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ABSTRACT 

The Potential Influence Of Rainfall On Calcite Raft Formation In Great Cistern Sinkhole, Abaco 

Island, The Bahamas 

 

Kevin Kelley 

Department of Marine Science 

Texas A&M University 

 

Research Advisor: Dr. Peter van Hengstum 

Department of Marine Science 

Texas A&M University 

 

 

 The stratigraphic record in Great Cistern sinkhole on Abaco Island, The Bahamas, 

contains coarse-grained layers composed of calcite rafts. Calcite rafts usually form in quiescent 

cave waters saturated with CaCO3. The appearance of calcite rafts in the Great Cistern sediment 

record is the first documented occurrence of raft precipitation in a coastal sinkhole. Due to the 

scarcity of calcite raft formation outside of caves, an examination of raft kinetics, morphology, 

and ties to regional paleo-environmental factors is warranted. Calcite precipitation in caves can 

occur at air-water interfaces when the saturation index of water with respect to CaCO3 is near or 

past equilibrium (i.e., supersaturated), and when there is a higher CO2 concentration in the water 

versus the overlying atmosphere. Raft formation at the air-water interface, their external crystal 

morphology, and longevity are all tied to the kinetic state of the waters from where they derive. 

Calcite rafts sink below the air-water interface and become part of the local sediment record 

when the water is agitated, or when the weight of individual calcite rafts (e.g., downward 

gravitational force) exceeds the force of surface tension buoying them at the surface. It is 

possible that calcite raft abundance in Great Cistern is a long-term proxy for regional rainfall. 
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Correlation of calcite raft abundance in Great Cistern sinkhole to δ18O values from a Cuban 

speleothem further evaluates the potential of calcite rafts in Great Cistern as a long-term 

hydroclimate proxy for Abaco.  
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CHAPTER I 

INTRODUCTION 

 

The term ‘calcite rafts’ is the colloquial name given to a very specific morphology of 

calcium carbonate (CaCO3) crystals that precipitate at an air-water interface. In nature, calcite 

rafts frequently form in caves on carbonate landscapes, and have only rarely been documented 

outside of a cave environment. They develop at the surface of quiescent cave waters that are 

saturated with respect to CaCO3, and with greater CO2  partial pressures in the water than in the 

surrounding atmosphere (Taylor & Chafetz, 2004; White 1997). It is thought that calcite rafts can 

form in less than three months, which gives the rafts time to grow before large amounts of 

seasonal rainfall destroy them (Taylor & Chafetz, 2004). The raft crystals grow down into the 

water and can vary in thickness (several microns to 200 microns) (Taylor & Chafetz, 2004; Frisia 

et al., 2000). The rafts float on the surface tension of the water, and sink due to agitation, or 

under their own weight due to growth (Taylor & Chafetz, 2004; Frisia et al., 2000). The 

precipitation of calcite rafts is common in karst cave environments (Palmer, 1991), and rare in 

non-cave environments. However, calcite rafts have been observed in shallow tufa-lined 

subaerial pools supplied by ground water (Taylor et al., 2004).  

 

The morphology of calcite rafts is distinctly bipartite: a planar surface characterizes the 

surface of the mineral in contact with air, and the opposite surface is characterized by euhedral 

crystal growth. Furthermore, the microcrystalline structure within calcite rafts can be 

rhombohedral or prismatic (Taylor & Chafetz, 2004). Rhombohedral crystal formation is 

indicative of slower formation times than prismatic crystal formation, and speed of formation is a 
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product of the saturation state of the water (Taylor & Chafetz, 2004). Rhombohedral raft crystal 

structures are termed “fused”, and exhibit formation in very close proximity (Taylor & Chafetz, 

2004). Fused structures also have gaps in them indicative of trapped air (Taylor & Chafetz, 

2004). Rafts with prismatic morphology termed “interlaced”, tend to form in shorter intervals, 

and lack the features indicative of trapped gases due to larger distances between individual 

crystal structures (Taylor & Chafetz, 2004). Crystal morphology is dependent upon saturation 

state of the solution, whereby ‘fused rafts’ form in waters near equilibrium, and ‘interlaced rafts’ 

form where saturation states are higher (Taylor & Chafetz, 2004; Teng et al., 2000). The 

saturation state of groundwater in caves is typically at equilibrium or past equilibrium, whereas 

the saturation state of seawater is typically near equilibrium (Mucci, 1983). Raft genesis halts 

when the pCO2 falls below that of the overlying atmosphere, a change in water ion 

concentrations, or a large change in turbidation at the site of nucleation (Smart et al., 2006; 

Taylor & Chafetz, 2004). 

 

In addition, Mucci (1983) demonstrated that the ionization states of the trace minerals in 

the water also influences the precipitation and dissolution of calcite and aragonite. The 

stoichiometric solubility constants of calcite increases with salinity because the ionic activity of 

Ca+2 and CO3
−2 ions in relation to the increasing ionic strength increases with salinity (Mucci, 

1983). An increased solubility constant for CaCO3 means more calcium and carbonate ions can 

exist in solution without precipitation. This solubility constant increase may in part explain the 

absence of calcite raft formation in marine or estuarine environments. Calcite rafts can also form 

in water of varying acidity (pH of 6.70-8.44), but more acidic conditions favor the formation of 

prismatic raft morphology (Taylor & Chafetz, 2004). 
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Interestingly, sediment cores collected from a sinkhole on Abaco Island (Great Cistern) contain 

considerable quantities of coarse grain particles as part of the sedimentary matrix, and these 

particles are suspected to be calcite rafts. Given the subaerial location of this sinkhole, the 

presence of calcite rafts is puzzling, and there is no evidence in the literature of calcite rafts 

having been previously observed in sinkhole sedimentary accumulations. The objectives of this 

study are to determine the mineralogy, crystal morphology, and depositional timing of these 

sedimentary particles. These following questions motivate this research: 

 

1. What is the chemistry, mineralogy, and structure of the coarse particles that have 

accumulated in Great Cistern Sinkhole on Abaco Island? 

2. Did coarse particle deposition preferentially occur during specific time intervals? If so, 

when? 

3. What are the potential drivers of coarse particle deposition in Great Cistern Sinkhole on 

Island through time?  

 

 

Study Site 

The Bahamas are an archipelago of Quaternary carbonate islands in the Western North 

Atlantic Ocean (Carew & Mylroie, 1997). Of the many islands comprising the Bahamian 

archipelago, 136,000 km2 sit atop shallow bank, and 11,400 km2 is subaerial landmass (Carew & 

Mylroie, 1997). The shallow banks are usually around 10 m in depth and surrounded by steep 

drop-offs of great depth (Carew & Mylroie, 1997). Twenty-nine islands, 661 cays, and 2,387 

rocks make up The Bahamas, and most of the islands are topographically low-lying (Carew & 
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Mylroie, 1997). Little Bahama Bank and Great Bahama Bank form are the northwest islands in 

the Bahamian archipelago, and the banks are separated by the Northwest and Northeast 

Providence Channels (Carew & Mylroie, 1997). The islands to the southeast are on small banks 

surrounded by water of varying depths (2000 to 4800 m) (Carew & Mylroie, 1997). Two karst 

processes dominate the geology of the Bahamas: constructive carbonate deposition and 

destructive carbonate dissolution triggered by coastal erosion and precipitation (Mylroie et al., 

1995). Quaternary glacioeustatic sea-level change have produced observable periods of 

carbonate deposition as well as denudation (Mylroie et al., 1995). The two major karst landforms 

of the Bahamas are caves and interior basins (Mylroie et al., 1995). The islands themselves are 

entirely covered by limestone, and as a result of the porosity of limestone, surface streams are 

not present on the islands (Mylroie et al., 1995). A meteoric lens of freshwater water is buoyed 

on saline water below that permeates the islands’ limestone bedrock (Mylroie et al., 1995). Flank 

margin caves are found along coastal areas of the Bahamas and are typically associated with 

interglacial high stands of sea level (Mylroie et al., 1995). Interior cave systems are typically 

found at higher elevations (>6 m), and form during glacial and interglacial periods (Mylroie et 

al., 1995). Most caves on the Bahamas can be traced downward below sea level, and most are 

largely flooded (Mylroie et al., 1995). The cave systems are often attached to a surface feature 

termed a sinkhole (Mylroie et al., 1995). There are four types of sinkholes: solution, collapse, 

suffusion, and subsidence (Kaufmann, 2007; Ford & Williams, 1989). The dominant type of 

sinkhole found on Great Abaco Island formed through collapse of antecedent carbonate 

lithology. A collapse sinkhole forms in regions where there is little soil cover over karst rock, 

and rainwater percolation causes fractures and porosity to form in the rock (Kaufmann, 2007; 

Ford & Williams, 1989). This secondary porosity eventually enlarges to form caves and 
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compromises the structural integrity of the rock to eventually cause collapse of overlying 

material into the subsurface dissolution hole (Kaufmann, 2007; Ford & Williams, 1989). 

Sinkholes often are connected to a water table and can have extensive subsurface cave 

formations (Carew & Mylroie, 1997). Coastal sinkholes can become inundated by sea-level rise, 

and are often times influenced by sea-water percolation via porous karst bedrock (Carew & 

Mylroie, 1997). Precipitation largely influences karst dissolution and construction patterns in the 

Bahamas, through the dissolution of karst rock via carbonic acid (Carew & Mylroie, 1997).  

 

In general, the northern Bahamas is characterized by a subtropical temperate climate but 

there is considerable latitudinal variability in annual rainfall (Carew & Mylroie, 1997). During 

an annual cycle, there are specific dry and wet seasons, and the wet season on northern islands is 

interrupted by a decrease in precipitation in July and August formally called the Midsummer 

Drought (Fig. 1) (Jury et al., 2007; Gamble & Curtis, 2008). On millennial timescales, 

precipitation in the Caribbean is significantly influenced by meridional displacement of the 

Intertropical Convergence Zone (ITCZ) and North Atlantic Subtropical High, which is impacted 

by changing northern hemisphere insolation over Holocene timescales (Hodell et al., 1991; Haug 

et al., 2001). In general, a more northerly displaced ITCZ increases moisture delivery to the 

Caribbean, and a more southerly displaced ITCZ increases Caribbean aridity (Fensterer et al., 

2013). Environmental proxies (e.g., microfossils, speleothem geochemistry) preserved in 

sediment records from individual Caribbean Islands can help determine precipitation regime 

changes due to climate change (Axford et al., 2011; Fensterer et al., 2013).   
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Great Cistern sinkhole is a coastal sinkhole on Great Abaco Island. Great Abaco Island is 

the easternmost island mass on the Little Bahama Bank, which is the northernmost carbonate 

platform in the Bahamian archipelago (Fig. 1). Great Cistern sinkhole has a depth of 9 m and a 

diameter of 15 m, and it is located less than 40 m from the shoreline at an elevation less than 3 m 

above mean sea level (msl). The sinkhole is currently flooded by local coastal aquifer, mostly by 

an upper brackish water lens (surface salinity: 10.8 to 11.3 psu, pH: 7.64). Local tidal impacts 

can be observed by the daily oscillation of the water level within the sinkhole. The sinkhole is 

most likely connected into the regional macroporsity of the high porosity and high permeability 

local aquifer, but diver exploration did not document a cave passage at depth in the sinkhole. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Regional Caribbean average daily precipitation from 1901-2013. A: Regional precipitation study created using weather station data 
averaged from 1901-2013 grid coverage is 1x1 spatial size and indicates areas of spatial data coverage. B: Satellite imagery of eastern Great 

Abaco Island, with Great Cistern denoted by a black circle. C: Satellite imagery of Great Cistern sinkhole. Graph: Average daily precipitation 

data computed from image.  
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CHAPTER II 

METHODS 

 

Regional Precipitation 

To understand regional precipitation patterns, two sets of netcdf data files were 

downloaded, “precip.mon.mean.nc” and “precip.mon.total.v7.nc” from 

http://www.esrl.noaa.gov/psd/. The files contained precipitation data that was averaged monthly 

by the Global Precipitation Climatology Centre. The files contained layered monthly 

precipitation data, the v7 data was taken from weather stations, while the other file was satellite 

data. The program NCO toolkit was used to obtain a monthly average precipitation for the 

coverage period for each file. The script used was the following: ncra –F –d time, 1(indicates 

month, 1 is January), nmonths (12xnumber of months in file),12 ‘input file name path’ ‘output 

file name path’. The script was used twelve times on each separate original netcdf file, with each 

output name equaling the month that was averaged. The files obtained from the 

“precip.mon.total.v7.nc” file were imported into ArcMap using the “Make NetCDF Raster 

Layer” tool. A basic basemap was loaded from the ESRI database for spatial reference. The 

Caribbean region was zoomed to and each file was exported as a “.tif”, with the coverage set to 

current. The raster calculator tool was used on each “.tif” file using the formula “file * 1000” to 

facilitate working with rasters as integers. The 12 new files were named “monthcalc1”, with 

month indicating the month of the file being analyzed. Raster calculator was used again on the 

new files utilizing the formula “Int(monthcalc1)”. The new files were labeled “monthint”, with 

month indicating the month of the file being analyzed. The raster to polygon tool was used on the 

new files, and the new files were named “monthpoly”, with the same naming convention as the 
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previous two operations. The attribute table of each file was opened, and a new field was added 

titled “monthprecip”, with the parameters of the new field being “double” and precision 3. Field 

calculator was used on the new field using the formula “gridcode/1000” which was done to get 

the file values back to original values. The union tool was used to join the calculated 

precipitation files into one table. The table to excel tool was used to export the union file into a 

Microsoft Excel spreadsheet to produce a bar graph of average monthly precipitation. Each 

column of precipitation data was averaged in Excel, converted to a column bar graph, and pasted 

into the ArcMap precipitation map (Fig. 3). The extent of coverage was set to the Bahamas using 

the v7 precipitation weather station data. The coverage generated from the satellite data was not 

reproduced due to the small spatial constraints of Abaco Island. The regional precipitation study 

(Fig. 1) showed an increased period of rainfall from May-October (4-5 mm day-1), with a 

decrease in precipitation (3.25-3.5 mm day−1) in July and August. The average rainfall for the 

remaining months ranged from 2-2.5 mm day−1. 

 

Core Collection 

In January 2014, a coring survey was conducted in Great Cistern with a Rossfelder P-3 

submersible vibracore on a portable raft. An aluminum core pipe was vibrated mechanically until 

it reached refusal, most likely on antecedent carbonate. Other cores collected from Great Cistern 

all reached the same depth before refusal on a hard surface that caused damage to the nose (i.e., 

shoe) of core pipe, which suggests the entire accumulated sediment package from the sinkhole 

has been sampled. The core examined for the present study was GC-C8, and is 3.54 meters in 

total length. Cores GC-C7 and GC-C2 were analyzed separately from this study, the results of 

which were compared to the new results from GC-C8 generated by this work. After collection, 
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cores were transported back to the laboratory where they were split lengthwise and separated into 

an archive and a working half for analysis. All data analysis was completed on the working half 

of the core sections (Fig. 4). Hydrographic conditions in the sinkhole were measured in May 

2014 (beginning of wet season) and January 2017 (dry season) with a YSI EXO1 multiparameter 

water quality sonde, The YSI EXO1 measures salinity (±0.01 psu), dissolved oxygen (±0.1 mg 

l−l), pH (±0.1), depth (±0.03 m), and temperature (±0.01°C), and was calibrated just prior to field 

deployment. 

 

Sedimentary Subsurface Texture And Chronology  

Sedimentary texture was analyzed in contiguous 1-cm sediment subsamples downcore 

using the Sieve-first Loss-on-Ignition procedure (n = 354 samples) (van Hengstum et al., 2016). 

The Sieve-first Loss-on-Ignition procedure involved first weighing a set of clean, dry crucibles 

and recording the masses. A metal sampling spoon was first used to obtain a 2.5 cm3 sub-

samples at 1-cm increments down the length of GC-C8, GC-C7, and GC-C2. The sub-samples 

were then wet-sieved over a 63-μm mesh, which removed silt- and clay-sized particles (both 

organic and carbonate). The remaining coarse sediment residue was then carefully washed into 

an individual crucible and dried overnight in a drying oven. The dried samples were re-weighed, 

and then subsequently ignited at 550°C for 4.5 hours to remove organic content. The post-burn 

samples were weighed, recorded, and the values were all entered in a Microsoft Excel 

spreadsheet. A scatterplot was produced using the coarse fraction amount (D>63 um mg cm−3) as 

the dependent variable and total core depth as the independent variable (Fig. 8).  
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Radiocarbon Dating 

Accelerator Mass Spectrometry (AMS) Radiocarbon dating was used to generate a 

downcore chronology for the sediment core (Fig. 4). Terrestrial plant macrofossils (e.g., leaves, 

small twigs) weighing >4 mg were sampled from the middle core, and favored over carbonate 

particles (e.g., gastropod shells) to avoid potential hardwater effects in the radiocarbon signal. 

Terrestrial plant macrofossils were first rinsed in water, dried overnight at 80°C, and shipped to 

The National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) at Woods 

Hole Oceanographic Institution for radiocarbon measurement. The resultant conventional ages 

were calibrated into calendar years before present using IntCal13 to account for secular changes 

in radiocarbon concentration in the atmosphere, where present is 1950 AD (Cal yrs BP1950) 

(Reimer et al., 2013). A final age-depth model was generated using Bayesian statistical analysis 

in the R program Bacon v2.2 (Box & Tiao, 2011). 

 

X-Ray Diffraction Analysis 

X-Ray Diffraction analysis was used to diagnose the mineralogy of the coarse grained 

particles that had accumulated in Great Cistern sinkhole. Sediment samples were selected from 

GC-C8 at the following depths: 134.5, 196.5, 222.5, 272.5, and 355.5 cm. Samples were selected 

based on abundant coarse fraction content as determined by the Sieve-First LOI procedure. 

Samples were extracted from the core sections with a metal spatula and sieved using a 63-micron 

sieve to remove clay and silt particles. The sieved samples were dried overnight in a drying oven 

at 80°C, and homogenized into a fine powder using a mortar and pestle. The resultant powder 

was analyzed on a Bruker D8 Advance diffractometer at Texas A&M University in College 

Station. The sample was placed in the sample holder of a two circle goniometer, enclosed in a 

radiation safety enclosure. The X-ray source was a 1kW Cu X-ray tube, maintained at an 
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operating current of 40 kV and 25 mA. The X-ray optics was the standard Bragg-Brentano para-

focusing mode with the X-ray diverging from a DS slit (1 mm) at the tube to strike the sample 

and then converging at a position sensitive X-ray Detector (Lynx-Eye, Bruker-AXS). The two-

circle 218 mm diameter - goniometer was computer controlled with independent stepper 

motors and optical encoders for the  circle with the smallest angular step size of 0.0001o 2. The 

software suit for data collection and evaluation is windows based. Data collection was analyzed 

by employing an automated COMMANDER program employing a DQL file. Data is analyzed 

by the program EVA. The presence of minerals in the Great Cistern samples were diagnosed by 

comparing the peaks on the resultant diffractograms with peaks on diffractograms from known 

standards (e.g., FeOH, CaCO3). 

 

Scanning Electron Microscopy 

Photomicrographs of coarse particles from GC-C8 were collected to examine the 

morphology of mineral particles. Individual sediment particles from GC-C8 were imaged with 

Hitachi desktop scanning electron microscope (SEM) to determine their external shape and 

crystal form. First, regions in GC-C8 that had large amounts of potential calcite raft material 

were identified after the coarse fraction analysis, and based on the presence of calcite from prior 

x-ray diffractogram analysis. Samples were taken from core depths of 134.5 cm, 162.5 cm, 249.5 

cm, and 277.5 cm. The samples were then wet-sieved over a 63-m sieve, dried overnight at 

80°C, mounted on standard aluminum SEM stubs, and gold-sputter coated to increase the 

electrical conductivity of the samples. Photomicrographs of the sediment particles were saved as 

raster files (.tiff) for further analysis. 
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CHAPTER III 

RESULTS 

 

Hydrographic Conditions In Great Cistern 

Hydrographic conditions for the sinkhole in January 2017 (dry season) (Fig. 3) were 

brackish throughout the depth of the sinkhole, and a micro-tidal influence was observed from the 

nearby coast as well. Dissolved oxygen levels in Great Cistern sinkhole were below 1.4 mg/L 

throughout the water column (Fig. 3). The low dissolved O2 are indicative of a low energy water 

environment, and low bioturbation (Strayer et al., 1997). Water temperature was 23°C and pH 

was 7.3 during January 2017. May 2014 (start of wet season) measurements yielded dissolved 

oxygen levels of 6-2.4 mg l−1 decreasing with water depth, average salinity of 11.3 psu, pH of 

7.3, and average water temperature of 25°C.  

 

Sedimentology 

Core collection for GC-C8 yielded 360 cm of sediment, and the coring process did not 

penetrate the antecedent lithology. In general, the top 136 cm of the core was dark-colored 

organic leaf litter and wood debris (Fig. 2). The organic matter was dark black in color and 

contained mostly leaf litter and wood pulp, but some sections downcore contained a higher 

abundance of woody material. The first 136 cm of the core contained very fine sediment (<63 

µm) that was easily separated by sieving, which left only organic-rich residue behind on the 

sieve. Vertebrate bones were also abundant in the core, which were isolated during the sieving 

procedure. A fish vertebra was found at a depth of 2 cm, possible lizard bones (i.e., anolis) were 

found at a depth of 255.5 cm, and a total of ten other bones were found (core depths in cm: 
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256.5, 288.5, 290.5, 291.5, 292.5, 310.5, 313.5, 314.5, and 327.5). Not all bones were easily 

identifiable, but they are all tentatively identified as belonging to small lizards (i.e., anolis). The 

last meter of core contained sparse fragments of iridescent insect carapaces (three occurrences), 

which indicates the excellent sedimentary preservation potential in this basin and limited 

degradation due to biotic or abiotic factors. Small (<0.5 cm) gastropod shells were sporadically 

observed downcore, but were not analyzed further. Lastly, the bottom five centimeters of the 

core was not tested due to a large fragment of wood.  

 

Upon visual inspection of the split core face, there were salient beige-hued horizons 

downcore with clearly defined contacts. This indicates negligible vertical sediment mixing in the 

core, or bioturbation. The pale horizons were not evenly spaced, but alternated between organic-

rich layers and pale horizons every 2-20 centimeters of core depth. Wood pulp and twigs were 

present in much of the organic layers, but the color of the organic layers was a lighter brown than 

the layers shallower in the core before the pale horizons began appearing. Pale horizons varied in 

size, but were typically 2-10 cm of core length. The two largest hiatuses of pale horizon 

occurrence appeared between depths of 160.5 cm to 173.5 cm and 305.5 cm to 311.5 cm. 

 

The Sieve-First LOI procedure was used to identify downcore changes in coarse mineral 

particles, and these beige-hued horizons consistently contained coarser particles relative to the 

dark-hued organic-rich intervals. The quantity of coarse sediment particles began gradually 

increasing at 146.5 cm (Fig. 2). Coarse particle abundance ranged from 5-20 mg cm−3 from the 

top of the core to a depth of ~144.5 cm. Significant increase in coarse abundance occurred at the 

following depth intervals: 144.5-158.5 cm, 176.5-184.5 cm, 187.5-204.5 cm, 219.5-232.5 cm, 
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242.5-307.5 cm, 310.5-351.5 cm. The corresponding coarse grain sizes were as follows: 27.5-85 

mg cm−3, 194-200 mg cm−3, 131-308 mg cm−3, 101-170 mg cm−3, 113-390 mg cm−3, 100-356 mg 

cm−3. Overall, the texture of these beige horizons increased downcore. Coarse particle sizes 

measured in dark-hued horizons increased with core depth, and measure 100 mg cm−3 or less 

throughout the core until 311.5 cm core depth. From 311.5 cm to the core bottom there were less 

distinct pale and dark-hued horizons, which was likely due to the high number of CaCO3 

particles. Coarse particle size ranges for the dark-hued regions ranged from 5-200 mg cm−3; 

however, the darker-hued regions containing near 200 mg cm−3 particle sizes had visibly lighter 

hues than dark-hued horizons with less than 100 mg cm−3 particle sizes.   

 

X-Ray Diffraction (Fig. 5) confirmed the mineralogy of the coarse particles in GC-C8 as 

calcite. The coarse particle horizons resembled CaCO3 sand superficially, but showed 

resemblance to calcite raft material under optical microscopy. Further analysis of particle 

morphology under scanning electron microscopy revealed rhombohedral, fused rafts that made 

up the coarse particle horizons within each sediment core (Fig. 4). Dissolution marks are also 

visible, as well as small holes indicative of trapped gases (Taylor & Chafetz, 2004). 

 

Chronology 

Radiocarbon dating of terrestrial plant macrofossils from GC-C8 indicated that all 

sediment accumulated during the middle to late Holocene. Samples for radiocarbon dating (leaf 

litter), were taken at 98, 128, 226, 251, and 303 cm core depths and had corresponding ages 1260 

± 15, 1740 ± 15, 2770 ± 20, 3120 ± 20, and 4460 ± 25 Calibrated years before present (Cal yrs 

BP, Fig. 2). A final age model for the core was generated with the R program Bacon, which uses 
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a Bayesian statistical approach to develop a relationship downcore between the depth of the core 

and age (Fig.6).  

 
Figure 2. Core logs. Left-Right: GC-C7, GC-C8, and GC-C2 matched with coarse fraction peaks denoting calcite raft material. X-Radiographs 

matched to the core logs have lighter shading to denote denser sediment layers. Top blue shaded region shows cessation of coarse particle 
occurrence in all three cores, and bottom blue region shows another hiatus of raft deposition. GC-C7 and GC-C2 were processed separately. 
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Figure 3. Salinity and dissolved oxygen profile of Great Cistern sinkhole as of January 2017. 

 

 

Figure 4. Calcite raft material from Great Cistern sinkhole. A: Planar (growth) side up. B: Surface of raft material where air/water interface was 

located. Dissolution marks are present as well as spaces where trapped gases were present. 
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Figure 5. X-Ray diffractograms with highlighted peaks indicating the presence of calcite.  
 

 
Figure 6. Age plot versus core depth created using Bayesian statistical analysis in the R program Bacon v2.2 (Box & Tiao, 1992). 
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CHAPTER IV 

DISCUSSION 

 

Sedimentation Patterns In Great Cistern Sinkhole 

GC-C7 and GC-C2 were taken within several meters of GC-C8 and analyzed separately 

in another study. GC-C8, GC-C7, and GC-C2 all exhibit an increase in the occurrence of coarse 

particle (sand) deposition as beige horizons between ~1600 to 7200 Cal yrs BP. After further 

analysis (see Figs. 4, 5), the coarse particles were diagnosed as calcite rafts. The beige horizons 

became more pronounced where each core was dated near 1.6 Cal yrs BP. The close correlation 

of pale sediment horizons between the three cores confirms contiguous stratigraphy in the basin. 

Of the three cores, GC-C7 is the only core believed to have penetrated the complete sedimentary 

package in the basin, while GC-C8 and GC-C2 do not contain the entire Holocene sequence in 

the basin. Due to the incomplete sediment packages of GC-C2 and GC-C8, the core logs had to 

be matched based on coarse particle size, and radiocarbon dated age markers. Once the 

radiocarbon markers were matched, coarse particle peaks all showed the same general trends 

downcore. GC-C7 contained more bones than GC-C2 and GC-C8, but the bone types (terrestrial 

anolis lizards downcore, fish bones upcore), remained consistent in each core. Dark-hued organic 

layers were present in each core, and comprised the entirety of each cores sedimentology prior to 

the appearance of pale horizons at 1600 Cal ys BP. The dark-hued organic layers did not 

disappear at the onset of the pale layers, but continued to occur between the pale layers. The 

continued appearance of dark organics between the pale horizon layers suggests the supply of 

organic material to Great Cistern did not interfere with precipitation of the pale horizon calcite 

particles. The color of the dark-hued horizons lightened with depth in each core from a near 
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black (prior to the pale horizons), to light brown (near 300-500 mg cm−3coarse particle size). The 

color change shows a trend of maximum calcite particle precipitation downcore, and a lack of 

calcite precipitation upcore prior to ~1600 Cal ys BP. Pale coarse particle layers disappeared 

from the sediments in GC-C7 at 350 cm core depth, while GC-C8 and GC-C2 showed evidence 

of calcite rafts throughout the later sections of the core to the bottom. Pale horizons varied in 

length from a few centimeters to several, indicating sedimentation of the coarse particles 

occurred in long intervals (years), and not at equal rates. There are two notable decreases pale 

horizon occurrence in all three sediment cores (Fig.2) that coincide with radiocarbon dates of 

~1700 Cal ys BP and ~4400 Cal yrs BP. The pale horizon particles are calcite and have episodic 

depositional characteristics captured in three sediment cores.  

 

Drivers Of Calcite Precipitation 

The precipitation of calcium carbonate occurs based on the chemical equation:  

 

𝐶𝑎2+ + 2𝐻𝐶𝑂3
− ↔ 𝐶𝑎𝐶𝑂3(𝑠𝑜𝑙𝑖𝑑) + 𝐶𝑂2 + 𝐻2O 

 

Precipitation of calcite in freshwater depends on multiple factors. For calcite precipitation to 

occur, the pCO2 of the water must be higher than the surrounding atmosphere (Mucci, 1983). If 

calcite concentrations in the water are near equilibrium, the water surface will interact with the 

atmosphere (with or without turbulence), which causes off-gassing of CO2 from the water 

(Mucci, 1983). The off-gassing of CO2 leads to an increase in pH of the water, and a subsequent 

further saturation state with respect to calcite (Mucci, 1983). Alkaline waters favor calcite 

precipitation, and increased temperature can lead to increased evaporation, which subsequently 

leads to increased calcite saturation (Mucci, 1983). Calcium carbonate precipitation in seawater 

seems plausible upon calculation (Eq. 1, 2, and 3). Determining the degree of saturation with 
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respect to CaCO3 in seawater at 35 psu yields a degree of saturation of 630, with values less than 

one indicating undersaturation and values over one as supersaturated. Values were taken from 

the 97th CRC Handbook of Chemistry and Physics (Haynes, 2016).  

 

Solubility product constant (saturated conditions): (Eq. 1) 

 

𝐾𝑠𝑝 = [𝑀𝐶𝑎 𝑖𝑜𝑛
+ ][𝐴𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 𝑖𝑜𝑛

− ] = 3.35 ×  10−9 

 

 

Ion Product CaCO3: (Eq. 2) Concentrations obtained from the CRC handbook (Haynes, 2016).                                     

     

 

𝐼𝑃 =  [𝐶𝑎2+][𝐶𝑂3
2−] = 2100 × 10-9 

 

 

Degree of saturation: (Eq. 3)  

                                    

Ω =
𝐼𝑜𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

𝐾𝑠𝑝
=  

2100 ×  10−9

3.35 × 10−10
= 630 

 

 

Degree of saturation should promote precipitation of calcite from seawater, yet calcite 

does not readily precipitate due to ionic activity interference likely caused by the other salts in 

seawater (Mucci, 1983; Plummer, 1975). The reason calcite does not precipitate in seawater is 

not fully understood, but salinity likely plays a large role. Plummer (1975) stated that 

interactions between saturated fresh and saltwater at meteoric lens’ in the Bahamas yields a 

product that is undersaturated, which he attributes to ionic interference of the seawater (1975). 

Dissolution of limestone has been observed through the interaction of the groundwater meteoric 

lens under The Bahamas (Plummer, 1975). The dissolution of caves in carbonate systems has 

also been attributed to the erosive effects of marine water interaction with freshwater lenses 

(Mylroie & Carew, 1990). If dissolution of limestone (CaCO3) lithology is common in karst 

environments in The Bahamas, then it is plausible that saltwater intrusion into Great Cistern 
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1600 Cal yrs BP halted calcite raft precipitation. The reason salinity affects inorganic calcite 

precipitation is a matter of debate. Mucci calculated that solubility product constants rise 

exponentially with salinity increase (Fig. 9), which would potentially allow calcite to exist in 

solution in high concentrations without precipitation (1983; Plummer, 1975). The environment 

on Abaco Island, The Bahamas was different from present day. Sea level curves suggest the 

sinkhole has not been inundated by the sea during the last 7000 years, but the porous limestone 

that The Bahamas sits on allows seawater intrusion into the island from below (Ford & Williams, 

1989; Milne & Peros, 2013; Mylroie & Carew, 1990). Sea level was ~12 m lower relative to 

present ~7800 Cal yrs BP (Milne & Peros, 2013). This would have caused a water depth of 

roughly 1 m in Great Cistern sinkhole (Milne & Peros, 2013). The lower sea level would have 

meant little to no sea interaction with the sinkhole, which would have promoted near limnic 

conditions in the sinkhole. The shallow water depth of the sinkhole, and lack of tidal disturbance 

within the sinkhole, would make for a quiescent environment suitable for calcite raft genesis, 

despite the hole being open to the atmosphere (Taylor et al., 2004). Sea level was 1 m lower 

along the Bahama Banks 100 years ago than it is currently (Milne & Peros, 2013). Sea level 

intrusion into the karst bedrock surrounding the sinkhole would have also introduced additional 

salts found in seawater to the previously fresh sinkhole water. The increased salinity, and thus 

increased ionic interference, would have raised the solubility product constants for calcite, and 

increased the activity coefficients in the sinkhole water (Mucci, 1983; Mylroie & Carew, 1990). 

Lower pCO2 in the water versus the overlying atmosphere of the sinkhole could have halted raft 

genesis, but there is not any reason for this to occur since groundwater is typically saturated with 

CO2 (Palmer, 1991;White, 1997). The sinkhole was likely fed by an underground fresh aquifer, 

which would have been saturated with respect to CaCO3 (Kaufmann, 2007). Increased periods of 



24 

rainfall would allow water to percolate through the limestone bedrock, pick up additional Ca+ 

ions, and enter the sinkhole (Ceron et al., 2002; Kaufmann, 2007). In summary, there are 

multiple factors that theoretically control calcite raft formation, but the most likely reason for a 

ceasation in their formation in the last ~1600 years is likely due to an increase in slainity in the 

sinkhole, which generated unfavourable conditions for raft nucleation and growth. 

 

Potential Linkage Of Calcite Raft Sedimentation To Long-Term Bahamian Precipitation 

The abundance of calcite rafts in Great Cistern sediment record are potentially providing 

evidence for prehistoric precipitation activity on Great Abaco Island, given their accumulation 

patterns mimic known long-term trends of regional precipitation. The period from 8200 to 2500 

Cal yrs BP was a period of increased solar insolation due to Earth’s orbital precession, which 

caused a climate shift from arid to mesic on Haiti (Hodell, et al., 1991). In the Bahamas, periods 

of heavy rainfall would have introduced CaCO3 ions into Great Cistern sinkhole, which would 

have raised the saturation state of the water in the sinkhole. The calcite rafts would have been 

able to precipitate in an environment chemically similar to a cave (the usual place calcite rafts 

appear) (Taylor et al., 2004). During periods of decreased rainfall, the saturation state of the 

water would drop below equilibrium and make calcite precipitation unfavorable. In addition, the 

accumulation of calcite rafts in the sinkhole are closely correlated with stable oxygen isotopic 

ratios (δ18O) archived in a Cuban speleothem, which determined periods of increased versus 

decreased rainfall in Cuba (Fig. 7)(Fensterer et al., 2013). Low δ18O values (more negative) 

indicate wetter conditions, higher δ18O values (more positive) indicates drier conditions 

(Fensterer et al., 2013). The correlation shows that the intervals with  more negative δ18O values 

in the speleothem are coeval with increased calcite raft deposition in Great Cistern sinkhole. The 

correlation between raft deposition and periods of increased precipitation determined by 
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Fensterer et al. (2013) would suggest that the calcite rafts within the sediment record of Great 

Cistern sinkhole can serve as a proxy for rainfall on Great Abaco Island. Calcite raft occurrence 

indicates waters near or past equilibrium, and gives a general idea of calcium ion saturation 

index, pCO2, pH, temperature, as well as general energy environment within the sinkhole 

(Mucci, 1983; Taylor & Chafetz, 2004; Teng et al., 2000; White, 1997). Fensterer et al. (2013) 

documented general pattern of increasing precipitation through the middle Holocene in the 

Caribbean . ~4500 years ago, however, both the Cuban speleothem and calcite raft deposition 

decrease, and likely indicate a period of regional drought (Fig. 8). From 3300 to 2500 Cal yrs 

BP, the Cuban speleothem ceased growing (Fensterer et al., 2013), which is timed with 

decreased accumulation of calcite rafts in Great Cistern Sinkhole. The latitudinal variability of 

Caribbean precipitation, combined with other physical factors that could control speolethem 

development, could have caused the difference in precipitation records (Ford & Williams, 1989). 

Further examination of additonal Caribbean hydroclimate proxies is required to solidfy a clearer 

paleoclimate picture for the time period of raft deposition. The calcite rafts do offer a valid 

hydrological piece of evidence for an overall hydroclimate reconstruction of the region.  
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Figure 7. Coarse sediment amount peaks compared to Fensterer et al., (2013) Dos Anos Cave, Cuba speleothem δ18O (‰ VPDB) values showing 

correct wet and dry peak correlations.  

 

 
Figure 8. Coarse fraction amount versus age using Bayesian statistical analysis in the R program Bacon v2.2 (Box & Tiao, 1992). 

 

  
Figure 9. Solubility product constants at 25⁰C and various salinities. Taken from experimental values produced by (Mucci, 1983). 
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CHAPTER V 

CONCLUSION 

 

The sediment record from Great Cistern sinkhole on Abaco Island, The Bahamas, 

contains abundant pale-beige horizons that were diagnosed as being horizons of calcite rafts. 

Deposition of these calcite rafts occurred from 7200 to 1600 Cal yrs BP, but the abundance of 

calcite raft accumulation changed through time. Calcite raft deposition, both long-term and 

centennial-scale oscillations, correlates with changes in stable oxygen isotopic ratios preserved in 

a Cuban speleothem. This means the rafts are a paleohydrological proxy for Abaco Island, and 

potentially the entire northern Caribbean region. The disappearance of the rafts ~1600 years ago 

was likely tied to the increased salinity in the sinkhole from saltwater intrusion from changing 

coastal geometry related to Holocene relative sea-level rise (e.g., shoreline translation, coastal 

embayment). These results demonstrate that calcite rafts in Great cistern may serve as useful 

proxy of regional precipitation patterns.  
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