
AN EFFICIENT FUSION SCHEME FOR HUMAN HAND TRAJECTORY 

RECONSTRUCTION USING INERTIAL MEASUREMENT UNIT AND 

KINECT CAMERA 

 

 

An Undergraduate Research Scholars Thesis 

by 

TRUNG LE 

 

 

Submitted to the Undergraduate Research Scholars program at  
Texas A&M University 

in partial fulfillment of the requirements for the designation as an 
 

 

UNDERGRADUATE RESEARCH SCHOLAR 

 

 

Approved by Research Advisor:            Dr. Roozbeh Jafari 

 

 

May 2017 

 

Major: Electrical Engineering  



TABLE OF CONTENTS 

 

Page 

ABSTRACT .................................................................................................................................. 1 

DEDICATION .............................................................................................................................. 2 

ACKNOWLEDGMENTS ............................................................................................................ 3 

NOMENCLATURE ..................................................................................................................... 4 

CHAPTER  

I. INTRODUCTION ...................................................................................................... 5 

II. RELATED WORKS ................................................................................................... 8 

III. SYSTEM DESIGN ................................................................................................... 10 

MotionNet platform ............................................................................................ 10 
Kinect .................................................................................................................. 12  
  

IV. TRAJECTORY RECONSTRUCTION .................................................................... 13  

Low-pass filtering ............................................................................................... 13  
Calibration of accelerometer and gyroscope ....................................................... 14  
Orientation estimation ......................................................................................... 15  
Coordinate frames rotation and gravity removal ................................................ 16  
Data synchronization .......................................................................................... 18  
Kalman filtering .................................................................................................. 19 
 

V. RESULTS ................................................................................................................. 22 

No occlusion ....................................................................................................... 22 
Occlusion ............................................................................................................ 26 
 

VI. CONCLUSION AND FUTURE WORKS ............................................................... 29 

REFERENCES ........................................................................................................................... 30 

  



1 

ABSTRACT 

An Efficient Sensor Fusion Scheme for Human Hand Trajectory Reconstruction Using Inertial 
Measurement Unit and Kinect Camera 

  
Trung Le 

Department of Electrical and Computer Engineering 
Texas A&M University 

 
Research Advisor: Dr. Roozbeh Jafari 

Department of Biomedical Engineering 
Texas A&M University 

 

 The turn of 21st century has witnessed an evolving trend in wearable devices research and 

improvements in human-computer interfaces. In such systems, position information of human 

hands in 3-D space has become extremely important as various applications require knowledge 

of user’s hand position. A promising example of which is a wearable ring that can naturally and 

ubiquitously reconstruct handwriting based on motion of human hand in an indoor environment. 

A common approach is to exploit the portability and affordability of commercially available 

inertial measurement units (IMU). However, these IMUs suffer from drift errors accumulated by 

double integration of acceleration readings. This process accrues intrinsic errors coming from 

sensor’s sensitivity, factory bias, thermal noise, etc., which result in large deviation from 

position’s ground truth over time. Other approaches utilize optical sensors for better position 

estimation, but these sensors suffer from occlusion and environment lighting conditions. In this 

thesis, we first present techniques to calibrate IMU, minimizing undesired effects of intrinsic 

imperfection resided within cheap MEMS sensors. We then introduce a Kalman filter-based 

fusion scheme incorporating data collected from IMU and Kinect camera, which is shown to 

overcome each sensor’s disadvantages and improve the overall quality of reconstructed 

trajectory of human hands.  
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NOMENCLATURE 

  

IMU  Inertial Measurement Unit 

MEMS  Micro Electro-Mechanical System 

HCI  Human-Computer Interface 

DOF  Degree of Freedom  
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CHAPTER I 

INTRODUCTION 

 

 As computers become more powerful in computational capability and more portable in 

size, they have been introduced in almost every aspect of modern society. Interacting with 

computers in form of smart devices has become an essential part of daily life. However, current 

human-computer interaction (HCI) models have not caught up with the rapid improvements in 

capabilities of such devices. Old interaction modalities such as mouse and keyboards are 

becoming obsolete, inappropriate and troublesome for the changes in hardware design of smart 

devices, which are now becoming wearable and universal. Among the modern HCI systems, 

gesture based platforms prevail especially in wearable devices, where interaction with such 

devices needs to be natural, non-invasive and convenient. These platforms also proved their 

supremacy as they are fused with the wearable system themselves, and do not require many 

computational resources. In the wake of such systems, there is an increasing need for techniques 

and models to keep track of the motion of human hand during writing activity, and reconstruct 

handwriting as a useful input to such systems, since text is among the most intuitive and 

common method for human to interact with computer, or with each other with computer as an 

intermediary. Writing is a natural form for inputting texts which a majority of population can 

perform and is considered a human instinct. In wearable systems where devices need to be 

portable in terms of physical size, and interaction with the devices need to be subtle so as to not 

distract other people, one can’t use touchscreens or voice commands – the two popular interfaces 

in modern electronic devices – to interact with such wearable systems. Quick and short 

handwriting commands can be thought of as an alternative in those instances to control the 
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device and compose texts. More interestingly, these handwritings can even be created without an 

external stylus. The user can simply wear a ring and write with his finger while the ring collects 

information of the finger movements during writing phase. There are also situations in which 

original handwriting could be of interest to be recorded, digitized and stored for later use. For an 

example, a professor wants to use traditional chalks and blackboard for his lectures as it is an 

effective way of teaching, but still wishes what he writes on the board to be recorded and 

electronically stored for later references, or distributed to his students as class notes. A wearable 

ring which keeps track of the professor’s hand motion and reconstructs his handwriting from the 

recorded data is also a potential solution for this case. 

 Unfortunately, attempts by researchers to build such system encountered major hurdles 

that prevent it from functioning reliably. Apart from technical difficulties driven by customer’s 

needs, e.g. low power consumption, reliable signal transmission, portable and aesthetic form, 

etc., there are also adversities from within the nature of modalities used. A commonly used 

motion sensor is IMU because of its compact form and low cost, which is extremely important to 

encourage users to wear comfortably over a long period of time. An IMU consists of 3-axis 

accelerometer, 3-axis gyroscope and 3-axis magnetometer. There is no direct way to determine 

position from the above sensors. In order to derive position, one must integrate the accelerometer 

readings over time to get velocity, and then integrate velocity one more time to get position. This 

method undergoes dead reckoning problem, where current position is obtained from a previously 

determined position, and is used to get the next position with the knowledge of speed. The 

sequence of position that is based and advanced upon each other can easily deviate from ground 

truth if a small error is introduced at one certain step, as this error would linger and have an 

effect on all subsequent steps. Through time this error will become substantially large and the 
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results can no longer be trusted if there is no additional reference point introduced to correct this 

calculation.  

 To avoid the dead reckoning problem, other modalities which can measure directly 

absolute position are used. Optical sensors, i.e. cameras, are widely used for object tracking in 

fixed and confined environment (rooms, buildings). Depth camera, which adds infrared projector 

to measure space depth, has extended the position estimation capability of traditional cameras 

from 2-D to 3-D space. However, cameras do not perform well when tracked object is hidden 

behind other objects, or environment lighting condition is poor. 

 In this thesis we solve the problem of tracking hand position by proposing a hybrid 

system incorporating both IMU and Kinect depth camera. The structure of the thesis will be as 

follows: first we will introduce the design of hardware system used; next we will discuss signal 

processing techniques implemented to minimize the intrinsic errors of the two sensors, following 

by a Kalman filter-based fusion scheme taking into account the orientation differences of each 

sensor. We then present the experimental design, discuss the results and suggest future works. 
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CHAPTER II 

RELATED WORKS 

 

Human gestures and body movements have recently gained notable attention as a 

prominent source for modern human-machine interface thanks to its wide applications in 

rehabilitation, virtual reality, robotics, health monitoring, etc. These applications often come in 

form of wearable devices and take huge advantage of low-cost, microelectromechanical system 

(MEMS) inertial measurement units (IMU) [2 - 4]. A typical IMU consists of accelerometer, 

gyroscope and magnetometer, which can be used selectively to derive motion and orientation of 

human body parts where they sensor is worn. In [7], Gummeson et al presented an efficient ring 

for capturing human gestures on surface. By using acoustic sensing integrated with inertial 

sensing, the ring was able to capture finger motion when writing on surface and recognized a set 

of 12 stroke-based gestures for text entry. Handwriting recognition as targeted in this paper or 

hand gestures recognition as in many other ones [5, 6], however, is not as vulnerable to sensors’ 

errors as in handwriting reconstruction problem. Pen-based input instruments also drew attention 

from many researchers [11 - 13]. Wang et al in [11] introduced an IMU-based pen together with 

their proposed MAD switch algorithm in an effort to reliably reconstruct handwriting from data 

collected by accelerometer and gyroscope. Their work used the Zero Velocity Compensation 

technique first introduced in [13] by Bang et al, which minimize drift effect by resetting velocity 

to zero after each motion. However, attempts to reconstruct handwriting (or motion trajectory in 

other words) solely from IMU would still suffer from drift error although there were corrective 

techniques involved to limit the errors within individual strokes (the beginning and end of 

strokes are determined by observing if acceleration and angular velocity exceed/go below certain 
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threshold). Zhang et al in [12] presented an IMU pen with a Kalman filtering algorithm and 

showed that such filter can minimize the inherent noise of IMU sensor. Tsang et al in [14] 

incorporated an electromagnetic resonance (EMR) motion detection board as an additional 

modality to get direct position of writing strokes as their IMU pen slides on the board’s surface. 

Kalman filter was used in their work to fuse the two modalities (IMU pen and EMR board) and 

showed an improvement in the quality of reconstructed trajectory.  

Others have shifted approaches to vision-based system. As depth cameras like Kinect 

become commercialized and provide accurate position estimation of human body joints, they 

have been utilized extensively in recent human body tracking systems [15 – 17]. In [16], Destelle 

et al promoted Kinect for hand detection and hand gesture recognition. Gabel et al in [17] 

utilized Kinect to develop a system for full gait analysis which could extract stride intervals and 

arms kinematics. In [9] Frati and Prattichizzo combined Kinect with wearable haptic device for 

hand tracking application. It is known for such vision-based approach that the tracking result 

obtained from solely Kinect camera would suffer from occlusion, i.e. when the interested human 

body part is hidden by other objects. 

It is natural thinking to combine the two approaches and come up with a sensor fusion 

paradigm to take advantages of both IMU and Kinect as presented in [10]. Such novel direction 

requires an implementation of Kalman filter as the underlying theoretical framework for data 

fusion from multiple modalities. In the following sections, we will discuss in detail the design of 

our wearable system utilizing IMU and Kinect, backed by Kalman filtering algorithm and aimed 

to apply specifically to handwriting reconstruction. 
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CHAPTER III 

SYSTEM DESIGN 

 

 As mentioned in previous sections, IMU and Kinect are two fundamental components of 

our system. The two elements will be integrated under Kalman filtering algorithm to harness 

each sensor’s advantages and improve the reconstructed trajectory of human hand wearing the 

IMU (Fig.1). 

 

 

 

Fig. 1: Overall system design with Kalman filter as underlying framework 

IMU is a motion sensor commonly used across applications including navigation 

systems, gaming devices and wearable platforms. A typical MEMS (micro electromechanical 

system) IMU consists of 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. 

Accelerometer measures acceleration of the IMU. This acceleration is the vector sum of motion 

acceleration and gravitational acceleration. Gyroscope measures angular velocity around each 

axis. Magnetometer measures the Earth magnetic field on each axis. In this thesis, the 

magnetometer was not used. 

MotionNet platform 

The IMU is integrated on MotionNet board, a motion sensor platform developed in our 

lab (Fig. 2 and 3). The board consists of 9-DOF IMU, analog input interface, dual mode 

Bluetooth module, power management and charging circuit, microSD card module. The center 

microcontroller is low-powered MSP430 manufactured by Texas Instruments. Data collected by 

 

 
Kalman filter 

IMU Kinect 
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accelerometer, gyroscope and magnetometer is sent via Bluetooth to host computer, on which 

subsequent signal processing steps are performed. The platform is confined in a plastic box 

which is worn at the user’s wrist during experiment. 

 

Fig. 2: Front view of MotionNet platform [6] 

 

Fig. 3: Bottom view of MotionNet platform [6] 
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Kinect 

Kinect (Fig. 4) is a motion sensing input device initially developed by Microsoft to 

support the company’s Xbox 360 video game consoles. It is later widely used by researchers 

across various applications. The hardware includes an RGB camera and a depth sensor. The 

depth sensor consists of an infrared laser projector and monochrome CMOS sensor, which 

creates a grid to the front of the camera so that position of object within the range could be 

determined precisely. Kinect is shipped with a Software Development Kit (SDK) for developers 

to interact with Kinect hardware. In our lab, we used this SDK to extract human joints position. 

The right wrist joint was selected thanks to its reported better accuracy compared to left wrist 

[1]. Therefore the MotionNet platform was worn around the right wrist and the handwriting task 

was performed by assuring right hand (holding pen) and right forearm always in a stationary 

position with respect to each other. 

 

 

Fig. 4: Microsoft Kinect 2 [18] 

In terms of signal processing tools, MATLAB was chosen for the program’s myriad of 

efficient built-in functions and ease of working with large data sets thanks to its emphasis on 

matrix data representation. 
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CHAPTER IV 

TRAJECTORY RECONSTRUCTION 

 

 

Fig. 5: Overall trajectory reconstruction flow diagram 

 Our overall design can be broken down into six stages as shown in Fig. 5: Low-pass 

filtering, calibration, orientation estimation, coordinate frames rotation and gravity removal, data 

syncing and Kalman filtering. Details of each stage are discussed in the sections below. 

Low-Pass filtering 

 Raw readings from accelerometer, gyroscope and Kinect are affected by various 

unknown factors such as thermal noise, which would distort the real signal. In order to filter out 

these noise, first we assume this noise to reside in high frequency band and therefore a 2nd order 

Butterworth low-pass filter is utilized to smoothen the readings. The practically best cutoff 

frequencies for acceleration, gyroscope and Kinect were found based on experimentation to be 6 

Hz, 6 Hz, 2 Hz, respectively. 

 



14 

Calibration of accelerometer and gyroscope 

 Commercial MEMS IMUs are cheap and therefore are usually not fine-tuned to a high 

level of accuracy. Due to manufacturing processes, impacts of working temperature and inherent 

degradation over time, raw data obtained from IMU is subjected to certain offset and scale 

factor. If not properly calibrated, IMU would yield incorrect readings and thus introduce a large 

amount of error to our trajectory reconstruction algorithm. For accelerometer calibration, in this 

thesis we use the calibration technique developed by Frosio et al as presented in [8]. 

 Acceleration readings subjected to factory offset and scale factor can be represented by:  

A = S(V − O)  (1) 

 Where V is the true readings, 𝐴𝐴 = �
𝐴𝐴𝑥𝑥
𝐴𝐴𝑦𝑦
𝐴𝐴𝑧𝑧
� is acceleration read from the uncalibrated 

accelerometer, 𝑂𝑂 = �
𝑂𝑂𝑥𝑥
𝑂𝑂𝑦𝑦
𝑂𝑂𝑧𝑧
� is factory offset on each axis, 𝑆𝑆 = �

𝑆𝑆𝑥𝑥𝑥𝑥 𝑆𝑆𝑥𝑥𝑥𝑥 𝑆𝑆𝑥𝑥𝑥𝑥
𝑆𝑆𝑦𝑦𝑦𝑦 𝑆𝑆𝑦𝑦𝑦𝑦 𝑆𝑆𝑦𝑦𝑦𝑦
𝑆𝑆𝑧𝑧𝑧𝑧 𝑆𝑆𝑧𝑧𝑧𝑧 𝑆𝑆𝑧𝑧𝑧𝑧

�  where diagonal is 

scale factor on each axis and the other elements are cross-axis scale factors. 

 The assumption for correct acceleration readings is that the vector sum of acceleration on 

three axes must be equal to gravity g if the sensor is static. The error due to imperfect sensor is 

therefore: 

 𝑒𝑒 = 𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑥𝑥2 − 𝑔𝑔2 = ∑ {∑ �𝑆𝑆𝑖𝑖𝑖𝑖�𝑉𝑉𝑗𝑗 − 𝑂𝑂𝑗𝑗��
2

} − 𝑔𝑔2𝑗𝑗=𝑥𝑥,𝑦𝑦,𝑧𝑧𝑖𝑖=𝑥𝑥,𝑦𝑦,𝑧𝑧  [8]  (2) 

 Cummulative error measured over all (at least 9) orientations is:  

𝐸𝐸 = 𝐸𝐸�𝑂𝑂𝑥𝑥,𝑂𝑂𝑦𝑦,𝑂𝑂𝑧𝑧, 𝑆𝑆𝑥𝑥𝑥𝑥,𝑆𝑆𝑦𝑦𝑦𝑦, 𝑆𝑆𝑧𝑧𝑧𝑧,𝑆𝑆𝑥𝑥𝑦𝑦,𝑆𝑆𝑥𝑥𝑧𝑧 ,𝑆𝑆𝑦𝑦𝑦𝑦� = ∑ 𝑒𝑒𝑘𝑘
2𝑁𝑁

𝑘𝑘=1
𝑁𝑁

 [8]   (3) 

 This error can be minimized with respect to parameters S and O using Newton’s method, 

a nonlinear optimization algorithm. This method is applied iteratively until convergence, at 

which E is minimized and values of S and O are obtained. 
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 For gyroscope, the calibration procedure is as follows. Assuming the scale factor of 

gyroscope is negligible; offset of gyroscope on each axis is the only major contribution to 

inherent angular velocity error. We then calculate the mean of first 200 samples angular velocity 

in static position. The reading obtained should be zero. However due to factory offset it is 

different from zero, therefore we consider this mean to be the factory offset and subtract this 

value for all gyroscope readings to get the correct readings. 

Orientation estimation 

 It is our great interest to know the orientation of IMU during the motion. There are two 

reasons for this desire: 

 First, accelerometer always measure gravity acceleration. Although this is important for 

static orientation estimation, we only care about acceleration caused by the hand motion itself. 

Gravity acceleration always sums up with motion acceleration, thus the obtained final readings 

do not reflect exactly the motion acceleration, which is the only thing we want. Knowing the 

orientation of IMU can help us rotate the IMU to the sensor Earth frame (where g always equal 

to 1 on the z axis) and subtract the gravity from there to get pure motion acceleration. 

Second, hand motion is performed freely in 3-D space. As human hand moves, the 

orientation of IMU also changes accordingly. Even if the user tries to fix the orientation of IMU 

during motion, subtle vibration from his/her hand could also unintentionally change the 

orientation of IMU. We want to know the orientation of IMU at every instance of time so as to 

have proper adjustment to acceleration readings (affected by orientation) in each time step.  

In this thesis, we utilize the efficient orientation estimation method developed by 

Madgwick [19]. Madgwick filter is a computationally efficient gradient descent-based 

optimization method used to obtain quaternion representation of IMU. The filter version for 6-
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DOF IMU is used in this thesis, where only acceleration and angular velocity are used as inputs 

to get orientation of sensor’s body frame with respect to the sensor’s Earth frame. The Madgwick 

filter outputs estimated orientation in the form of quaternions. Quaternion is a four-dimensional 

complex number𝑞𝑞 = [𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3], which was introduced as a solution to the Gimbal Lock 

problem as it allows an additional dimension to represent orientation of a rigid body.  

Quaternion representation also comes in handy when it is our turn to sync different 

sensor’s coordinate systems later on. We can get an orientation of frame B relative to frame A 

(denoted by 𝑞𝑞𝐵𝐵𝐴𝐴 ) via a rotation of angle 𝜃𝜃 around arbitrary axis r in frame A: 

𝑞𝑞𝐵𝐵𝐴𝐴 = [𝑞𝑞1   𝑞𝑞2   𝑞𝑞3   𝑞𝑞4] = [cos 𝜃𝜃
2

    − 𝑟𝑟𝑥𝑥 sin 𝜃𝜃
2

    − 𝑟𝑟𝑦𝑦 sin 𝜃𝜃
2

    − 𝑟𝑟𝑧𝑧 sin 𝜃𝜃
2

] [18] (4) 

Coordinate frames rotation and gravity removal 

Kinect and IMU each has each own body frame as shown in Fig. 6: 

 

 

 

 

 

 

 

 

Fig. 6: Body coordinate systems of Kinect and IMU [20] 

As discussed in the previous sections, IMU coordinate systems is freely rotated in space 

as the user moves his/her hand. This makes it hard for us to incorporate the two sensors readings 

as they are simply not “talking in the same language”. In order for the fusion scheme to work, 
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data recorded by both sensors must represent the motion in a common coordinate system. Since 

Kinect is always affixed in space, we need to rotate the readings of IMU to align with the 

Kinect’s coordinate frame (which is also considered the global frame in our work). The result is 

the IMU readings represented in IMU’s Earth frame. In the scope of this research, it is still of 

user’s responsibility to keep axes of the IMU Earth frame parallel to axes of Kinect frame during 

the motion, although the axes can switch places with each other. Later on we only feed 

acceleration data to the Kalman filter, thus we only need to rotate the acceleration obtained by 

IMU to the IMU’s Earth frame. The rotation can be done by multiplying the acceleration with 

the rotation matrix T: 

AE = TAB               (5) 

Where AE and AB are accelerations in IMU’s Earth frame and body frame, respectively, 

and 𝑇𝑇 = �
𝑞𝑞02 + 𝑞𝑞12 − 𝑞𝑞22 + 𝑞𝑞32 2(𝑞𝑞1𝑞𝑞2 − 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞1𝑞𝑞3 + 𝑞𝑞0𝑞𝑞2)

2(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞0𝑞𝑞3) 𝑞𝑞02 − 𝑞𝑞12 + 𝑞𝑞22 − 𝑞𝑞32 2(𝑞𝑞2𝑞𝑞3 − 𝑞𝑞0𝑞𝑞1)
2(𝑞𝑞1𝑞𝑞3 − 𝑞𝑞0𝑞𝑞2) 2(𝑞𝑞2𝑞𝑞3 + 𝑞𝑞0𝑞𝑞1) 𝑞𝑞02 − 𝑞𝑞12 − 𝑞𝑞22 + 𝑞𝑞32

� 

Reminder: A is 3x1 matrix,𝐴𝐴 = �
𝐴𝐴𝑥𝑥
𝐴𝐴𝑦𝑦
𝐴𝐴𝑧𝑧
�, and  𝑞𝑞 = [𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3] is obtained from the output 

of Madgwick filter. 

After rotating IMU to its Earth frame, we have isolated gravity component to exist only 

in z direction. From now the pure motion acceleration can be obtained by subtracting gravity in z 

axis: 

 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑔𝑔 = �
𝐴𝐴𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐴𝐴𝑦𝑦,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐴𝐴𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� − �
0
0
1
� (6) 
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Next, Earth frame of IMU (where z is pointed downward and x, y of IMU parallel to x, z 

of Kinect) needs to be rotated to match Kinect frame (also considered global frame in our work) 

by the following axis transformations: 

Amotion, x global = - Amotion, x local  (7) 

Amotion, y global = - Amotion, z local  (8) 

Amotion, z global = Amotion, y local  (9) 

As of now we successfully have the two reference frames match each other. 

Data synchronization 

 IMU has a sampling rate of 200 MHz, while Kinect has sampling rate of 30 Hz, much 

lower than IMU. It is our interest to keep the sampling rate of IMU, since it is necessary to not 

miss rapid movements due to inadequate sampling rate. But at the same time we need the two 

sensors to have a same sampling rate for data processing. We “upsampling” Kinect by replicate 

preceeded sample point in time steps where IMU data is present but Kinect data is missing. As a 

result these replicated samples are what we inferred rather than measured directly by Kinect, thus 

there should be a certain uncertainty associated with these samples. This uncertainty would be 

best represented by assigning a high value of covariance in measurement noise covariance matrix 

R (see Kalman filtering section) for Kinect samples in these time periods. 

 The method of assigning a high level of uncertainty for Kinect whenever confident 

measurement from Kinect is missing will also help in cases of occlusion. If occlusion happens, 

Kinect won’t be sending data of wrist’s position. As data from Kinect is missing, according to 

our data syncing scheme described above, wrist’s position in this period would take the value of 

last tracked position, but is associated with a high measurement noise in R. Therefore, we would 

see in the Results section that our fusion’s position would rely more on position estimated by 
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IMU in these time intervals. In this way, IMU proved to be useful whenever we have outage of 

Kinect, i.e. occlusion happens. 

Kalman filtering 

Kalman filter is an optimized filter, which takes the information of noise and other 

inaccuracies into account with a series of observable measurements over time, and outputs more 

accurate estimated values of unknown variables. Kalman filter is widely used especially in 

sensor fusion problems. 

The overall Kalman filtering algorithm for our specific application is presented as follow: 

For each axis: 

Model :  xk=�
𝑝𝑝𝑘𝑘
𝑣𝑣𝑘𝑘
𝑎𝑎𝑘𝑘
� = �

1 ∆𝑡𝑡 0.5∆𝑡𝑡2
0 1 ∆𝑡𝑡
0 0 1

� �
𝑝𝑝𝑘𝑘−1
𝑣𝑣𝑘𝑘−1
𝑎𝑎𝑘𝑘−1

�  (10) 

          (F) 

zk=�
𝑝𝑝𝑘𝑘
𝑎𝑎𝑘𝑘� = �1 0 0

0 0 1� �
𝑝𝑝𝑘𝑘−1
𝑣𝑣𝑘𝑘−1
𝑎𝑎𝑘𝑘−1

�   (11) 

                         (H) 

Predict :  Pk=FPk-1FT+Qk    (12) 

  Kk=PkHk
T(HkPkHk

T+R)-1   (13) 

Update :  xk=xk+Kk(zk-Hkxk)    (14) 

Pk=(I-KkH)Pk     (15) 

State vector: 

Based on our application of trajectory reconstruction, we define our state x to have 

information of position, velocity and acceleration, x = [p, v, a]T 

 State transition equations: 

ak = ak-1    (16) 
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 vk = vk-1 + ∆𝑡𝑡 ak-1   (17) 

 pk = pk-1 + ∆𝑡𝑡 vk-1 + 0.5∆𝑡𝑡2ak-1 (18) 

 We will model acceleration as having associated process noise, which makes ak not equal 

to ak-1. 

Thanks to linear algebra, transition from previous state to current state can be realized 

with the help of state transition matrix F = �
1 ∆𝑡𝑡 0.5∆𝑡𝑡2
0 1 ∆𝑡𝑡
0 0 1

� 

Measurement vector: 

 There are two measurements being made: position of subject’s wrist measured by Kinect 

and acceleration of wrist measured by IMU. Our measurement vector is thus: z = [p, a]T. The 

mapping between current measurement and previous state is expressed via matrix H=�1 0 0
0 0 1�. 

Process noise covariance matrix: 

 Process noise covariance matrix depicts how process noise would affect the prediction 

error, Qk=�
0.25∆𝑡𝑡4 0.5∆𝑡𝑡3 0.5∆𝑡𝑡2
0.5∆𝑡𝑡3 ∆𝑡𝑡2 ∆𝑡𝑡
0.5∆𝑡𝑡3 ∆𝑡𝑡 1

� 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎,𝐼𝐼𝐼𝐼𝐼𝐼
2  

Measurement noise covariance matrix: 

Measurement noise covariance matrix depicts how measurement noise would affect the 

gain of Kalman filter, R=�
𝜎𝜎𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾2 0

0 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎,𝐼𝐼𝐼𝐼𝐼𝐼
2 �. This matrix would help determine which sensor is 

more reliable for Kalman result to follow at each instance of time. 

Standard deviation of Kinect and IMU is measured on the first 200 samples. As discussed 

in Data Synchronization section, standard deviation of Kinect is set to infinity at time steps 
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where Kinect does not have reliable measurements due to the lower sampling rate compared to 

IMU, or whenver occlusion takes place. 

Initialization: 

 The state vector is initialized as x = [p0,Kinect, 0,0]T, where p0,Kinect is the initial position of 

wrist measured by Kinect. Error matrix P is initialized as 3x3 identity matrix. 

Next state prediction: 

 In this stage, current state vector is predicted from previous state based on state transition 

equations. Error matrix P is computed based on the process noise and previous error matrix, as in 

equations (12). This new P is then used to calculate Kalman gain K as in equation (13), taking 

current measurement noise int account. 

Next state update: 

 Newly computed Kalman gain will be used to decide whether the filter woud favor 

current measurement or the previous state more in order to update its state vector (equation (14)). 

If current measurement noise is large, i.e. measurement is not reliable as told by Kalman gain, 

then the filter will rely on previous state to estimate the current state and vice versa. New error 

matrix is also updated based on the Kalman gain (equation (15)). 
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CHAPTER V 

RESULTS 

 

 The experiments were carried out as follows: A human subject worn MotionNet platform 

on his right wrist and sat in front of Kinect camera. His wrist and IMU are innitially hold static 

for 30 seconds to ensure adequate time for Madgwick filter to converge. He then moved his hand 

on a horizontal surface (xz plane) as if he was writing something. In order to assess the accuracy 

of the fusion scheme, he would trace his hands along fixed paths of various shapes. We 

investigated the effectiveness of the fusion scheme under two circumstances: when there is no 

occlusion and when occlusion happens.  

No occlusion 

The designated paths presented below (Fig. 7 a-e) were a rectangle of US letter size (21.6 

x 28 cm). Data was recorded from Kinect and IMU and then fed to fusion algorithm to 

reconstruct his hand trajectory. The results for this shape are as shown below: 

 

 Fig. 7a: x position estimated by IMU, Kinect and Kalman filter for rectangular shape 
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Fig. 7b: y position estimated by IMU, Kinect and Kalman filter for rectangular shape 

 

Fig. 7c: z position estimated by IMU, Kinect and Kalman filter for rectangular shape   



24 

 

Fig. 7d: 3-D reconstructed trajectory by IMU, Kinect and Kalman filter for rectangular shape 

  

Fig. 7e: Reconstructed trajectory by IMU, Kinect and Kalman filter projected onto xz plane  
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In Fig. 7 a-e, the red lines represent position estimated by Kinect, green lines represent 

position estimation done by double integration of IMU’s acceleration, and blue lines represent 

position estimated by the fusion scheme. It can easily be seen that trajectory reconstructed solely 

by IMU suffers significantly from drift error, as this is obtained via double integrating 

acceleration readings, while the estimation done by Kinect better resembles true rectangle. Thus 

the fusion scheme should prefer Kinect over IMU whenever Kinect signal is available. We can 

indeed deliberately set covariance of Kinect to be much less than that of IMU so that Kalman 

filter would follow Kinect estimation rather than IMU (Fig. 7d, e). 

For the shape of rectangle, the reconstructed trajectory is shown to be bound by a 

rectangular of roughly 24 x 27 cm (error of ~2 cm on each axis compared to US letter size of 

21.6 x 28 cm). We leave it for future works to set up a ground truth system (e.g. Vicon motion 

capture system [5]) in order to evaluate quantitatively the accuracy of each technique.  

Experiments with other shapes were also carried out (Fig. 8 and 9), all confined by a box 

of US letter size.  

 

Fig. 8: 3-D reconstructed trajectory of a triangle confined in a US letter sheet 
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Fig. 9: 3-D reconstructed trajectory of a star confined in a US letter sheet 

Occlusion 

 As discussed in Chapter IV, Kinect fares better than IMU in terms of position estimation 

because unlike IMU, Kinect does not accumulate errors through double integration of noisy 

acceleration readings to obtain position. Instead, position can be directly measured by depth 

camera. However, Kinect has lower sampling rate and suffers from occlusion, i.e. when line of 

sight from Kinect to human body is interrupted by other objects. Under these circumstances, 

Kinect will not be able to track subject’s hand and thus will not send any data (“Kinect outage”). 

In our design, in order to synchronize Kinect’s data length with that of IMU, Kinect is made to 

hold value of the last tracked position associated with a high uncertainty in periods of time when 

Kinect data is missing due to occlusion. In contrast, IMU can continuously send its data 

regardless of environment conditions. Thus, IMU will prove its helpfulness in cases of occlusion 

by bearing the duty of Kinect in the fusion scheme and correct the false estimation of Kinect 

during this time. 
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 The following figures illustrate the above scenario: 

 

Fig. 10a: Position estimation on x axis by IMU, Kinect and Kalman filter with occlusion

 

Fig. 10b: Fig. 10a with occlusion intervals zoomed in  
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Fig. 10c: Position estimation on z axis by IMU, Kinect and Kalman filter with occlusion 

 

Fig. 10d: Fig. 10c with occlusion intervals zoomed in  

 It can be seen from Fig. 10 a-d that whenever occlusion happens, Kalman filter will 

depend heavily on IMU rather than Kinect to estimate position. The fusion thus helps improve 

accuracy of position estimation by having two modalities helping each other in times of need.  
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CHAPTER VI 

CONCLUSION AND FUTURE WORKS 

 

 In this thesis we presented a sensor fusion scheme integrating IMU and Kinect camera 

and specifically tailored for the application of hand trajectory reconstruction. The results 

suggested that Kinect, as immuned to drift error, fared better than IMU in terms of position 

accuracy whenever there is no occlusion. It was also shown that if occlusion did happen in a 

short period of time, IMU was a great source of help by correcting false estimates of Kinect. It 

would therefore be recommended that the Kinect covariance be deliberately set much lower than 

that of IMU in instances of no occlusion, so that Kalman filter would favor the more accurate 

estimation of Kinect to reconstruct hand trajectory. Conversely, Kinect covariance should be 

deliberately set much higher than that of IMU in instances of occlusion so that IMU will become 

the major source for position estimation. By following this recommendation, the proposed fusion 

scheme successfully overcame each sensor’s disadvantages and yielded better estimates than 

each sensor being used separately.  

Future works of this project will include setting up a high accuracy motion capture 

system (Vicon [5]) to provide ground truth in order to quatitatively evaluate the effectiveness of 

the current fusion scheme. We will also continue to experiment current Kalman filter algorithm 

on more complicated shapes, as well as apply more rigorous techniques as we transition to 

specifically apply the algorithm for handwriting reconstruction. 
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