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ABSTRACT 

Overdischarge and External Short Behavior of Lithium-Ion Batteries 
   

Conner Fear 
Department of Mechanical Engineering 

Texas A&M University 
 

Research Advisor: Dr. Partha P. Mukherjee 
Department of Mechanical Engineering 

Texas A&M University 
 

 

 Lithium-ion batteries (LIBs) have become increasingly popular for commercial use in 

recent years, however, the frequency of accidents involving LIBs raises concerns over their safety. 

A commonly experienced condition for batteries is an external short, which causes the cell to 

discharge at a high rate and, hence, at large currents, resulting in rapid heat generation in the wire 

as well as within the cell. Another condition, known as overdischarge, is also becoming a common 

safety issue as greater numbers of cells are being connected in series, as is the case in systems 

requiring high voltages, such as Electric Vehicles (EVs). This work seeks to explain the 

mechanisms that cause internal damage to cells during external shorting and overdischarge and to 

determine the most dangerous conditions that can exist during these types of abuse. An external 

short test using a commercial 18650 cell (Panasonic) was conducted by subjecting the cell to a 

constant resistance discharge with resistors of decreasing value (from 100-0.01 Ω). To perform the 

overdischarge test, a constant current discharge phase with no lower cutoff voltage was used to 

overdischarge the same type of cells to -100% SOC. The phenomenon of copper dissolution from 

the anodic current collector was observed in each overdischarged cell. Voltage, current, and 

temperature behavior was monitored throughout the cycling of all cells in order to determine the 
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cell response to the abnormal cycling. The internal damage of the cells was studied by conducting 

a Destructive Physical Analysis (DPA) and by analyzing cell components via Scanning Electron 

Microscopy (SEM). The external shorting results showed that a single 18650 cell experiencing 

external short can produce potentially dangerous amounts of heat when the resistance of the short 

is between 0.47 Ω and 1 Ω. Cracking was observed on both the anode and cathode surface of the 

externally shorted cell, indicating a loss of capacity. The overdischarge test results confirmed that 

copper dissolution occurs when the cell voltage reaches -1.1 V in the Panasonic cells. The 

deposition of copper on the cathode surface can lead to the trapping of lithium ions within the 

cathode. Loss of copper material from the anodic current collector can cause loss of adhesion of 

the anode material to the collector and loss of mechanical stability of the anode roll. This work 

will provide a better understanding of LIB behavior under abusive conditions.  
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NOMENCLATURE 

 

CC  Constant Current 

CV  Constant Voltage 

DPA  Destructive Physical Analysis 

EV  Electric Vehicle 

LIB  Lithium-Ion Battery 

OCV  Open Circuit Voltage 

PE  Polyethylene 

PP  Polypropylene 

SEI  Solid-Electrolyte Interface 

SEM  Scanning Electron Microscopy 

SOC  State of Charge 

XRD  X-Ray Diffraction 
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CHAPTER I 

INTRODUCTION 

 

Overview 

 In response to consumer demand for electric vehicles and portable electronics with greater 

energy storage capabilities, the market for lithium-ion batteries has experienced rapid growth in 

recent years. The high power, high energy density, and efficient reversibility of LIBs make them 

attractive choices for a variety of energy storage applications [1]. Unfortunately, the strong 

performance of the lithium-ion chemistry has been accompanied by the frequent occurrence of 

accidents, revealing the need for a more thorough understanding of the behavior of these powerful 

cells under abnormal conditions. 

A common abuse condition experienced by LIBs is an electrical short, which occurs when 

the positive and negative terminals of a battery come into contact with minimal electrical 

resistance. This causes the cell to discharge at a high rate, thus producing large amounts of current 

and rapidly generating heat within the cell as well as in the external circuit. If the cell temperature 

is not properly controlled, very high internal temperatures (~180°C) can spur undesired exothermic 

reactions in the cell, known as thermal runaway, which can even lead to fire or explosion [2]. In 

September 2016, Samsung was forced to recall nearly 1 million Galaxy Note 7 phones after 

numerous reports of the devices exploding during extended charging [3]. It was later revealed that 

the issue stemmed from a design flaw in which the battery’s external casing was too small for the 

internal components, causing them to short circuit. While the dangers of internal shorting in LIBs 

have been well-documented, few studies have focused on the response of LIBs to external shorting, 

which can easily occur due to faulty packaging or careless handling of cells. This study seeks to 
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explain the response of LIBs to an external short and to determine under what conditions this 

shorting could lead to damage or failure in cells. 

Another condition, known as overdischarge, is becoming an increasing concern for 

designers of high-voltage battery packs, as required by systems such as electric vehicles. To meet 

these voltage requirements, greater numbers of cells are being connected in series [8]. When placed 

in a series arrangement, the voltage of individual batteries cannot be controlled directly; only the 

voltage of the full module can be adjusted. Slight differences in the manufacturing of cells can 

cause some cells to have less capacity than others in the series. Nevertheless, when the module is 

discharging, the cells with lower capacity are demanded to deliver the same amount of current as 

other cells. Commercial LIBs typically specify a voltage range (~2.5-4.2 V) for safe operation in 

order to prevent undesirable side reactions from occurring in the cell. When lower capacity cells 

in an unbalanced module discharge beyond their recommended lower voltage limit, overdischarge 

occurs and permanent capacity fade or failure can be caused. Additionally, extreme overdischarge 

conditions can result in the dissolution of the copper anodic current collector, which can deposit 

on internal cell components and induce an internal short. This condition can be very dangerous 

because the flow of electrical current within the cell can create localized heat zones in the highly 

flammable electrolyte around the conductive pathways. Cases of internal short often result in fire 

or explosion, which could be catastrophic in a large battery pack. This study will investigate the 

causes of copper dissolution during overdischarge and determine under what conditions 

overdischarge could become dangerous. 
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Objective 

 The objective of this work will be to study the phenomenon of copper dissolution during 

extreme overdischarge of Li-ion cells. Initially, a constant resistance discharge will be used to 

study the behavior of a commercial 18650 cell during external shorting in order to determine 

whether copper dissolution can occur without overdischarge beyond 0 V. Then, a study will be 

conducted in which cells will be subjected to overdischarge by using a constant current protocol 

with no lower voltage limit. This will emulate the performance of the cell when it is placed in an 

unbalanced load module and driven to negative polarity by the surrounding cells. Electrochemical 

and sensitive analysis will be conducted on the cell response. Also, post-mortem analysis and 

scanning electron microscopy (SEM) will be employed to determine the physical consequences of 

abuse due to external shorting and overdischarge.  

 

External Short Test 

When the battery terminals are connected to an external circuit, the voltage tends to drop 

to a value called the closed-circuit voltage due to several types of polarization. The difference 

between the open and closed circuit voltages for a cell is known as the overpotential, ߟ, and is 

defined as ߟ = ை஼௏ܧ −  is the ்ܧ ை஼௏ is the Open Circuit Voltage (OCV) andܧ where ,[4] ,்ܧ

terminal cell voltage with current flowing. Activation polarization is the voltage drop related to 

the kinetics of the charge-transfer reactions taking place at the electrode/electrolyte interfaces [4]. 

Ohmic polarization is the voltage drop due to the internal resistance of a cell, as dictated by Ohm’s 

law (V=iR). This includes both resistances to electron and ion transfer in the cell, such as the 

resistance of the electrolyte to ion transfer and poor contact of conductive pathways between the 

reaction sites and the current collector in the electrode. Concentration polarization is caused by the 
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unavailability of the active species at the electrode/electrolyte interface to continue with the 

reaction. As the reaction proceeds, active species particles must diffuse to the electrode surface to 

replace the previously reacted materials. The buildup of a gradient between the electrode surface 

and bulk concentrations causes a voltage drop. The three polarization mechanisms discussed here 

are illustrated on a typical battery discharge curve in Figure 1. In constant resistance discharge the 

current decreases during the discharge proportionally to the decrease in the battery voltage [5]. 

Therefore, drops in voltage will result in proportional current drops throughout our external short 

tests. 

 

 

Figure 1. Battery discharge curve, showing the influence of various types of polarization [4]. 

 

 An external short circuit abuse test on prismatic LiCoO2/LiC6 batteries was performed by 

Leising et al. using a resistance of 6 mΩ [6]. In this test, cells were fully charged to +4.1 V and 

externally short-circuited. The temperature of each cell was monitored by a thermocouple applied 

to the battery surface. Within 0.2 s of starting the test, the current peaked and the voltage dropped 

severely to less than 0.25 V. For the next 1.5 minutes, the current held at about 14-15 A and the 

temperature began to rise. At this point, the current fell to less than 2 A, but the temperature 

continued to steadily rise. After 3.5 min, the temperature peaked and the current began to decay to 
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0.0 A. The maximum surface temperatures measured by the thermocouple was 109 °C. The 

temperature and current profiles for this test are shown in Figure 2. 

 

 

Figure 2. Temperature and current for prismatic Li-ion cell in external short circuit test [6]. 

 

Wu et al. achieved similar results in an external short-circuit on prismatic cells with a 

capacity of 750 mAh [7]. This test was performed on both fresh cells (10 cycles) and cells that had 

already suffered some abuse (200 cycles). It also considered the influence of separator material, 

testing cells with polyethylene (PE), polypropylene (PP), and PP/PE/PP separators. The current 

and temperature behavior during the test are shown in Figure 3. When the cells were shorted with 

an external resistance of 30 mΩ, the current peaked instantaneously at 25 A, stayed around 11 A 

for 70 s, and finally drops to less than 1 A. The temperature steadily rose for 70 s to a maximum 

of 110 °C. It is reported that results were identical for all three separators and that cycle number 

had a negligible effect on the behavior.  
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Figure 3. Current and temperature behavior of battery in external short-circuit test after more 

than 200 cycles [7]. 

 

Previous studies of external shorting have not considered the impact of external circuit 

resistance during shorting. The impact of utilizing an 18650 cell rather than a prismatic cell will 

also be a key component in this study, as different cell geometries may have varying ability to 

dissipate heat. Additionally, the cylindrical cells used in this study have higher capacities than the 

prismatic cells of previous studies, which could cause more heat generation during a short. By 

discharging 18650 cells under constant resistance conditions using a wide range of loads, this study 

will determine the resistance that creates the most dangerous conditions in the cell. It will also 

introduce post-mortem analysis of cell components after disassembly to investigate the damage 

caused by external shorting. 
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Overdischarge and Copper Dissolution Test 

Slight differences in initial SOC between the cells in series are amplified by cycling 

because cells with a higher initial SOC will be repeatedly subjected to overcharge while the cells 

with a lower initial SOC will be repeatedly subjected to overdischarge. 

 The voltage change at the end of discharge in a full cell is primarily driven by the rise in 

voltage of the anode [8]. When the anode voltage reaches 3.5 V (vs Li/Li+) or higher, the copper 

current collector of the anode can begin to oxidize to Cu2+ and dissolve into the electrolyte [9]. 

The results of a cyclic voltammetry test on copper foil in an organic electrolyte are shown in Figure 

4, which shows that the rate of copper dissolution increases rapidly around 3.5 V [10]. The 

dissolved copper from the anodic current collector will be redeposited on the anode surface, which 

can form an electric shunt and increase the internal resistance of the cell [9]. At the same time, 

over-deintercalation of lithium at the anode causes decomposition of the solid-electrolyte interface 

(SEI), which generates gases, including carbon dioxide. The formation of new SEI films while 

recharging the cell then consumes some lithium ions, reducing the cell capacity. 
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Figure 4. Five consecutive CV cycles of a Cu foil electrode in 1M LiPF6/PC:EC:DMC (1:1:3) 

electrolyte [10]. 

 

 In extreme overdischarge conditions, copper deposition on the cathode surface can begin 

to form electrically conductive pathways within the cell and can result in the formation of an 

internal short circuit, as illustrated in Figure 5 [9]. Guo et al. report that this internal short circuit 

can be safely and reliably induced through deep overdischarge without mechanical destruction or 

the introduction of foreign substances. Additionally, the side reactions that occur during extreme 

overdischarge result in the solid-state amorphization of transition metal compounds that make up 

much of the cathode material, leading to capacity degradation [9]. Other common issues that arise 

due to this condition are loss of adhesion between the anode material and the current collector and 

loss of contact between the copper sheet and the Ni lead-out tap, which may result in electronic 

isolation of the entire anode [8]. When Guo et al. attempted to recharge overdischarged cells, those 
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with mild internal shorting showed high rates of self-discharge, while those with severe shorting 

could not be fully recharged [9]. SEM and XRD results confirmed that copper deposition on both 

the anode and cathode was the cause of the short circuit. This study also found that neither internal 

short circuit nor capacity fading occurs if the overdischarge is terminated before reaching an SOC 

of -12%. 

 

 

Figure 5. Dissolution and deposition of copper during overdischarge and the formation of an 

internal short circuit [9]. 

 

Maleki and Howard performed an experiment to explore the effects of overdischarge on 

the cycle-life and thermal stability of Li-ion cells [11]. Commercial cells, rated at 780 mAh, were 

overdischarged and kept at 2.0, 1.5, 1.0, 0.5, or 0.0 V for 72 h and then cycled five times. This 

process was repeated five times, measuring the a.c. impedance after each repetition. The cells 

overdischarged to voltages between 2.0 and 0.5 V experienced capacity losses of 2-16%. These 
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cells lost between 8% and 26% more capacity after being cycled 100 times between 3.0 and 4.2 

V. Overdischarging to 0.0 V caused more severe capacity losses in some cells and caused some 

cells to fail entirely. Of the three failed cells, only one showed significant signs of copper 

dissolution. Energy-dispersive X-ray (EDX) analysis confirmed that copper was found on the 

cathode and separator surfaces of this cell, while all other cells contained statistically insignificant 

amounts of copper on these surfaces. 

Kishiyama et al. studied the effects of 0.0 V overdischarge on Li-ion cells whose anodes 

used current collectors made of either titanium or copper [12]. They demonstrated that the 

dissolution of copper is the main cause of capacity loss in cells under this condition. Additionally, 

they showed that the SEI layer could break down if the anode voltage exceeds 3.5 V. Mao 

demonstrated that anode potential can reach as high as 3.8 V when overdischarging a Li-ion cell 

to 0.0 V [13]. Therefore, it is possible that both copper dissolution and breakdown of the SEI layer 

are causes of capacity loss during the overdischarge process [11]. 

To the best of the author’s knowledge, few previous studies have focused on extreme 

overdischarge (below 0.0 V) or on the phenomenon of copper dissolution during overdischarge. 

In this study, the response of a single LIB to deep overdischarge was examined. A constant current 

discharge phase with no lower cutoff voltage was used to drive the cell voltage below 0.0 V and 

to reliably induce copper dissolution. The voltage and temperature behaviors of the cell were 

monitored throughout the test. 

  

  



16 
 

CHAPTER II 

METHODOLOGY 

 

Experimental Setup 

External Short Test 

A commercial 18650 cell was discharged repeatedly through an external circuit with 

various resistances ranging from 100 Ω to 0.01 Ω. High-power ceramic resistors were required for 

this test, as preliminary testing showed that the more common carbon resistors could melt under 

the load of the externally shorted cell. The voltage, current, and temperature responses of the cell 

were monitored and recorded throughout the discharge by an Arbin-BT2000 cycling machine. A 

detailed depiction of the experimental setup is shown in Figure 6.  

 

 

 

(a) (b) 
 

Figure 6. (a) Experimental apparatus for external short test. Cell is connected to external 

resistor circuit as well as Arbin cycling machine. (b) Schematic of circuit used to complete test. 
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Protocol 

A – Preparation Test 

 1. Charge using constant current (CC) at 1C to cutoff voltage of 4.2 V 

 2. Charge using constant voltage (CV) at 4.2 V until current falls below 0.05 A 

B – External Short Test 

 1. Manually short circuit cell by closing switch  

2. Monitor voltage and record every 1 ms throughout discharge 

3. Open switch and stop recording when voltage falls below 0.5 V 

 

Overdischarge and Copper Dissolution Test 

 A commercial Panasonic NCR18650B cylindrical cell was used in this experiment. The 

rated capacity of the cell was 3350 mAh at 1C and 25°C. The cathode material of this cell is Nickel 

Cobalt Aluminum Oxide (LiNiCoAlO2, NCA) and the anode material is graphite (C).  

 

Protocol 

A – Preparation Test 

 1. Charge using CC at C/20 rate up to 4.2 V 

 2. Charge using CV at 4.2 V with cutoff current of 0.05 A 

 3. Rest 30 min 

 4. Discharge using CC at C/20 rate to 50% SOC 

 5. Current pulse to measure internal resistance 
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 6. Discharge CC at C/20 down to 2.5 V 

 5. Rest 30 min 

 6. Charge CC at C/20 to 4.2 V 

 7. Charge CV at 4.2 V with 0.05 A cutoff current 

B – Overdischarge Test 

 1. Charge CC at C/10 to 4.2 V 

 2. Charge CV at 4.2 V to 0.05 A 

 3. Discharge CC at C/10 to 2.5 V 

 4. Charge CC at C/10 to 4.2 V 

 5. Charge CV at 4.2 V to 0.05 A 

 6. Discharge CC at C/10 or 1C with no lower cutoff voltage until SOC < -100% 

  

Destructive Physical Analysis 

Destructive physical analysis (DPA) was performed on all test cells in order to determine 

what damage had been caused to cell components. Cells were disassembled within a sealed argon 

glovebox for safety and to prevent reactions with the environment from affecting interior 

components. To safely open a commercial cell, it is important to avoid shorting the cell, as this 

could result in rapid heat generation. Therefore, it is recommended that cells are left in a discharged 

position before disassembly to minimize discharge energy in case of a short.  
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DPA Procedure 

1. Remove plastic wrapping to expose aluminum casing. 

2. Insert pipe cutter blade at seam of cell, as shown in Figure 7. Tighten until seal is broken 

and rotate cell until the whole cap is detached. Do not tighten pipe cutter too much, or the 

gasket separating the cap from the case may be punctured and the cell may short. 

 

 

Figure 7. Cell is opened by breaking the seam with a pipe cutter. 

 

3. Remove cap of cell and cut connecting metal tab with scissors, as shown in Figure 8. 
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Figure 8. Cap is removed. Metal tab is cut to separate cap from case. 

 

4. Use pliers to pry back aluminum casing, starting at the top lip. Peel the material at a 

downward angle so that case can be removed in one continuous strip. A cell with the case 

partially peeled is shown in Figure 9. 

 

 

Figure 9. Aluminum case is removed by peeling it diagonally with pliers. 

Cut tab 
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 5. Unroll electrodes and separate internal components of the cell, as shown in Figure 10. 

 

 

Figure 10. Electrodes and separators are unrolled and pulled apart. 

 

6. Flatten electrodes and separators and examine for evidence of damage. 

 

Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to examine the damage to externally 

shorted and overdischarged cell components. Images were also taken of the anode and cathode of 

a disassembled fresh cell to provide a baseline for comparison.  Back-scattering electron (BSE) 

mode was used to verify that the material deposited on the cathode surface is copper, dissolved 

from the anodic current collector during the overdischarge process. 
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CHAPTER III 

RESULTS 

 

External Short Test 

Voltage Response 

 Figure 11 shows the voltage response curves for external shorting using various resistors. 

For large resistors (1-100 Ω), shown in Figure 11a, the voltage decreases steadily throughout the 

discharge. As the size of the resistor increased, the current drawn from the battery decreased and 

the discharge phase took longer to complete. The shape of these voltage response curves matched 

the typical response of LIBs to constant resistance discharge. 

 
(a) (b) 

 
Figure 11. Voltage vs. Time curves during external short tests for (a) large resistors (1-100 Ω) 

and (b) small resistors (0.01-0.18 Ω) 
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 The shape of the curve changes for small resistors (0.01-0.18 Ω), shown in Figure 11b. The 

voltage drops instantaneously, remains at an intermediate level for a short time, then rapidly falls 

to almost 0 V. The initial voltage drop can be attributed to the Ohmic polarization associated with 

passing ionic current through a battery with an intrinsic internal resistance. When the cell was 

shorted by a small resistor, the high currents caused larger initial voltage drops. The second voltage 

drop can be attributed to a spike in concentration polarization after a short period of operation at 

high current. Concentration polarization is caused by the unavailability of the active species at the 

electrode/electrolyte interface. During normal operation, active particles diffuse to the electrode 

surface at a sufficient rate to supply the electrochemical reaction at the interface. When a cell is 

discharged too quickly, concentration gradients arise in the electrodes. A lack of active particles 

at the anode surface causes the anode voltage to rapidly rise, while a surplus of ions at the cathode 

surface causes the cathode voltage to fall. As a result, the full cell voltage decreases to nearly 0.0 

V after only a few seconds of operation. 

 

Current Response 

The current response curves for external shorting using various resistors are shown in 

Figure 12. When constant resistance discharge is used, current decreases proportionally with 

voltage according to Ohm’s law (V=iR). The result is that for large resistor trials, shown in Figure 

12a, the current decreases steadily with voltage over time. For small resistor trials, shown in Figure 

12b, the current spikes instantaneously at time of short, remains at an intermediate level for a short 

time, then falls close to zero for the remainder of the discharge. 
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(a) (b) 

 

Figure 12. Current vs. Time curves during external short tests for (a) large resistors (1-100 Ω) 

and (b) small resistors (0.01-0.18 Ω)  

 

Temperature Response 

The temperature response of the cell, measured by a K-type thermocouple attached to cell’s 

exterior surface, is shown in Figure 13. Temperature is closely related to the internal heat 

generation rate, which can be estimated using the relation ܲ = ݅ଶܴ௜௡௧, where P is power, i is 

current, and Rint is the internal resistance of the cell. Although a small increase in internal resistance 

is expected over many cycles, the main component influencing heat generation rate is the current. 
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Figure 13. Temperature vs. Time curves during external short for selected resistors. 

 

The highest temperature was achieved when an intermediate external resistance of 0.47 Ω 

was used. At resistances greater than 4.7 Ω, current is small, so the cell is able to dissipate heat to 

the environment nearly as fast as it is generated. Therefore, no substantial change in temperature 

was observed in the high-resistance trials. At resistances lower than 0.18 Ω, heat is generated at 

high rate during the initial current spike and the intermediate current plateau, but the heat 

generation rate quickly diminishes when concentration polarization causes the voltage to drop to 

nearly zero and the current to slow to a trickle. In this sense, the diffusion rate limitation of the 

electrochemical reaction serves as an in-built safety mechanism against thermal runaway during 

external shorting. For resistors between 0.18 Ω and 4.7 Ω, notable increases in temperature were 

observed on the cell surface, but no trials showed high enough temperatures to severely impact 

internal components. 

 

 

Max Temp 
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Overdischarge and Copper Dissolution Test 

 The full voltage profile of the overdischarge test is shown in Figure 14. When the SOC is 

between 100% and 0%, the voltage resides in the normal voltage window specified by the 

manufacturer (2.5-4.2 V). Beyond 0% SOC lies the overdischarge region, where the cell voltage 

plummets to a minimum value of -1.3 V before rebounding asymptotically to 0 V. The rapid 

decline in cell voltage near 0% SOC can be attributed to the onset of concentration polarization, 

causing the anode voltage to rise and the cathode voltage to fall. 

 

Figure 14. Full voltage profile of overdischarge test, performed at 1C. 

 

 The voltage profile for the overdischarge test can be roughly divided into four stages as 

drawn in Figure 15a. In Stage I, the voltage dropped rapidly to about -1 V, where it reached a 

distinct platform. In Stage II, the voltage continued to fall to its minimum value of -1.3 V. Stage 

III showed an increase in voltage with significant fluctuations, while in Stage IV, the voltage 

increased asymptotically to 0.0 V with very little fluctuation. 

 



27 
 

 

 

Figure 15. Overdischarge voltage analysis. (a) Voltage profile during overdischarge, divided 

into four stages, (b) incremental capacity analysis of stages I and II with peaks and valleys 

marked, (c) close-up view of voltage profile with corresponding inflection points marked. 

 

 The voltage decline in Stage I can be attributed to the increasing potential of the anode and 

the decreasing potential of the cathode as end-of-life concentration polarization takes effect. 

Throughout Stage I, the buildup of an ionic concentration gradient between the anode surface and 

the bulk material results in a rapid rise in anode voltage. Simultaneously, the lack of easily 

accessible interstitial sites in the cathode for new ions to reside causes the cathode voltage to fall. 

From the literature, it is known that copper dissolution and SEI breakdown begin when the anode 

voltage reaches around 3.5 V [10, 12]. This occurs at the start of Stage II, at approximately -5% 

SOC, where a significant peak in the incremental capacity analysis (shown in Figure 15b) signifies 

the occurrence of a phase change in the cell. The corresponding voltage plateau at -1.1 V, labeled 

point B in Figure 15c, can be accounted for by the overpotential for the initiation of copper 

(a) (b) (c) 
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dissolution. Degradation of the copper current collector leads to an increase in charge transfer 

resistance in the anode, as the conductive pathway that transmits electrons to the external circuit 

grows thinner. The breakdown of the SEI throughout Stage II exposes the chemically reactive 

surface of graphite to the electrolyte. This reaction can also cause a large amount of heat generation 

and the release of gases within the cell, including carbon dioxide. Both copper dissolution and SEI 

breakdown further increase the anode voltage and decrease the voltage of the cell. 

 Upon reaching its minimum value of -1.3 V, the voltage begins to increase in Stage III with 

fluctuations. This corresponds to the depletion of lithium ions in the electrolyte. When the cathode 

voltage falls to around 3.5 V, Cu2+ ions in the electrolyte begin to deposit on the cathode surface, 

reducing the available reactive surface area on the electrode for reactive species. Stage III is 

characterized by the formation of copper crystals on the cathode surface. By the start of Stage IV, 

a uniform layer of copper begins to form and the cathode voltage stabilizes. 

 

 

Figure 16. Voltage and Temperature vs. SOC plot for overdischarge at 1C. 
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 The surface temperature of the cell is compared to the cell’s voltage profile throughout the 

overdischarge test at 1C in Figure 16. Temperature begins to increase drastically around 0% SOC 

as concentration polarization sets in. The initiation of copper dissolution aligns with an inflection 

point in the temperature profile, showing that it further increased the heat generation rate. The 

temperature reached a maximum at 79.2ºC and declines as the voltage begins to approach 0 V. 

The cell that was overdischarged at C/10 experienced a temperature change of less than 20ºC, 

indicating that the temperatures achieved during overdischarge are rate-dependent. Although 

79.2ºC is not a high enough temperature response to imply significant damage, a test performed at 

a higher discharge rate could result in higher temperatures as well. 

 

Destructive Physical Analysis 

Fresh Cell 

 In order to acquire a baseline for comparing results of the DPA, a fresh cell was opened. 

The unraveled cathode, anode, and separator surfaces of the fresh cell are shown in Figure 17. 

Both electrodes are smooth and black in the discharged state, although anode color varies with 

state of charge. The separator material is white on the anode-facing sides and tan on the cathode-

facing sides due to the ceramic coating facing the cathode. This coating is intended to mitigate the 

consequences of lithium dendrite formation in the cell and prevent internal shorts from penetrating 

the separator. 
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(a) (b) 
Figure 17. Electrode and separator surfaces of (a) cathode and (b) anode of fresh 18650 cell 

after performing DPA. 

 

Externally Shorted Cell 

 The results of DPA on a cell that had been repeatedly externally shorted are shown in 

Figure 18. The bronze anode color seen in Figure 20b indicates that this cell was deconstructed in 

a partial state of charge. The main difference is the darkening of the separator material on both 

sides. This can possibly be attributed to the fracturing of electrode materials at the anode and 

cathode due to the high mechanical stresses induced during high-current operation. The loss of 

electrode material suggests that the external shorting caused a decrease in cell capacity. 

Nevertheless, it is important to note that this cell suffered repeated external shorting and could still 

be charged to full at 4.2 V.  

 

(a) (b) 
Figure 18. Electrode and separator surfaces of (a) cathode and (b) anode of externally shorted 

18650 cell after performing DPA. 
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Overdischarge and Copper Dissolution Test 

 The DPA performed on the severely overdischarged cells showed much more obvious 

signs of damage than the externally shorted cell. Upon trying to unravel the electrode roll, the 

separator was unusually difficult to peel off of the cathode. When the layers were forced apart, 

parts of the ceramic coating on the separator adhered to the cathode surface instead, as shown in 

Figure 19. This adhesion is due to the deposition of copper particles on both surfaces, as the layers 

are pressed together tightly in the roll. 

 

 

Figure 19. Unraveling the electrode roll of an overdischarged cell. 

 

 The center-facing side of the fully unraveled cathode roll and the corresponding separator 

are shown in Figures 20 and 21. The cathode can be divided into three zones, as labeled in Figure 

21. In Zone A, the ceramic coating on the separator detached and stuck to the cathode. The coloring 

of Zone A suggests that a layer of copper below the ceramic is providing the adhesion. In Zone B, 

a layer of cathode material adhered to the separator, tearing away from the electrode. Zone C 
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represents a region where no material was ripped from either the electrode or separator surface, 

but a layer of copper deposition is visible. Samples from this region were taken for SEM post-

mortem analysis to prove the presence of copper. 

 

 

Figure 20. Center-facing cathode surface and cathode-facing separators. 

 

 

Figure 21. Close-up center-facing cathode surface, aligned with the corresponding separator. 

 

 In contrast to the center-facing cathode surface, the outward-facing surface, shown in 

Figure 22, was almost fully coated by the peeled separator coating. Beneath this layer, the reddish 

brown color indicates the deposition of a layer of copper. The copper on this face is more uniform 
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than on the center-facing surface and apparently thicker, as the detachment of the separator coating 

implies the deposition of copper on both the cathode and separator surfaces. The increased 

presence of copper on the outward-facing side of the cathode can be explained by the fact that the 

anode is the outermost layer of the electrode roll, which provides the source of copper. 

 

 

Figure 22. Outward-facing cathode surface following extreme overdischarge. 

 

 The anode of the overdischarged cell also suffered visible damage. Before it was unraveled, 

the graphite material surface appeared mostly undamaged, but several deep cracks were found in 

the roll, as shown in Figure 23. The dissolution of the copper current collector greatly reduces the 

mechanical stability of the anode while increasing the charge transfer resistance of the cell. 

Cracking also results in capacity loss and, in extreme cases, loss of electrical connection to the 

external circuit. 
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Figure 23. Anode roll suffered from severe cracking before being unraveled. 

 

 As the anode was unraveled, it was revealed that the remaining copper current collector 

was extremely thin and unstable. Much of the anode material crumbled under light stress as it was 

unraveled, leaving large gaps in the roll, as shown in Figure 24. Meanwhile, the anode-facing 

separator faces showed essentially no damage. 

 

 

Figure 24. Anode surface and anode-facing separator surfaces. 
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Scanning Electron Microscopy 

Fresh Cell 

 The damage caused to internal components during external shorting and overdischarge was 

examined post-mortem using scanning electron microscopy. To acquire a baseline for comparison 

of SEM results, images from a fresh cell’s anode and cathode were acquired. The surface of a fresh 

cell anode at 1 kX zoom is shown in Figure 25. 

 

 

Figure 25. SEM image of undamaged fresh cell anode material (graphite) at 1 kX. 
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Externally Shorted Cell 

 An SEM image of the cathode surface of an externally shorted cell at 1 kX magnification 

is shown in Figure 26. The material surface is mainly intact, but shows the formation of some 

cracks due to the mechanical stresses of high-current operation and the rapid intercalation of ions 

into the material matrix. Cracking results in permanent reduction in cell capacity and a small 

increase in charge transfer resistance in the cathode. 

 

 

Figure 26. SEM image of cathode surface of externally shorted cell at 1 kX. 
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 The anode surface of a cell that had suffered repeated external shorting was examined in 

Figure 27. The graphite shows sections with melted material, which is most likely the polymeric 

binder used to add stability to the anode slurry. The melting of this material can clog pores in the 

graphite where lithium ions could reside, thus reducing the capacity of the cell upon recharge. This 

also indicates that the cell was subjected to operation at high temperatures, which can lead to 

accelerated degradation. 

 

 

Figure 27. SEM image of anode material of externally shorted cell at 1 kX, showing presence of 

melted binder material on surface. 
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These tests confirm that although external shorting can cause some damage to cells, it is 

unlikely that a single incident of external shorting will cause a significant thermal threat to the cell 

or its surroundings. Shorting may cause some damage to cell components, which may result in 

capacity fade, but has not been shown to result in failure in any of our short duration tests. 

 

Overdischarged Cell 

The presence of copper on the cathode surface was confirmed by the SEM images shown 

in Figure 28. A back-scattered electron (BSE) detector was used to create these images, which 

produces images based on the number of electrons that collide with an atomic nucleus and are 

scattered back towards the detector. Since larger atoms have a higher probability of colliding with 

electrons, particles with greater atomic numbers appear brighter in the image. The copper crystals 

in Figure 28 are illuminated against the LiNiCoAlO2 cathode surface, as the atomic number of 

copper exceeds any of the elements present in the cathode. The image also shows the presence of 

cracking in the cathode, most likely due to the stresses of forced intercalation of ions during 

overdischarge. Figure 28 is an image from the center-facing cathode surface, which was covered 

in copper more sparsely than the outward-facing surface. 
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Figure 28. SEM image of center-facing cathode surface using BSE at 1 kX. 

 

 A section of the same cathode is examined at 5 kX magnification in Figure 29, which 

clearly highlights the formation of copper crystals on the cathode surface. In more densely coated 

areas of the cathode, the crystals merge to form a solid layer of copper that blocks the flow of 

lithium ion into or out of the electrode. 

Figure 31 
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Figure 29. SEM image at 5 kX of cathode of overdischarged cell with copper dissolution. BSE 

scan mode illuminates copper clusters. 

 

 On the outward-facing cathode surface, most of the material was so densely coated in 

copper that it bonded the cathode to the ceramic coating of the separator. An image of the outward-

facing cathode surface at 1 kX is shown in Figure 30. The left side of the image is a region coated 

in ceramic (SiO2/Al2O3) with a thick layer of copper below it, while the right side is a region where 

a layer of cathode material was ripped off, exposing the bulk material. The region on the left shows 

how copper deposition can block access of ions to the electrolyte. 
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Figure 30. SEM image of outward-facing cathode surface at 1 kX. 

 

 Images of the anode of an overdischarged cell could not be acquired because efforts to 

prepare a sample caused a significant amount of damage due to the anode’s poor mechanical 

stability. Therefore, an image could not be taken that accurately represented the state of the anode 

before it was unraveled. 

 

  

Separator Ceramic 
Coating 

Cathode Bulk 
Material 



42 
 

CHAPTER IV 

CONCLUSION 

 

 In this study, external shorting in commercial 18650 rechargeable lithium-ion cells was 

explored by studying constant resistance discharge behavior. Shorting the cell with very small 

resistance (≤0.18 Ω) yields a response in which voltage and current fall to near-zero values after 

a short time due to the early onset of concentration polarization in the cell. It was found that 

shorting with resistances between 0.18 Ω and 4.7 Ω can cause significant increases in temperature 

because it allowed the cell to discharge with sustained high currents (20.2 A for 90 s at R=0.18 

Ω). The greatest temperature rise occurred with the resistance of 0.47 Ω. The DPA of a cell that 

had been repeatedly short-circuited showed moderate damage to cell components. Separators 

appeared darker (destruction of the ceramic layer SiO2/Al2O3) in the shorted cell, possibly due to 

fracturing of the cathode material during high-rate discharge. SEM images of the anode showed 

evidence of melting of the polymeric binder, while images of the cathode indicated the propagation 

of cracks on the surface. Fracturing, cracking, and melting of the binder all result in a permanent 

loss of capacity in the cell. Although anode voltage is known to rise during high-current operation, 

this study proves that copper dissolution cannot be induced via constant resistance discharge alone, 

regardless of the rate. 

The results of the overdischarge test showed that extreme overdischarge conditions can 

lead to the dissolution of copper from the anodic current collector, which can lead to severe 

capacity loss and the deposition of metallic copper on the surface of the cathode and the cathode-

facing separator faces. Copper dissolution has been shown to occur in commercial Panasonic 

NCR18650B cells at a voltage of -1.1 V. Guo et al. report that an internal short circuit begins to 
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form at this point, which allows the voltage to increase back to zero. This study differs from ours 

in that they attempted to recharge their cells at different SOC in order to determine where internal 

shorts begin to form. In the current study, recharge of cells was not attempted and no evidence of 

copper deposition was found on the anode or on the anode-facing side of the separators. This 

indicates that internal shorting due to the formation of copper dendrites in overdischarged cells is 

not a threat until recharge is attempted. When the electric field in the cell is reversed during 

charging, copper ions in the electrolyte that had not yet deposited on the cathode will instead 

deposit on the anode and could form conductive pathways.  

Internally shorted cells in a large bank of cells can be dangerous because large amounts of 

heat are generated when recharge of a shorted cell is attempted. In severe cases, the high internal 

cell temperatures experienced during charging can lead to thermal runaway and can cause the cell 

to catch fire or explode. Therefore, cells that experience copper dissolution in modules should be 

immediately replaced upon detection. Without attempted recharge, cells were prone to failure due 

to blockage of the cathode’s reactive surface by the deposited copper, as well as loss of electrical 

connection between the anode and external circuit due to cracking in the copper current collector. 

The cell that was overdischarged at a 1C rate experienced surface temperatures as high as 79.2ºC, 

indicating that temperatures at the center of the cell could be nearing the melting temperature of 

the separator (~130ºC for PE). If the separator were to melt, it would ideally flow into the pores of 

the electrodes and block current, but it also puts the cell at higher risk of internal shorting. 

Overdischarging at rates higher than 1C could therefore present a threat of achieving thermal 

runaway, although further testing would be required to determine this. This study demonstrates 

the need for balancing and monitoring systems in the design of large battery packs and modules, 

as one cell with an unbalanced voltage can lead to dangerous consequences for the whole system. 
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Future Work 

 In order to verify the electrochemical analysis of the overdischarge test, the test will be 

repeated in the future using a three-electrode 18650 cell. By measuring the anode and cathode 

voltages against a stable reference electrode, the relative contributions of each electrode can be 

examined throughout the overdischarge. The anode voltage profile will be of particular interest, as 

past studies have reported the onset of copper dissolution when the anode reaches ~3.5 V or above. 

A three-electrode test will also provide a more complete understanding of the battery behavior 

after the initiation of copper dissolution and the voltage profiles of the anode and cathode as the 

cell fails. 

Although copper coloring was observed on the cathode surface during DPA and deposits 

of conductive material were observed via SEM, the presence of copper cannot be definitively 

determined by our present study. X-Ray Diffraction (XRD) will be performed on a sample of the 

cathode to prove that the material deposited on the cathode is, in fact, copper. 

This study did not consider the effects of cell protections or cell geometry on overdischarge 

behavior. Removal of the positive temperature coefficient device (PTC) and current-interrupting 

device (CID) could affect cell behavior if either of these contributed to the cell failure. Future work 

may also consider using a pouch cell rather than a cylindrical cell to determine the influence of 

cell geometry on overdischarge response. 
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