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ABSTRACT 

Development of a High-Throughput Microsphere System for Annealed Hydrogels 
 

Omar Wyman 
Department of Biomedical Engineering 

Texas A&M University 
 

Research Advisor: Dr. Daniel Alge 
Department of Biomedical Engineering 

 

Poly(ethylene glycol) (PEG) gels are step-growth hydrogel networks that can be formed using 

thiol-ene polymerization. Four-arm PEG monomers can be functionalized with norbornene and 

then crosslinked with matrix metalloproteinase (MMP) degradable sequences. Current 

techniques to understanding angiogenesis involves using type I collagen which can be modified 

with various angiogenic factors to study different aspects of angiogenesis.  However, the 

coupling of bulk and ligand densities prevents us from studying the effect of varying densities on 

cell invasion. This can be overcome by using a submerged electrospray to generate 

microspheres, which utilizes high voltage to overcome surface tension and results in the 

formation of droplets. The purpose of this proposal is to develop and characterize a microsphere 

system capable of accelerated wound healing by means of invasion depth manipulation via 

ligand and bulk density variation, as well as by means of porosity manipulation via submerged 

electrospraying droplet generation. 
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CHAPTER I 

INTRODUCTION 

 

Click chemistry is highly versatile and can be used to generate hydrogels of various densities and 

properties. Click chemistry reactions are high yielding, stereospecific, simple to preform and can 

be conducted in easily removable or benign solvents [1]. Unlike Michael-type reactions which 

occur under alkaline conditions and can lead to off-stoichiometric reaction of monomers [2], 

thiol-ene polymerization occurs at neutral pH and can be controlled both spatially and 

temporally. Covalently crosslinked poly(ethylene glycol) (PEG) gels are step-growth hydrogel 

networks that can be formed using thiol-ene polymerization [3]. These scaffolds are bio-inert and 

have no inherent biological activity [4], but can be modified with biochemical cues to assist with 

cell adhesion and invasion [5]. 

 

Cell-degradable hydrogels can be created under cytocompatible conditions by a radical-mediated 

step-growth reaction between norbornene and thiols [1]. Four-arm PEG monomers can be 

functionalized with norbornene and then crosslinked with matrix metalloproteinase (MMP) 

degradable sequences conjugated with cysteine [1], [6], [7]. Hydrogel networks crosslinked with 

MMP degradable sequences can also have cell-adhesive peptides incorporated into the network 

to allow cell spreading and attachment [1], [7]. These resulting scaffolds are cell-adhesive, cell-

degradable, and be spatially and temporally controlled at a neutral pH.  

 

Angiogenesis requires endothelial cells to undergo considerable changes when forming a new 

sprout [8]. Type I collagen is the most abundant protein in the human body [9], and has been 
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used in various types of invasion assays to study angiogenesis [10]. Current techniques to 

understanding this complicated process involves using 3D matrixes of type I collagen [11] which 

can be modified with various angiogenic factors to study different aspects of angiogenesis, such 

as cell-cell and cell-matrix interactions [12] [13]. Type I collagen has MMP-degradable and cell 

adhesive sites which interact with the endothelial cells and is coupled with bulk density. Since 

poly(ethylene-glycol) is bio-inert, MMP-degradable ligands and cell adhesive sites must be 

added in order to interact with the cell, thus allowing the control of the ligand density while 

maintaining similar bulk density.  

 

Particle generation using microfluidic technology is an efficient, precise method for creating 

monodisperse particles, but can be costly to manufacture. Griffin et al. have shown that it is 

feasible to generate hydrogels using a microfluidic microsphere system that has accelerated 

wound healing when compared to nonporous gels [14]. Fabrication of hydrogel microspheres 

requires a droplet generation step and an appropriate gelation mechanism. Both processes must 

be cytocompatible in order to be useful. PEG hydrogels generated using thiol-ene polymerization 

can be used for temporal and spatial control over the gelation process at a neutral pH.  

 

Unlike microfluidic approaches to particle generation, electrospraying has been shown to 

produce monodisperse particles with fast results at a higher yield when compared to microfluidic 

methods. Submerged electrospray [15], [16] utilizes high voltage to overcome surface tension of 

a fluid meniscus that results in the formation of droplets. This technique has been used by Young 

et al. for cell encapsulation and has the potential to create a high-throughput microsphere system 

[17]. Therefore the purpose of this proposal is to develop and characterize a microsphere system 
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capable of accelerated wound healing by means of invasion depth manipulation via ligand and 

bulk density variation, as well as by means of porosity manipulation via submerged 

electrospraying droplet generation. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Macromer synthesis  

Norbornene acid was conjugated to 4-arm PEG-hydroxyl to create 4-arm PEG-norbornene. In brief, this 

occurs through the addition of norbornene acid to the PEG-OH by symmetric anhydride N,N’-

dicyclohexylcarbodiimide (DCC) coupling. Norbornene acid was dissolved in dichloromethane and 

reacted with DCC to couple the norbornenes. This was transferred anhydrously to a second reaction flask. 

The second reaction flask contained 20 kDa 4-arm PEG-OH dissolved in DCM, 4-

(dimethylamino)pyridine and pyridine, and was stirred overnight. The urea by-product was filtered using 

a glass-fritted funnel. The filtrate was then washed in order to remove unreacted norbornenes. The final 

product was precipitated and washed with ice-cold diethyl ether. Proton nuclear magnetic resonance (1H-

NMR) was used to characterize the purity and functionality of the product. 

 

Synthesis of the peptide sequences KCGPQG↓IWGQCK, and CRGDS was completed on a peptide 

synthesizer using solid-phase peptide reagents with fluorenylmethoxycarbonyl (Fmoc) chemistry on a 

Rink-amide resin. Peptides were cleaved from the resin and purified using reverse-phase high-

performance liquid chromatography, and the molecular weights were confirmed by mass spectrometry. 

 

Electrospray apparatus 

 A syringe pump held a 12 mL syringe containing the PEG macromer solution which was connected by 

Tygon tubing to a blunt end stainless steel 22G needle (inner diameter = 0.4 mm, outer 

diameter = 0.7 mm). A high DC voltage (0–30 kV) was applied to the needle from a high voltage power 

supply, and the earth electrode was a copper ring (20 mm diameter) suspended below the tip of the 

needle. The needle and ring were suspended in a 50 mL polypropylene centrifuge tube containing either a 
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solution of 35 mL of light mineral oil with 0.5 wt% Span 80 or hexanes with 0.5 wt% Span 80 as a 

surfactant.  

 

Microsphere generation 

For a given experiment, the syringe pump would be turned on to a prescribed flow rate, and then the 

voltage immediately applied. The system dispensed approximately 150 µL of polymer solution, then the 

voltage was removed and the flow rate turned off. While the droplets were forming, the system was then 

irradiated with UV light 3 min at an intensity of 10 mW/cm2. Microspheres were isolated from the oil by 

adding PBS to the centrifuge tube and centrifuging at 4,400 rpm for 3 min. The oil was then aspirated and 

the pellet of beads in PBS was collected by pipette and resuspended in PBS. This washing step was 

repeated twice. 

 

Figure 1. Submerged electrospray apparatus.  

 

Annealed hydrogel formation 

Previously synthesized microspheres are swelled to equilibrium size in PBS and pelleted through 

centrifugation. A solution of bifunctional PEG-NB, additional KCGPQG↓IWGQCK peptide linker, LAP 
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and PBS are then added to the microspheres. This new solution is then pipetted into a 1 mL syringe tip 

and photopolymerized for 3 minutes at 10 mW/cm2.   

 

Hydrogel generation 

Bulk hydrogels were generated at various thiol-ene ratios. Briefly, four-arm PEG-NB, LAP, 

CRGDS adhesive ligand, KCGPQG↓IWGQCK peptide linker, and PBS was added into a microtube. 

The solution was then pipetted into a 1 mL syringe tip in 30 µL increments and polymerized for 3 minutes 

at 10 mW/cm2. 

 

Hydrogel characterization 

Microspheres were imaged by optical microscopy for morphology and size. The compressive mechanical 

properties of the microspheres and resulting gels were determined at equilibrium swelling by uniaxial 

compression between smooth, parallel flat plates on a rheometer with a 1 N load cell. The modulus was 

determined from the load–distance data by Hertz theory. Annealed microspheres were compared to 

traditional bulk PEG-NB hydrogels of various thiol-ene ratios (0.65:1, 0.725:1, 0.85:1).  

 

Figure 2. Annealed microsphere gel formation  
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Cell invasion 

Human umbilical vein endothelial cells (HUVECs) were cultured in Dulbecco’s Minimum Essential 

Media (DMEM) supplemented with fetal bovine serum. When required for experiments, cells were 

trypsinized and resuspended in endothelial growth medium. PEG-NB microspheres (100 µm diameter) 

were generated as described above. Annealed microspheres were generated and allowed to equilibrate in 

endothelial cell culture media overnight. Resuspended cells (1x106 cells/mL) were then pipetted (30 µL) 

onto the surface of the gel and placed into the incubator for twenty minutes. Additional cell culture media 

was then added into the wells. The cellular invasion depth was then quantified using two-photon 

microscopy after seven hours of incubation. 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

Microsphere characterization 

To quantify the effects of flow rate and voltage on microsphere size, the microspheres were generated 

under four independent flow rates and three different voltages (Figure 3). Based on this data, within a 

given flow rate, an increase in voltage decreases the polydispersity of the microsphere size by decreasing 

the mean size of the particles. This concurs with previous research in the topic, as the Taylor cone that is 

formed from a combination the flow rate and the electric potential gradient has a strong effect on the 

microsphere formation. However, if the gradient opposes the surface tension and flow rate too strongly, 

the Taylor cone will not form completely and will become unstable leading to an increased range in 

microsphere sizes. This is evident by the increase in the standard deviation of the particles generated at 

300 uL/min at 7 kV and 500 uL/min at 7 kV. By modifying previous mathematical models generated to 

predict the resulting sphere diameter with the information gained, we can generate a fairly robust model 

that can predict the mean particle diameter from the flow rate and voltage (Appendix A). 

 

As the flow rate is increased, there is a drastic change in particle size and polydispersity. The combined 

effects of the electric potential gradient and flow rate counteract each other in determining the particle 

size, which allows for a variety of combinations which will lead to similar microspheres. However, we 

limit the combinations by requiring laminar flow of the solution. This is the fundamental requirement of 

the submerged electrospray system which will define the overall polydispersity of the microspheres 

generated.  
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Annealed microsphere gels 

The tissue engineering paradigm consists of three main components: biochemical cues, tissue scaffold, 

and cells. The biochemical cues and tissue scaffold can be controlled to shape cellular differentiation and 

phenotype, which can enable proper cell proliferation. A well understood component of these interactions 

is the cell-matrix relationship. The tissue scaffold stiffness greatly impacts the cellular phenotype, and 

thus, quantifying this aspect of the annealed hydrogels is an important step to understanding the potential 

of this system. The annealed microsphere system differs from traditional hydrogels in that there is the 

potential to control the microsphere stiffness by varying the microsphere size. This provides another layer 

of control for this system and can potentially improve upon existing hydrogels (Figure 4). 

 

 

Figure 3: Microsphere polydispersity is dependent on flow rate and voltage. Relationship between the flow rate and voltage 
can control the polydispersity of the microspheres for a given diameter. 
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As the microsphere size increases, the annealed microsphere stiffness increases, since the majority of the 

gel strength lies within the microspheres. This is due to the increase in crosslink density within the larger 

particles, which increases the bulk storage modulus of the gel. However, compared to traditional 

hydrogels of the same composition, the storage modulus of the annealed microspheres are half as stiff. 

Crosslinking between particles does not generate a second scaffold that encapsulates the particles. Bright 

field images at 10x and 20x show that the microspheres are crosslinked together into a matrix, and that a 

secondary gel doesn’t form around the microspheres (Figure 5).  

 

The resulting stiffness of the annealed gels can also be compared to the resultant porosity (Figure 6). By 

assuming a perfectly packed mold, the spaces between spheres can be estimated as prisms. In this case, 

porosity can be defined as the empty volume within the gel with respect to the total polymer volume in 

Graphs of Annealed Microspheres Diameter and Bulk Hydrogel Thiol-ene Ratios against Storage Modulus 

 

Figure 4. Gel stiffness can be varied by changing sphere diameter instead of thiol-ene ratio. Here, annealed microspheres 
generated with a 0.75:1 thiol-ene ratio at various sizes are compared to bulk hydrogels of various thiol-ene ratios. 
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the gel. Since each annealed microsphere gel was made from the same amount of volume, the number of 

spheres in the gel changes as the diameter changes.  

 

From this, a new relationship is formed between the stiffness of the gel, number of particles within the 

gel, and the storage modulus. As the sphere size is increased, the porosity and number of spheres within 

the gel decreases but the overall stiffness of the gel increases. 

 

Figure 5. Microspheres anneal together at surface interface. a) Brightfield image at 10x showing microsphere connection and 
pores. b) Brightfield image at 20x showing intersection region of the microsphere. 

Graph of Storage Modulus against Porosity 

 

Figure 6. As the diameter of the microspheres are varied, the resulting porosity of the annealed gels are modified and can be 
related to changes in the storage modulus. 
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Annealed microspheres were also studied for the polymerization kinetics by quantifying the changes in 

storage modulus as the hydrogel network formed. Network formation is evident from the increase in 

storage modulus after UV exposure at 60 seconds (Figure 7). For each microsphere size, full networks 

were formed after 40 seconds of UV exposure. Following the same trends as shown earlier, as 

microsphere size increases, the bulk storage modulus increases. Comparing this to uniform hydrogels, 

there appears to be an uncommon initial storage modulus which is the result of the microspheres 

contributing to the initial gel stiffness. 

 

To understand the contribution of the microparticles to the overall gel stiffness, rheometry was conducted 

(Figure 8). Overall, the microspheres contribute to less than half of the gel stiffness for any given 

microsphere size, which means that total stiffness can be mostly attributed to the annealing process. By 

modifying the microsphere or the annealing solution, the stiffness can be controlled to a greater degree 

than in the traditional bulk hydrogels. 

 

Figure 7. Network formation is evident from the change in gel stiffness when UV light is applied at one minute. Complete 
gel formation occurs at approximately 110 seconds for each microsphere diameter.  
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Endothelial cell invasion into the annealed gel 

An important aspect of the wound healing process is revascularization of the synthetic matrix once it has 

been placed into the wound. Without proper vascularization, the chances for proper integration of the 

matrix diminish and any cell encapsulated within the matrix will die from improper nutrient exchange 

normally facilitated by the capillary network. In bulk hydrogels, vascularization is mediated by the 

incorporation of MMP-degradable linkers, which allow cells to create paths from which cells can migrate 

into. The process of creating a path through the matrix can generate a lot of stress on the cells which may 

contribute to the lower invasion when compared to natural ECM polymers such as collagen. 

 

Graph of Mean Storage Modulus for Differing Microsphere Diameters 

 

Figure 8. Microsphere stiffness does not comprise the majority of the annealed gel stiffness.  
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Figure 9 is a time-lapse image of the cellular infiltration of endothelial cells into an annealed microsphere 

matrix. In the images, it is shown that the endothelial cells are invading from the monolayer (shown in the 

bottom left corner) into the annealed microsphere gel. 

Graph of Cellular Invasion

 

Figure 10. Cellular invasion into synthetic matrices. Invasion appears to move father into the annealed microsphere matrix 
as compared to the bulk hydrogel. 

 

Figure 9. Cellular invasion into the annealed microsphere gel over the course of 35 minutes. Each image is taken five 
minutes apart. 
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The invasion depth between the traditional bulk gel and annealed microspheres can be quantified over the 

course of 4 hours only after the initial incubation (Figure 10). No invasion depth data was collected 

during the initial 7-hour incubation period. The higher initial invasion depth of the annealed 

microparticles of about 35µm versus the 30µm of the bulk hydrogels possibly indicates the cells 

preference of the former over the latter. The invasion depth is normalized to the initial average depth of 

cells after the initial seven hours of incubation. Invasion depths for the bulk hydrogel was compared to 

annealed microspheres generated from 100 µm diameter spheres. The average invasion depth was further 

for the annealed microspheres with a fairly constant movement rate into the matrix. Compared to the bulk 

hydrogel, invasion does not seem to stagnate at the four hour mark. This can be attributed to multiple 

factors and requires further analysis to be understood properly. 
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CHAPTER IV 

CONCLUSION 

 

The wound healing process is a dynamic interaction between cells, bioactive factors and the extracellular 

environment. In this context, this paper has shown that microspheres of low polydispersity can be created 

very efficiently with a submerged electrospray system. Microspheres generated this way allow more 

control over stiffness, as manipulating their sphere sizes allows for the generation of varying levels of 

stiffness for the same thiol-ene ratio. In contrast, normal bulk hydrogels can only vary stiffness through 

stoichiometric adjustments.  Initial endothelial cell invasions show that invasions into annealed 

microspheres are deeper than in their bulk hydrogel counterparts, however the invasion depth is still 

lacking compared to those that occur in collagen matrices. Figure 10 shows this data for the invasion 

depths of both the annealed microspheres and the bulk hydrogels. 

 

In the future, an expansion on the cellular invasion model is needed in order to fully understand the 

relationship between porosity and cellular proliferation. Thus far, the paper has shown that stiffness levels 

of the electrospray microspheres are further correlated with sphere size by porosity, as increasing sphere 

sizes lead to lower porosity, thereby possibly decreasing cellular proliferation. This relationship is 

described by the data in Figure 6. Further research into this matter will therefore involve changing the 

diameter of the particles to vary porosity and then observing the resultant change in cellular proliferation. 

These results can also be quantified in terms of the varying stiffness levels.  
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APPENDIX A 

 

Previous work has been done to discover scaling relationships between the sphere diameter to applied 

voltages and flow rates. In the most basic form, the diameter can be expressed purely as a function of the 

flow rate, given by equation 1. 

 

                                           𝑑𝑑
𝑑𝑑0

= 𝑏𝑏 � 𝑄𝑄
𝑄𝑄0
�
1/3

                                          Eqn. 1        

 

Where d is the diameter of the resultant sphere, Q is the applied flow rate, Q0 is the characteristic value of 

flow rate, d0 is the droplet diameter. To account for experimental variability, b is empirical scaling 

parameter dependent on the relationship between the viscosity of the polymer and the submerged liquid. 

The droplet diameter and characteristic value of flow rate can be expressed as described in equation 2 and 

equation 3: 

                                             𝑄𝑄0 = 𝜀𝜀0𝛾𝛾
𝜌𝜌𝜌𝜌

                                                 Eqn. 2 

 

                                            𝑑𝑑0 = �𝜀𝜀0
2𝛾𝛾

𝜌𝜌𝐾𝐾2
�
1/3

                                        Eqn. 3 
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Figure 1. Comparison of theoretical and measured diameters for the submerged electrospray system. 

 

Figure 2. Percent Error between measured and theoretical diameters for given flow rates and voltages. 
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Here, Q0 and d0 can be described in terms of the vacuum permittivity constant (ε0), surface tension 

(γ),density (ρ), and conductivity (K) of the polymer. These scaling laws can only be utilized under certain 

assumptions: 1) the viscosity of the polymer is much larger than the viscosity of the submerged liquid (in 

this case .5 wt% Span 80 in Mineral Oil), 2) the conductivity of the polymer is much higher than the 

submerged liquid, 3) the polymer is extruded from the needle tip at laminar flows. 

 

To compare how good of a fit the mathematical model is to actual data, we compared the theoretical 

diameters to the measured values and computed the percent error between them (Figure 1 & Figure 2). 

Overall, the model is quite accurate. Because of the assumptions made to simply the scaling laws for this 

systems, the combinations of flow rate and voltage that produce a high deviation from the theoretical 

values must require the more complex expression for proper characterization.  

 

 

 

 

 

 

 

 


