
THE EFFECTS OF RADIATION, DIET, AND MICROGRAVITY ON 

COLONOCYTE GENE EXPRESSION 

 

 

An Undergraduate Research Scholars Thesis 

by 

RYAN JOSEPH BINDEL 

 

 

Submitted to the Undergraduate Research Scholars program at  

Texas A&M University 

in partial fulfillment of the requirements for the designation as an 

 

 

UNDERGRADUATE RESEARCH SCHOLAR 

 

 

Approved by Research Advisor:              Dr. Nancy Turner  

 

 

May 2017 

 

 

Major: Biomedical Science   



TABLE OF CONTENTS 

 

Page 

ABSTRACT .................................................................................................................................. 1 

ACKNOWLEDGMENTS (OPTIONAL) ..................................................................................... 3 

CHAPTER 

I. INTRODUCTION ...................................................................................................... 4 

Radiation Insult ..................................................................................................... 4 

Microgravity ......................................................................................................... 5 

Elevated Iron ......................................................................................................... 5 

Human-Microbe Symbiosis .................................................................................. 5 

Inflammation in the Colon .................................................................................... 6 

 

II. METHODS ................................................................................................................. 8 

Diet ........................................................................................................................ 8 

Hind Limb Unloading ........................................................................................... 8 

Radiation Exposure ............................................................................................... 8 

Sample Collection ................................................................................................. 8 

Gene Expression ................................................................................................... 9 

Preliminary Experiment ...................................................................................... 10 

Statistical Methods .............................................................................................. 10 

 

III. RESULTS AND CONCLUSION ............................................................................. 11 

Results ................................................................................................................. 11 

Gene Expression by RT-PCR ............................................................................. 12 

Discussion ........................................................................................................... 14 

Conclusion .......................................................................................................... 15 

 

REFERENCES ........................................................................................................................... 16 

APPENDICES ............................................................................................................................ 21 

Appendix A ......................................................................................................... 21 

Appendix B ......................................................................................................... 27 

  



1 

ABSTRACT 

The Effect of Radiation, Diet, and Microgravity on Colonocyte Gene Expression 

 

Ryan J. Bindel 

Department of Veterinary and Biomedical Science  

Texas A&M University 

 

Research Advisor: Dr. Nancy Turner 

Department of Nutrition and Food Science 

Texas A&M University 

 

 

Recent progress has been made in understanding the physiological responses to 

conditions prevalent in the space flight environment, including radiation source, duration of 

radiation exposure, weightlessness, and diet. The aim of this project was to use an experimental 

model simulating the space environment to investigate the immune response with exposure to 

oxidative stress, weightlessness, and continuous low dose ionizing radiation. Mice were 

randomly assigned to groups according to a 2 x 2 x 2 factorial design of continuous cobalt (60Co) 

radiation (C-RAD) or no radiation (SHAM), weight bearing or hind limb unloaded, and a diet 

with high or normal iron levels. The mice (n=50) were given a 45 or 650 mg iron/kg diet, and 

maintained in a full body head down tilt for 42 days during the radiation treatment phase. 

Continuous radiation (C-RAD) mice were exposed to a whole-body dose of 60Co gamma (γ) 

radiation on a continuous basis (0.5 mGy/hour) over the 6-week HU period, resulting in a total 

dose of 0.5 Gy. A malfunction in the RT-PCR machine during our first set of analyses resulted in 

no data being acquired. Unfortunately, this caused a decrease in the number of samples available 

for subsequent analysis. The decrease in available samples resulted in it only being feasible to 
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make comparisons using a 2 x 2 factorial design of dietary iron level and hind limb unloaded 

state. The remaining treatment groups received the normal dietary iron and were cage controls 

(CC, n=3), or hind limb unloaded (HU, n=4), or they received the high iron diet (CC + Fe, n=4; 

HU + Fe, n=4). Gene targets of interest (TNF-, and Slc5a8) were analyzed and the data 

normalized using 18S RNA. There were no significant changes in expression of TNF- and 

Slc5a8 caused by the elevated iron diet or hind limb unloading or their interaction. Even though 

there were no significant differences, there is a demonstrated tendency for increased expression 

of TNF- and Slc5a8 in all treatment groups, relative to the cage controls receiving the normal 

iron diet. These observations suggest the potential for these variables to have an impact on 

intestinal and systemic health of astronauts. More experiments with greater numbers of 

observations are necessary to explore the effects of radiation, diet, and weightlessness. 
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CHAPTER I 

INTRODUCTION 

 

Radiation Insult 

The inflammatory response and oxidative damage caused by ionizing radiation in space 

presents major concerns for the health of astronauts. Astronauts are exposed to high energy 

protons and ions (HZE), and low linear energy transfer rays (LET) from galactic cosmic rays 

while travelling in space. The difference between the types of radiation sources involves the 

amount of energy imparted from the radiation to the medium of passage per unit length (21). 

 

Figure 1. An overview of radiation damage effects observed leading to human cancer (6).  

It has been shown that high-LET 56Fe radiation produces more incidents of intestinal 

tumorigenesis of epithelial cells relative to low LET radiation (18). Despite this, we know that 

ionizing radiation on earth does promote carcinogenesis (29). Low LET radiation is known to alter 

the cell cycle, induce tumorigenesis by genomic instability and genetic mutations (5). In addition, 

oxidative stress is elicited and found to have elevated reactive oxygen and nitrogen species, ROS 

and RNS respectively (30).  
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Microgravity  

The experimental design allowed insight into the intestinal perturbation caused by 

microgravity (24). Though not well studied in the colon, microgravity is known to alter fluid 

circulation, muscle atrophy, bone mineralization, and immune dysregulation (14, 22, 25). It has been 

shown that mucosal cytokine levels in hind limb unloaded mice are altered by elevated IL-6 and 

suppressed IL-10 (24). This altered homeostasis between pro- and anti- inflammatory cytokines, 

respectively, contribute to an overall pro-inflammatory state in the intestine.  

Elevated Iron 

High iron stores induced by increased dietary iron levels may stimulate reactive oxygen 

species (ROS) generation, which would contribute to oxidative stress (1). Excessive ROS is 

known to increase cells sensitivity to radiation (2), and exposure to ionizing radiation also 

contributes to systemic oxidative stress (3).  Enhanced oxidative damage can result from the 

Fenton reaction, a reaction promoted by free iron ions, in which superoxide anions are converted 

to form highly reactive hydroxyl radicals. During the initial weeks of spaceflight, red blood cell 

numbers are decreased due to lysis, which also contributes to increased body iron stores (12). Free 

radicals can also affect many metabolic processes, including those that regulate DNA, RNA, 

proteins, and lipids (15). ROS produced from these processes and as a result of chronic 

inflammation can cause DNA damage, promote carcinogenesis, and long term immune system 

alteration (3).  

Human- Microbe Symbiosis 

 The gastrointestinal tract hosts on the order of 1014 microorganisms that play a role in 

contributing or detracting from the overall health of the human host. The disruption of the 

human-microbe symbiotic relationship can eventually result in the risk of developing 
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Inflammatory Bowel Disease, Irritable Bowel Syndrome, diabetes, asthma, and cancer (20, 33). The 

profile of an individual’s microbial population is known to change over time according to 

alterations in diet, antibiotic intake, or injury such as radiation. Identification of the changes in 

bacterial population can be studied by the molecules produced by bacterial metabolism in the 

intestine.  

As it relates to the colon, microbiota can use dietary fiber and starch polysaccharides as a 

source of energy and nutrient source for bacteria growth. Short Chain Fatty Acids (SCFAs), such 

as acetate, propionate, and butyrate, are produced by the fermentation of dietary fiber. Of the 

three, butyrate holds the most preventive potential in cancer by promoting cell cycle arrest, 

apoptosis, cell differentiation and suppressing colonic inflammation (32). The link between health 

benefits and intake of dietary fiber by butyrate help to show the importance of this mechanism in 

colonic health. 

It has been shown that butyrate is transported by a plasma membrane protein expressed 

by the gene Slc5a8 (34). The protein transports butyrate into the cell where it acts to inhibit 

histone deacetylases (HDACs). HDACs serve to regulate the expression of proteins that regulate 

the cell cycle and progression of cancer (35, 36). The lack of inhibition by butyrate explains recent 

findings that there is an inverse relationship between cancer incidence and levels of butyrate in 

the colon (37). For these reasons, the Slc5a8 gene is defined as a tumor suppressor gene, usually 

silenced in colon cancer to evade apoptosis, or natural cell regulated death. 

Inflammation in the Colon 

Toll Like Receptors (TLRs) found in the epithelial tissues of the gastrointestinal tract 

function to recognize microbial pathogens and initiate an appropriate immune response. TLRs 

have been found to play a role in chronic inflammation by creating inflammatory mediators such 
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as TNF-, IL-6, IL-10 (31). Changes in cytokine levels is consistent with Irritable Bowel Diseases 

such as Crohn’s disease or ulcerative colitis, often a precursor for intestinal cancer (27, 28). 
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CHAPTER II 

METHODS 

 

Diet 

The AIN 93G diet was used for the duration of the study. The iron level in the control 

diets was provided by ferric citrate (45 mg iron/kg), which provided a level that satisfies mouse 

iron requirements. The high Fe diet included 650 mg iron/kg, which has been used by others to 

model a moderately high iron diet that results in increased oxidative damage (15). The diet was 

introduced 4 weeks prior to starting the HU or C-RAD treatment.  

Hind Limb Unloading 

Mice were suspended using the tail ring method of Ferreira et al. (16). The hind limb 

unloading model simulates weightlessness by maintaining a full body head down tilt. The mice 

underwent hind limb unloading for the 42 days, during which the same radiation treatment 

occurred.  

Radiation Exposure 

Continuous radiation (C-RAD) mice were exposed to a whole-body dose of 60Cobalt 

gamma (γ) radiation on a continuous basis (0.5 mGy/hour) over the 6-week HU period, resulting 

in a total dose of 0.5 Gy. Activated cobalt wires were placed around a standard animal housing 

cage rack to provide continuous low level exposure. 

Sample Collection 

Procedures used for collection and analysis of scraped colon mucosa followed the 

procedures previously published by our lab (19,20). Mice were euthanized by CO2 asphyxiation 

followed by cervical dislocation. The colon was removed and luminal contents placed into a 
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cryotube and frozen in liquid nitrogen. The colon was flushed with RNase free PBS and cut in 

half longitudinally. One half was scraped to collect the mucosa that was used for gene expression 

analysis, and the other half processed for histological analysis. Mucosa was scraped from the 

colon on an RNase free surface (glass on ice) and transferred to an RNase free homogenization 

tube along with 250 μl of Denaturation solution (Ambion). Scraped mucosa was homogenized 

for at least six strokes and then transferred to a 2 mL eppitube for storage at -80°C. 

Gene Expression 

RNA from the colonic mucosal scraping was isolated using a ToTALLY RNA kit 

(Ambion, Austin, TX) followed by DNase treatment (DNA-free Kit, Ambion, Austin, TX). The 

concentrations of mRNA were collected using spectrophotometry nanodrop. RNA quality was 

checked using an Agilent 2100 Bioanalyzer with nanochips or picochips depending on the 

concentration of RNA (RNA 6000 Nano LabChip). Expression of TNF-, IL-6, IL-10, and 

Slc5a8 were analyzed via real time PCR using TaqMan Array plates and a ABI7900 HT real-

time thermocycler. Control genes of 18S and GAPDH were used to normalize results. PCR 

conditions were as follows: 

 UDG Incubation    2 min   50 C 

 AmpliTaq, Gold, UP Activation  10 min   95 C 

 PCR  (40 Cycles) 

  Denature    15 sec   95 C 

  Anneal/Extend   1 min   60 C 
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Table 1. Target and control gene assay information 

Gene Symbol Catalog Number TaqMan Assay ID  

TNF- 4331182 Mm00443258_m1 

IL-6 4331182 Mm00446190_m1 

IL-10 4331182 Mm01288386_m1 

Slc5a8 4331182 Mm00520629_m1 

GAPDH 4331182 Mm99999915_m1 

18S 4331182 Mm03928990_m1 

 

Preliminary Experiment  

The amount of input cDNA (100 ng, 10 ng, 1 ng, 0.1 ng) was tested in a preliminary RT-

PCR reaction to identify the most appropriate amount of cDNA for each gene target. Based on 

cycle threshold values for all tested genes above, only TNF- and Slc5a8 produced sufficiently 

repeatable results. IL-6 and IL-10 were not used as a gene of interest in further expression 

analysis.  

Statistical Methods 

Results from the RT- PCR analyses were derived using the comparative Ct method for 

relative quantifications (38). The data were analyzed using the General Linear Model (GLM) with 

the SAS (version 9.4) program. The samples were tested for differences in main effects and 

interaction effects due to diet, hind limb unloading, and radiation. 
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CHAPTER III 

RESULTS AND CONCLUSION 

 

Results 

The amount of mRNA isolated from the colon scraped mucosa samples was determined 

to calculate the amount of starting material to reverse transcribe in to cDNA in later steps. Table 

1 in Appendix A holds the spectrophotometry and RNA quality data for all samples. Nucleic acid 

absorbance maximums are at 260nm and 280nm, and phenol or protein contamination produce a 

signal at 230nm. The 260/280 absorbance ratio is used to determine the purity of the nucleic 

acids present, where acceptable ratios are between 1.8 and 2.0. The 260/230 ratio is an 

assessment used to determine phenol contamination, with acceptable ratios commonly being 

between 2.0 and 2.2. The observed 260/280 mean was 1.945  0.155 and the 260/230 ratio mean 

was 0.640  0.437. 

The Agilent Bioanalyzer produced the RNA Integrity Number (RIN) which demonstrated 

a secondary sense of quality of RNA in addition to spectrophotometry. A RIN is generated by 

the detected 18s and 28s RNA peaks, and is a quantifiable measure of the degradation caused by 

RNase enzymes. Shorter fragments of degraded RNA can compromise gene expression analysis. 

Acceptable sample RIN result is between 8 and 10, therefore any sample with a RIN value below 

8.0 was not used in later steps of analysis. The Agilent RNA 6000 Nano Kit Guide pictures the 

peaks expressed by the reaction below (Figure 2). 

http://www.chem.agilent.com/library/usermanuals/Public/G2938-90034_RNA6000Nano_KG.pdf
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Figure 2. Factors in analysis of RNA quality 

Gene Expression by RT-PCR 

The RT-PCR runs were not usable because of a malfunction in the ABI7900 HT real-time 

thermocycler. A follow up experiment was conducted using a Roche 480 machine to obtain 

results. Not all samples could be used in the follow up experiment due to a limited amount of 

initial RNA available. All cycle threshold data can be found in Table 2 in Appendix A. The 

decrease in available samples for data analysis meant we were only able to compare results from 

a 2 x 2 factorial design of altered diet and hind limb unloaded state with CC (n=3), HU (n=4), 

CC + Fe (n=4), and HU + Fe (n=4).   

The mean expression of TNF- in the scraped colon mucosa from the cage control mice 

was 1.920 .881 (Table 2, Figure 3). The expression of TNF- in all other treatment groups 

tended to be higher (HU is a 203%, CC + Fe is a 185%, and HU + Fe is a 207% increase). The 

expression of Slc5a8 in the scraped colon mucosa was also lower in the cage control mice 

(Figure 4). Increasing dietary iron or incorporating hind limb unloading also tended to increase 

expression of Slc5a8 (HU is a 789%, CC + Fe is a 1184%, HU + Fe is a 846% increase). 
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Table 2. Changes in gene expression in the colon relative to 18S 

 High Fe Normal Fe Main Effect  

P values 

Interaction 

effects  

P values  

Gene CC HU CC HU Diet HU Diet + HU 

TNF- 3.550  

1.330 

3.975  

1.330 

1.920 

.881 

3.888  

1.330 

0.224 0.226 0.224 

Slc5a8 1.504  

0.612 

1.074  

0.612 

0.127  

0.865 

1.002  

0.612 

0.491 0.319 0.463 

Values are least squares means with standard error of the mean for each gene. Data are presented 

relative to the expression of reference gene (18S). P values are included for main effects and 

interaction effects. 

 

Figure 3. Gene expression for TNF- normalized to 18S 
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Figure 4. Gene expression for Slc5a8 normalized to 18S 

Discussion 

A previous study using rats demonstrated that as the levels of oxidative stress and 

inflammatory tone in the colon increased in response to elevated dietary iron and low LET 

radiation, the expression of several genes involved in inflammation and SCFA transport also 

changed (19). That research suggests the expression of Slc5a8 should be lower and that of TNF- 

should be higher relative to a weight bearing and normal iron diet control in this experiment (19). 

Figure 3 and 4 document an overall tendency for an increase expression of TNF- and Slc5a8 of 

mice given either elevated iron diets or are hind limb unloaded, relative to the low dietary iron 

cage control mice. This tendency is reflective of alterations in gene expression reported to occur 

in response to diet and microgravity experienced by astronauts in space (14).  The small sample 

numbers available for this work prohibited our ability to detect treatment differences.  However, 

the pattern of responses observed suggests that these treatments may induce meaningful changes 

in the intestine. 
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In colorectal cancer, Slc5a8 is known to be a tumor suppressor gene and is usually down 

regulated in colon cancer, whereas TNF- upregulation in colon mucosa is associated with 

increased CRC incidence (37, 39). Recent research has explored potential drug therapies for 

inhibition of TNF- to prevent the growth of tumors in CRC (40). The effect of these two 

variables on the expression of these genes may be contributing to the incidence of CRC in 

astronauts.  The Longitudinal Study of Astronaut Health has determined that a diagnosis of 

benign or malignant neoplasm incidence is occurring at a higher rate compared to a group of 

comparison participants (41).  

Conclusion 

Using a high iron diet or hind limb unloading to model the spaceflight environment did 

not produce statistically significant changes of colonic gene expression of TNF- and Slc5a8 in 

this experiment.  Variability in the animal responses in combination with low sample numbers 

precludes our ability to detect significant differences.  However, there is a demonstrated 

tendency for increased expression of TNF- and Slc5a8 with either an increase in dietary iron or 

with hind limb unloading.  These preliminary observations suggest these space-relevant variables 

may contribute to immunological perturbations of the intestine mucosa and the altered 

relationship between gut microbiota and the human host. These changes may impact colon and 

overall health of the astronauts during spaceflight.  

 The results would be improved in future experiments with larger sample numbers. More 

experiments will be necessary to explore the effects of radiation, diet, and weightlessness to 

model the astronaut environment. Future research can expand the scope of genes of interest to 

other inflammatory pathways that are involved in colon health. 
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APPENDICES 

 

Appendix A -Experiment Data  

 

Table 1. Spectrophotometry and RNA quality data for all experimental mice 

Animal ID Design Concentration 

(ng/ul) 

260/280 

ratio 

260/230 

ratio 

RNA Integrity 

Number (RIN) 

1102 CC 70.12 2.06 0.26 10 

1106 CC 134.29 2.03 1.68 10 

1206 CC 12.27 1.72 0.24 9.6 

1208 CC 35.16 1.87 0.51 2.4 

1211 CC 3.74 1.61 0.06 7.9 

1218 CC 24.02 1.77 0.24 10, 8 

1219 CC 56.36 1.74 0.75 9.8 

1222 CC 27.6 1.87 0.36 8.6 

1223 CC 36.11 1.86 1.07 2.4 

1230 CC 75.65 1.95 0.45 10 

1233 CC 45.93 1.92 0.39 9.8 

1234 CC 43.42 1.96 0.71 9.8 

1235 CC 10.11 1.94 0.26 5.5 

1107 CC+Fe 96.77 1.97 1.02 9.8 

1108 CC+Fe 81.91 1.98 1 9.8 

1109 CC+Fe 167.86 2.01 1.53 10 

1110 CC+Fe 107.75 2.05 1.82 9.9 

1111 CC+Fe 143.32 2.03 0.46 9.9 

1112 CC+Fe 162.67 2.03 1.81 9.9 

1114 CC+Fe 82.49 2 0.72 10 

1214 CC+Fe 34.37 1.96 0.39 6.4 

1216 CC+Fe 37.16 1.9 0.65 - 
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1225 CC+Fe 32.06 2.01 0.37 9.1 

1228 CC+Fe 24.46 1.92 0.34 9.2 

1229 CC+Fe 43.25 1.97 0.36 5.1 

1101 HU 149.97 2.03 1.7 10 

1104 HU 132.22 2.01 0.94 10 

1105 HU 131.78 2.02 1.08 10 

1207 HU 40.02 1.88 0.61 8.4 

1209 HU 62.94 1.98 0.41 9.7 

1210 HU 28.13 2.08 0.22 8.9 

1220 HU 17.99 1.86 0.13 9.5 

1221 HU 86.26 2.01 0.69 9.9 

1231 HU 52.3 1.9 0.56 10 

1232 HU 34.27 1.98 0.39 9.5 

1103 HU  106.19 2.03 1.28 8.7 

1113 HU+Fe 117.03 2.01 1.24 9.9 

1115 HU+Fe 3.46 1.72 0.06 1.1 

1201 HU+Fe 42.52 1.97 0.7 10 

1203 HU+Fe 40.45 1.91 0.58  

1204 HU+Fe 51.95 2.02 0.2 10 

1205 HU+Fe 44.64 2.04 0.94 9.3 

1212 HU+Fe 71.75 1.63 0.43 9.8 

1213 HU+Fe 57.96 1.95 0.68 9.9 

1224 HU+Fe 41.29 1.87 0.61 2.4, 5.8 

1227 HU+Fe 70.84 1.76 0.52 10 

1800 Rad 165.55 1.55 0.6 5.2 

1801 Rad 24.66 1.65 0.25 4.3 

1808 RadFe 49.92 2.05 0.93 6.9 

1809 RadFe 9.22 2.06 0.13 8.1 

1810 RadFe 56.82 1.64 0.58 9.2 

1811 RadFe 23.65 2.11 0.15 9.1, 5.3 
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1812 RadFeHU 27.3 2.03 0.45 8 

1813 RadFeHU 37.89 2 0.78 2.4 

1814 RadFeHU 45.87 1.98 0.36 5.6 

1815 RadFeHU 15.63 2.15 0.52 2.7, 5.7 

1816 RadFeHU 53.52 1.68 0.53 1 

1817 RadFeHU 26.19 2.1 0.45 10 

1818 RadFeHU 40.41 2.01 1.1 7.6 

1819 RadFeHU 46.04 1.86 0.52 8.4 

1820 RadFeHU 37.75 2.05 0.66 5.5 

1821 RadFeHU 11.99 1.94 0.21 5.9 

1802 RadHU 17.42 2.07 0.69 4.6 

1803 RadHU 3.9 2.62 0.07 8.9 

1804 RadHU 25.21 1.96 0.89 7.8 

1805 RadHU 78.97 2.05 1.63 7.9 

1806 RadHU 26.8 1.89 0.42 9.7 

1807 RadHU 16.63 2.04 0.17 10, 2 
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Table 2. Cycle Threshold Data for all Experimental Samples 

Animal 

ID 

Design  Triplicate 

CT values 

Gene 

   TNF- Slc5a8 GAPDH 18S 

12191 CC      

  1 38.88 34.83 34.54 31.67 

  2 36.92 33.76 33.36 31.76 

  3 36.98 33.86 33.89 31.7 

12331 CC      

  1 41.53 40.65 37.89 36.33 

  2 40.83 39.83 38.29 36.16 

  3 42.4 39.16 37.19 35.65 

12341 CC      

  1 39.47 39.14 41.94 42.93 

  2 38.67 37.47 ----- 40.6 

  3 38.64 37.62 ----- 41.39 

11071 CC+Fe      

  1 34.85 28.96 30.02 31.04 

  2 35.57 29.7 30.07 30.97 

  3 34.94 29.71 30.67 31.17 

11101 CC+Fe      

  1 33.38 28.23 27.45 28.08 

  2 33.54 27.29 29.68 29.96 

  3 33.99 27.86 28.5 27.86 

11111 CC+Fe      

  1 33.38 28.87 ----- 27.71 

  2 33.33 28.71 28.74 28.33 

  3 33.3 28.85 29.88 27.54 

11121 CC+Fe      

  1 32.33 28.19 28.07 27.98 

  2 32.66 28.25 28.48 27.78 
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  3 34.27 29.12 27.83 28.07 

11011 HU      

  1 33.4 29.54 29.57 29.57 

  2 33.84 28.67 30.03 29.63 

  3 32.7 29.27 28.89 28.83 

11041 HU      

  1 34.71 28.6 30.01 29.73 

  2 34.86 29.38 29.39 29.93 

  3 35.11 29.26 30.94 30.87 

12091 HU      

  1 34.31 30.8 30.52 28.86 

  2 34.48 31.09 29.93 28.89 

  3 34.91 30.42 30.75 32.7 

12211 HU      

  1 39.89 35.85 34.97 31.88 

  2 38.55 35.85 34.8 32.51 

  3 39.87 35.9 34.9 32.39 

12312 HU      

  1 ----- ----- 41.93 37.01 

  2 ----- ----- 41.35 40.21 

  3 ----- ----- ----- 40.6 

11131 HU+Fe      

  1 33.85 28.42 29.1 29.45 

  2 34 28.71 28.85 30.98 

  3 33.35 28.26 29.08 30.49 

12051 HU+Fe      

  1 33.89 29.95 28.32 27.62 

  2 33.64 31.97 28.47 27.94 

  3 33.67  28.73 27.97 

12121 HU+Fe      

  1 39.72 36.29 35.64 31.92 
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  2 39.45 36.56 35.88 31.87 

  3 38.84 37.09 36.37 32.03 

12131 HU+Fe      

  1 32.52 29.08 30.18 27.92 

  2 32.9 28.48 30.2 28.32 

  3 32.85 29.67 30.36 28.43 

18081 RadFe      

  1 35.88 32 31.98 33.58 

  2 35.98 31.83 32.73 27.83 

  3 35.92 32.09 32.47 28.72 

18102 RadFe      

  1 ----- 42.74 35.04 36.86 

  2 ----- ----- 39.68 37.81 

  3 ----- ----- 35.53 37.24 

18182 RadFeHU      

  1 ----- ----- ----- 42.27 

  2 ----- ----- ----- 40.82 

  3 ----- ----- ----- ----- 

18192 RadFeHU      

  1 ----- ----- 40.54 41.64 

  2 ----- ----- 41.84 41.45 

  3 ----- ----- 41.93 42.71 

 

Table 2. Cycle Threshold Data for all Experimental Samples. 1Samples were included for 

statistical analysis. 2Samples were not included in statistical analysis due to absence of cycle 

threshold output generated during RT- PCR.  
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Appendix B -Experimental Protocols 

 

Mucosal mRNA Isolation 

 

RNAqueous Kit (Applied Biosystems #AM1912) 

 

Handle all samples in RNase free conditions, including sample tubes, gloves, equipment etc.  

 

Prior to starting, heat 50 ul (per sample) aliquot of Elution Solution at 75 C.  

 

Reduce the viscosity of the lysate if necessary, ensure tissue is well homogenized. Use 25 gauge 

syringe needle to break up lysate.  

 

1- Add equal volume of 64% ethanol to the lysate and mix gently 

2- Apply the mixture from previous step to a filter cartridge in a supplied collection tube  

 ( max volume that can be applied is 700 ul) 

3- Centrifuge at RCF 10,000-15,000 x g for 1 minute, or until lysate/ethanol has passed through  

 the filter 

4- Discard flow through and keep collection tube 

5- Repeat step 3 as necessary until all the sample has been drawn through the filter. Add up to 

 700 ul 64% ethanol as necessary.  

6- Apply 700 ul Wash Solution #1 to the filter cartridge 

7- Centrifuge at RCF 10,000-15,000 x g for 1 minute, or until lysate/ethanol has passed through  

 the filter. Discard flow through and keep collection tube 

8- Add 500 ul Wash Solution 2/3 

9- Centrifuge at RCF 10,000-15,000 x g for 1 minute, or until lysate/ethanol has passed through  

 the filter. Discard flow through and keep collection tube 

10- Repeat steps 8 and 9 

11- Put filter cartridge into a fresh Collection Tube 
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12- Pipet preheated Elution Solution to the center of the filter (40 ul) 

13- Recover by centrifugation for 30 seconds at same speed above 

14- Repeat step 12 with only 10 ul Elution Solution 

 

Store isolated RNA in -80 C freezer conditions 

 

Post Isolation DNase Treatment for RNA 

 

Catalog Number: AM1912 

 

1- Add 0.1 Volume (for 50 ul elution  5 ul) 10X DNase 1 Buffer and 1 ul rDNase 1 to the 

RNA, and mix gently 

2- Incubate at 37 C for 20-30 minutes.  

3- Add re suspended DNase Inactivation Reagent (typically 0.1 volume  5.5 ul) and mix well 

4- Incubate 2 min at room temperature, mixing occasionally  

5- Centrifuge at 10,000 x g for 1.5 min and transfer the RNA to a fresh RNAse free tube. 

6- Aliquot 4 ul into RNase free PCR tube for Nanodrop and Agilent QC.  

 

Tubes needed:  

Filter Cartridge x1 per sample 

Collection Tube x2 per sample 

.65 ml RNase free tube x1 per sample (for post DNAse treatment collection) 

RNase free PCR Tube x1 per sample (for ND and Agilent aliquot) 

 

Spectrophotometry via Nanodrop for RNA 

 

1- Clean the upper and lower optical surfaces of the microspectrophotometer. Pipet 1 to 2 ul of 

clean deionized water to clean the system 

2- Open the NanoDrop software and select the nucleic acids module 

3- Initialize the spectrophotometer by placing 1 ul of clean water onto the lower optical surface, 

lowering the arm and selecting “initialize” in the software.  

4- Clean surface by wiping with Kimwipe 

5- Measure the nucleic acid sample by loading 1 ul and select “measure.” 

6- Record the concentration of nucleic acid I ng/ul and the ratios at 260/230 and 260/280 

 

Measuring RNA Quality 

 

1. Put ~5 μL of each sample in a labeled eppitube and place on ice. 

3. Analyze samles on a NanoChip using and Agilent 2100 Bioanalyzer using 

complementary software. 
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a. Make sure Bioanalyzer is connected to computer and power source. 

b. Turn on Bioanalyzer, make sure indicator light is green. 

c. Start Agilent 2100 Bioanalyzer software. 

d. Select Assay>RNA>mRNA nano 

e. Prepare samples, buffer, and nano chip. (See RNA 6000 Nano LabChip kit) 

f. Place chip in Bioanalyzer and close lid. 

g. Click “Start” above the chip icon. 

h. Ensure that sample names are all entered in the “Sample Information” tab. 

i. Change File Prefix and click “Start.” 

j. When the run is finished, clean as indicated by the See RNA 6000 Nano LabChip 

kit. 

k. Print Data. 

 

NOTES: 

 

RNA Integrity Number (RIN) 

>9 is optimal 

>8 is acceptable, if no errors are seen on the curve 

 

• Prepare and run chips within 10 minutes. Longer chip preparation times may lead to 

evaporation of buffers and to bad chip performance. 

• Vortex chips for appropriate 1 minute (not required for protein chips). Improper 

vortexing can lead to poor results. 

• Do not force the chip into the receptacle of the Agilent 2100 Bioanalyzer. Proper 

placement of the chip should not require force. Improper placement of the chip could 

damage the electrode assembly when you close the lid. Check whether the chip selector 

is in the correct position. 

• Do not touch wells of the chip. The chip could become contaminated, leading to poor 

measurement results. 

• Do not leave any wells of the chip empty or the assay will not run properly. Add 1 μL 

of sample buffer to each unused sample well. 

 

(From Thesis by Leigh Ann Piefer and methods done previously in this lab) 

 

SuperScript III First Strand Synthesis System for RT-PCR 

 

Catalog Number: 18080051 

 

1- Mix and centrifuge samples before conducting assay 

2- Combine the following in a 0.5 ul collection tube 
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- Up to 5 ug total RNA 

- Primer 

o 50 uM oligo(dT)20         1 ul 

 

3- Incubate the tube at 65 C for 5 min, then place on ice for at least 1 min, 

4- Prepare the following cDNA synthesis mix 

 10X RT buffer   2 ul 

 25 mM MgCl2   4 ul 

 0.1 M DTT   2 ul 

 RNaseOUT   1 ul 

 Superscripts III RT  1 ul 

 

5- Add the 10 ul of synthesis mix to the RNA mix and collect by brief centrifugation. Incubate at 

50 C for 50 minutes. 

6- Terminate the reaction at 85 C for 5 minutes. Chill on ice. 

7- Add 1 ul RNase H and incubate the tubes at 37 C for 20 minutes 

 

Store in -20 freezer or for PCR immediately  

 

Serial Dilutions for Practice RT-PCR using practice mice  

 

100 ng cDNA:  

 In one tube add 1.06 x 8 (8.48) ul cDNA and 7.94 x 8 (63.52) ul H20 

10 ng cDNA: 

Add 1 x 8 (8) ul of the tube from above to 9 x 8 (72) ul of H20 

1 ng cDNA 

Add 1 x 8 (8) ul of the tube from above to 9 x 8 (72) ul of H20 

0.1 ng cDNA 

Add 1 x 8 (8) ul of the tube from above to 9 x 8 (72) ul of H20 

 

TaqMan Gene Expression Master Mix 

 

Catalog Number: 4369016 

 

1- Start SDS program and ABI 7900 HT, allow time to heat and initialize  

2- Pipet all components in the chart below into 96 well plate 

 

Component Volume (ul) 
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TaqMan Gene Expression Master Mix 10 

TaqMan Gene Expression Assay 1 

cDNA template +H20 9 

total 20  

 

3- Run the PCR Plate using the “standard” cycling conditions 

 UDG Incubation    2 min   50 C 

 AmpliTaq, Gold, UP Activation  10 min   95 C 

 PCR     (40 Cycles) 

  Denature    15 sec   95 C 

  Anneal/Extend   1 min   60 C 

 

 


