
A COMBINED LANGUAGE FOR HARDWARE AND SOFTWARE

DESIGN

An Undergraduate Research Scholars Thesis

by

MICHAEL BASS

Submitted to Honors and Undergraduate Research

Texas A&M University

In partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Research Advisor: Dr. Sunil P. Khatri

May 2015

Major: Electrical Engineering

 Computer Science

TABLE OF CONTENTS

 Page

ABSTRACT ...1

ACKNOWLEDGEMENTS ...3

NOMENCLATURE ..4

CHAPTER

 I INTRODUCTION ...5

 II THE CV APPROACH ..13

 Overview ...13

 Grammar ...16

 Functions ...18

 Master Function ..21

 Clocking ..22

 Variables and Arrays...23

 CHard ..29

 CvC and CvV Types ...35

 Serial Statements ...38

 Parallel Statements ..41

 Non-Blocking Statements ...49

 Event Driven Statements...53

 Function Calls ...57

 If Statements ...74

 For Loop..86

 While Loop ...94

 Return Statement ...100

 Comments ...103

 III EXPERIMENTAL EVALUATION ..105

 IV FUTURE WORK...122

REFERENCES ..128

1

ABSTRACT

A Combined Language for Hardware and Software Design. (May 2015)

Michael Bass

Department of Electrical Engineering

Texas A&M University

Research Advisor: Dr. Sunil P. Khatri

Department of Electrical Engineering

Due to the nature of hardware and software, their respective design languages have evolved in

isolation. Sophisticated languages and design environments exist for both hardware and

software; however they remain distinct and independent, both syntactically and semantically.

Hardware inherently operates in parallel and therefore hardware languages have always

contained pragmas to handle parallelism, albeit explicitly. Software originally was envisioned

with a serial execution paradigm. For several decades, there have been attempts to develop

software tool-chains that allow parallel software execution. Significant research has been done

on parallel software programming by extracting parallelism implicitly (automatically). This has

generally yielded poor results, and programming paradigms that are very difficult to reason about

and use in practice. In this thesis we will attempt to create a single language that can design

either hardware or software. Our goal is to strive for a high level of efficiency as well as

adoptability. This language provides a common syntax as well as a common semantic for

designing both hardware and software. In this language, parallelism is explicitly expressed for

both hardware and software. To achieve our goals we have designed a hardware translator and

software translator that take the new language and translate it into Verilog [1] for hardware, and

C++ [2] for software. We have tested the language against current hardware and software

platforms with an array of algorithms and data sets. The result of this work could have a dramatic

2

impact in the digital design industry, and ultimately change the way digital design is done,

allowing a merging of software and hardware design representations. This could be significant,

because each of these design representations currently have billions of dollars invested in them,

and are not mergeable.

3

ACKNOWLEDGEMENTS

I would like to acknowledge Monther Abusultan for creating the Verilog code for the Fast

Fourier Transform and Matrix Multiplication algorithms. In addition I would like to

acknowledge Monther for his continual assistance.

4

NOMENCLATURE

BCL Bluespec Co-design Language

CPU Central Processing Unit

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

HDL Hardware Description LanguageLUT Look Up Table

RAM Random Access Memory

RC++ Resulting C++

RV Resulting Verilog

5

CHAPTER I

INTRODUCTION

Hardware and software both share a common goal to implement a digital design. In the most

general sense, any digital design can be realized through either software or hardware.

Technologically, hardware designs are generally more efficient for certain classes of designs, and

software designs are more efficient for others. In practice, one or the other is chosen based on

technology as well as economic factors. Some digital designs can be designed in either hardware

or software, while some hardware designs are initially prototyped by means of software. Because

of their differences, hardware and software design practices, principles, and design tools have

evolved separately. Hardware developers use hardware description languages (HDL’s) to model

hardware logic, components, and modules. The most commonly used HDL’s are Verilog [1] and

VHDL [3]. Software developers use programming languages to describe a set of instructions to

be executed on a processor. Commonly used software languages include C [4], C++ [2], C# [5],

and Java [6]. These are only a few of the many programming languages that exist; the volume

and diversity of programming languages far exceeds that of HDL’s. It is our goal to unify

hardware and software development into a single framework, with a single language which

incorporates the semantics of both hardware and software.

Hardware is designed so that multiple components and modules can operate in parallel, while

others operate serially. HDL’s provide constructs and semantics to model hardware in a manner

that this can be accomplished. HDL’s typically use three semantic models: structural (gate-

level), dataflow (continuous), and behavioral (procedural). Structural semantics allow a designer

6

to create an explicit gate-level description of their design. Dataflow semantics create a hardware

description which is then transformed into physical logic elements by a logic synthesis tool.

Behavioral semantics provide the highest level of abstraction, allowing the design to be

expressed as a procedure, without any implied structure. These three semantic models provide

the designer with a variety of design options, from explicit gate-level control to an abstract high-

level design.

Software design has centered on functions (procedures), object oriented design, and more

recently, multithreading. Originally software was created to run on a single processor with

statements being evaluated sequentially. As software developed, object oriented languages

became popular, providing semantics to further abstract software to a higher level. With the

advancement of multicore processors, software began to support parallel programming using

multithreading in languages such as C++, C#, and Java. Multithreading is a programming

practice where a single process invokes several instruction threads that are capable of being

executed on multiple processor cores. In this form of parallelism, multiple threads can access the

same data in memory, but on the downside, it requires large amounts of synchronization,

operations which make the code harder to write. In software, parallelism is expressed both

implicitly as well as explicitly, depending on the design philosophy of the software platform.

Although hardware and software initially diverged in their design and practices, they have begun

to slowly converge with advancements in HDL’s, higher levels of abstractions in design

languages for both hardware and software, improved parallel programming capabilities, and also

event driven programming. Despite this slow convergence, several key issues remain, making

7

the convergence of hardware and software design platforms non-trivial. The concepts and tools

developed in this thesis attempt to address these issues in a practical manner. It is our belief that

the time is ripe for hardware and software design to be folded into a single uniform language that

supports semantics for the design of both types of systems, without limiting either in practice.

Due to their separate evolution, the set of current hardware capabilities and the set of current

software capabilities are not equivalent. In the uniform language, if the set of capabilities of

either hardware or software were reduced, this would potentially limit the effectiveness and

usability of the language. These side effects are neither desired nor acceptable. Instead, our

philosophy is to implement the union of the two sets of capabilities. By taking this approach,

both hardware and software will be enhanced instead of hindered. The final product is a language

that is capable of being completely synthesized into hardware, as well as being completely

compiled into software. In our approach, in other words, we do not limit the functionality of the

hardware or the software, but instead support both in our language.

There has been limited progress in the field of combining hardware and software into a single

unified language, and most of the research has been focused on co-designed systems [7] [8] [9].

In a co-designed system, a central processing unit (CPU) and a field programmable gate array

(FPGA) are used in parallel to increase computational throughput. The CPU implements

software, while the FPGA implements hardware. With this model, custom hardware can be

created for the components of an application that are more demanding of time and resources (the

key strength of hardware), and the more control-heavy components (the key strength of software)

can be executed as usual on a CPU. While this model is powerful in principle, it must solve

8

difficult issues like scheduling, partitioning, and verification. In addition, co-design systems do

not fully merge hardware and software design representations, but instead either reduce each

representation to a smaller equivalent representation , or leave the two representations disjoint,

with some functionality only available to one of the representations . Co-design solutions are

available in two categories. The first category uses an existing software language, such as C, and

tools that translate software into hardware that is capable of being ported to an FPGA. One

example of this category is LegUp [7]. LegUp focuses on making hardware devices, such as

FPGA’s, easier for software programmers to use. To do this, LegUp partitions C code into two

sets; one set will run on an FPGA, and the other set will run on a processor. These two sets

operate in parallel to achieve the same result as the C code. By using a language that is already

familiar to developers, this solution is potentially easier for the public to adopt. This solution has

shown promise, however it is also limited by using C as its base language. This is because C

inherently creates software, but lacks semantics to properly describe key aspects of hardware

such as explicit parallelism, event driven models, and clocking. Also, the issue of partitioning the

code and verifying the correct operation of the co-designed result is computationally highly

difficult. Finally, such a paradigm needs to model and abstract hardware-software

communication accurately. For these reasons, the resulting hardware partition of the co-design

system is much less efficient than a solution created by an HDL. The second category has

attempted co-design by creating a co-design language. Examples include the Bluespec Co-design

Language (BCL) [8] from the Massachusetts Institute of Technology, as well as the Lime

Language [9] from IBM. BCL uses atomic operations as the fundamental semantic instead of

procedural statements. Lime is a Java based language designed to run in a co-design

environment. Lime also supports existing Java code. These solutions have more potential,

9

however current attempts have produced limited success. These new languages step away from

the familiarity of C, and introduce foreign and unfamiliar design constructs such as BCL’s rule

construct [8] and Lime’s task and connect construct [9].

The language that we have created, Cv, has adopted the following design principles to avoid

some of the problems of existing co-design languages:

 Create an all-hardware or all-software solution. This averts the problems related to co-

design systems.

 Remove hardware or software syntactical elements that do not have meaning in the

opposite design representation

 Explicit parallelism to give the designer full control over parallelism. This is based on the

philosophy that the designer of the system is best equipped to make parallelism decisions.

 Syntactically simple event driven semantics.

 Use a syntax similar to C/C++ for high amounts of readability, teachability, and ensure a

short learning curve. Since the Verilog syntax is also C-like, this choice is practical from

a hardware design point of view as well.

In the remainder of this section, each of the above design principles is discussed in further detail.

Create an all-hardware or all-software solution

Cv approaches hardware and software design in a significantly different style, by giving the user

the option to create either an all-hardware or all-software solution. Some co-design efforts target

a primarily software audience, but most co-design solutions target embedded system applications

10

where hardware and software naturally work together. These solutions in turn neglect the

majority of designers who create their design either only in hardware. Further, as discussed

earlier, this requires addressing several technically challenging issues such as partitioning and

verification, modeling of hardware-software communication, and difficulties modeling event-

driven computation and clocking.

Remove hardware or software syntactical elements that do not have meaning in the

opposite design representation

It is undesirable to have semantics and constructs that have meaning for only one of the two

design representations. A finished design should be able to be executed in either design

representation without modification. Therefore, hardware-only or software-only semantics would

be intrusive to both the language and its purpose. For example, clocking in hardware triggers

edge based flip flops, and therefore the flow of the hardware computation. However clocking

does not translate into software where events are triggered by the processor clock. Another

example (from software) is addressing variables that are stored at specific memory address

locations. In hardware, variables are permanent physical bits that do not change location.

Therefore addressing variables by their memory address does not translate to software. In

subsequent enhancements of Cv, we may incorporate these elements.

Explicit parallelism to give the designer full control over parallelism

Parallel design is native to hardware and is becoming more common in software due to

multithreading. Under the current multithreading paradigm, software parallelism experiences

side effects and a large synchronization overhead. This is not true for hardware parallelism. In

11

hardware, parallel components cannot write to the same registers. We enforce the most abstract

parallelism constraints in Cv. In Cv, multiple operations that are being computed in parallel

cannot write a value to the same variable. However, multiple operations that are being computed

in parallel can read from the same variable. Likewise, function calls can be made in parallel.

Using the same semantic, function calls in parallel cannot write to the same variable, but

function calls in parallel can read from the same variable. This allows the designer to explicitly

describe a parallel structure in a manner that is agnostic to whether the final computation is being

run in hardware or software.

Syntactically simple event driven semantics

Hardware and software both support event driven design models, however hardware natively

supports event driven models through combinatorial logic and edge triggered flip-flops, while

software uses event handlers and specialized classes. As event driven programming continues to

grow in utility, it is only natural to combine these practices with well-developed hardware

concepts into one uniform semantic. This is accomplished using Cv’s event driven assignment.

For example, in Cv, consider a variable (referred to as the assigned variable) that is assigned

using the event driven assignment. When one of the variables in the right hand of the event

driven assignment changes, the assigned variable is automatically updated using the new value of

the right hand variable.

Use a syntax similar to C/C++ for high amounts of readability, teachability, and ensure a

short learning curve

12

In order to achieve a high level of adoption, Cv has been designed to use a C/C++ like syntax so

that both hardware and software designers will be able to quickly understand the language.

Verilog, a very popular HDL, uses a C-like syntax. Our philosophy is that reading a design

should not pose an additional burden to the designer, and therefore we have chosen to follow the

C/C++ syntax style.

To test and demonstrate the functionality of Cv we have implemented a set of standard

algorithms in Cv, Verilog, and C++. The resulting Cv hardware was compared to the Verilog

hardware implementation in terms of FPGA look up tables (LUT’s) used, and clock cycles

required. The resulting Cv software was compared to the C++ implementation in terms of

executable size, peak memory use, and execution time.

In the next chapter, we describe the different Cv constructs, and discuss how they are translated

into software as well as hardware.

13

CHAPTER II

THE CV APPROACH

2.1 Overview

Cv is structured to take code describing a digital design and then either compile this code to

software, or synthesize it into hardware. To do this the Cv compiler implements a Cv Software

Translator, and a Cv Hardware Translator.

The Cv software translator translates the Cv code into an equivalent C++ representation. A

makefile is then created to prepare the code for compilation. We use the G++ compiler [10]

which provides the needed compiler, assembler, and linker. After these steps, the executable is

available to be executed.

The Cv Hardware Translator translates the Cv code into an equivalent Verilog representation.

The Verilog code is then imported into a Xilinx ISE project so that the design can be

programmed onto an FPGA. The Xilinx ISE tools implement the needed synthesis, translate,

map, place and route, and bitstream generation tools. After these steps, a bitstream is available to

be programmed onto the FPGA.

These two paths are illustrated in Figure 1.

14

Figure 1.

Displays the separate branching paths of Cv, one into hardware, the other into software.

15

Because Cv strives to implement a single design representation that is capable of being executed

on either software and hardware, each of the execution paths must be capable of implementing

all features in the design representation. In order to combine the design representations of

hardware and software, each representation must be modified to accommodate new design

principles. Table 1 represents the semantic constructs that Cv implements.

Table 1.

Cv Constructs

(2.3) Functions

(2.4) Master Function

(2.5) Clocking

(2.6) Variables and Arrays

(2.7) CHard

(2.8) CvC and CvV Types

(2.9) Serial Statements

(2.10) Parallel Statements

(2.11) Non-Blocking

Statements

(2.12) Event Driven Statements

(2.13) Function Call

(2.14) If Statement

(2.15) For Loop

(2.16) While Loop

16

(2.17) Return Statement

(2.18) Comments

List of the semantic constructs implemented in Cv. The numbers in parenthesis indicate the

section for each item.

Next, the grammar for Cv is presented. Following this, each semantic construct presented in

Table 1 is discussed. Examples for how to use each semantic construct are provided, as well as

examples of how the constructs are translated into both C++ and Verilog.

2.2 Grammar

The grammar presented in Figure 2 describes the Cv language. From Sections 2.3 through 2.18,

for each semantic construct (from Table 1) a description based on this grammar is provided first,

followed by an example, then a description of how the Cv Software Translator handles the

construct, and finally a description of how the Cv Hardware Translator handles the construct.

17

Program ::= FunctionDecl+

FunctionDecl ::= Formals ident (Formals) StmtBlock

Formals ::= Variable +,|ε

VariableDecl ::= Variable ;

Variable ::= Type ident | Type ident [intConstant] |

 Type ident [intConstant] [intConstant]

Type ::= AdjustableType | double | bool | char

AdjustableType ::= int | string | int < intConstant > | string < intConstant >

StmtBlock ::= { VariableDecl* EventDriven* Stmt* }

Stmt ::= <AssignExpr>; | IfStmt | WhileStmt | ForStmt | ReturnStmt |

 PrallelStmt | StmtBlock

IfStmt ::= if (Expr) Stmt < else Stmt >

WhileStmt ::= while (Expr) Stmt

ForStmt ::= for (<Expr>; Expr; <Expr>) Stmt

ReturnStmt ::= return ;

ParallelStmt ::= Stmt || Stmt | ParallelStmt || Stmt

AssignExpr ::= LValue = Expr | (ident +,) = Call | LValue <> NonCallExpr

EventDriven ::= LValue ~ NonCallExpr ;

Expr ::= Constant | LValue | Call | (Expr) | Expr + Expr | Expr – Expr |

 Expr * Expr | Expr / Expr | Expr % Expr | - Expr | Expr < Expr |

 Expr <= Expr | Expr > Expr | Expr >= Expr | Expr == Expr |

 Expr != Expr | Expr & Expr | Expr | Expr | ! Expr | Expr >> Expr |

 Expr << Expr

NonCallExpr ::= Constant | LValue | (NonCallExpr) |

 NonCallExpr + NonCallExpr |NonCallExpr – NonCallExpr |

 NonCallExpr * NonCallExpr | NonCallExpr / NonCallExpr |

 NonCallExpr % NonCallExpr | - NonCallExpr |

 NonCallExpr < NonCallExpr |NonCallExpr <= NonCallExpr |

 NonCallExpr > NonCallExpr | NonCallExpr >= NonCallExpr |

 NonCallExpr == NonCallExpr | NonCallExpr != NonCallExpr |

 NonCallExpr & NonCallExpr | NonCallExpr | NonCallExpr |

 ! NonCallExpr | NonCallExpr << NonCallExpr |

 NonCallExpr >> NonCallExpr

LValue ::= ident | ident [Expr]

Call ::= ident (Actuals).ident | ident (Actuals)

Actuals ::= Expr +, | ε

Constant ::= intConstant | doubleConstant | boolConstant | stringConstant |

 charConstant

Figure 2.

Grammar of Cv.

18

2.3 Functions

Functions are the highest level construct that contain all other constructs. According to the

grammar:

FunctionDecl ::= Formals ident (Formals) StmtBlock

Formals are a comma separated list of variable declarations (Section 2.4). Ident is the name of

the function. The Formals before the function name are the outputs of the function, and the

Formals within parenthesis are the inputs of the function. The StmtBlock after the inputs

contains the code that the function will implement.

2.3.1 Example

//Cv Code
int output1, int output2 MyFunction (int input1, int input2, int input3)
{

 //empty function
}

Figure 3.

Example function declaration in Cv.

In Figure 3 output1 and output2 are the outputs of MyFunction, and both outputs are integers.

MyFunction is the name of the function, and input1, intput2, and input3 are the inputs of

MyFunction. MyFunction does not have any code to implement. In general, the StmtBlock of

MyFunction will utilize other constructs are discussed later in this chapter. One of the

differences between Cv and common software languages is that the output variables are directly

manipulable in Cv. Although return statements can be used in Cv, they are not required. When a

19

function has reached its end, the value of the outputs will be returned, based on the values that

the outputs were set to in the function.

2.3.2 Cv Software Translator

When translating the function declaration to C++, the CV software translator will create a struct

for the outputs, copy over the name of the function, and make a CvV type (Section 2.8) for each

of the inputs.

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
 CvV<int> output2;
};
CvFunctionStruct_MyFunction MyFunction(

CvV<int> input1,
CvV<int> input2,
CvV<int> input3

) {
CvFunctionStruct_MyFunction returnValue;
return returnValue;
}

Figure 4.

Function declaration translated from Cv to C++.

It can be seen from Figure 4 that each of the outputs is placed in the struct

CvFunctionStruct_MyFunction. In this case each of the outputs use the CvV<int> type

(Section 2.8). The output struct is also created as a local variable of the function, and named

returnValue. This allows for the function to directly set the outputs, as it will be shown in later

examples. Once the function has reached the end of the function code, or a return statement, the

function returns the returnValue. The inputs are also translated into CvV types.

2.3.3 Cv Hardware Translator

20

Given the example, the Cv Hardware Translator produces the following Verilog code.

//Verilog Code
module MyFunction(input clock, input reset, input start,
 input [31:0] input1,input [31:0] input2, input [31:0] input3,
 output reg done, output reg [31:0] output1, output reg [31:0] output2
);

endmodule

Figure 5.

Function declaration in Cv translated to Verilog.

Figure 5 demonstrates how functions in Cv are translated into Verilog. The inputs to the

functions are created as input ports into the module, and the outputs of the functions are created

as output ports of the module. In this example each of the inputs and outputs are 32 bits wide.

This is because 32 is the default bit width for integers in Cv (Section 2.6). Additional inputs

include clock, reset, and start. The additional output is done. These inputs and outputs are

automatically created by the Cv hardware translator for every function.

 clock: This is the input for the clock, and controls clocking for all modules. Cv creates

hardware that is driven off of a clock.

 reset: This input controls the reset for the system. Every module created has a reset

input which, when applied, sets all variables to default values.

 start: This input indicates to the module to begin its computation.

 done: This output indicates to other modules that this module has finished its

computation. When other modules see the done signal of this module they may begin to

use the outputs of this module.

For functions that are not empty, their Cv code (between the end of the declarations of the ports

to the endmodule statement) will be translated to Verilog code.

21

2.4 Master Function

In most software languages a main function is defined that indicates where the program is going

to begin executing. In HDL’s any module can be selected as the top module in the project. In Cv

the master function is specified when the code is compiled. When translating Cv to C++, the

master function is converted to the main function in C++. When translating Cv to Verilog, the

master function is set as the top level module of the project. The master function is not an item in

the grammar, but instead is decided at compile time.

2.4.1 Example

//Cv Code
int output1 MyFunction (int input1){
 //empty function
}

Figure 6.

Example function in Cv to be compiled as the master function.

2.4.2 Cv Software Translator

When compiling Cv to software, the follow command will invoke the Cv compiler and instruct

the compiler to compile MyFunction as the main function in software.

(Terminal Command) ./cvc < code.cv MyFunction –sw

In the statement above, “./cvc” invokes the Cv compiler. Next, “< code.cv” instructs the Cv

compiler to compile the file “code.cv”. The next option given is the name of the master function

22

in the “code.cv”. In this example that function is “MyFunction”. The final parameter given is “–

sw”. This tells the Cv compiler to translate the given code into software.

2.4.3 Cv Hardware Translator

When compiling Cv to hardware, the follow command will invoke the Cv compiler and instruct

the compiler to compile MyFunction as the top level module in hardware.

(Terminal Command) ./cvc < code.cv MyFunction –hw

In the statement above, “./cvc” invokes the Cv compiler. Next, “< code.cv” instructs the Cv

compiler to translate the file “code.cv”. The next option given is the name of the function which

should be treated as the top level module. In this example that function is “MyFunction”. The

final parameter given is “–hw”. This instructs the Cv compiler to translate the given code into

hardware.

2.5 Clocking

In hardware, one (and arguably the most popular) style of design involves triggering events to

occur off of a clock edge. This is demonstrated in Verilog using always block that trigger at

either the rising or falling edge of a clock. For example:

//Verilog Code
always@(posedge clock) begin
 a <= b + 1;
end

Figure 7.

Always block in Verilog.

23

In Cv there are no explicit clocking constructs. Instead when a function is translated to hardware,

each function will either run in a single clock cycle, or multiple clock cycles (if the function

requires CHard, as described in Section 2.7). When a function is translated to software, nothing

special happens with respect to clocking, since the function does not have explicit clocking

constructs to begin with.

Since clocking in Cv is therefore implicit, no examples are presented in this section, and no Cv

Software Translator rules or Cv Hardware Translator rules are presented.

2.6 Variables and Arrays

This section focuses on variable declarations and how they are translated into C++ and Verilog.

According to the grammar:

VariableDecl ::= Variable ;

Variable ::= Type ident | Type ident [intConstant]|Type ident [intConstant] [intConstant]

Type ::= AdjustableType | double | bool | char

AdjustableType ::= int | string | int < intConstant > | string < intConstant >

This reflects the types supported by Cv; integers, double precision floating point numbers,

Boolean values, characters, and strings. The default bit widths are:

 32 bits for an integer

 64 bits for a double

 1 bit for a bool

 8 bits for a character

24

 32 characters, or 256 bits, for a string.

 In addition to the default values, the bit width of integers, and the number of characters in a

string, can be specified by the user. According to the definition of AdjustableType, integers and

strings can be declared with or without angle brackets. When there are no angle brackets, the bit

width of an integer or string is the default bit width. When an integer is declared with angle

brackets, then the bit width of the integer is the value given between the angle brackets. When a

string is declared with angle brackets, then the number of characters in the string is equal to the

number in angle brackets. Integers and strings declared with angle brackets are said to have a

specified size. Arrays can also be declared using integers and strings with a specified size. Cv

supports 1- and 2- dimensional arrays. Arrays must also be fixed size. The integer constant in

brackets determines the size of the array.

We next present some examples. We first cover basic variable declarations, then variable

declarations with a specific size, and finally array declarations. After this, we discuss the

translation of various kinds of variable declarations into C++ and Verilog.

2.6.1 Basic Variable Declaration

To declare an int without a specified size:

//Cv Code
int myInt;

Figure 8.

Declaring an int variable in Cv.

25

Here int determines that the variable is an integer, and myInt is the name of the variable.

Because there is no specified size, myInt is 32 bits. Next are examples creating variables of type

double, bool, char, and string:

//Cv Code
double myDouble;
bool myBool;
char myChar;
string myString;

Figure 9.

Declaring different types of variables in Cv.

Here myDouble is 64 bits, myBool is 1 bit, myChar is 8 bits, and myString is 32 characters or 256

bits.

2.6.2 Variable Declaration with Specified Size

To declare an int with a specified size:

//Cv Code
int <50> myIntSize50;

Figure 10.

Declaring an integer with a specified size.

Here int determines that the variables is an integer, the 50 in angle brackets indicates that the

variable has 50 bits, and myIntSize50 is the name of the variable.

Using a specified size to declare a string can be accomplished as follows:

//Cv Code

26

string <100> myLongString;

Figure 11.

Declaring a string with a specified number of characters.

Here string determines that the variable is a string, the 100 in the angle brackets indicates that

the variable has 100 characters, or 800 bits, and myLongString is the name of the variable.

2.6.3 Declaring Arrays

Creating an integer array with default integer bit width:

//Cv Code
int myIntArray [10];

Figure 12.

Declaring an array of integers in Cv.

Here, myIntArray is an array of 10 integers with 32 bits per integer. Arrays of the other types

can be declared likewise.

//Cv Code
double myDoubleArray [20];
bool myBoolArray [10];
char myCharArray [4];
string myStringArray [15];

Figure 13.

Declaring arrays of different types in Cv.

In these declarations each array is of the Type specified, and each item in each array has the

default bit width corresponding to its Type. To create an array with a specified size for integers

and strings:

27

//Cv Code
int <64> myIntArraySize64 [20];
string <40> myStringArrayLarger [10];

Figure 14.

Declaring an array of integers and an array of strings with a specified size.

In myIntArraySize64 there are 20 integers each with 64 bits. In myStringArrayLarger there

are 10 strings each with 40 characters.

2.6.4 Example

//Cv Code
int output1 MyFunction (int input1) {
 int myInt;
 double myDouble;

bool myBool;
 char myChar;
 string myString;

int <16> myIntSmaller;
 string <64> myStringLarger;

 int myIntArray [20];
 double myDoubleArray [10];
 bool myBoolArray [5];
 char myCharArray [16];
 string myStringArray [8];

 int <64> myIntArraySized [10];
 string <16> myStringArraySized [20];
}

Figure 15.

A function containing variable declarations in Cv.

The function in Figure 15 will be used as an example of a function containing variable

declarations. This subset of variables represents the different variables that can be used in Cv.

28

2.6.5 Cv Software Translator

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvV<int> myInt;
 CvV<double> myDouble;
 CvV<bool> myBool;
 CvV<char> myChar;
 CvV<string> myString;

CvV<int> myIntSmaller;
 CvV<string> myStringLarger;

 CvV<int> myIntArray [20];
 CvV<double> myDoubleArray [10];
 CvV<bool> myBoolArray [5];
 CvV<char> myCharArray [16];
 CvV<string> myStringArray [8];

 CvV<int> myIntArraySized [10];
 CvV<string> myStringArraySized [20];
}

Figure 16.

Translating variables within a function from Cv to C++.

Each variable uses the same name in C++ that was given in Cv. Integers and strings with a

specified size use standard sizes in C++. Each variable is of the type CvV (Section 2.8)

2.6.6 Cv Hardware Translator

//Verilog Code
module MyFunction(input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] myInt;
reg [63:0] myDouble;
reg myBool;
reg [7:0] myChar;
reg [255:0] myString;

reg [15:0] myIntSmaller;
reg [63:0] myStringLarger;

reg [31:0] myIntArray [0:19];
reg [63:0] myDoubleArray [0:9];

29

reg myBoolArray [0:4];
reg [7:0] myCharArray [0:15];
reg [255:0] myStringArray [0:7];

reg [63:0] myIntArraySized [0:9];
reg [127:0] myStringArraySized [0:19];

endmodule

Figure 17.

Translating variable within a function from Cv to Verilog.

The above code reflects how each variable type is translated into Verilog. Each variable is made

into a reg variable type in Verilog. The bit width of the variables is declared by the bracketed

numbers on the left of each variable. If a variable does not have brackets indicating its size, the

variable is 1 bit. Each of the bit widths matches the bit width given in the Cv code, and when

there is no bit width specified in the Cv code, the default bit width is used. For the arrays, Cv

creates a Verilog array. This can be seen by the bracketed numbers to the right of the variables.

2.7 CHard

Cv takes the design descriptions of software and hardware and creates a single design

description. There are semantics of both software and hardware that do not have an identical

meaning in the opposite domain. Therefore a hardware construct has been created to handle

software semantics that are not compatible with hardware design. This new hardware construct is

called CHard. CHard is not an item in the grammar, but instead is implemented by multiple

elements of the grammar. Because CHard is designed to handle software semantics foreign to

hardware, there is no implementation of CHard for the Cv Software Translator, it is only used for

the Cv Hardware Translator.

30

2.7.1 Example that Requires CHard

The example below shows a for loop (Section 2.15) whose number of iterations is unknown at

compile time.

//Cv Code
int output1 myFunction (int input1) {
 int i;

 output1 = 0;
 for(i = 0; i < input1; i = i + 1)
 output1 = output1 + 1;
}

 Figure 18.

Cv code that requires CHard.

In the code above a for loop is used, however the number of iterations of the for loop is

unknown, and depends on the value of input1. This type of for loop, where the number of

iterations are unknown at compile time, is unsupported in currents HDL’s. Therefore CHard is

used to realize this software semantic in hardware. The function is translated into Verilog as

shown below. The constructs of CHard are then further explained.

2.7.2 Cv Hardware Translator code for Section 2.7.1

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [3:0] functionCounter;

//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 <= 0;
 i <= 0;
 end
 else if(start) begin
 output1 <= 0;
 end

31

 else if(functionCounter != 0) begin
 case(functionCounter)
 1: i <= 0;
 2: // do nothing, control block is testing i < input1
 3: output1 <= output1 + 1;
 4: i <= i + 1;
 5: //do nothing, control block is testing i < input1
 endcase

end
else begin
 output1 <= output1;
 i <= i;
end

end

//control block
always@(posedge clock) begin
 if(reset) begin
 functionCounter <= 0;
 done <= 0;
 end
 else if(start) begin
 functionCounter <= 1;
 done <= 0;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 2:

if(i < input) begin
 functionCounter <= 3;

 end
 else
 functionCounter <= 0;
 done <= 1;
 end

 5:
if(i < input) begin
 functionCounter <= 3;

 end
 else
 functionCounter <= 0;
 done <= 1;
 end

 default:
 functionCounter <= functionCounter + 1;
 done <= done;
 endcase
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 19.

Translating Cv to Verilog with code containing CHard.

32

First the flow block is discussed, followed by the control block. The flow block implements the

code that was given in the function. When reset is high, all local variables and outputs of the

function are set to 0. The instructions required to be computed by Figure 19 are output1 = 0, i

= 0, i < input1, and i = i + 1. The first instruction is executed when the start input is

high, which sets output1 = 0. The remaining instructions are executed in the case statement

which depends on the value of the functionCounter. This is how the flow block operates; the first

statement in the code is executed when start is high, and the rest of the code is executed in the

case statement. The next code that is encountered is the for loop.

The control block uses the functionCounter and done variables to control which statement is

executed. The number of bits for the functionCounter is determined by the Cv compiler, so

that the minimum number of bits may be used to account for all the instructions that must be

executed. In this example a for loop must test i < input1 before the for loop is run the first

time, and it must retest this condition after each execution of the for loop. When the

functionCounter value is 2 or 5, the flow block is not doing anything and the control block is

testing the condition of the for loop. Once i < input1 is no longer true, the execution would

exit the for loop. Because the for loop is the last code in the function, once the for loop is

finished, the function is finished. Therefore, once i < input1 is no longer true, the

functionCounter is set to 0, and done is set to 1. These two blocks execute in parallel, very

similarly to how the code would execute on a processor.

One of the goals of Cv is to provide hardware that is efficient. Therefore, CHard is only created

when it is required. If a designer uses constructs familiar to a hardware developer, then the Cv

33

compiler will not create CHard, and the resulting Verilog will not rely on a functionCounter.

However, functions that do not require CHard will still have a done output. The done output of a

function that does not require CHard is always high the clock cycle after the start input is high.

Each of the constructs presented demonstrates cases when CHard is, and is not, created.

Next is an example of a function that does not require CHard. This function only does

assignments, and therefore does not rely on software constructs foreign to hardware.

2.7.3 Example that Does Not Require CHard

//Cv Code
int output1 MyFunctionNoCHard(int input1) {
 int x;
 int y;
 x = input1*2;
 y = x – 3;
 output1 = y*4;
}

Figure 20.

Cv code that does not require CHard.

In Figure 20 only assignments are performed. HDL’s provide semantics to do serial operations

using blocking statements. Therefore, the code in Figure 20 can be translated using blocking

statements, and not require CHard.

2.7.4 Cv Hardware Translator

34

//Verilog Code
module MyFunctionNoCHard (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] x;
reg [31:0] y;

//flow block
always@(posedge clock) begin
 if(reset) begin
 x = 0;
 y = 0;
 output1 = 0;
 end
 else if(start) begin
 x = input1*2;
 y = x – 3;
 output1 = y*4;
 end
 else begin
 x = x;
 y = y;
 output1 = output1;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

Figure 21.

Translating Cv to Verilog with code that does not contain CHard.

In Figure 21, the flow block and the control block still exist. However, the control block no

longer contains the functionCounter. The done output is set by the control block to be high the

clock cycle after the start input is high. In the flow block all assignments are done through

blocking statement, contrary to the non-blocking statements used in the example that required

CHard (Section 2.7.2). This is designed so that statements will be implemented sequentially. The

35

control block continues to use non-blocking statements for continuity. In the flow block,

functions that do not require CHard have three sections; when reset is high, when start is

high, and otherwise. When reset is high all local variables and outputs are set to 0. When start

is high the instructions given by the user are implemented. When neither reset nor start are

high, then the local variables and outputs retain their value. This allows other modules to then

use these outputs in their computations.

2.8 CvC and CvV Types

Because Cv expands upon traditional software functionality, certain modifications must be made

when translating Cv to C++. One of the greatest changes is the introduction of the CvV type. The

CvV type is applied to all variables when the Cv Software Translator translates Cv code into

C++. The CvV type allows variables to have the functionality of the event driven semantic, a

semantic absent from C++. To implement the CvV type, two classes were created, the CvC class

and the CvV class. These classes are presented below.

CvC Class

//C++ code
class CvC
{
public:
 CvC(void(*function)(CvC*))
 : _function(function) {
 _dependors = vector<CvC*>();
 _dependencies = vector<CvC*>();
 }
 void Update(){
 _function(this);
 for(int i = 0; i < _dependors.size(); i++)
 _dependors[i]->Update();

}
 void AddDependency(CvC* cvC){

cvC->AddDependor(this);

36

_dependencies.push_back(cvC);
}

 void AddDependor(CvC* cvC){
 _dependors.push_back(cvC);

}
 void AddFunction(void(*function)(CvC*)) {

_function = function;
}

 void RemoveFunction() {
_function = NULL;

}
 template<typename T>
 T Me(){
 if(dynamic_cast<CvV<T>*>(this))
 return dynamic_cast<CvV<T>*>(this)->Me();
 return 0;
 }
 template<typename T>
 void SetValue(T value){
 if(dynamic_cast<CvV<T>*>(this))
 dynamic_cast<CvV<T>*>(this)->SetValue(value);
 }
 template<typename T>
 void AfterParallelUpdate() {
 if(dynamic_cast<CvV<T>*>(this))
 dynamic_cast<CvV<T>*>(this)->AfterParallelUpdate();
 }
 vector<CvC*> GetDependencies(){

return _dependencies;
}

protected:
 void(*_function)(CvC*);
 vector<CvC*> _dependors;
 vector<CvC*> _dependencies;
};

Figure 22.

C++ code of the CvC class.

CvV Class

//C++ Code
template<class T>
class CvV : public CvC
{
public:
 CvV(T value, void(*function)(CvC*))
 : _value(value), _writeValue(value), CvC(function){ }
 CvV()
 : _value(0), _writeValue(0), CvC(NULL){ }
 T& Me() { return _value; }
 void SetValue(T value){ _value = value; }
 CvV(T value)
 : _value(value), _writeValue(value), CvC(NULL){ }
 CvV(const CvV<T>& cvV)
 : _value(cvV._value), _writeValue(cvV._writeValue),

37

 CvC(cvV function){ }
 void AfterParallelUpdate() {
 _value = _writeValue;
 }
 CvV<T> operator=(T rightSide){
 _value = rightSide;
 _writeValue = _value;
 for(int i = 0; i < _dependors.size(); i++)
 _dependors[i]->Update();
 return *this;
 }
 CvV<T> operator=(CvV<T> rightSide){
 _value = rightSide.Me();
 _writeValue = _value;
 for(int i = 0; i < _dependors.size(); i++)
 _dependors[i]->Update();
 return *this;
 }
 CvV<T> operator^(T rightSide){
 _writeValue = rightSide;
 for(int i = 0; i < _dependors.size(); i++)
 _dependors[i]->Update();
 return *this;
 }
 CvV<T> operator^(CvV<T> rightSide){
 _writeValue = rightSide.Me();
 for(int i = 0; i < _dependors.size(); i++)
 _dependors[i]->Update();
 return *this;
 }
 CvV<T> operator+(T value){ return CvV<T>(_value + value, _function);}
 CvV<T> operator+(CvV<T> value){
 return CvV<T>(_value + value.Me(),_function);
 }
 CvV<T> operator-(T value){ return CvV<T>(_value - value, _function);}
 CvV<T> operator–(CvV<T> value){
 return CvV<T>(_value - value.Me(), function);
 }
 CvV<T> operator*(T value){
 return CvV<T>(_value * value, _function);
 }
 CvV<T> operator*(CvV<T> value){
 return CvV<T>(_value * value.Me(), function);
 }
 CvV<T> operator/(T value){
 return CvV<T>(_value / value, _function);
 }
 CvV<T> operator/(CvV<T> value){
 return CvV<T>(_value / value.Me(), _function);
 }
 CvV<T> operator%(T value){return CvV<T>(_value % value,_function);}
 CvV<T> operator%(CvV<T> value){
 return CvV<T>(_value%value.Me(),_function);
 }
 bool operator<(T value){ return _value < value; }
 bool operator<(CvV<T> value){ return _value < value.Me(); }
 bool operator<=(T value){ return _value <= value; }
 bool operator<=(CvV<T> value){ return _value <= value.Me(); }
 bool operator>(T value){ return _value > value; }
 bool operator>(CvV<T> value){ return _value > value.Me(); }
 bool operator>=(T value){ return _value >= value; }
 bool operator>=(CvV<T> value){ return _value >= value.Me(); }

38

 bool operator==(T value){ return _value == value; }
 bool operator==(CvV<T> value){ return _value == value.Me(); }
 bool operator!=(T value){ return _value != value; }
 bool operator!=(CvV<T> value){ return _value != value.Me(); }

 template<class H>
 T ArrayAccess(CvV<H> index){
 CvV<T>* cvPointer = this;
 for(int i = 0; i < index.Me(); i++)
 cvPointer++;
 return cvPointer->Me();
 }
private:
 T _value;
 T _writeValue;
};

Figure 23.

C++ code for the CvV class.

These two classes are used to implement the event driven models and parallel models in C++. In

the subsequent sections that use specific features of the CvC and CvV classes, the needed

functionality is discussed.

Serial, Parallel, Non-Blocking, and Event Driven Statements

In Cv statements can be made serially, in parallel, as non-blocking assignment, or as event driven

assignments. Each of these is described in detail in the following sections.

2.9 Serial Statements

Serial statement are reflected in the grammar by the definition of the StmtBlock:

StmtBlock ::= { VariableDecl* EventDriven* Stmt* }

Stmt* is a pointer to an array of statements. Statements occurring one after another are serial

statements, and therefore are executed in the order they are written.

39

2.9.1 Example

//Cv Code
int output1 MyFunction(int input1) {
 int a;
 int b;

 a = 3*input1;
 b = a – 3;
 ouptut1 = b/2;
}

Figure 24.

Cv code using serial statements.

Figure 24 shows the assignments in series. The translated software and hardware must execute

these statements in the same order.

2.9.2 Cv Software Translator

Serial statements have a very direct translation when translated into software. The result looks

very similar to the given Cv code.

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvV<int> a;
 CvV<int> b;
 CvFunctionStruct_MyFunction returnValue;

 a = 3*input1;
 b = a – 3;
 Value.output1 = b/2;
 return returnValue;
}

Figure 25.

Translating Cv to C++ for serial statements.

40

Because the = operator in the CvV class has been overridden, the translated code just needs to

assign a value to the variable. This will set _value and _writeValue of the variable. The output

variable is able to be directly assigned within the function. Once the function has reached the end

of its code, the returnValue is returned, containing the output variable that has been properly

set. The serial statements occur in order, as given in the Cv Code.

2.9.3 Cv Hardware Translator

When translating Cv to hardware, serial statements may or may not require CHard. If a function

contains only a block of serial statements, then the code will not require CHard. However, if the

code contains other constructs that requires CHard, then the serial statements will require CHard.

For examples that require CHard, we refer the reader to the sections on the individual constructs

that require CHard (Sections 2.10.6, 2.13.2.1, 2.13.2.2, 2.14.2.2, 2.14.2.4, 2.15.2.3, 2.16.2.1, and

2.17.3). In the example given in Figure 24, the function just contains a series of assignments.

Therefore, this function does not contain any CHard constructs and does not require CHard.

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] a;
reg [31:0] b;

//flow block
always@(posedge clock) begin
 if(reset) begin
 a = 0;
 b = 0;
 output1 = 0;
 end
 else if(start) begin
 a = 3*input1;
 b = a - 3;
 output1 = b/2;
 end
 else begin
 a = a;

41

 b = b;
 output1 = output1;
 end
end
endmodule

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

Figure 26.

Translating Cv to Verilog for serial statements.

In Figure 26, no CHard is created. All of the functionality is executed within one clock cycle as

expected.

2.10 Parallel Statements

According to the grammar:

 ParallelStmt ::= Stmt || Stmt | ParallelStmt || Stmt

Two or more statements are declared in parallel using the || symbol. In addition to this, multiple

statements can be chained in parallel using the || symbol with successive statements. Statements

in parallel are executed simultaneously. All variables on the right side of parallel assignments

will use the value of the variable prior to entering the parallel section. Once all right hand

42

expressions have been evaluated, the variables on the left are assigned the results. A variable can

only be assigned a value in one parallel statement.

//Cv Code
a = 2 + b;
|| b = 3 – a + c;
|| c = 3*b;

Figure 27.

Cv code showing parallel construct.

In Figure 27 the three statements are executed in parallel. This is declared using the parallel

symbol, ||. It is read that the assignment to b is in parallel with the statement above it, the

assignment to a. Also, the assignment to c is in parallel with the statement above it, the

assignment to b, which is also in parallel to the assignment to a. If a is initially 3, b is initially 5,

and c is initially 6, then after execution the resulting values for a, b, and c would be 7, 6, and 15

respectively. This is because neither a, nor b, nor c will change their value until all expressions

are evaluated.

Two sets of parallel statement can be structured as follows to create parallel statements in series:

//Cv Code
//Parallel Statement Set 1
a = 2 + b;
|| b = 3 – a + c;
|| c = 3*b;
//Parallel Statement Set 2
a = b - 3;
|| b = a*2;
|| c = a + b;

Figure 28.

Cv code showing how the parallel construct can be used to place two sets of parallel statements

in series.

43

First, the top three assignments will occur in parallel. Once these calculations are completed, the

second set of three assignments occur in parallel. This is denoted by the break in the parallel

symbols. The assignment to a in Parallel Statement Set 2 is not prefaced by a parallel symbol,

and therefore indicates that it must take place after Parallel Statement Set 1.

Next, the examples from Figure 27 and Figure 28 are placed in functions, and it is shown how

the examples are translated into software and hardware. The first example is presented, followed

by its translation, and then the second example is presented, followed by its translation.

2.10.1 First Example

//Cv Code
int output1 MyFunction(int input1) {

int a;
int b;
int c;

a = 2 + b;
|| b = 3 – a + c;
|| c = 3*b;

}

Figure 29.

Cv code with parallel statements in a function.

Figure 29 has a function containing three statements that execute in parallel.

2.10.2 Cv Software Translator

44

/C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvV<int> a;
 CvV<int> b;
 CvV<int> c;
 CvFunctionStruct_MyFunction returnValue;

 a ^ 2 + b;
 b ^ 3 – a + c;
 c ^ 3*b;
 a.AfterParallelUpdate();
 b.AfterParallelUpdate();
 c.AfterParallelUpdate();
 return returnValue;
}

Figure 30.

Translating Cv to C++ for a function containing parallel statements.

In the translation in Figure 30 there are two main differences when compared to the serial

statement example. The first is that the assignment is done with the caret (^) operator, and after

the caret assignments each of the variables calls the AfterParallelUpdate function. The caret

operator is used during parallel assignments to set the of each variable’s _writeValue inside of

the CvV class (Section 2.8). In Cv when variables are assigned values in parallel, all of the right

hand expression must be evaluated before the left hand variables are updated. This is

accomplished by every variable having a _value and a _writeValue. When an assignment is

performed using the = operator in C++, both the _value and _writeValue are set in the CvV

variable. However, when assignment is performed using the ^ operator, only the _writeValue is

assigned. When the value of a variable is read, the _value of the CvV variable is what is read.

Therefore, the ^ operator writes the assigned right hand value to the _writeValue of the variable

and other statements read the _value of the variable. Once all of the parallel statements have

executed, each variable that was assigned a value calls the AfterParallelUpdate function of the

45

CvV class. This function copies the value of _writeValue over to _value, and updates all

dependors of the class. For more information on dependors, see the Event Driven section

(Section 2.12). At the end of the function the returnValue is still returned, even though nothing

was assigned to it.

One of the remaining goals of Cv is to use threads to execute parallel statements in software.

Currently parallel statements are executed in series. In the future, parallel statements will be

executed using threads for true parallelism.

2.10.3 Cv Hardware Translator

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] a;
reg [31:0] b;
reg [31:0] c;

//flow block
always@(posedge clock) begin
 if(reset) begin
 a <= 0;
 b <= 0;
 c <= 0;
 output1 = 0;
 end
 else if(start) begin //parallel statements executed here
 a <= 2 + b;
 b <= 3 – a + c;
 c <= 3*b;
 end
 else begin
 a <= a;
 b <= b;
 c <= c;
 output1 = output1;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin

46

 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

Figure 31.

Translating Cv to Verilog for a function containing parallel statements.

Because the only statements in this function are parallel statements, the function does not require

CHard. Instead, all of the parallel assignments happen simultaneously at the rising edge of the

clock.

2.10.4 Second Example

//Cv Code
int output1 MyFunction(int input1) {
 int a;
 int b;
 int c;

 //Parallel Statement Set 1

a = 2 + b;
|| b = 3 – a + c;
|| c = 3*b;
//Parallel Statement Set 2
a = b - 3;
|| b = a*2;
|| c = a + b;

}

Figure 32.

Cv code with two sets of parallel statements in series within a function.

In Figure 32 two sets of parallel statements are executed in series. Parallel Statement Set 1 is

executed, and once it finishes, Parallel Statement Set 2 is executed. Both software and hardware

must respect this order of operation.

47

2.10.5 Cv Software Translator

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvV<int> a;
 CvV<int> b;
 CvV<int> c;
 CvFunctionStruct_MyFunction returnValue;

 //Parallel Statement Set 1
 a ^ 2 + b;
 b ^ 3 – a + c;
 c ^ 3*b;
 a.AfterParallelUpdate();
 b.AfterParallelUpdate();
 c.AfterParallelUpdate();
 //Parallel Statement Set 2
 a ^ b - 3;
 b ^ a * 2;
 c ^ a + b;
 a.AfterParallelUpdate();
 b.AfterParallelUpdate();
 c.AfterParallelUpdate();
 return returnValue;
}

Figure 33.

Translating Cv to C++ for a function containing two sets of parallel statements in series.

This example is very similar to the previous in terms of how the caret operator and

AfterParallelUpdate functions work. Because this function has two sets of parallel statements in

series, Parallel Statement Set 1 is executed and a, b, and c each calling AfterParallelUpdate.

Next, Parallel Statement Set 2 is executed, followed by a, b, and c each calling

AfterParallelUpdate.

2.10.6 Cv Hardware Translator

48

Unlike Section 2.10.3, which did not require CHard, this example will require CHard. This is

because there are two sets of parallel statements performed in series. This means that the second

set of parallel statements cannot be computed until after the first set of parallel statements has

finished.

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] a;
reg [31:0] b;
reg [31:0] c;
reg [1:0] functionCounter;

//flow block
always@(posedge clock) begin
 if(reset) begin
 a <= 0;
 b <= 0;
 c <= 0;
 output1 <= 0;
 end
 else if(start) begin
 //Parallel Statement Set 1
 a <= 2 + b;
 b <= 3 – a + c;
 c <= 3*b;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 //Parallel Statement Set 2
 1: a <= b – 3;
 b <= a * 2;
 c <= a + b;
 endcase
 end
 else begin
 a <= a;
 b <= b;
 c <= c;
 output1 <= output1;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 functionCounter <= 0;
 end
 else if(start) begin
 done <= 0;
 functionCounter <= 1;
 end

49

 else if(functionCounter != 0) begin
 case(functionCounter)
 1: functionCounter <= 0;
 done <= 1;
 default: functionCounter <= functionCounter + 1;
 endcase
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 34.

Translating Cv to Verilog for a function containing two sets of parallel statements in series.

In the Figure 34 there are two sets of parallel statements. Parallel Statement Set 1 is executed

when start is high, and Parallel Statement Set 2 is executed when the functionCounter is 1.

This means that the function takes two clock cycles to execute. Once the functionCounter is 1,

the function has completed, and the functionCounter is set back to 0, and done is set high.

2.11 Non-Blocking Statements

In hardware design, non-blocking statements are used to assign values to variables in parallel at

the edge of an event. For example:

//Verilog Code
always@(posedge clock) begin
 a <= b + 2;
 b <= a * 2;
end

Figure 35.

Verilog code using non-blocking statements.

In this example the values of a and b are set in parallel. The right hand expressions are evaluated

using the previous values of a and b, and a and b are not assigned new values until both right

hand expressions are evaluated. This same semantic is used in Cv. In Cv, all non-blocking

50

statements are collected and evaluated prior to the rest of the function. Also, in Cv, it is illegal to

use the values of variables that are assigned with non-blocking statements, in assignments that

are not non-blocking statements. According to the Cv grammar:

AssignExpr ::= LValue = Expr | (ident +,) = Call | LValue <> NonCallExpr

The non-blocking assignment in Cv is the assignment that uses the <> operator.

Example

//Cv Code
int output1 MyFunction(int input1){
 int a;
 int b;
 int c;

 a <> input1*2;
 b = input1 – 3;
 c <> input1 – 4;
 output1 <> c + 3;
}

Figure 36.

Cv code containing non-blocking statements.

In this example there are four assignments. Variables a, c, and output1 are assigned using non-

blocking assignments, and the variable b is assigned using a normal assignment. The non-

blocking assignments will be gathered and executed in parallel. Once the non-blocking

statements have been executed, the remaining code, in this case the assignment to variable b, will

be executed.

Cv Software Translator

51

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvFunctionStruct_MyFunction returnValue;
 CvV<int> a;
 CvV<int> b;
 CvV<int> c;

 //non-blocking assignment
 a ^ input1 * 2;
 c ^ input1 – 4;
 returnValue.output1 ^ c + 3;
 a.AfterParallelUpdate();
 c.AfterParallelUpdate();
 returnValue.output1.AfterParallelUpdate();

 //serial statement
 b = input1 – 3;

 return returnValue;
}

Figure 37.

Translating Cv to C++ for a function containing non-blocking statements.

In Figure 37 all of the non-blocking statements are collected and executed first. The non-

blocking assignment are executed using the caret operator. This operator evaluates right hand

and stores the value in the _writeValue member of the CvV class (Section 2.8), leaving the

_value member of the CvV class available to be read without change. Once all assignments are

done using the caret operator, a, c, and returnValue.output1 each call the AfterParallelUpdate

function from the CvV class to copy the _writeValue member over to the _value member.

Evaluating non-blocking statements in software is identical to evaluating parallel statements

(Section 2.10). The difference is that all non-blocking statements are executed before the rest of

the code.

Cv Hardware Translator

52

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] a;
reg [31:0] b;
reg [31:0] c;

//non-blocking block
always@(posedge clock) begin
 if(reset) begin
 a <= 0;
 c <= 0;
 output1 <= 0;
 end
 else if(start) begin
 a <= input1 * 2;
 c <= input1 – 4;
 output1 <= c + 3;
 end
 else begin
 a <= a;
 c <= c;
 output1 <= output1;
 end
end

//flow block
always@(posedge clock) begin
 if(reset) begin
 b = 0;
 end
 else if(start) begin
 b = input1 – 3;
 end
 else begin
 b = b;
 end
end

always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

Figure 38.

Translating Cv to Verilog for a function containing non-blocking statements.

53

Non-blocking statements are native to Verilog, and therefore the Cv Hardware Translator uses

the Verilog non-blocking semantic. A third always block is made for non-blocking statements,

and all non-blocking assignments are placed in the new always block. Non-blocking statements

never force a function to require CHard.

2.12 Event Driven Statements

According to the grammar:

EventDriven ::= LValue ~ EventDrivenExpr ;

The LValue is either a variable or a computation accessing an element of an array. The tilde

operator (~) declares that this is an event driven assignment. In an event driven assignment,

anytime one of the parameters on the right side of the tilde changes, the LValue on the left is

automatically updated. For example, if a and b are both integers, and we have the statement:

a ~ b + 4;

then if b is equal to 6, then a is equal to 10. If something changes the value of b to 8, then a is

automatically changed to 12. The operations that are legal for the right side of an event driven

statement are: addition, subtraction, multiplication, division, modulus, negation, less than,

greater than, less than or equal to, greater than or equal to, equal to, not equal to, and, or, left

shift, and right shift. The only expression that is not allowed to be used in an event driven

statement is a function call.

2.12.1 Example

54

//Cv Code
int a MyFunction (int b, int c){
 a ~ b + c;
}

Figure 39.

Cv code containing event driven statements.

In this example a is event driven assigned to b + c. Any time that b or c change, a will

automatically be updated.

2.12.2 Cv Software Translator

The event driven semantic is accomplished in software by the CvC and CvV classes. Within the

CvC class there are 2 members:

//C++ code
vector<CvC*> _dependors;
vector<CvC*> _dependencies;

Figure 40.

Private members of the CvC class in C++. These members are used to implement the event

driven construct in software.

Because each variable in Cv is translated into a CvV, which is inherited from the CvC class, each

variable has dependors and dependencies. Given the event driven example:

//Cv Code
a ~ b + c;

Figure 41.

An event driven statement in Cv.

55

For variable a, variables b and c would be added to a’s dependencies vector. For variables b and

c, a would be added to their dependors vector. Every CvC, and therefore CvV, also has a

member of that class that is a pointer to a function that takes a pointer to a CvC. For discussion

this function will be called the variable’s Update Function. The Update Function is what updates

the left hand variable when one of the right hand variables is changed.

Next, the overridden = operator is discussed. When a CvV variable is assigned a new value each

of its dependors call the dependor’s Update Function. This is what enables a change to variables

b and c to automatically update variable a. Once b or c has changed, a, which is one of b and c’s

dependors, will call its Update Function. Variable a’s Update Function is created when the Cv

Software Translator is compiling the event driven statement. Each event driven statement creates

a unique function. For this example, the function would be:

//C++ Code
void CvEventFunction_1(CvC* cvc) {
 Cvc* b = cvc->GetDependencies()[0];
 Cvc* c = cvc->GetDependencies()[1];
 cvc->SetValue(b->Me<int>() + c ->Me<int>());
}

Figure 42.

C++ functions generated to execute the event driven statement.

Because this is the Update Function for the variable a, when CvEventFunction_1 is called, the

CvC* argument will point at variable a. When a calls its Update Function

(CvEventFunction_1), variables b and c will get selected out of a’s dependencies, added

together, and set as a’s _value using SetValue;

56

The example function would be translated as follows:

//C++ Code
void CvEventFunction_1(CvC* cvc) {
 Cvc* b = cvc->GetDependencies()[0];
 Cvc* c = cvc->GetDependencies()[1];
 cvc->SetValue(b->Me<int>() + c ->Me<int>());
}
struct CvFunctionStruct_MyFunction {
 CvV<int> a;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> b, CvV<int> c) {
 CvFunctionStruct_MyFunction returnValue;
 returnValue.a.AddDependency(b);
 returnValue.a.AddDependency(c);
 b.AddDependor(a);
 c.AddDependor(a);
 a.AddFunction(CvEventFunction_1);

 return returnValue;
}

Figure 43.

Translating Cv to C++ for event driven statements.

In Figure 43, a adds b and c as its dependors. Then b and c each add a as a dependency. This is

how different variables set their dependors and dependencies.

2.12.3 Cv Hardware Translator

Verilog has built in event driven semantics using the assign operator. Therefore this is what Cv

will use to translate the Cv code.

//Verilog Code
module MyFunction(input clock, input reset, input start, input [31:0] b,
 input [31:0] c, output reg done, output wire [31:0] a);

assign a = b + c;
endmodule

Figure 44.

Translating Cv to Verilog for event driven statements.

57

The above code uses the assign statement in Verilog to implement the event driven semantic in

Cv. Although outputs are normally reg variables after being translated from Cv, a has been

changed to a wire. This is because Verilog requires that the left hand side of an assign

statement is a wire. The Cv compiler knows how Verilog types need to be declared in order to

be comply with Verilog rules.

2.13 Function Calls

Function calls are integral to software languages, and are closely related to module instantiations

in Verilog. Because the two are closely related, module instantiations can be used in hardware to

implement function calls. According to the grammar:

Call ::= ident (Actuals).ident | ident (Actuals)

AssignExpr ::= LValue = Expr | (ident +,) = Call | LValue <> Expr

The first definition (ident(Actuals).ident) is used to target individual outputs of a function,

while the second definition (ident(Actuals))is used to set multiple variables to the output of the

function call. To set multiple variables to the outputs of a function call, the syntax for the second

definition of the AssignExpr ((ident +,) = Call) is used.

The Example section of Section 2.13 has been omitted. Because there are many special cases for

the Cv Hardware Translator that differ from the Cv Software Translator, all examples are

presented in Section 2.13.1 (Cv Software Translator) and Section 2.13.2 (Cv Hardware

Translator).

58

2.13.1 Cv Software Translator

When translating Cv function calls to C++, the two look very similar. There are two cases to

consider: targeting an individual output of a function, and setting multiple outputs of a function.

2.13.1.1 Targeting an Individual Output

Each functions is translated to return a struct, and elements of a struct are accessed using the dot

notation. Because of this, the C++ syntax to access a value within a struct that has been returned

matches the Cv syntax for accessing an output of a function.

Example:

//Cv Code
int a FunctionToBeCalled(int y){
 a = y * 2;
}
int output1 MyFunction(int input1){
 output1 = FunctionToBeCalled(input1).a + 3;
}

Figure 45.

Cv code containing a function call.

In Figure 45, output1 is being assigned the value of the output a from FunctionToBeCalled

plus 3. To get the value of a specific output from a function call, the function call is followed by

“.” and the output variable’s name. In Figure 45, the output variable a from

FunctionToBeCalled is selected using this method.

59

Translated into C++:

//C++ Code
struct CvFunctionStruct_FunctionToBeCalled {
 CvV<int> a;
};
CvFunctionStruct_FunctionToBeCalled FunctionToBeCalled(CvV<int> y) {
 CvFunctionStruct_FunctionToBeCalled returnValue;
 returnValue.a = y * 2;
 return returnValue;
}
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvFunctionStruct_MyFunction returnValue;
 returnValue.output1 = FunctionToBeCalled(input1).a + 3;
 return returnValue;
}

Figure 46.

Translating Cv to C++ for code containing a function call.

As demonstrated above, the function call looks very similar to the Cv code. The function call is

made and is provided input1 as the argument to FunctionToBeCalled. Because

FunctionToBeCalled returns a struct, containing a CvV<int> a, which is the desired output,

this can select this using .a syntax.

2.13.1.2 Setting Multiple Outputs

To set multiple outputs of a function, the function call cannot be an inline call and must be a

separate assignment. The following syntax is an example of assigning multiple outputs of a

function to variables.

//Cv Code
(a, b, c) = CallSomeFunction(x);

Figure 47.

An example of Cv code calling a function and setting multiple outputs.

60

Here CallSomeFunction returns three variables, whose types would match a, b, and c. The

variable a would be assigned to the first output of CallSomeFunction, b would be assigned to

the second output, and c would be assigned to the third. The number of variables being assigned

must match the number of outputs of the function.

Example:

//Cv Code
int a, int b FunctionToBeCalled(int y){
 a = y * 2;
 b = y – 3;
}
int output1 MyFunction(int input1){
 int c;
 int d;

 (c, d) = FunctionToBeCalled(input1);
 output1 = c + d;
}

Figure 48.

Cv code calling a function and setting multiple outputs.

Translated into C++:

//C++ Code
struct CvFunctionStruct_FunctionToBeCalled {
 CvV<int> a;
 CvV<int> b;
};
CvFunctionStruct_FunctionToBeCalled FunctionToBeCalled(CvV<int> y) {
 CvFunctionStruct_FunctionToBeCalled returnValue;
 returnValue.a = y * 2;
 returnValue.b = y – 3;
 return returnValue;
}
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvFunctionStruct_MyFunction returnValue;
 CvV<int> c;

CvV<int> d;

CvFunctionStruct_FunctionToBeCalled FunctionToBeCalled_1 =

61

 FunctionToBeCalled(input1);
c = FunctionToBeCalled_1.a;
d = FunctionToBeCalled_1.b;

returnValue.output1 = c + d;

 return returnValue;
}

Figure 49.

Translating Cv to C++ for a function call that returns multiple outputs.

When translated into C++, a struct that the called function returns is created and set equal to the

output of the called function. Then, the variables assigned to the outputs of the function are

assigned in order to the variables inside the struct. This can be seen where c and d are assigned to

variables a and b inside the FunctionToBeCalled_1.

2.13.2 Cv Hardware Translator

When translating Cv function calls into Verilog three scenarios exist: function calls that occur

inline with other statements, function calls in series with other statements, and function calls that

occur purely in parallel.

2.13.2.1 In Line Function Calls

It is very common in software to see function calls made inline as a part of an assignment. For

example:

//C++ Code
int x = 3 + CallToFunction(x);

Figure 50.

Showing an example of a function call in C++.

62

Therefore, Cv also supports inline function calls. This section presents two examples. The first

example uses one inline call. The second examples uses two inline calls in the same line.

Example 1:

//Cv Code
int a MyFunctionToBeCalled(int y){
 a = y*2 + 3;
}
int output1 MyFunction(int input1){
 int myInt;

myInt = 4;
 output1 = myInt + input1 + MyFunctionToBeCalled(input1).a;
}

Figure 51.

Cv code containing an inline function call.

Figure 51 provides two functions, where MyFunction calls MyFunctionToBeCalled in the

assignment of the variable x. Because Cv allows functions to have more than one output, the call

must attach the variable output from the called function, using the “.” notation. This can be seen

in Figure 51 by selecting output variable a from MyFunctionToBeCalled using the .a syntax

after the function call.

Translated into Verilog:

//Verilog Code
module MyFunctionToBeCalled(input clock, input reset, input start,
 input [31:0] y, output reg done, output reg [31:0] a);

//flow block
always@(posedge clock) begin
 if(reset) begin
 a = 0;
 end
 else if(start) begin
 a = y*2 + 3;

63

 end
 else begin
 a = a;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

module MyFunction(input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

//instantiate the module to be called
reg startMyFunctionToBeCalled_1;
wire doneMyFunctionToBeCalled_1;
wire [31:0] myFunctionToBeCalled_1_a;
MyFunctionToBeCalled myFunctionToBeCalled_1(
 .clock(clock),
 .reset(reset),
 .start(startMyFunctionToBeCalled_1),
 .y(input1),
 .done(doneMyFunctionToBeCalled_1),
 .a(myFunctionToBeCalled_1_a)
);

reg [1:0] functionCounter;
reg [31:0] myInt;

//flow block
always@(posedge clock) begin
 if(reset) begin
 myInt <= 0;
 startMyFunctionToBeCalled_1 <= 0;
 output <= 0;
 end
 else if(start) begin
 myInt <= 4;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: startMyFunctionToBeCalled_1 <= 1;
 2: startMyFunctionToBeCalled_1 <= 0;
 3: output1 <= myInt + input1 + MyFunctionToBeCalled_1_a;
 endcase
 end
 else begin
 myInt <= myInt;
 startMyFunctionToBeCalled_1 <= startMyFunctionToBeCalled_1;
 output <= output;
 end
end

64

//control block
always@(posedge clock) begin
 if(reset) begin
 functionCounter <= 0;
 done <= 0;
 end
 else if(start) begin
 functionCounter <= 1;
 done <= 0;
 end
 else if(functionCounter != 0) begin
 2:
 if(doneMyFunctionToBeCalled_1) begin
 functionCounter <= 3;
 end
 else begin
 functionCounter <= 2;
 end
 3: functionCounter <= 0;
 done <= 1;
 default: functionCounter <= functionCounter + 1;
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 52.

Translating Cv to Verilog for an inline function call.

In Figure 52, first MyFunctionToBeCalled is translated into a module. MyFunctionToBeCalled

does not require CHard, as can be seen by the lack of a functionCounter in

MyFunctionToBeCalled . Then MyFunction is translated into a module. While translating

MyFunction the Cv compiler recognizes that there is an inline function call in MyFunction. The

module for MyFunctionToBeCalled is instantiated and indexed. This can be seen in Figure 52

where the instantiation for MyFunctionToBeCalled is myFunctionToBeCalled_1, where 1 is

the index. Indexing instantiations allows for multiple function calls to be made to the same

function, and each instantiation will receive a different index. Because MyFunction uses an

inline function call, MyFunction will automatically require CHard. The result of

MyFunctionToBeCalled must have finished before MyFunction can use the result of

65

MyFunctionToBeCalled . Therefore, in one clock cycle the start signal for

MyFunctionToBeCalled will be raised high. The next clock cycle the start signal for

MyFunctionToBeCalled is set low. This can be seen in Figure 52 when

startMyFunctionToBeCalled_1 is set high on the clock cycle when the functionCounter is 1,

and set low when the functionCounter is 2. Next, the control block does not allow the function

to proceed until the done signal from MyFunctionToBeCalled is high. This can be seen in

Figure 52 in the control block when the functionCounter is 2. If

doneMyFunctionToBeCalled_1 is high then the functionCounter increments to 3, otherwise

the functionCounter remains at 2, and the next clock cycle the function will check again to see

if doneMyFunctionToBeCalled_1 is high. Once MyFunctionToBeCalled is done, the result is

used in the next clock cycle in the computation. This is seen in Figure 52 in the flow block when

the functionCounter is 3, output1 <= myInt + input1 + MyFunctionToBeCalled_1_a.

Example 2:

If multiple function calls are made in the same inline statement, then each function is started at

the same time. The control block waits to see the done signal from each module started before

proceeding.

//Cv Code
int a MyFunctionToBeCalled1(int y){
 a = y*2 + 3;
}
int b MyFunctionToBeCalled2(int z){
 b = z/5 + 4;
}
int output1 MyFunction(int input1){
 output1 = MyFunctionToBeCalled1(input1).b +
MyFunctionToBeCalled2(input1).a;
}

Figure 53.

66

Cv code containing inline function calls being added together.

Translated into Verilog:

//Verilog Code
module MyFunctionToBeCalled1(input clock, input reset, input start,
 input [31:0] y, output reg done, output reg [31:0] a);

//flow block
always@(posedge clock) begin
 if(reset) begin
 a = 0;
 end
 else if(start) begin
 a = y*2 + 3;
 end
 else begin
 a = a;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

module MyFunctionToBeCalled2(input clock, input reset, input start,
 input [31:0] z, output reg done, output reg [31:0] b);

//flow block
always@(posedge clock) begin
 if(reset) begin
 b = 0;
 end
 else if(start) begin
 b = z/5 +4;
 end
 else begin
 b = b;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin

67

 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

module MyFunction(input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

//instantiate the module to be called
reg startMyFunctionToBeCalled1_1;
wire doneMyFunctionToBeCalled1_1;
wire [31:0] MyFunctionToBeCalled1_1_a;
reg startMyFunctionToBeCalled2_1;
wire doneMyFunctionToBeCalled2_1;
wire [31:0] myFunctionToBeCalled2_1_b;
MyFunctionToBeCalled MyFunctionToBeCalled1_1(
 .clock(clock),
 .reset(reset),
 .start(startMyFunctionToBeCalled1_1),
 .y(input1),
 .done(doneMyFunctionToBeCalled1_1),
 .a(myFunctionToBeCalled1_1_a)
);
MyFunctionToBeCalled myFunctionToBeCalled2_1(
 .clock(clock),
 .reset(reset),
 .start(startMyFunctionToBeCalled2_1),
 .z(input1),
 .done(doneMyFunctionToBeCalled2_1),
 .b(myFunctionToBeCalled2_1_b)
);

reg [1:0] functionCounter;

//flow block
always@(posedge clock) begin
 if(reset) begin
 myInt <= 0;
 startMyFunctionToBeCalled1_1 <= 0;
 startMyFunctionToBeCalled2_1 <= 0;
 output <= 0;
 end
 else if(start) begin
 startMyFunctionToBeCalled1_1 <= 1;
 startMyFunctionToBeCalled2_1 <= 1;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: startMyFunctionToBeCalled1_1 <= 0;

startMyFunctionToBeCalled2_1 <= 0;
 2: output1 <= MyFunctionToBeCalled1_1_a +
 MyFunctionToBeCalled2_1_b;

 endcase
 end
 else begin
 startMyFunctionToBeCalled1_1 <= startMyFunctionToBeCalled1_1;
 startMyFunctionToBeCalled2_1 <= startMyFunctionToBeCalled2_1;
 output <= output;

68

 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 functionCounter <= 0;
 done <= 0;
 end
 else if(start) begin
 functionCounter <= 1;
 done <= 0;
 end
 else if(functionCounter != 0) begin
 1:
 if(doneMyFunctionToBeCalled1_1 & doneMyFunctionToBeCalled2_1)
 begin
 functionCounter <= 2;
 end
 else begin
 functionCounter <= 1;
 end
 2: functionCounter <= 0;
 done <= 1;
 default: functionCounter <= functionCounter + 1;
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 54.

Translating Cv to Verilog for code containing 2 inline functions being added together.

In Figure 54, in MyFunction there are two function calls made within the same line. When

MyFunction is translated into Verilog startMyFunctionToBeCalled1_1 and

startMyFunctionToBeCalled2_1 are both raised high during the same clock cycle. This can be

seen in Figure 54 when startMyFunctionToBeCalled1_1 and

startMyFunctionToBeCalled2_1 are set high when the start is high. In addition to this, the

control block does not continue with execution until both doneMyFunctionToBeCalled1_1 and

doneMyFunctionToBeCalled2_1 are both high. This can be seen in Figure 54 in the control

block of MyFunction when the functionCounter is 1. This allows for functions to be called

that require different numbers of clock cycles.

69

2.13.2.2 Function Calls in Series

This section covers function calls that are in series with other statements, but are not made inline

with other computations.

Example:

//Cv Code
int a MyFunctionToBeCalled(int y){
 a = y*2 + 3;
}
int output1 MyFunction(int input1){
 int myInt;

myInt = 4; //line 1
 output1 = MyFunctionToBeCalled(input1).a; //line 2
 output1 = myInt + input1 + output1; //line 3
}

Figure 55.

Cv code containing a function call in series with other statements.

Translated into Verilog:

//Verilog Code
module MyFunctionToBeCalled(input clock, input reset, input start,
 input [31:0] y, output reg done, output reg [31:0] a);

//flow block
always@(posedge clock) begin
 if(reset) begin
 a = 0;
 end
 else if(start) begin
 a = y*2 + 3;
 end
 else begin
 a = a;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end

70

 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

module MyFunction(input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

//instantiate the module to be called
reg startMyFunctionToBeCalled_1;
wire doneMyFunctionToBeCalled_1;
wire [31:0] myFunctionToBeCalled_1_a;
MyFunctionToBeCalled myFunctionToBeCalled_1(
 .clock(clock),
 .reset(reset),
 .start(startMyFunctionToBeCalled_1),
 .y(input1),
 .done(doneMyFunctionToBeCalled_1),
 .a(myFunctionToBeCalled_1_a)
);
reg [2:0] functionCounter;
reg [31:0] myInt;

//flow block
always@(posedge clock) begin
 if(reset) begin
 myInt <= 0;
 startMyFunctionToBeCalled_1 <= 0;
 output <= 0;
 end
 else if(start) begin
 myInt <= 4;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: startMyFunctionToBeCalled_1 <= 1;
 2: startMyFunctionToBeCalled_1 <= 0;
 3: output1 <= MyFunctionToBeCalled_1_a;
 4: output1 <= myInt + input1 + output1;
 endcase
 end
 else begin
 myInt <= myInt;
 startMyFunctionToBeCalled_1 <= startMyFunctionToBeCalled_1;
 output <= output;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 functionCounter <= 0;
 done <= 0;
 end
 else if(start) begin
 functionCounter <= 1;
 done <= 0;
 end

71

 else if(functionCounter != 0) begin
 2:
 if(doneMyFunctionToBeCalled_1) begin
 functionCounter <= 3;
 end
 else begin
 functionCounter <= 2;
 end
 4: functionCounter <= 0;
 done <= 1;
 default: functionCounter <= functionCounter + 1;
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 56.

Translating Cv to Verilog for a function call in series with other statements.

This example is very similar to the example in Section 2.13.2.1. In Figure 55 the function call in

line 2 is made by itself (not inline), however it is in series with the line 1 and line 3. Therefore,

the function call must be made after line 1, but before line 3. This will require the Cv compiler to

use CHard. The only difference in the translated Verilog is in the flow block when the

functionCounter is 3. Here output1 is set to the result of MyFunctionToBeCalled. Then,

when the functionCounter is 4, the addition is performed. This is an accordance to how the

code was written in Cv.

2.13.2.3 Function Calls in Parallel

In hardware, or Verilog, when modules are instantiated within one another, they operate in

parallel. Therefore, in Cv there is a way to call functions such that the functions behave in the

same manner that is traditional to hardware developers. When function calls are made in parallel

then they can be translated without creating CHard.

72

Example:

//Cv Code
int a MyFunctionToBeCalled(int y){
 a = y*2 + 3;
}
int output1 MyFunction(int input1){
 int outputOfFunction;
 outputOfFunction = MyFunctionToBeCalled(input1).a;
 || output1 = input1 + outputOfFunction;
}

Figure 57.

Cv code calling a function in parallel with other statements.

Translated into Verilog:

//Verilog Code
module MyFunctionToBeCalled(input clock, input reset, input start,
 input [31:0] y, output reg done, output reg [31:0] a);

//flow block
always@(posedge clock) begin
 if(reset) begin
 a = 0;
 end
 else if(start) begin
 a = y*2 + 3;
 end
 else begin
 a = a;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

module MyFunction(input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

//instantiate the module to be called
wire doneMyFunctionToBeCalled_1;

73

wire [31:0] outputOfFunction;
MyFunctionToBeCalled myFunctionToBeCalled_1(
 .clock(clock),
 .reset(reset),
 .start(start),
 .y(input1),
 .done(doneMyFunctionToBeCalled_1),
 .a(outputOfFunction)
);

//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 = 0;
 end
 else if(start) begin
 output1 = input1 + outputOfFunction;
 end
 else begin
 output1 = output1;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end

Figure 58.

Translating Cv to Verilog for code containing function calls in parallel with other code.

In the example above (Figure 58) there are several things different than the examples before Fig

58 examples. In this discussion MyFunction is the focus. MyFunctionToBeCalled is identical to

the previous examples in the section. The start input for the instantiation of

MyFunctionToBeCalled, is the same start input to MyFunction. This is because

MyFunctionToBeCalled needs to start at the same time as the code in MyFunction. Also, in the

Cv code in Figure 57, outputOfFunction is assigned to MyFunctionToBeCalled(input1).a.

Therefore in this situation outputOfFunction is defined as a wire, and is the output a in

74

MyFunctionToBeCalled. It can also be seen in the Figure 58 that CHard is not created. Using

this style of design, hardware developers can create hardware similarly to methods used today.

2.14 If Statement

If statements are conditional expressions that execute a desired branch based on a given

expression. According to the grammar:

IfStmt ::= if (Expr) Stmt < else Stmt >

The if statement is the keyword if, followed by a test expression to evaluate in parenthesis, and

then a statement (or a statement block) to execute if the test expression is true. Optionally an else

condition can follow. It is common to see the else followed by another if statement, making a

chain of if, else if, else if, etc.

The example section of if statement has been omitted. Because there are many special cases for

the Cv Hardware Translator that differ from the Cv Software Translator, all examples are

presented in the Cv Software Translator (Section 2.14.1) and Cv Hardware Translator (Section

2.14.2).

2.14.1 Cv Software Translator

Like other constructs, the translated C++ code highly resembles the Cv code. The test condition

must be manipulated so that it return a C++ bool (Boolean value), and not a CvV<bool>.

Example:

75

//Cv Code
int output1 MyFunction(int input1) {
 int a;

 if(input1 == 2)
 a = 3;
 else if(input1 == 3) {
 a = 4;
 a = 5 * a;
 }

else
 a = 6;
output1 = a * 9;

}

Figure 59.

Cv code containing if statements.

In Figure 59, the input1 is tested for values 2 and 3. The integer a is set to a certain value

depending on the value of input1. Output1 then uses a to calculate its value.

Translated into C++:

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvFunctionStruct_MyFunction returnValue;
 CvV<int> a;

 if(CvV<bool>(input1 == 2).Me()) {
 a = 3;
 }
 else if(CvV<bool>(input1 == 3).Me()) {
 a = 4;
 a = 5 * a;
 }
 else {
 a = 6;
 }

 returnValue.output1 = a * 9;

 return returnValue;
}

Figure 60.

76

Translating Cv to C++ for code containing if statements.

In the translation it can be seen that the structure of the if statements is almost identical to the Cv

code. In the test of each if statement the expression is wrapped by, CvV<bool>(test expression

).Me(). This is because comparing a CvV variable (Section 2.8) returns another CvV variable,

instead of a C++ bool. C++ requires that the test expression of an if statement is a C++ bool.

Therefore, first the expression is transformed into a CvV<bool>, and second the Me function is

accessed. The Me function for any CvV variable returns the _value member. Because the

variable has set the template type to bool, the Me function will return the Boolean result of the

test expression.

2.14.2 Cv Hardware Translator

The Cv Hardware Translator must be concerned with the following scenarios given an if

statement: If statements that require CHard, if statements that don’t require CHard, if statements

containing non-blocking statements, and when the if statement contains a call in the test

expression. These 4 scenarios are presented below with examples.

2.14.2.1 If Statement Does not Require CHard

The first scenario to consider is when the function does not require CHard.

Example:

//Cv Code
int output1 MyFunction (int input1) {
 int myInt;

77

 if(input1 == 2)
 myInt = 6;
 else if(input1 == 3)
 myInt = 10;
 else
 myInt = 3;
 output1 = 4*myInt;
}

Figure 61.

Cv code containing if statement that do not require CHard.

This code uses if statements in series with other assignments. However, there are no loops

involved, so the code does not require CHard.

Translating to Verilog:

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] myInt;

//flow block
always@(posedge clock) begin
 if(reset) begin
 myInt = 0;
 end
 else if(start) begin
 if(input1 == 2) begin
 myInt = 6;
 end
 else if(input1 == 3) begin
 myInt = 10;
 end
 else begin
 myInt = 3;
 end
 output1 = 4*myInt;
 end
 else begin
 myInt = myInt;
 output1 = output1;
 end
end

//control block
always@(posedge clock) begin
 if(reset)
 done <= 0;
 end

78

 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 done
end

endmodule

Figure 62.

Translating Cv to Verilog for code containing if statements that do not require CHard.

MyFunction does not require CHard. As stated in the CHard section, all of the code to be

implemented from the user is placed in the flow block, and is executed when start is high. It

can be seen how there is a direct translation between the code Figure 61, and the resulting

Verilog in Figure 62.

2.14.2.2 If Statement Requires CHard

Next an if statement is presented that requires CHard. In this if statement a function call is used.

Example:

//Cv Code
int a CalledFunction(int y)
{
 //some code
}

int output1 MyFunction (int input1) {
 int myInt;
 if(input1 == 2)
 myInt = 6;
 else if(input1 == 3)
 myInt = CalledFunction(input1).a;
 else
 myInt = 3;
 output1 = 4*myInt;
}

Figure 63.

79

Cv code containing if statements. Because one of the if statements contains a function call, the

code requires CHard.

Because CalledFunction occurs in the if statement, and is in series with the last statement in

the function, this function requires CHard.

Translated into Verilog:

//Verilog Code
module MyFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [3:0] functionCounter;
reg [31:0] myInt;
reg startCalledFunction_1;
wire doneCalledFunction_1;
wire [31:0] calledFunction_1_a;
CalledFunction calledFunction_1(
 .clock(clock),
 .reset(reset),
 .start(startCalledFunction_1),
 .y(input1),
 .done(doneCalledFunction_1),
 .a(calledFunction_1_a)
);

//flow block
always@(posedge clock) begin
 if(reset) begin
 myInt <= 0;
 startCalledFunction_1 <= 0;
 output1 <= 0;
 end
 else if(start) begin
 //nothing will happen here, control block is deciding which
 //branch to take
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: myInt <= 6;
 2: startCalledFunction_1 <= 1;
 3: startCalledFunction_1 <= 0;
 4: myInt <= calledFunction_1_a;
 5: myInt <= 3;
 6: output1 <= myInt*4;
 endcase

end
 else begin
 myInt <= myInt;
 startCalledFunction_1 <= startCalledFunction_1;
 output1 <= output1;

80

 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 functionCounter <= 0;
 end
 else if(start) begin
 done <= 0;
 if(input1 == 2) begin
 functionCounter <= 1;
 end
 else if(input1 == 3)
 functionCounter <= 2;
 end
 else begin
 functionCounter <= 5;
 end
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: functionCounter <= 6;
 3: if(doneCalledFunction_1) begin
 functionCounter <= 4;
 end

else begin
 functionCounter <= 3;
end
4: functionCounter <= 6;
5: functionCounter <= 6;
6: functionCounter <= 0;
done <= 1;

 endcase
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end

Figure 64.

Translating Cv to Verilog for if statements containing code that requires CHard.

In Figure 64 attention should be paid to how instructions are placed within the flow block, as

well as the jumps made in the control block. In the flow block, when start is high the flow

block does nothing. This is because when a function requires CHard the if Statement uses one

clock cycle to determine which branch of the if Statement to take. After this, when the

functionCounter is not equal to 0, all of the instructions within all if and else if blocks are

laid out sequentially. This is because the control block will when instructions get executed.

81

Because there is a function call, startCalledFunction_1 must be raised high, and then

MyFunction must wait until doneCalledFunction_1 is high to continue. In the control block it

is shown how the branches are chosen. First, when start is high, the control block evaluates the

if statement, and determines the appropriate branch to take. If input1 is equal to 2, then the

functionCounter is assigned 1. Else, if input1 is 3, then the functionCounter is assigned 2.

If neither of these two test expressions are true, then the functionCounter is assigned 5. By

assigning the functionCounter to 1, the instruction within the first if statement is executed.

Else, if the functionCounter is assigned to 2, then the code from the else if statement is

executed. In this branch, the function call is made by raising startCalledFunction_1.

MyFunction waits until doneCalledFunction_1 if high to continue. If the functionCounter is

assigned to 5, then the code for the else block is executed. When any of the branches are done

executing, the functionCounter is assigned to 6, which is the first statement after the end of the

if statement. This can be seen in Figure 64 when the functionCounter is 1, 4, or 5, the

functionCounter is assigned to the value 6. This will prevent MyFunction from executing

statements in other branches of the if statement.

2.14.2.3 Non-Blocking Statements

It is common in hardware design to use if statements containing non-blocking statements

(Section 2.11). Therefore, in Cv this same design philosophy is supported. Normally all non-

blocking assignments are extracted and placed together in an always block. However, with if

statements, the entire if statement must be extracted and placed in the non-blocking block.

Example:

82

//Cv Code
int output1 MyFunction(int input1) {
 int myInt;

 if(input1 == 2)
 myInt <> 3;
 else
 myInt <> 4;
 output1 <> myInt*2;
}

Figure 65.

Cv code containing if statements that contain non-blocking statements.

Translated into Verilog:

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] myInt;
//non-blocking block
always@(posedge clock) begin
 if(reset) begin
 myInt <= 0;
 output1 <= 0;
 end
 else if(start) begin
 if(input1 == 2) begin
 myInt <= 3;
 end
 else begin
 myInt <= 4;
 end
 output1 <= myInt*2;
 end
 else begin
 myInt <= myInt;
 output1 <= output1;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end

83

endmodule

Figure 66.

Translating Cv to Verilog for code containing if statements that contain non-blocking statements.

In Figure 66 the entire if statement is extracted and placed in the non-blocking block. There is no

code to put in the flow block, so the flow block is omitted. Because this function only contains

non-blocking statement, it does not require CHard, and therefore does not depend on a

functionCounter.

2.14.2.4 Calls Within If Statement Test Expression

The next situation that must be considered is when there is a function call within the test

expression of the if statement.

Example:

//Cv Code
int a CalledFunction1(int y)
{
 //some code
}

int b CalledFunction2(int z)
{
 //some code
}

int output1 MyFunction(int input1) {
 int myInt;

 if(CallFunction1(input1).a == 2)
 myInt = 3;
 else if(CallFunction2(input1).b == 4)
 myInt = 4;
 else
 myInt = 5;
 output1 = myInt*2;
}

Figure 67.

84

Cv code containing if statements that use function calls in their test expressions.

In Figure 67 the if and else if Statements each contain a function call. Therefore, the values

of the outputs of CalledFunction1 and CalledFunction2 must be determined before the

appropriate branch from the if statement can be selected. Function calls within the an if

statement’s test expression always require CHard.

Translated into Verilog:

//Verilog Code
module myFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [3:0] functionCounter;
reg [31:0] myInt;
reg startCalledFunction1_1;
wire doneCalledFunction1_1;
wire [31:0] calledFunction1_1_a;
reg startCalledFunction2_1;
wire doneCalledFunction2_1;
wire [31:0] calledFunction2_1_b;
CalledFunction1 calledFunction1_1(
 .clock(clock),
 .reset(reset),
 .start(startCalledFunction1_1),
 .y(input1),
 .done(doneCalledFunction1_1),
 .a(calledFunction1_1_a)
);
CalledFunction2 calledFunction2_1(
 .clock(clock),
 .reset(reset),
 .start(startCalledFunction2_1),
 .z(input1),
 .done(doneCalledFunction2_1),
 .b(calledFunction2_1_b)
);

//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 <= 0;
 myInt <= 0;
 startCalledFunction1_1 <= 0;
 startCalledFunction2_1 <= 0;
 end
 else if(start) begin
 startCalledFunction1_1 <= 1;

85

 startCalledFunction2_1 <= 1;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: startCalledFunction1_1 <= 0;
 startCalledFunction2_1 <=0;
 2: myInt <= 3;
 3: myInt <= 4;
 4: myInt <= 5;
 5: output1 = myInt*2;
 endcase
 end
 else begin
 output1 <= output1;
 myInt <= myInt;
 startCalledFunction1_1 <= startCalledFunction1_1;
 startCalledFunction2_1 <= startCalledFunction2_1;
 end
end
//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 functionCounter <= 0;
 end
 else if(start) begin
 done <= 0;
 functionCounter <= 1;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: if(doneCalledFunction1_1 & doneCalledFunction2_1)
 begin
 if(calledFunction1_1_a == 2) begin
 functionCounter <= 2;
 end
 else if(calledFunction2_1_b == 4) begin
 functionCounter <= 3;
 end
 else begin
 functionCounter <= 4;
 end
 end
 else begin
 functionCounter <= 1;
 end
 2: functionCounter <= 5;
 3: functionCounter <= 5;
 4: functionCounter <= 5;
 5: functionCounter <= 0;
 done <= 1;
 default: functionCounter <= functionCounter + 1;
 endcase
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 68.

86

Translating Cv to Verilog for code containing if statements that use function calls in their test

expressions.

In the above translation the flow block initially starts CalledFunction1 and

CalledFunction2. The flow block then waits until doneCalledFunction1_1 and

doneCalledFunction2_1 are high. In the control block, once doneCalledFunction1_1 and

doneCalledFunction2_1 are high, the if statement determines which branch to take. If the first

branch is taken then the functionCounter is assigned 2. If the second branch is taken the

functionCounter is assigned 3. If the last branch is taken the functionCounter is assigned 4.

Because there is only one statement per branch, the functionCounter is assigned 5 when the

functionCounter equals 2, 3, or 4. This shows how the proper branch is selected, and when the

selected branch has finished executing, the statement after the if statement is executed (output1

= myInt*2).

2.15 For Loop

For loops allow a section of code to be run multiple times. According to the grammar:

ForStmt ::= for (<Expr>; Expr; <Expr>) Stmt

For loops have four elements; initialize (init), test expression, step, and statement. The statement

can be a single line statement or a statement block. Below Example 1 displays a for loop with a

single line statement, and Example 2 displays a for loop with a statement block. In the initialize

step, a loop index may be set to an initial value. The initialize step is not required. The test step is

a Boolean expression that is evaluated each time the for loop is run. The first time the for loop is

run, the initialize statement will be executed, followed by evaluating the test. The step is the

87

statement to be executed at the completion of the for loop. Once all of the computations within

the for loop are completed, the step statement is executed. Then the test is reevaluated. If the test

is true, then the code in the for loop will be run again. If the test if false, then the function will

resume at the end of the for loop.

//Pseudo Code
//Example 1
for(init; test; step)
 single line statement

//Example 2
for(init; test; step) {
 statement block
}

Figure 69.

Examples of for loops using a single line statement with no braces, and a statement block

contained in braces.

The example section of the for loop section has been omitted. Because there are many special

cases for the Cv Hardware Translator that differ from the Cv Software Translator, all examples

are presented in the Cv Software Translator and Cv Hardware Translator sections.

2.15.1 Cv Software Translator

The Cv Hardware Translator must focus on the difference between a static and dynamic for loop,

(see Section 2.15.2), however the Cv Software Translator does not translate static and dynamic

for loops differently.

Example:

88

//Cv Code
int output1 MyFunction(int input1){
 int i;

 for(i = 0; i < input1; i = i + 1){
 output1 = output1 + 2*i;
 }
}

Figure 70.

Cv code containing a for loop.

Translated into C++:

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvFunctionStruct_MyFunction returnValue;
 CvV<int> i;

 for(i = 0; CvV<bool>(i < input1).Me(); i = i + 1) {
 returnValue.output1 = returnVariable.output1 + 2 * i;
 }

 return returnValue;
}

Figure 71.

Translating Cv to C++ for code containing for loops.

In Figure 71 the for loop is created in C++, and the only syntactically change is in the test of the

for loop. Similar to the test in the if statement (Section 2.14), the test expression is wrapped as a

CvV<bool>, and then the Me function returns the C++ bool for the expression. The for loop will

execute, setting the value of output1 in the returnValue , and at the end of MyFunction , the

returnValue will be returned.

2.15.2 Cv Hardware Translator

89

For hardware there are two cases to consider with for loops; dynamic and static for loops.

Dynamic for loops do not have a set number of iterations, and can vary given the current

operating parameters. Static for loops have a set number of iterations, and do not vary with the

current operating parameters. Dynamic for loops require CHard, while static for loops can be

translated into Verilog for loops, and do not require CHard. Figure 72 has an example of a

dynamic for loop and an example of a static for loop.

//Pseudo Code
//Static For Loop
for(i = 0; i < 20; i = i + 1) {
 //code
}

//Dynamic For Loop
for(i = 0; i < input1; i = i + 1){
 //code
}

Figure 72.

Pseudo code showing the difference between the static and dynamic for loops. The static for loop

goes from i = 0 to 19, and this can be determined at compile time. The dynamic for loop does not

contain a guaranteed upper bound.

If the index of the loop is adjusted within the for loop, then the translation will require CHard

(Section 2.15.2.1). The static for loop (Section 2.15.2.2) starts with i equal to 0, and loops until i

is greater than or equal to 20. It can be determined at compile time that this for loop will run

twenty times, and it will not require CHard. In the dynamic for loop (Section 2.15.2.3) the test is

i < input1. At compile time it cannot be determined what the value of input1 will be.

Therefore this for loop is dynamic, and will require CHard.

2.15.2.1 Adjusting Index Within For Loop

90

//Cv Code
for(i = 0; i < 20; i = i + 1) {
 //code
 i = SomeFunction(i).output1;
 //code
}

Figure 73.

Cv code containing a for loop that would appear to be static. However, because the loop adjusts

the index variable, this loop will be treated as dynamic and require CHard.

In Figure 73 the index variable i is altered within the function by setting i equal to output1 of

SomeFunction. This will require CHard. If elements of either the initialize, step, test ,or

statement contain constructs that require CHard, such as function calls, then the otherwise static

for loop will require CHard. Next, examples of static and dynamic for loops within functions are

given.

2.15.2.2 Static For Loop

Example:

//Cv Code
int output1 MyFunctionStaticForLoop (int input1) {
 int i;

 output1 = 0;
 for(i = 0; i < 10; i = i + 1)
 output1 = output1 + 1;
}

Figure 74.

Cv code containing a static for loop.

In this example a static for loop is used to iterate over the code ten times.

Translated into Verilog:

91

//Verilog Code
module MyFunctionStaticForLoop (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [31:0] i;

//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 = 0;
 i = 0;
 end
 else if(start) begin
 output1 = 0;
 for(i = 0; i < 10; i = i + 1) begin
 output1 = output1 + 1;
 end
 end
 else begin
 output1 = output1;
 i = i;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 done <= 0;
 end
 else if(start) begin
 done <= 1;
 end
 else begin
 done <= done;
 end
end
endmodule

Figure 75.

Translating Cv to Verilog for code containing a static for loop.

Verilog supports static for loops, so this construct is used. In Verilog static for loops are

translated into multiple instances of the hardware described. If the desire is to loop over a set of

code twenty times, Verilog will create and link twenty different instances of the hardware

described within the for loop. Because the for loop is static, and does not contain any constructs

that require CHard, MyFunctionStaticForLoop does not require CHard. This is reflected in the

absence of the functionCounter, and will be done one clock cycle after start is high.

92

2.15.2.3 Dynamic For Loop

Example:

//Cv Code
int output1 MyFunctionDynamicForLoop (int input1) {
 int i;

 output1 = 0;
 for(i = 0; i < input1; i = i + 1)
 output1 = output1 + 1;
}

Figure 76.

Cv code containing a dynamic for loop.

Translated into Verilog:

//Verilog Code
module MyFunctionDynamicForLoop (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg [3:0] functionCounter;

//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 <= 0;
 i <= 0;
 end
 else if(start) begin
 output1 <= 0;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: i <= 0;
 2: // do nothing, control block is testing i < input1
 3: output1 <= output1 + 1;
 4: i <= i + 1;
 5: //do nothing, control block is testing i < input1
 endcase

end
else begin
 output1 <= output1;
 i <= i;
end

end

//control block
always@(posedge clock) begin

93

 if(reset) begin
 functionCounter <= 0;
 done <= 0;
 end
 else if(start) begin
 functionCounter <= 1;
 done <= 0;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 2:

if(i < input) begin
 functionCounter <= 3;

 end
 else
 functionCounter <= 0;
 done <= 1;
 end

 5:
if(i < input) begin
 functionCounter <= 3;

 end
 else
 functionCounter <= 0;
 done <= 1;
 end

 default:
 functionCounter <= functionCounter + 1;
 done <= done;
 endcase
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 77.

Translating Cv to Verilog for code containing a dynamic for loop.

In the for loop the instructions must be executed in this order: initialize followed by repeating

test, statement, step, until the test expression is false. In the flow block the statement are laid out

sequentially and the control of which statement is executed is handled in the control block. When

the functionCounter is 2 and 5 the flow block does nothing. When the functionCounter is 2

and 5 the control block is testing the test expression to determine if the for loop should be run

again. If the test expression is true then the functionCounter is set to 3, the first statement in

the for loop. Once the for loop has finished, when the functionCounter is 4, the flow block

94

executes the step (i <= i + 1). Because there is only a for block in this function, when the

functionCounter is 5 and the test expression is false, then MyFunctionDynamicForLoop is

done and done is set high.

2.16 While Loop

A while loop is used to continually loop over a set of code until the test expression is false.

According to the grammar:

WhileStmt ::= while (Expr) Stmt

While loops have two elements; test expression and statement. The statement can be a single line

statement, or a statement block.

//Pseudo Code
//Example 1
while(test)
 single line statement

//Example 2
while(test) {
 statement block
}

Figure 78.

Examples of while loops using a single line statement with no braces, and a statement block

contained in braces.

In Example 1 of Figure 78 a while loop has a test expression in parenthesis and a single line

statement following the while statement. The single line is the only statement that will executed

for the while loop. In Example 2 of Figure 78 a statement block (within braces) is used. To

include multiple statements to be looped over a statement block must be used. All code within

the braces will be executed as long as the test expression is true.

95

The example section of the while loop section has been omitted. Because there are many special

cases for the Cv Hardware Translator that differ from the Cv Software Translator, all examples

are presented in the Cv Software Translator (section 2.16.1) and Cv Hardware Translator

(Section 2.16.2).

2.16.1 Cv Software Translator

The while loop, much like the for loop, translates very closely to C++, only wrapping the test

expression in a CvV<bool>.

Example:

//Cv Code
int output1 MyFunction(int input1){
 output1 = 0;
 while(output1 < input1)
 output1 = 2*output1 + input1;
}

Figure 79.

Cv code containing a while loop.

Translated into C++:

//C++ Code
struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvFunctionStruct_MyFunction returnValue;

 returnValue.output1 = 0;
 while(CvV<bool>(output1 < input1).Me()) {
 returnValue.output1 = 2*returnValue.output1 + input1;
 }
 return returnValue;

96

}

Figure 80.

Translating Cv to C++ for code containing a while loop.

In Figure 80 the while loop is created and the test expression (output1 < input1) is wrapped in

a CvV<bool>, which accesses the Boolean value of the test expression through the Me function.

2.16.2 Cv Hardware Translator

To translate a while loop into hardware two situations must be considered: when the statement of

the while loop contains constructs that require CHard, and when the statement of the while loop

does not contain constructs that require CHard. Each of these cases are presented in the examples

that follow.

2.16.2.1 While Loops Containing Constructs that Require CHard

In Figure 81 MyFunction contains a while loop, and a function call within the while loop. When

there is a function call within a while loop the function will automatically require CHard.

Example:

//Cv Code
int a CalledFunction(int y)
{
 //some code
}

int ouptut1 MyFunction(int input1) {
 output1 = 0;
 while(output1 < 10)
 output1 = output1 + CalledFunction(input1).a;
}

Figure 81.

97

Cv code containing a while loop. This while loop contains a function call, and therefore requires

CHard.

Translated into Verilog:

//Verilog Code
module MyFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg startCalledFunction_1;
wire doneCalledFunction_1;
wire [31:0] calledFunction_1_a;
CalledFunction calledFunction_1(
 .clock(clock),
 .reset(reset),
 .start(startCalledFunction_1),
 .y(input1),
 .done(doneCalledFunction_1),
 .a(calledFunction_1_a)
);

reg [2:0] functionCounter;

//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 <= 0;
 startCalledFunction_1 <= 0;
 end
 else if(start) begin
 output1 <= 0;
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: //test the test condition in the control block
 2: startCalledFunction_1 <= 1;
 3: startCalledFunction_1 <= 0;
 4: output1 <= output1 + calledFunction_1_a;
 endcase
 end
 else begin
 output1 <= output1;
 startCalledFunction_1 <= startCalledFunction_1;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 functionCounter <= 0;
 done <= 0;
 end
 else if(start) begin
 functionCounter <= 1;
 done <= 0;
 end
 else if(functionCounter != 0) begin

98

 case(functionCounter)
 1: if(output1 < 10) begin
 functionCounter <= 2;
 end
 else begin
 functionCounter <= 0;
 done <= 1;
 end

3: if(doneCalledFunction_1) begin
 functionCounter <= 4;
 end
 else begin
 functionCounter <= 3;
 end
 4: functionCounter <= 1;
 default: functionCounter <= functionCounter + 1;

 endcase
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 82.

Translating Cv to Verilog for code that contains a while loop. The while loop contains a function

call, and therefore requires CHard.

In Figure 82 the computations to consider are setting output1 to 0, output1 < 10, the inline

function call to CallFunction, and output1 = output1 + CalledFunction(input1).a.

These statements are observed in the flow block of MyFunction. When start is high output1 is

set to 0. Once the functionCounter is 1, output1 is tested in the control block to see if

output1 is less than 10. When the functionCounter is 1, the flow block does nothing. When

the functionCounter is 1, if the test expression is true the while loop is run again. The

startCallFunction_1 is set high when functionCounter is 2, and startCallFunction_1 is

set low when the functionCounter is 3. When the functionCounter is 3, the control block tests

to see if doneCallFunction is high. If doneCallFunction is high, then the functionCounter

is set to 4 to execute the addition and assignment. When the functionCounter is 4, the

functionCounter is set to 1, to evaluate the test expression of the while loop. This process will

99

continue until the test expression is false. When the test expression is false, the

functionCounter will be set to 0, and done will be set high.

2.16.2.2 While Loops Containing Constructs that do not Require CHard

In Figure 83 MyFunction contains a while loop that does not contain any constructs that require

CHard. In the control block the test expression from the while statement is evaluated, and once

the test expression is false done is set high. Also, there is an additional signal, inProgress, that

goes high when start is high, and stays high until the test expression is false. If there were

serial statements before or after the while loop then MyFunction would require CHard.

Example:

//Cv Code
int ouptut1 MyFunction(int input1) {
 while(output1 < 10)
 output1 = output1 + input1;
}

Figure 83.

Cv code containing a while loop. The while loop does not contain any constructs that require

CHard, and therefore does not require CHard.

Translated into Verilog:

//Verilog Code
module MyFunction (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg inProgress;

//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 = 0;
 end

100

 else if(start) begin
 output1 = 0;
 end
 else if(inProgress) begin
 output1 = output1 + input1;
 end
 else begin
 output1 = output1;
 end
end

//control block
always@(posedge clock) begin
 if(reset) begin
 inProgress <= 0;
 done <= 0;

 end
 else if(start | inProgress) begin
 if(output1 < 10) begin
 inProgress <= 1;
 done <= 0;
 end
 else begin
 inProgress <= 0;
 done <= 1;
 end
 end
 else begin
 inProgress <= 0;
 done <= done;
 end
end
endmodule

Figure 84.

Translating Cv to Verilog for code containing a while loop. The while loop does not contain any

constructs that require CHard, and therefore does not require CHard.

2.17 Return Statement

Software languages commonly use return statements to return a value from a function. Hardware

languages do not use return statements and instead set the outputs of a module directly. In Cv the

outputs of a function are set directly, and a return statement can be used if needed. A function

will automatically be finished when it reaches the end of its code, but a return statement can be

used to make a function complete earlier.

101

In contrast to software languages, in Cv a return statement is not followed by a value to return.

Instead a return statement is always just a return, as seen below.

//Cv Code
return;

Figure 85.

A return statement in Cv. In Cv return statements do not have an argument.

When a return is encountered, the function exits and returns the current values that the outputs

have been set to.

2.17.1 Example

//Cv Code
int output1 MyFunction(int input1){
 if(input1 == 1)
 output1 = 2;
 else {
 output1 = 3;
 return;

}

 output1 = output1 * 2;
}

Figure 86.

Cv code containing a return statement.

In Figure 86 a return statement is used to exit the function within the else clause of the if

statement.

2.17.2 Cv Software Translator

//C++ Code

102

struct CvFunctionStruct_MyFunction {
 CvV<int> output1;
};
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) {
 CvFunctionStruct_MyFunction returnValue;
 if(CvV<bool>(input1 == 1).Me()){
 returnValue.output1 = 2;
 }
 else {
 returnValue.output1 = 3;
 return returnValue;

}
returnValue.output1 = returnValue.output1 * 2;

 return returnValue;
}

Figure 87.

Translating Cv to C++ for code containing a return statement.

When translating to C++, return statements are replaced by returning the returnValue. This

makes the function return the values of the outputs that have already been set.

2.17.3 Cv Hardware Translator

When a return statement is present, the Cv Hardware Translator will require CHard. This is

because the return statement is handled by altering the control block.

//Verilog Code
module MyFunctionStaticForLoop (input clock, input reset, input start,
 input [31:0] input1, output reg done, output reg [31:0] output1);

reg[2:0] functionCounter;
//flow block
always@(posedge clock) begin
 if(reset) begin
 output1 <= 0;
 end
 else if(start) begin
 //do nothing, control block is evaluating if statement
 end
 else if(functionCounter != 0) begin
 case(functionCounter)
 1: output1 = 2;
 2: output1 = 3;
 3: //do nothing, the control block is returning
 4: output1 = output1 * 2;
 endcase
 end
 else begin

103

output1 <= output1;
 end
end
//control block
always@(posedge clock) begin
 if(reset) begin
 functionCounter <= 0;
 done <= 0;
 end
 else if(start) begin
 if(input1 == 1) begin
 functionCounter <= 1;
 end
 else begin
 functionCounter <= 2;
 end
 done <= 0;
 end
 else if(functionCounter != 0) begin
 1: functionCounter <= 4;
 2: functionCounter <= 3;
 3: functionCounter <= 0; //return statement being executed here

done <= 1;
 4: functionCounter <= 0;
 done <= 1;
 default: functionCounter <= functionCounter + 1;
 end
 else begin
 functionCounter <= 0;
 done <= done;
 end
end
endmodule

Figure 88.

Translating Cv to Verilog for a function containing a return statement.

When the functionCounter is equal to 3, the return statement would be executed. Although it

is not the end of the function code, the done output is set high, and the functionCounter is set

to 0.

2.18 Comments

Comments are text in the code that do not execute any instructions, but inform the user of

intended meaning. Therefore this section presents examples, but nothing on the Cv Software

Translator, or CV Hardware Translator.

104

2.18.1 Example

In Cv there are two styles of comments, line comments and block comments. Line comments use

the “//” symbol and comment out the remainder of the line. For example:

//Cv Code
x = 5; //assigning 5 to x

Figure 89.

Cv code using a line comment. The “assigning 5 to x” will not be executed.

In this example x = 5 will be executed, however the //assigning 5 to x will not, and is just

text.

Block comments use the pair of symbols /* and */ to denote the start and stop of a comment

block. Anything contained in within the two symbols is a comment and will not be executed. For

example:

//Cv Code
x = 5;
y = 6;
/*
a = 2;
b = 3;
c = 7;
*/

Figure 90.

Cv code using a block comment. The text between “/*” and “*/” will not be executed.

In the code above 5 will be assigned to x, and 6 will be assigned to y. The other lines will not be

executed.

Assignments to a, b, and c occur within a comment block. These commands will not be

executed, and a, b, and c will not be assigned values.

105

CHAPTER III

EXPERIMENTAL EVALUATION

To assess the functionality of Cv, several representative algorithms have been selected as a basis

for comparison. These algorithms were then written in three languages -- Cv, C++, and Verilog.

Because Cv can be compiled into software or synthesized into hardware, the Cv software was

compared to the C++ implementation, while the Cv hardware was compared to the Verilog

implementation. These results have been compared on different figures of merit for the hardware

and software implementations because the two platforms naturally have different ways that they

are evaluated. Software results have been compared in terms of executable size, peak memory

usage, and execution time. Hardware results have been compared based on FPGA area utilization

(number of LUT’s) and the number of clock cycles required to complete the computation. Power

consumption is often proportionate to the number of LUT’s, or gates, and therefore the number

of LUT’s can be used as a proxy for the expected power consumption.

In Section 3.1 we present the representative algorithms used, along with pseudo code and a brief

description for each algorithm. Section 3.2 will present the results and comparisons. In Section

3.2 the Cv implementation of each algorithm is presented, followed by its software and hardware

results.

106

3.1 Selected Test Algorithms

3.1.1 Fast Fourier Transform

The Fourier Transform was initially used to transform a signal from the time domain to the

frequency domain. The Fourier Transform has been applied to many engineering problems such

as electromagnetics, audio, and image processing [11]. The Fast Fourier Transform (FFT) is a

digital implementation that takes advantage of the symmetry between roots of –1 to compute the

Fourier Transform faster. Pseudo code describing the FFT is shown in Figure 91.

arrayOut FFT(numberOfElements, arrayIn)
{
 //divide phase
 if(numberOfElements == 1)
 return arrayIn[0]
 evenFFT = FFT(numberOfElements/2, even elements of arrayIn)
 oddFFT = FFT(numberOfElements/2, odd elements of arrayIn)

 //conquer phase
 for(i = 0 to numberOfElements/2 – 1)
 {
 complexSinusoid = e^(2*pi*k*i/numberOfElements)
 arrayOut[i] = evenFFT[i] + complexSinusoid*oddFFT[i]
 arrayOut[i + numberOfElements/2] = evenFFT[i]–
 complexSinusoid*oddFFT[i]
 }
 return arrayOut;
}

Figure 91.

Pseudo code showing the Fast Fourier Transform.

The FFT is a recursive algorithm that uses a divide and conquer approach. In the divide phase,

arrayIn is recursively divided into two separate arrays, one array contains the even elements of

arrayIn , and the other array contains the odd elements of arrayIn . These two arrays are

recursively further divided. The even elements of an array are the elements with an array index

of 2n, where n is greater than or equal to 0 and is an integer. The odd elements of an array are the

elements with an array index of 2n – 1, where n is greater than or equal to 1 and is an integer. In

107

the conquer phase, the array is recursively recombined while multiplying by roots of –1. The root

of –1 is calculated by the complex exponential. The even and odd arrays are then recombined

into a single array, using the complexSinusoid. The FFT is completed by recursively

recombining each even and odd array.

3.1.2 Insertion Sort

In computer science sorting a list of elements is an algorithm that is used very often. There are

many different sorting algorithms, both recursive and non-recursive. Insertion Sort is a non-

recursive algorithm that begins on the left hand side of an array (array[0]), and progresses to the

right hand side of the array (array[array size – 1]). Each element of the array is continually

swapped with its left neighbor until the element’s left neighbor is less than the element. Pseudo

code describing Insertion Sort is shown below.

arrayOut InsertionSort(numberOfElements, arrayIn)
{
 for(i = 1 to numberOfElements – 1)

{
 j = i;
 while(data[j] < data[j-1] & j > 0)
 {
 temp = data[j]
 data[j] = data[j-1]
 data[j-1] = temp
 j = j - 1
 }
}
return arrayOut

}

Figure 92.

Pseudo code showing the Insertion Sort.

3.1.3 Matrix Multiplication

108

Matrix operations are widely used in many applications, including circuits, quantum mechanics,

three dimensional computer images, seismic surveys, and robotics [12]. Multiplying two n x n

matrices results in an n x n matrix. Pseudo code describing Matrix Multiplication is shown in

Figure 93.

matrixOut MatrixMultiplication(dimension, matrixA, matrixB)
{
 for(i = 0 to dimension)

{
 for(j = 0 to dimension)
 {
 for(k = 0 to dimension)
 {
 matrixOut[i][j] = matrixOut[i][j] + matrixA[i][k] *
 matrix[k][j]
 }
 }

 }
 Return matrixOut
}

Figure 93.

Pseudo code for Matrix Multiplication.

There are several different matrix multiplication algorithms that are used to optimized matrix

multiplication. The MatrixMultiplication algorithm shown is known as the brute force

method. The algorithm does not use any optimizations, and sets matrixOut[i][j] equal to the dot

product of row i of matrixA and column j of matrixB.

3.1.4 Hash Table Algorithm

A hash table is a data structure that is used to efficiently store and retrieve data. The hash table

uses different buckets to store data. Each piece of data to be stored has a key-value pair. The hash

table uses a hash function on the key to determine which bucket to store the key-value pair.

Pseudo code describing storing data in a hash table is shown in Figure 94.

109

LinkedList < LinkedList* > hashTable
Void StoreData(key, value)
{

hashKey = HashFunction(key)
hashTable[hashKey].Add(key, value)

}

Figure 94.

Pseudo code for storing data in a Hash Table.

The hash table in this example is represented by the LinkedList hashTable, whose elements

each point to a different LinkedList. First a hashKey is generated from the given key. The

hashKey indicates which LinkedList to use from the hashTable. The given key-value pair is

then added to the LinkedList selected.

3.2 Results

In this section the Cv implementation and results for each algorithm are presented. For each

algorithm, first the Cv code is presented, followed by the software results, and lastly the

hardware results. The C++ code was compiled using G++ [10] and executed on Ubuntu [13]. The

Verilog code was synthesized using Xilinx ISE [14] and simulated using Xilinx ISE Simulator

ISIM [15]. The Verilog was synthesized using the Xilinx Virtex 6 XC6VLX75T as the device. In

the first two examples, we compared that the results from Cv (for hardware as well as software

compilation) against the results obtained by compiling the Verilog code and the C++ code

respectively. In the last two examples, Verilog and C++ code were not compared.

110

3.2.1 Fast Fourier Transform

3.2.1.1 Cv Implementation

FFT is inherently a recursive algorithm. Cv currently does not support recursion, and so we had

to construct a non-recursive FFT algorithm. In addition to this there are no library functions

defined for sine, cosine, exponents, and logarithms in Cv. Each of these functions were

implemented as Cv functions. Sine and cosine were implemented as a look up table made using

if statements. The Cv sine and cosine functions take integer arguments instead of decimal

numbers. This is because the functions are only defined for certain angles. The decimal angle in

radians would be equal to the integer angle times pi, then divided by 180. Exponents were

implemented in a function with a for loop to perform repeated multiplications. Logarithms were

implemented in a function with a for loop to perform repeated divisions.

The FFT algorithm is implemented in the function CvFFT . CvFFT calculates the FFT for an 8

sample signal. The FFT could be reconfigured for a larger number of samples by changing the

size of the arrays and the numberOfSamples variable. Initially the inputArray is rearranged in

the same style as in the recursive implementation. Arrays that are suffixed with Hold are used to

perform calculations on elements that have not yet been modified. Second, the array is

rearranged in the same style as in the recursive implementation. The elements of the array are

multiplied by complex exponentials while recombining.

double result Sin(int angle)
{
 if(angle == 0)
 result = 0.0;
 else if(angle == 1)
 result = 0.38268343;
 else if(angle == 2)

111

 result = 0.70710678;
 else if(angle == 3)
 result = 0.92387953;
 else if(angle == 4)
 result = 1.0;
 else if(angle == 5)
 result = 0.92387953;
 else if(angle == 6)
 result = 0.70710678;
 else if(angle == 7)
 result = 0.38268343;
}

double result Cos(int angle)
{
 if(angle == 0.0)
 result = 1.0;
 else if(angle == 1)
 result = 0.92387953;
 else if(angle == 2)
 result = 0.70710678;
 else if(angle == 3)
 result = 0.38268343;
 else if(angle == 4)
 result = 0.0;
 else if(angle == 5)
 result = - 0.38268343;
 else if(angle == 6)
 result = - 0.70710678;
 else if(angle == 7)
 result = - 0.92387953;
}

int result Pow(int base, int exponent)
{
 int i;
 if(exponent == 0)
 result = 1;
 else
 {
 result = base;
 for(i = 0; i < exponent - 1; i = i + 1)
 result = result * base;
 }
}

int result Log(int base, int argument)
{
 int i;
 int test;
 result = 1;
 test = argument;
 while(test != base)
 {
 test = test / base;
 result = result + 1;
 }
}

double realResult[8], double imaginaryResult[8] CvFFT(double inputArray[8])
{
 int numberOfSamples;

112

 int i;
 int j;
 int k;
 int length;
 int blockSize;
 int repetitions;
 int index1;
 int index2;
 double original[8];
 double modified[8];
 double modifiedHold[8];
 double realResultHold[8];
 double imaginaryResultHold[8];
 double sin;
 double cos;
 int angle;
 numberOfSamples = 8;
 original = inputArray;

 modified = original;
 modifiedHold = modified;

 // divide
 length = Log(2, numberOfSamples).result;
 for (i = length; i > 0; i = i - 1)
 {
 blockSize = Pow(2, i).result;
 repetitions = numberOfSamples / blockSize;
 for(j = 0; j < repetitions; j = j + 1)
 {
 for (k = 0; k < blockSize / 2; k = k + 1)
 {
 index1 = j * blockSize + k;
 index2 = j * blockSize + k * 2;
 modified[index1] = modifiedHold[index2];
 }
 for (k = 0; k < blockSize / 2; k = k + 1)
 {
 index1 = blockSize / 2 + j * blockSize + k;
 index2 = j * blockSize + k * 2 + 1;
 modified[index1] = modifiedHold[index2];
 }
 }
 modifiedHold = modified;
 }
 realResult = modified;
 realResultHold = realResult;

 //conquer
 for (i = 1; i <= length; i = i + 1)
 {
 blockSize = Pow(2, i).result;
 repetitions = numberOfSamples / blockSize;
 for(j = 0; j < repetitions; j = j + 1)
 {
 for (k = 0; k < blockSize / 2; k = k + 1)
 {
 angle = k * 16 / blockSize;
 sin = Sin(angle).result;
 cos = Cos(angle).result;

 index1 = j * blockSize + k;

113

 index2= j * blockSize + k + blockSize/2;

 realResult[index1] = realResultHold[index1]
 + realResultHold[index2]*cos
 + imaginaryResultHold[index2]*sin;

 imaginaryResult[index1] =
 imaginaryResultHold[index1] -
 realResultHold[index2]*sin +
 imaginaryResultHold[index2]*cos;

 realResult[index2] = realResultHold[index1]
 - realResultHold[index2]*cos
 - imaginaryResultHold[index2]*sin;

 imaginaryResult[index2] =
 imaginaryResultHold[index1]
 + realResultHold[index2]*sin
 - imaginaryResultHold[index2]*cos;
 }
 }
 realResultHold = realResult;
 imaginaryResultHold = imaginaryResult;
 }
}

Figure 95.

Cv implementation of the FFT and associated functions.

3.2.1.2 Software Results

Table 2.

Fast Fourier

Transform
Cv Software C++ Cv/C++

Executable Size 68 KB 9 KB 7.55

Peak Memory Use 1064 KB 1064 KB 1

Execution Time 10.468 seconds 0.035 seconds 299.09

Software results for the FFT.

The C++ implementation was written using the same non recursive algorithm style as the Cv

implementation. This allows the two algorithms to be compared. The Cv implementation resulted

in a larger executable and longer execution time. However, the peak memory used was equal for

114

both implementations. The execution time was determined by running the FFT algorithm on a

random eight element array 10,000 times.

3.2.1.3 Hardware Results

Table 3.

Fast Fourier

Transform
Cv Hardware Verilog Cv/Verilog

Number of LUT’s 13,141 5,413 2.427

Clock Cycles 3188 70 45.54

Hardware results for the FFT.

The Verilog implementation was done using the Xilinx IP Core Generator. The IP Core

Generated algorithm provides a well refined algorithm implementation for comparison that is

highly optimized for the Xilinx device. Because of this, it is not surprising that the Verilog

implementation with IP Core Generator produces better results. The Verilog implementation

used fewer LUT’s and fewer clock cycles than the Cv implementation.

3.2.2 Matrix Multiplication

3.2.2.1 Cv Implementation

There are several highly refined matrix multiplication algorithms, and many of these refined

algorithms use recursive approaches. With Cv we are not trying to test the effectiveness of an

algorithm, but instead the effectiveness of the Cv language and the correctness of the translation

tools. Therefore, the Cv implementation is a brute force matrix multiplication algorithm that

loops through the mathematical definition of matrix multiplication.

115

int result[5][5] MatrixMultiplication (int a[5][5], int b[5][5])
{
 int i;
 int j;
 int k;
 int size;

 size = 5;

 for(i = 0; i < size; i = i + 1)
 {
 for(j = 0; j <size; j = j + 1)
 {
 for(k = 0; k < size; k = k + 1)
 {
 result[i][j] = result[i][j] + (a[i][k] * b[k][j]);
 }
 }
 }
}

Figure 96.

Cv implementation of Matrix Multiplication.

3.2.2.2 Software Results

Table 4.

Matrix

Multiplication
Cv Software C++

Cv/C++

Executable Size 37 KB 9 KB 4.111

Peak Memory Use 1064 KB 824 KB 1.291

Execution Time 7.802 seconds 0.024 seconds 325.083

Software result for the Matrix Multiplication.

The C++ implementation was written using the same brute force method as the Cv

implementation. This will allow the two results to be closely compared. The C++ executable is

smaller than the Cv executable. The C++ implementation also used less memory and took less

time to execute. In the FFT and Matrix Multiplication the C++ implementation had a smaller

116

executable size, and less run time. However, in the FFT the Cv and C++ implementations had the

same peak memory usage. In contrast, the C++ implementation of the Matrix Multiplication used

about 30% less memory. The execution time was determined by running the Matrix

Multiplication algorithm on two random 5 x 5 element matrices 10,000 times.

3.2.2.3 Hardware Results

Table 5.

Matrix

Multiplication
Cv Hardware Verilog Cv/Verilog

Number of LUT’s 3,360 2191 1.536

Clock Cycles 501 18 27.833

Hardware results for the Matrix Multiplication.

The hardware implementation was done using systolic matrix multiplication. This algorithm is

more refined than the brute force method, and therefore it is expected to produce better results.

The Verilog implementation required fewer LUT’s and clock cycles. This comparison holds true

for both the FFT and the Matrix Multiplication.

The Cv FFT and Matrix Multiplication implementations were compared to the C++ and Verilog

implementations.

In addition to these algorithms, we have also written Insertion Sort and a Hash Table in Cv. The

statistics for these functions are presented for Cv, but are not compared to C++ and Verilog

implementations.

117

3.2.3 Insertion Sort

3.2.3.1 Cv Implementation

The sorting algorithm selected to use was Insertion Sort. There are many sorting algorithms,

many of which are recursive algorithms. Insertion Sort is not a recursive algorithm. Insertion

Sort works by sorting a subset of the array, and continually increasing the subset until it is the

full array. The Insertion Sort was implemented on a sixteen element array. This implementation

could easily be extended to larger arrays by changing the parameters in the code.

int a[16] InsertionSort(int d[16])
{
 int i;
 int j;
 int temp;
 int data[16];

 data = d;
 for(i = 1; i < 16; i = i + 1)
 {
 j = i;
 while(data[j] < data[j-1] & j > 0)
 {
 temp = data[j];
 data[j] = data[j-1];
 data[j-1] = temp;
 j = j - 1;
 }
 }

 a = data;
}

Figure 97.

Cv implementation of Insertion Sort.

118

3.2.3.2 Software Results

Table 6.

Insertion Sort Cv Software

Executable Size 38 KB

Peak Memory Use 1064 KB

Execution Time 2.762 seconds

Software results for Insertion Sort.

The execution time was determined by running the Insertion Sort algorithm on a random sixteen

element array 10,000 times.

3.2.3.3 Hardware Results

Table 7.

Insertion Sort Cv Hardware

Number of LUT’s 2180

Clock Cycles 351.6

Hardware results for Insertion Sort.

The number of clock cycles is an average of sorting ten different sixteen element data sets.

3.2.4 Hash Table

3.2.4.1 Cv Implementation

Hash Tables are efficient methods to store and retrieve data. We have implemented the storing of

data in a Hash Table. Retrieving data is more trivial and similar to searching any list. In our Cv

119

implementation we use four main pieces of data: bucketStart, hashData, keys, and pointers.

HashData holds the data that is stored. The hash function used is the remainder when the key is

divided by eight. Each piece of data is always stored in the rightmost available location of

hashData. The elements of bucketStart hold the array index of hashData for the first element

of each bucket. Pointers holds the indices of each element for the next element in the bucket.

Keys stores the respective key for each value stored in hashData.

int n1 HashTable(int key, int value)
{
 int bucketStart [8];
 int hashData [100];
 int keys [100];
 int pointers [100];

 int nextAvailable;
 int hashKey;
 int position;
 int i;
 int loops;

 loops = 100;

 hashKey = key%8;
 position = bucketStart[hashKey];
 if(nextAvailable == 0)
 {
 nextAvailable = 1;
 }
 if(position == 0)
 {
 hashData[nextAvailable] = value;
 keys[nextAvailable] = key;
 bucketStart[hashKey] = nextAvailable;
 nextAvailable = nextAvailable + 1;
 }
 else
 {
 for(i = 0; i < loops; i = i + 1)
 {
 if(pointers[position] != 0)
 {
 position = pointers[position];
 }
 else
 {
 i = loops;
 }
 }

 hashData[nextAvailable] = value;

120

 keys[nextAvailable] = key;
 pointers[position] = nextAvailable;
 nextAvailable = nextAvailable + 1;
 }
}

Figure 98.

Cv Implementation of the Hash Table.

3.2.4.2 Software Results

Table 8.

Hash Table Cv Software

Executable Size 66 KB

Peak Memory Use 1064 KB (2916)

Execution Time 33.594 seconds

Software results for the Hash Table.

The execution time was determined by running the Hash Table algorithm on a random 99 key-

value pairs 10,000 times.

3.2.4.3 Hardware Results

Table 9.

Hash Table Cv Hardware

Number of LUT’s 67,013

Clock Cycles 47.08

Hardware results for the Hash Table.

The hardware results reflect running the Hash Table algorithm on a 99 random key-value pairs.

The number of clock cycles is the average number of clock cycles to store one element in the

121

hash table. As the number of elements increases, the number of clock cycles needed to store one

element increases. The number of LUT’s required is much greater than the other example

algorithms. This increase in LUT’s is due to the large arrays used to store data. To reduce the

number of LUT’s, the number of bits per integer could be reduced.

122

CHAPTER IV

FUTURE WORK

In this thesis, we have presented the philosophy and semantics of Cv, for both hardware and

software use. We have been able to implement and demonstrate Cv on a variety of algorithms

that find common use in industrial practice. Our preliminary results demonstrate correctly

translating Cv code into hardware and software. As Cv undergoes further development, we

anticipate several potential improvements. Cv also has several applications beyond the currently

envisioned use of Cv as a language that is compiled into only software or only hardware. The

remainder of this section first discusses improvements to be made to Cv, followed by future

applications of Cv.

4.1 Improvements

There are several improvements that can be made to Cv. Some of these improvements are based

on an analysis of the results we have gathered, while others are general improvements that have

been discovered while developing Cv. We next discuss improvements based upon the current

results, followed by a discussion on general improvements.

4.1.1 Improvements Based on Current Results

In each case that was compared against C++ and Verilog, the Cv implementation took longer and

required more resources. Given that Cv adds a new level of abstraction, a decrease in optimality

123

is not surprising. The two key areas that Cv performed the worst in were execution time in

software, and number of clock cycles in hardware.

To analyze the cause of the Cv software implementation being slower than the C++

implementation, it was initially suspected that the CvC and CvV special classes were increasing

(slowing) software execution time. When translating Cv to C++, we will call the C++ that is

produced the resulting C++ (RC++). By manually altering the RC++, all CvV variables were

removed, and changed to their corresponding C++ data types. After this alteration, the RC++

code was found to execute at the same speed as the C++ implementation. The next step was to

determine why the CvV class was slowing down the Cv software. It was determined that the

amount of casting in the CvC and CvV classes were slowing down the Cv software. The casting

is due to using C++ templates to create a high amount of flexibility. To improve this bottleneck,

the CvC and CvV classes would need to narrow their focus to the basic data types, and not be a

template class with template functions. It is conjectured that this would improve the speed of the

RC++ code significantly.

The second area where Cv performed poorly was the number of clock cycles required in

hardware. When translating Cv to Verilog, we will call the Verilog that is produced the resulting

Verilog (RV). The functions that were used to test Cv all required CHard so that the number of

clock cycles could be compared. When translating Cv to Verilog, function calls, double

operations, and loops require multiple clock cycles. However, all other single line statements

take a single clock cycle to execute. Because all statements are given a single clock cycle, the

number of clock cycles required is increased beyond what is required. Often several small

124

instructions could be combined to execute in a single clock cycle. By better analyzing the user’s

code, the Cv translator can improve the number of statements that are executed in a clock cycle.

This can possibly be implemented as a post-processing step which operates on the RV code as

well. It is anticipated that this change will improve the number of clock cycles needed to execute

hardware obtained from Cv.

4.1.2 General Improvements

With the current implementation of Cv there are software and hardware features that are not

currently supported. A few popular features that should be supported in the future include: object

oriented design, pointers, and recursion.

Software and hardware both already support object oriented designs. In software languages such

as C++, C#, and Java, objects can be constructed out of classes. Each class has data values that

belong to it, and functions it can perform. Verilog has modules that contain data values, and can

perform operations on the data values as well. The problem with Cv is that in Verilog, a separate

module is created for each function call. Therefore, a function call to the same function creates

multiple instantiations of a module. By calling a function several times, unneeded hardware is

created, which increases resource utilization. By switching to an object oriented model where the

user creates each object manually, the user will have control over how many objects and modules

are instantiated in hardware.

Pointers and recursion are two popular features in software languages that have not yet been

implemented in Cv. Pointers have the ability to change the variable they point to, and often it

125

cannot be determined at compile time what variable the pointer is pointing to. In addition to this,

loops in software make it possible to allocate an unlimited number of objects with pointers.

Hardware does not have the ability to create more resources when needed. Therefore this makes

pointers a challenge to implement in hardware. Recursive functions, if implemented in Cv, are

also challenging to translate to Verilog. A recursive function in software is a function that makes

a call to itself. The challenging aspect of recursive functions is that it cannot be determined at

compile time how many times a function will be called. In addition to this, each time a recursive

function is called, more resources must be allocated. Similar to pointers, hardware cannot create

more resources when needed, making recursive functions that allocate more resources

challenging to implement. Pointers and recursive functions in hardware are areas of interest that

we hope to introduce in a future version of Cv.

To support both pointers and recursion in hardware, we envision the use of a scratchpad

memory, whose contents may be used to allocate additional resources as required. This is a

subject of future work.

4.2 Future Applications

Due to the unique philosophy of Cv compared to current software and hardware languages, Cv is

better prepared to be adapted to new platforms being developed. The two subjects that we will

focus on are co-design systems, and object architect systems.

126

4.2.1 Co-design Systems

Currently Cv focuses on using a single piece of code, and being able to translate the entire code

to either software, or hardware. However, there is great value in the possibility of translating part

of the user’s code to software, and the remainder of the user’s code to hardware. These two parts,

working together in a parallel software and hardware environment, have the potential to increase

speed and efficiency of digital systems. By analyzing the user’s code, the part of the code that is

computationally intensive can be translated into hardware and run on an FPGA, while the rest of

the code can be translated to software and run on the CPU. Parts of the Cv code that are natively

matched for hardware (or software) can be compiled into hardware (software). This would

alleviate a key restriction of our current Cv implementation. Some research groups have been

doing research on co-design systems, and it is likely that Cv will have an impact in this area.

Currently large technology companies such as Intel, IBM, and Microsoft are designing hardware

boards and systems that use a CPU and FPGA on the same platform [16] [17] [18]. These

parallel architectures have been used to accelerate specific applications, and have been used

primarily in enterprise-class server systems. In order for these platforms to succeed in the

enterprise-class server applications as well as in consumer applications, tools will need to exist

that allow developers to easily take advantage of these architectures. Currently programming

languages do not adequately describe hardware, and HDL’s do not properly instruct software.

Instead, a language that can create software and hardware from a single code base will be ideal to

power these systems. This is a key area where Cv can be enhanced, to meet the needs of a

changing computing environment. By enabling Cv to translate the computationally intense code

to hardware, and the rest of the code to software (or translating the parts of the code that are

127

natively matched for hardware (software) to hardware (software)), we would be able to impact a

rapidly developing industrial computing platform which could be the future of the computing

industry in the years ahead.

4.2.2 Object Architect Systems

A new architecture that is being researched is called the object architecture. In the object

architecture, all “items” (program or data) associated with the computer are objects located in the

cloud. Therefore the only thing the computer needs is a CPU capable of manipulating these

objects, RAM, and other hardware components. This model removes the hard drive, and places a

heavy focus on the cloud, but fails to greatly reduce the other hardware.

A modification to object architecture is to use an FPGA in conjunction with the CPU, and use the

FPGA to execute the other hardware functions. With this model a new obstacle is incurred; files

no longer have hardware that can interpret their structure. Using Cv, each type of file can carry

with it the associated code to describe how to interpret the file. Cv eliminates the need for large

amounts of specific hardware, and allows each type of file to dynamically create its needed

hardware on the FPGA.

128

REFERENCES

[1] J. Bhasker, A Verilog HDL Primer. Star Galaxy Pub, Ed. 2: 1999

[2] B. Stroustrup, Programming Principles and Practice Using C++. Addison-Wesley: 2008.

[3] P. J. Ashenden, The Designer’s Guide to VHDL. Elsevier Science, Ed. 3: 2008.

[4] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice Hall, Ed. 2:

1988.

[5] J. Albahari and B. Albahari, C# in a Nutshell: The Definitive Reference. O'Reilly Media,

Ed. 5: 2012.

[6] K. Arnold, J. Gosling, and D. Holmes, The Java Programming Language. Addison-

Wesley, Ed. 4: 2006

[7] LegUp Documentation, Release 3.0, University of Toronto, 2013

[8] N. Dave, “A Unified Model for Hardware/Software Co-design”, Ph. D. dissertation, Dept.

Elect. Eng. and Comp. Sci., Massachusetts Institute of Technology, 2011

[9] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: a Java-Compatible and

Synthesizable Language for Heterogeneous Architectures,” IBM Research, 2010

[10] Using the GNU Compiler Collection, GCC version 4.7.4, GNU Press, Boston, MA

[11] “Q: What is a Fourier transform? What is it used for?,”

http://www.askamathematician.com/2012/09/q-what-is-a-fourier-transform-what-is-it-

used-for/

[12] “Application of Matrices in Real Life,” http://www.edurite.com/kbase/application-of-

matrices-in-real-life

129

[13] “Ubuntu,” http://www.ubuntu.com/

[14] ISE Design Suite 13.4: Release Notes Guide, v13.4, Xilinx, 2012

[15] ISim User Guide, v14.1, Xilinx, 2012

[16] N. Carter, “Call for Proposals: Intel-Altera Heterogeneous Architecture Research Platform

Program,” http://www.sigarch.org/2015/01/17/call-for-proposals-intel-altera-heterogeneous-

architecture-research-platform-program/

[17] T. P. Morgan, “IBM Accelerates Power8 Clusters With GPUs, FPGAs, And Flash, ”

http://www.enterprisetech.com/2014/10/02/ibm-accelerates-power8-clusters-gpus-fpgas-

flash/

[18] “Catapult,” http://research.microsoft.com/en-us/projects/catapult/

