0103155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C49%2C350
http://xxx.lanl.gov/abs/math.DG/0105119
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB625%2C3
http://xxx.lanl.gov/abs/hep-th/0109025
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C155
http://xxx.lanl.gov/abs/hep-th/9605053
http://jhep.sissa.it/stdsearch?paper=07%282001%29038
http://jhep.sissa.it/stdsearch?paper=07%282001%29038
http://xxx.lanl.gov/abs/hep-th/0107044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C025006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C025006
http://xxx.lanl.gov/abs/hep-th/9711042
http://jhep.sissa.it/stdsearch?paper=05%282001%29003
http://xxx.lanl.gov/abs/hep-th/0011114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C285
http://xxx.lanl.gov/abs/hep-th/0206180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C5%2C257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C5%2C1297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB253%2C113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB253%2C113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD41%2C3696
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2C843
http://xxx.lanl.gov/abs/hep-th/0010167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB408%2C122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB408%2C122
http://xxx.lanl.gov/abs/hep-th/9704145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB600%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB600%2C103
http://xxx.lanl.gov/abs/hep-th/0011023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB620%2C29
http://xxx.lanl.gov/abs/hep-th/0103155

