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ABSTRACT

A Combined Language for Hardware and Software Design. (May 2015) 

Michael Bass 

Department of Electrical Engineering 

Texas A&M University 

Research Advisor: Dr. Sunil P. Khatri  

Department of Electrical Engineering 

 

Due to the nature of hardware and software, their respective design languages have evolved in 

isolation. Sophisticated languages and design environments exist for both hardware and 

software; however they remain distinct and independent, both syntactically and semantically. 

Hardware inherently operates in parallel and therefore hardware languages have always 

contained pragmas to handle parallelism, albeit explicitly. Software originally was envisioned 

with a serial execution paradigm. For several decades, there have been attempts to develop 

software tool-chains that allow parallel software execution. Significant research has been done 

on parallel software programming by extracting parallelism implicitly (automatically). This has 

generally yielded poor results, and programming paradigms that are very difficult to reason about 

and use in practice. In this thesis we will attempt to create a single language that can design 

either hardware or software. Our goal is to strive for a high level of efficiency as well as 

adoptability. This language provides a common syntax as well as a common semantic for 

designing both hardware and software. In this language, parallelism is explicitly expressed for 

both hardware and software. To achieve our goals we have designed a hardware translator and 

software translator that take the new language and translate it into Verilog [1] for hardware, and 

C++ [2] for software. We have tested the language against current hardware and software 

platforms with an array of algorithms and data sets. The result of this work could have a dramatic 
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impact in the digital design industry, and ultimately change the way digital design is done, 

allowing a merging of software and hardware design representations. This could be significant, 

because each of these design representations currently have billions of dollars invested in them, 

and are not mergeable. 
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NOMENCLATURE 

 

BCL    Bluespec Co-design Language 

CPU   Central Processing Unit 

FFT    Fast Fourier Transform 

FPGA    Field Programmable Gate Array 

HDL   Hardware Description LanguageLUT   Look Up Table 

RAM   Random Access Memory 

RC++   Resulting C++ 

RV   Resulting Verilog  
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CHAPTER I 

INTRODUCTION 

 

Hardware and software both share a common goal to implement a digital design. In the most 

general sense, any digital design can be realized through either software or hardware. 

Technologically, hardware designs are generally more efficient for certain classes of designs, and 

software designs are more efficient for others. In practice, one or the other is chosen based on 

technology as well as economic factors. Some digital designs can be designed in either hardware 

or software, while some hardware designs are initially prototyped by means of software. Because 

of their differences, hardware and software design practices, principles, and design tools have 

evolved separately. Hardware developers use hardware description languages (HDL’s) to model 

hardware logic, components, and modules. The most commonly used HDL’s are Verilog [1] and 

VHDL [3]. Software developers use programming languages to describe a set of instructions to 

be executed on a processor. Commonly used software languages include C [4], C++ [2], C# [5], 

and Java [6]. These are only a few of the many programming languages that exist; the volume 

and diversity of programming languages far exceeds that of HDL’s. It is our goal to unify 

hardware and software development into a single framework, with a single language which 

incorporates the semantics of both hardware and software.  

 

Hardware is designed so that multiple components and modules can operate in parallel, while 

others operate serially. HDL’s provide constructs and semantics to model hardware in a manner 

that this can be accomplished.  HDL’s typically use three semantic models: structural (gate-

level), dataflow (continuous), and behavioral (procedural). Structural semantics allow a designer 
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to create an explicit gate-level description of their design. Dataflow semantics create a hardware 

description which is then transformed into physical logic elements by a logic synthesis tool. 

Behavioral semantics provide the highest level of abstraction, allowing the design to be 

expressed as a procedure, without any implied structure. These three semantic models provide 

the designer with a variety of design options, from explicit gate-level control to an abstract high-

level design.  

 

Software design has centered on functions (procedures), object oriented design, and more 

recently, multithreading. Originally software was created to run on a single processor with 

statements being evaluated sequentially. As software developed, object oriented languages 

became popular, providing semantics to further abstract software to a higher level. With the 

advancement of multicore processors, software began to support parallel programming using 

multithreading in languages such as C++, C#, and Java. Multithreading is a programming 

practice where a single process invokes several instruction threads that are capable of being 

executed on multiple processor cores. In this form of parallelism, multiple threads can access the 

same data in memory, but on the downside, it requires large amounts of synchronization, 

operations which make the code harder to write. In software, parallelism is expressed both 

implicitly as well as explicitly, depending on the design philosophy of the software platform. 

 

Although hardware and software initially diverged in their design and practices, they have begun 

to slowly converge with advancements in HDL’s, higher levels of abstractions in design 

languages for both hardware and software, improved parallel programming capabilities, and also 

event driven programming. Despite this slow convergence, several key issues remain, making 
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the convergence of hardware and software design platforms non-trivial. The concepts and tools 

developed in this thesis attempt to address these issues in a practical manner. It is our belief that 

the time is ripe for hardware and software design to be folded into a single uniform language that 

supports semantics for the design of both types of systems, without limiting either in practice.  

 

Due to their separate evolution, the set of current hardware capabilities and the set of current 

software capabilities are not equivalent. In the uniform language, if the set of capabilities of 

either hardware or software were reduced, this would potentially limit the effectiveness and 

usability of the language. These side effects are neither desired nor acceptable. Instead, our 

philosophy is to implement the union of the two sets of capabilities. By taking this approach, 

both hardware and software will be enhanced instead of hindered. The final product is a language 

that is capable of being completely synthesized into hardware, as well as being completely 

compiled into software. In our approach, in other words, we do not limit the functionality of the 

hardware or the software, but instead support both in our language. 

 

There has been limited progress in the field of combining hardware and software into a single 

unified language, and most of the research has been focused on co-designed systems [7] [8] [9]. 

In a co-designed system, a central processing unit (CPU) and a field programmable gate array 

(FPGA) are used in parallel to increase computational throughput. The CPU implements 

software, while the FPGA implements hardware. With this model, custom hardware can be 

created for the components of an application that are more demanding of time and resources (the 

key strength of hardware), and the more control-heavy components (the key strength of software) 

can be executed as usual on a CPU. While this model is powerful in principle, it must solve 
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difficult issues like scheduling, partitioning, and verification. In addition, co-design systems do 

not fully merge hardware and software design representations, but instead either reduce each 

representation to a smaller equivalent representation , or leave the two representations disjoint, 

with some functionality only available to one of the representations . Co-design solutions are 

available in two categories. The first category uses an existing software language, such as C, and 

tools that translate software into hardware that is capable of being ported to an FPGA. One 

example of this category is LegUp [7]. LegUp focuses on making hardware devices, such as 

FPGA’s, easier for software programmers to use. To do this, LegUp partitions C code into two 

sets; one set will run on an FPGA, and the other set will run on a processor. These two sets 

operate in parallel to achieve the same result as the C code. By using a language that is already 

familiar to developers, this solution is potentially easier for the public to adopt. This solution has 

shown promise, however it is also limited by using C as its base language. This is because C 

inherently creates software, but lacks semantics to properly describe key aspects of hardware 

such as explicit parallelism, event driven models, and clocking. Also, the issue of partitioning the 

code and verifying the correct operation of the co-designed result is computationally highly 

difficult. Finally, such a paradigm needs to model and abstract hardware-software 

communication accurately. For these reasons, the resulting hardware partition of the co-design 

system is much less efficient than a solution created by an HDL. The second category has 

attempted co-design by creating a co-design language. Examples include the Bluespec Co-design 

Language (BCL) [8] from the Massachusetts Institute of Technology, as well as the Lime 

Language [9] from IBM. BCL uses atomic operations as the fundamental semantic instead of 

procedural statements. Lime is a Java based language designed to run in a co-design 

environment. Lime also supports existing Java code. These solutions have more potential, 
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however current attempts have produced limited success. These new languages step away from 

the familiarity of C, and introduce foreign and unfamiliar design constructs such as BCL’s rule 

construct [8] and Lime’s task and connect construct [9].  

 

The language that we have created, Cv, has adopted the following design principles to avoid 

some of the problems of existing co-design languages:  

 Create an all-hardware or all-software solution. This averts the problems related to co-

design systems.  

 Remove hardware or software syntactical elements that do not have meaning in the 

opposite design representation 

 Explicit parallelism to give the designer full control over parallelism. This is based on the 

philosophy that the designer of the system is best equipped to make parallelism decisions. 

 Syntactically simple event driven semantics. 

 Use a syntax similar to C/C++ for high amounts of readability, teachability, and ensure a 

short learning curve. Since the Verilog syntax is also C-like, this choice is practical from 

a hardware design point of view as well. 

 

In the remainder of this section, each of the above design principles is discussed in further detail. 

 

Create an all-hardware or all-software solution 

Cv approaches hardware and software design in a significantly different style, by giving the user 

the option to create either an all-hardware or all-software solution. Some co-design efforts target 

a primarily software audience, but most co-design solutions target embedded system applications 
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where hardware and software naturally work together. These solutions in turn neglect the 

majority of designers who create their design either only in hardware. Further, as discussed 

earlier, this requires addressing several technically challenging issues such as partitioning and 

verification, modeling of hardware-software communication,  and difficulties modeling event-

driven computation and clocking. 

 

Remove hardware or software syntactical elements that do not have meaning in the 

opposite design representation 

It is undesirable to have semantics and constructs that have meaning for only one of the two 

design representations. A finished design should be able to be executed in either design 

representation without modification. Therefore, hardware-only or software-only semantics would 

be intrusive to both the language and its purpose. For example, clocking in hardware triggers 

edge based flip flops, and therefore the flow of the hardware computation. However clocking 

does not translate into software where events are triggered by the processor clock. Another 

example (from software) is addressing variables that are stored at specific memory address 

locations. In hardware, variables are permanent physical bits that do not change location. 

Therefore addressing variables by their memory address does not translate to software. In 

subsequent enhancements of Cv, we may incorporate these elements. 

 

Explicit parallelism to give the designer full control over parallelism  

Parallel design is native to hardware and is becoming more common in software due to 

multithreading. Under the current multithreading paradigm, software parallelism experiences 

side effects and a large synchronization overhead. This is not true for hardware parallelism. In 
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hardware, parallel components cannot write to the same registers. We enforce the most abstract 

parallelism constraints in Cv. In Cv, multiple operations that are being computed in parallel 

cannot write a value to the same variable. However, multiple operations that are being computed 

in parallel can read from the same variable. Likewise, function calls can be made in parallel. 

Using the same semantic, function calls in parallel cannot write to the same variable, but 

function calls in parallel can read from the same variable.  This allows the designer to explicitly 

describe a parallel structure in a manner that is agnostic to whether the final computation is being 

run in hardware or software. 

 

Syntactically simple event driven semantics 

Hardware and software both support event driven design models, however hardware natively 

supports event driven models through combinatorial logic and edge triggered flip-flops, while 

software uses event handlers and specialized classes. As event driven programming continues to 

grow in utility, it is only natural to combine these practices with well-developed hardware 

concepts into one uniform semantic. This is accomplished using Cv’s event driven assignment. 

For example, in Cv, consider a variable (referred to as the assigned variable) that is assigned 

using the event driven assignment. When one of the variables in the right hand of the event 

driven assignment changes, the assigned variable is automatically updated using the new value of 

the right hand variable.  

 

Use a syntax similar to C/C++ for high amounts of readability, teachability, and ensure a 

short learning curve 
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In order to achieve a high level of adoption, Cv has been designed to use a C/C++ like syntax so 

that both hardware and software designers will be able to quickly understand the language. 

Verilog, a very popular HDL, uses a C-like syntax. Our philosophy is that reading a design 

should not pose an additional burden to the designer, and therefore we have chosen to follow the 

C/C++ syntax style.  

 

To test and demonstrate the functionality of Cv we have implemented a set of standard 

algorithms in Cv, Verilog, and C++. The resulting Cv hardware was compared to the Verilog 

hardware implementation in terms of FPGA look up tables (LUT’s) used, and clock cycles 

required. The resulting Cv software was compared to the C++ implementation in terms of 

executable size, peak memory use, and execution time.  

 

In the next chapter, we describe the different Cv constructs, and discuss how they are translated 

into software as well as hardware. 
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CHAPTER II 

THE CV APPROACH 

 

2.1 Overview 

Cv is structured to take code describing a digital design and then either compile this code to 

software, or synthesize it into hardware. To do this the Cv compiler implements a Cv Software 

Translator, and a Cv Hardware Translator.   

 

The Cv software translator translates the Cv code into an equivalent C++ representation.  A 

makefile is then created to prepare the code for compilation. We use the G++ compiler [10] 

which provides the needed compiler, assembler, and linker. After these steps, the executable is 

available to be executed. 

 

The Cv Hardware Translator translates the Cv code into an equivalent Verilog representation. 

The Verilog code is then imported into a Xilinx ISE project so that the design can be 

programmed onto an FPGA. The Xilinx ISE tools implement the needed synthesis, translate, 

map, place and route, and bitstream generation tools. After these steps, a bitstream is available to 

be programmed onto the FPGA. 

 

These two paths are illustrated in Figure 1. 
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Figure 1. 

Displays the separate branching paths of Cv, one into hardware, the other into software.
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Because Cv strives to implement a single design representation that is capable of being executed 

on either software and hardware, each of the execution paths must be capable of implementing 

all features in the design representation. In order to combine the design representations of 

hardware and software, each representation must be modified to accommodate new design 

principles. Table 1 represents the semantic constructs that Cv implements.  

 

Table 1. 

Cv Constructs 

(2.3) Functions 

(2.4) Master Function 

(2.5) Clocking 

(2.6) Variables and Arrays 

(2.7) CHard 

(2.8) CvC and CvV Types 

(2.9) Serial Statements 

(2.10) Parallel Statements 

(2.11) Non-Blocking 

Statements 

(2.12) Event Driven Statements 

(2.13) Function Call 

(2.14) If Statement 

(2.15) For Loop 

(2.16) While Loop 
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(2.17) Return Statement 

(2.18) Comments 

List of the semantic constructs implemented in Cv. The numbers in parenthesis indicate the 

section for each item. 

 

Next, the grammar for Cv is presented. Following this, each semantic construct presented in 

Table 1 is discussed. Examples for how to use each semantic construct are provided, as well as 

examples of how the constructs are translated into both C++ and Verilog.  

 

2.2 Grammar 

The grammar presented in Figure 2 describes the Cv language. From Sections 2.3 through 2.18, 

for each semantic construct (from Table 1) a description  based on this grammar is provided first, 

followed by an example, then a description of how the Cv Software Translator handles the 

construct, and finally a description of how the Cv Hardware Translator handles the construct. 

  



17 
 
 

 

 

Program  ::= FunctionDecl+ 

FunctionDecl ::= Formals ident ( Formals ) StmtBlock 

Formals ::= Variable +,|ε 

VariableDecl  ::= Variable ;  

Variable  ::= Type ident | Type ident [ intConstant ] | 

                                        Type ident [ intConstant ] [ intConstant ] 

Type ::= AdjustableType | double | bool | char  

AdjustableType ::= int | string | int < intConstant > | string < intConstant > 

StmtBlock ::= { VariableDecl* EventDriven* Stmt* } 

Stmt  ::= <AssignExpr>; | IfStmt | WhileStmt | ForStmt | ReturnStmt |  

  PrallelStmt | StmtBlock 

IfStmt ::= if ( Expr ) Stmt  < else Stmt > 

WhileStmt ::= while ( Expr ) Stmt 

ForStmt ::= for ( <Expr>; Expr; <Expr> ) Stmt 

ReturnStmt ::= return ; 

ParallelStmt ::= Stmt || Stmt | ParallelStmt ||  Stmt 

AssignExpr ::= LValue = Expr | ( ident +, )  = Call | LValue <> NonCallExpr 

EventDriven ::= LValue ~ NonCallExpr ; 

Expr ::= Constant | LValue | Call | ( Expr ) | Expr + Expr | Expr – Expr |  

  Expr * Expr | Expr / Expr | Expr % Expr | - Expr | Expr < Expr | 

  Expr <= Expr | Expr > Expr | Expr >= Expr | Expr == Expr |  

  Expr != Expr | Expr & Expr | Expr | Expr | ! Expr | Expr >> Expr |  

  Expr << Expr 

NonCallExpr ::= Constant | LValue | (NonCallExpr) | 

  NonCallExpr + NonCallExpr |NonCallExpr – NonCallExpr |  

  NonCallExpr * NonCallExpr | NonCallExpr / NonCallExpr |  

  NonCallExpr % NonCallExpr | - NonCallExpr |  

  NonCallExpr < NonCallExpr |NonCallExpr <= NonCallExpr |  

  NonCallExpr > NonCallExpr | NonCallExpr >= NonCallExpr |  

  NonCallExpr == NonCallExpr | NonCallExpr != NonCallExpr |  

  NonCallExpr & NonCallExpr | NonCallExpr | NonCallExpr |  

  ! NonCallExpr | NonCallExpr << NonCallExpr |  

  NonCallExpr >> NonCallExpr 

LValue ::= ident | ident [ Expr ] 

Call  ::= ident ( Actuals ).ident | ident ( Actuals ) 

Actuals ::= Expr +, | ε 

Constant ::= intConstant | doubleConstant | boolConstant | stringConstant  |  

  charConstant 

 

Figure 2. 

Grammar of Cv. 
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2.3 Functions 

Functions are the highest level construct that contain all other constructs. According to the 

grammar: 

 

FunctionDecl ::= Formals ident ( Formals ) StmtBlock 

 

Formals are a comma separated list of variable declarations (Section 2.4). Ident is the name of 

the function. The Formals before the function name are the outputs of the function, and the 

Formals within parenthesis are the inputs of the function. The StmtBlock after the inputs 

contains the code that the function will implement.   

 

2.3.1 Example  

 
 
//Cv Code 
int output1, int output2 MyFunction ( int input1, int input2, int input3 ) 
{ 

 //empty function  
} 

 

Figure 3. 

Example function declaration in Cv. 

 

In Figure 3 output1 and output2 are the outputs of MyFunction, and both outputs are integers. 

MyFunction is the name of the function, and input1, intput2, and input3 are the inputs of 

MyFunction. MyFunction does not have any code to implement. In general, the StmtBlock of 

MyFunction will utilize other constructs are discussed later in this chapter. One of the 

differences between Cv and common software languages is that the output variables are directly 

manipulable in Cv. Although return statements can be used in Cv, they are not required. When a 



19 
 
 

 

function has reached its end, the value of the outputs will be returned, based on the values that 

the outputs were set to in the function. 

 

2.3.2 Cv Software Translator 

When translating the function declaration to C++, the CV software translator will create a struct 

for the outputs, copy over the name of the function, and make a CvV type (Section 2.8) for each 

of the inputs. 

 
 
//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
 CvV<int> output2; 
}; 
CvFunctionStruct_MyFunction MyFunction(  

CvV<int> input1,  
CvV<int> input2,  
CvV<int> input3 

) { 
CvFunctionStruct_MyFunction returnValue; 
return returnValue; 
} 

 

Figure 4. 

Function declaration translated from Cv to C++. 

 

It can be seen from Figure 4 that each of the outputs is placed in the struct 

CvFunctionStruct_MyFunction. In this case each of the outputs use the CvV<int> type 

(Section 2.8). The output struct is also created as a local variable of the function, and named 

returnValue. This allows for the function to directly set the outputs, as it will be shown in later 

examples. Once the function has reached the end of the function code, or a return statement, the 

function returns the returnValue. The inputs are also translated into CvV types.  

 

2.3.3 Cv Hardware Translator 
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Given the example, the Cv Hardware Translator produces the following Verilog code. 

 
 
//Verilog Code  
module MyFunction( input clock, input reset, input start,  
      input [31:0] input1,input [31:0] input2, input [31:0] input3,  
      output reg done, output reg [31:0] output1, output reg [31:0] output2 
); 
 
endmodule 

 

Figure 5. 

Function declaration in Cv translated to Verilog. 

 

Figure 5 demonstrates how functions in Cv are translated into Verilog. The inputs to the 

functions are created as input ports into the module, and the outputs of the functions are created 

as output ports of the module. In this example each of the inputs and outputs are 32 bits wide. 

This is because 32 is the default bit width for integers in Cv (Section 2.6). Additional inputs  

include clock, reset, and start. The additional output is done. These inputs and outputs are 

automatically created by the Cv hardware translator for every function.  

 clock: This is the input for the clock, and controls clocking for all modules. Cv creates 

hardware that is driven off of a clock.  

 reset: This input controls the reset for the system. Every module created has a reset 

input which, when applied, sets all variables to default values. 

 start: This input indicates to the module to begin its computation.  

 done: This output indicates to other modules that this module has finished its 

computation. When other modules see the done signal of this module they may begin to 

use the outputs of this module.  

For functions that are not empty, their Cv code (between the end of the declarations of the ports 

to the endmodule statement) will be translated to Verilog code. 
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2.4 Master Function 

In most software languages a main function is defined that indicates where the program is going 

to begin executing. In HDL’s any module can be selected as the top module in the project. In Cv 

the master function is specified when the code is compiled. When translating Cv to C++, the 

master function is converted to the main function in C++. When translating Cv to Verilog, the 

master function is set as the top level module of the project. The master function is not an item in 

the grammar, but instead is decided at compile time. 

 

2.4.1 Example 

 
 
//Cv Code 
int output1 MyFunction ( int input1 ){ 
 //empty function 
} 

 

Figure 6. 

Example function in Cv to be compiled as the master function. 

 

2.4.2 Cv Software Translator 

When compiling Cv to software, the follow command will invoke the Cv compiler and instruct 

the compiler to compile MyFunction as the main function in software. 

 

(Terminal Command) ./cvc < code.cv MyFunction –sw 

 

In the statement above, “./cvc” invokes the Cv compiler. Next, “< code.cv” instructs the Cv 

compiler to compile the file “code.cv”. The next option given is the name of the master function 
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in the “code.cv”. In this example that function is “MyFunction”. The final parameter given is “–

sw”. This tells the Cv compiler to translate the given code into software.  

 

2.4.3 Cv Hardware Translator 

When compiling Cv to hardware, the follow command will invoke the Cv compiler and instruct 

the compiler to compile MyFunction as the top level module in hardware. 

 

(Terminal Command) ./cvc < code.cv MyFunction –hw 

 

In the statement above, “./cvc” invokes the Cv compiler. Next, “< code.cv” instructs the Cv 

compiler to translate the file “code.cv”. The next option given is the name of the function which 

should be treated as the top level module. In this example that function is “MyFunction”. The 

final parameter given is “–hw”. This instructs the Cv compiler to translate the given code into 

hardware.  

 

2.5 Clocking  

In hardware, one (and arguably the most popular) style of design involves triggering events to 

occur off of a clock edge. This is demonstrated in Verilog using always block that trigger at 

either the rising or falling edge of a clock. For example: 

 
 
//Verilog Code 
always@(posedge clock) begin 
 a <= b + 1; 
end 

 

Figure 7. 

Always block in Verilog. 
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In Cv there are no explicit clocking constructs. Instead when a function is translated to hardware, 

each function will either run in a single clock cycle, or multiple clock cycles (if the function 

requires CHard, as described in Section 2.7). When a function is translated to software, nothing 

special happens with respect to clocking, since the function does not have explicit clocking 

constructs to begin with.  

 

Since clocking in Cv is therefore implicit, no examples are presented in this section, and no Cv 

Software Translator rules or Cv Hardware Translator rules are presented. 

 

2.6 Variables and Arrays 

This section focuses on variable declarations and how they are translated into C++ and Verilog. 

According to the grammar: 

 

VariableDecl ::= Variable ; 

Variable ::= Type ident | Type ident [ intConstant ]|Type ident [ intConstant ] [ intConstant ] 

Type ::= AdjustableType | double | bool | char 

AdjustableType ::= int | string | int < intConstant > | string < intConstant > 

 

This reflects the types supported by Cv; integers, double precision floating point numbers, 

Boolean values, characters, and strings. The default bit widths are: 

 32 bits for an integer 

 64 bits for a double 

 1 bit for a bool 

 8 bits for a character 
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 32 characters, or 256 bits, for a string. 

 In addition to the default values, the bit width of integers, and the number of characters in a 

string, can be specified by the user. According to the definition of AdjustableType, integers and 

strings can be declared with or without angle brackets. When there are no angle brackets, the bit 

width of an integer or string is the default bit width. When an integer is declared with angle 

brackets, then the bit width of the integer is the value given between the angle brackets. When a 

string is declared with angle brackets, then the number of characters in the string is equal to the 

number in angle brackets. Integers and strings declared with angle brackets are said to have a 

specified size. Arrays can also be declared using integers and strings with a specified size. Cv 

supports 1- and 2- dimensional arrays. Arrays must also be fixed size. The integer constant in 

brackets determines the size of the array.  

 

We next present some examples. We first cover basic variable declarations, then variable 

declarations with a specific size, and finally array declarations. After this, we discuss the 

translation of various kinds of variable declarations into  C++ and Verilog.  

 

2.6.1 Basic Variable Declaration 

To declare an int without a specified size: 

 
 
//Cv Code 
int myInt; 

 

Figure 8. 

Declaring an int variable in Cv. 
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Here int determines that the variable is an integer, and myInt is the name of the variable. 

Because there is no specified size, myInt is 32 bits. Next are examples creating variables of type 

double, bool, char, and string: 

 
 
//Cv Code 
double myDouble; 
bool myBool; 
char myChar; 
string myString; 

 

Figure 9. 

Declaring different types of variables in Cv. 

 

Here myDouble is 64 bits, myBool is 1 bit, myChar is 8 bits, and myString is 32 characters or 256 

bits.  

 

2.6.2 Variable Declaration with Specified Size 

To declare an int with a specified size: 

 
 
//Cv Code 
int <50> myIntSize50; 
 

Figure 10. 

Declaring an integer with a specified size. 

 

Here int determines that the variables is an integer, the 50 in angle brackets indicates that the 

variable has 50 bits, and myIntSize50 is the name of the variable.  

 

Using a specified size to declare a string can be accomplished as follows:  

 

  
//Cv Code 
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string <100> myLongString; 
 

Figure 11. 

Declaring a string with a specified number of characters. 

 

Here string determines that the variable is a string, the 100 in the angle brackets indicates that 

the variable has 100 characters, or 800 bits, and myLongString is the name of the variable. 

 

2.6.3 Declaring Arrays 

Creating an integer array with default integer bit width: 

 
 
//Cv Code 
int myIntArray [10]; 

 

Figure 12. 

Declaring an array of integers in Cv. 

 

Here, myIntArray is an array of 10 integers with 32 bits per integer. Arrays of the other types 

can be declared likewise. 

 
 
//Cv Code 
double myDoubleArray [20]; 
bool myBoolArray [10]; 
char myCharArray [4]; 
string myStringArray [15]; 

 

Figure 13. 

Declaring arrays of different types in Cv. 

 

In these declarations each array is of the Type specified, and each item in each array has the 

default bit width corresponding to its Type. To create an array with a specified size for integers 

and strings: 
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//Cv Code 
int <64> myIntArraySize64 [20]; 
string <40> myStringArrayLarger [10]; 
 

Figure 14. 

Declaring an array of integers and an array of strings with a specified size. 

 

In myIntArraySize64 there are 20 integers each with 64 bits. In myStringArrayLarger there 

are 10 strings each with 40 characters. 

 

2.6.4 Example 

 
 
//Cv Code 
int output1 MyFunction (int input1) { 
 int myInt; 
 double myDouble; 

bool myBool; 
 char myChar; 
 string myString; 
  

int <16> myIntSmaller; 
 string <64> myStringLarger; 
  
 int myIntArray [20]; 
 double myDoubleArray [10]; 
 bool myBoolArray [5]; 
 char myCharArray [16]; 
 string myStringArray [8]; 
 
 int <64> myIntArraySized [10]; 
 string <16> myStringArraySized [20]; 
} 
 

Figure 15. 

A function containing variable declarations in Cv. 

 

The function in Figure 15 will be used as an example of a function containing variable 

declarations. This subset of variables represents the different variables that can be used in Cv. 
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2.6.5 Cv Software Translator 

 
 
//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction( CvV<int> input1 ) { 
 CvV<int> myInt; 
 CvV<double> myDouble; 
 CvV<bool> myBool; 
 CvV<char> myChar; 
 CvV<string> myString; 
 

CvV<int> myIntSmaller; 
 CvV<string> myStringLarger; 
 
 CvV<int> myIntArray [20]; 
 CvV<double> myDoubleArray [10]; 
 CvV<bool> myBoolArray [5]; 
 CvV<char> myCharArray [16]; 
 CvV<string> myStringArray [8]; 
 
 CvV<int> myIntArraySized [10]; 
 CvV<string> myStringArraySized [20]; 
} 
 

Figure 16. 

Translating variables within a function from Cv to C++.  

 

Each variable uses the same name in C++ that was given in Cv. Integers and strings with a 

specified size use standard sizes in C++. Each variable is of the type CvV (Section 2.8) 

 

2.6.6 Cv Hardware Translator 

 
 
//Verilog Code 
module MyFunction(input clock, input reset, input start,  
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] myInt; 
reg [63:0] myDouble; 
reg myBool; 
reg [7:0] myChar; 
reg [255:0] myString; 
 
reg [15:0] myIntSmaller; 
reg [63:0] myStringLarger; 
 
reg [31:0] myIntArray [0:19]; 
reg [63:0] myDoubleArray [0:9]; 
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reg myBoolArray [0:4]; 
reg [7:0] myCharArray [0:15]; 
reg [255:0] myStringArray [0:7]; 
 
reg [63:0] myIntArraySized [0:9]; 
reg [127:0] myStringArraySized [0:19]; 
 
endmodule 
 

Figure 17. 

Translating variable within a function from Cv to Verilog. 

 

The above code reflects how each variable type is translated into Verilog. Each variable is made 

into a reg variable type in Verilog. The bit width of the variables is declared by the bracketed 

numbers on the left of each variable. If a variable does not have brackets indicating its size, the 

variable is 1 bit. Each of the bit widths matches the bit width given in the Cv code, and when 

there is no bit width specified in the Cv code, the default bit width is used. For the arrays, Cv 

creates a Verilog array. This can be seen by the bracketed numbers to the right of the variables. 

 

2.7 CHard  

Cv takes the design descriptions of software and hardware and creates a single design 

description. There are semantics of both software and hardware that do not have an identical 

meaning in the opposite domain. Therefore a hardware construct has been created to handle 

software semantics that are not compatible with hardware design. This new hardware construct is 

called CHard. CHard is not an item in the grammar, but instead is implemented by multiple 

elements of the grammar. Because CHard is designed to handle software semantics foreign to 

hardware, there is no implementation of CHard for the Cv Software Translator, it is only used for 

the Cv Hardware Translator.  
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2.7.1 Example that Requires CHard 

The example below shows a for loop (Section 2.15) whose number of iterations is unknown at 

compile time.  

 
 
//Cv Code 
int output1 myFunction (int input1) { 
 int i;  
 
 output1 = 0; 
 for(i  = 0; i < input1; i = i + 1) 
  output1 = output1 + 1; 
} 
 

  Figure 18. 

Cv code that requires CHard. 

 

In the code above a for loop is used, however the number of iterations of the for loop is 

unknown, and depends on the value of input1. This type of for loop, where the number of 

iterations are unknown at compile time, is unsupported in currents HDL’s. Therefore CHard is 

used to realize this software semantic in hardware. The function is translated into Verilog as 

shown below. The constructs of CHard are then further explained.  

 

2.7.2 Cv Hardware Translator code for Section 2.7.1 

 
 
//Verilog Code 
module myFunction (input clock, input reset, input start,  
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [3:0] functionCounter; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 <= 0; 
            i <= 0;  
 end 
 else if(start) begin 
  output1 <= 0; 
 end 
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 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: i <= 0; 
   2: // do nothing, control block is testing i < input1 
   3: output1 <= output1 + 1; 
   4: i <= i + 1; 
   5: //do nothing, control block is testing i < input1  
  endcase 

end 
else begin 
      output1 <= output1; 
      i <= i; 
end 

end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  functionCounter <= 0; 
  done <= 0; 
 end 
 else if(start) begin 
  functionCounter <= 1; 
  done <= 0; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   2:  

if(i < input) begin 
 functionCounter <= 3; 

   end 
   else 
    functionCounter <= 0; 
    done <= 1; 
   end 

   5:  
if(i < input) begin 
 functionCounter <= 3; 

   end 
   else 
    functionCounter <= 0; 
    done <= 1; 
   end 

   default: 
    functionCounter <= functionCounter + 1; 
    done <= done; 
  endcase 
 end 
      else begin 
            functionCounter <= 0; 
            done <= done; 
      end 
end 
endmodule 
 

Figure 19. 

Translating Cv to Verilog with code containing CHard. 
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First the flow block is discussed, followed by the control block. The flow block implements the 

code that was given in the function. When reset is high, all local variables and outputs of the 

function are set to 0. The instructions required to be computed by Figure 19 are output1 = 0, i 

= 0, i < input1, and i = i + 1. The first instruction is executed when the start input is 

high, which sets output1 = 0. The remaining instructions are executed in the case statement 

which depends on the value of the functionCounter. This is how the flow block operates; the first 

statement in the code is executed when start is high, and the rest of the code is executed in the 

case statement.  The next code that is encountered is the for loop. 

 

The control block uses the functionCounter and done variables to control which statement is 

executed. The number of bits for the functionCounter is determined by the Cv compiler, so 

that the minimum number of bits may be used to account for all the instructions that must be 

executed. In this example a for loop must test i < input1 before the for loop is run the first 

time, and it must retest this condition after each execution of the for loop. When the 

functionCounter value is 2 or 5, the flow block is not doing anything and the control block is 

testing the condition of the for loop. Once i < input1 is no longer true, the execution would 

exit the for loop. Because the for loop is the last code in the function, once the for loop is 

finished, the function is finished. Therefore, once i < input1 is no longer true, the 

functionCounter is set to 0, and done is set to 1. These two blocks execute in parallel, very 

similarly to how the code would execute on a processor.  

 

One of the goals of Cv is to provide hardware that is efficient. Therefore, CHard is only created 

when it is required. If a designer uses constructs familiar to a hardware developer, then the Cv 
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compiler will not create CHard, and the resulting Verilog will not rely on a functionCounter. 

However, functions that do not require CHard will still have a done output. The done output of a 

function that does not require CHard is always high the clock cycle after the start input is high. 

Each of the constructs presented demonstrates cases when CHard is, and is not, created.  

 

Next is an example of a function that does not require CHard. This function only does 

assignments, and therefore does not rely on software constructs foreign to hardware.  

 

2.7.3 Example that Does Not Require CHard 

 
 
//Cv Code 
int output1 MyFunctionNoCHard( int input1 ) { 
 int x; 
 int y; 
 x = input1*2; 
 y = x – 3; 
 output1 = y*4; 
} 
 

Figure 20. 

Cv code that does not require CHard. 

 

In Figure 20 only assignments are performed. HDL’s provide semantics to do serial operations 

using blocking statements. Therefore, the code in Figure 20 can be translated using blocking 

statements, and not require CHard. 

 

 

 

 

2.7.4 Cv Hardware Translator 
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//Verilog Code 
module MyFunctionNoCHard (input clock, input reset, input start,  
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] x; 
reg [31:0] y; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  x = 0; 
  y = 0; 
  output1 = 0; 
 end 
 else if( start ) begin 
  x = input1*2; 
  y = x – 3; 
  output1 = y*4; 
 end 
 else begin 
  x = x;  
  y = y; 
  output1 = output1;   
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end 
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 

Figure 21. 

Translating Cv to Verilog with code that does not contain CHard. 

 

In Figure 21, the flow block and the control block still exist. However, the control block no 

longer contains the functionCounter. The done output is set by the control block to be high the 

clock cycle after the start input is high. In the flow block all assignments are done through 

blocking statement, contrary to the non-blocking statements used in the example that required 

CHard (Section 2.7.2). This is designed so that statements will be implemented sequentially. The 
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control block continues to use non-blocking statements for continuity. In the flow block, 

functions that do not require CHard have three sections; when reset is high, when start is 

high, and otherwise. When reset is high all local variables and outputs are set to 0. When start 

is high the instructions given by the user are implemented. When neither reset nor start are 

high, then the local variables and outputs retain their value. This allows other modules to then 

use these outputs in their computations. 

 

2.8 CvC and CvV Types 

Because Cv expands upon traditional software functionality, certain modifications must be made 

when translating Cv to C++. One of the greatest changes is the introduction of the CvV type. The 

CvV type is applied to all variables when the Cv Software Translator translates Cv code into 

C++. The CvV type allows variables to have the functionality of the event driven semantic, a 

semantic absent from C++. To implement the CvV type, two classes were created, the CvC class 

and the CvV class. These classes are presented below. 

 

CvC Class 

 
 
//C++ code 
class CvC 
{ 
public: 
 CvC(void(*function)(CvC*)) 
  : _function(function) { 
  _dependors = vector<CvC*>(); 
  _dependencies = vector<CvC*>(); 
 } 
 void Update( ){ 
  _function(this); 
  for(int i = 0; i < _dependors.size(); i++) 
   _dependors[i]->Update( ); 

} 
 void AddDependency(CvC* cvC){  

cvC->AddDependor(this);  
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_dependencies.push_back(cvC); 
} 

 void AddDependor(CvC* cvC){ 
 _dependors.push_back(cvC);  

} 
 void AddFunction( void(*function)(CvC*) ) {  

_function = function;  
} 

 void RemoveFunction( ) {  
_function = NULL;  

} 
 template<typename T> 
 T Me( ){ 
  if(dynamic_cast<CvV<T>*>(this)) 
   return dynamic_cast<CvV<T>*>(this)->Me(); 
  return 0; 
 } 
 template<typename T> 
 void SetValue( T value ){ 
  if(dynamic_cast<CvV<T>*>(this)) 
   dynamic_cast<CvV<T>*>(this)->SetValue(value); 
 } 
 template<typename T> 
 void AfterParallelUpdate( ) { 
  if(dynamic_cast<CvV<T>*>(this)) 
   dynamic_cast<CvV<T>*>(this)->AfterParallelUpdate( ); 
 } 
 vector<CvC*> GetDependencies( ){  

return _dependencies;  
} 

protected: 
 void(*_function)(CvC*); 
 vector<CvC*> _dependors; 
 vector<CvC*> _dependencies; 
}; 
 

Figure 22. 

C++ code of the CvC class. 

 

CvV Class 

 
 
//C++ Code 
template<class T> 
class CvV : public CvC 
{ 
public: 
 CvV( T value, void(*function)(CvC*) ) 
  : _value(value), _writeValue(value), CvC(function){ } 
 CvV( ) 
  : _value(0), _writeValue(0), CvC(NULL){ } 
 T& Me( ) { return _value; } 
 void SetValue( T value ){ _value = value; } 
 CvV( T value ) 
  : _value(value), _writeValue(value), CvC(NULL){ } 
 CvV( const CvV<T>& cvV ) 
  : _value(cvV._value), _writeValue(cvV._writeValue), 
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              CvC(cvV function){ } 
 void AfterParallelUpdate() { 
  _value = _writeValue; 
 } 
 CvV<T> operator=( T rightSide ){ 
  _value = rightSide; 
  _writeValue = _value; 
  for(int i = 0; i < _dependors.size(); i++) 
   _dependors[i]->Update(); 
  return *this; 
 } 
 CvV<T> operator=( CvV<T> rightSide ){ 
  _value = rightSide.Me(); 
  _writeValue = _value; 
  for(int i = 0; i < _dependors.size(); i++) 
   _dependors[i]->Update(); 
  return *this; 
 } 
 CvV<T> operator^(T rightSide){ 
  _writeValue = rightSide; 
  for(int i = 0; i < _dependors.size(); i++) 
   _dependors[i]->Update(); 
  return *this; 
 } 
 CvV<T> operator^(CvV<T> rightSide){ 
  _writeValue = rightSide.Me(); 
  for(int i = 0; i < _dependors.size(); i++) 
   _dependors[i]->Update(); 
  return *this; 
 } 
 CvV<T> operator+(T value){ return CvV<T>(_value + value, _function);} 
 CvV<T> operator+(CvV<T> value){ 
            return CvV<T>(_value +  value.Me(),_function); 
      } 
 CvV<T> operator-(T value){ return CvV<T>(_value - value, _function);} 
 CvV<T> operator–( CvV<T> value ){ 
            return CvV<T>(_value - value.Me(), function); 
      } 
 CvV<T> operator*( T value ){  
            return CvV<T>(_value * value, _function);  
      } 
 CvV<T> operator*( CvV<T> value ){ 
            return CvV<T>(_value * value.Me(), function); 
      } 
 CvV<T> operator/( T value ){  
            return CvV<T>(_value / value, _function);  
      } 
 CvV<T> operator/( CvV<T> value ){ 
            return CvV<T>(_value / value.Me(), _function); 
      } 
 CvV<T> operator%( T value ){return CvV<T>(_value % value,_function);} 
 CvV<T> operator%(CvV<T> value){ 
            return CvV<T>(_value%value.Me(),_function); 
      } 
 bool operator<( T value ){ return _value < value; } 
 bool operator<( CvV<T> value ){ return _value < value.Me(); } 
 bool operator<=( T value ){ return _value <= value; } 
 bool operator<=( CvV<T> value ){ return _value <= value.Me(); } 
 bool operator>( T value ){ return _value > value; } 
 bool operator>( CvV<T> value ){ return _value > value.Me(); } 
 bool operator>=( T value ){ return _value >= value; } 
 bool operator>=( CvV<T> value ){ return _value >= value.Me(); } 
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 bool operator==( T value ){ return _value == value; } 
 bool operator==( CvV<T> value ){ return _value == value.Me(); } 
 bool operator!=( T value ){ return _value != value; } 
 bool operator!=( CvV<T> value ){ return _value != value.Me(); } 
 
 template<class H> 
 T ArrayAccess( CvV<H> index ){ 
  CvV<T>* cvPointer = this; 
  for(int i = 0; i < index.Me(); i++) 
   cvPointer++; 
  return cvPointer->Me(); 
 } 
private: 
 T _value; 
 T _writeValue; 
}; 
 

Figure 23. 

C++ code for the CvV class. 

 

These two classes are used to implement the event driven models and parallel models in C++.  In 

the subsequent sections that use specific features of the CvC and CvV classes, the needed 

functionality is discussed. 

 

Serial, Parallel, Non-Blocking, and Event Driven Statements 

In Cv statements can be made serially, in parallel, as non-blocking assignment, or as event driven 

assignments. Each of these is described in detail in the following sections.  

 

2.9 Serial Statements 

Serial statement are reflected in the grammar by the definition of the StmtBlock: 

 

StmtBlock ::= { VariableDecl* EventDriven* Stmt* } 

 

Stmt* is a pointer to an array of statements. Statements occurring one after another are serial 

statements, and therefore are executed in the order they are written.  
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2.9.1 Example 

 
 
//Cv Code 
int output1 MyFunction(int input1) { 
 int a;  
 int b; 
  
 a = 3*input1; 
 b = a – 3; 
 ouptut1 = b/2; 
} 
 

Figure 24. 

Cv code using serial statements. 

 

Figure 24 shows the assignments in series. The translated software and hardware must execute 

these statements in the same order. 

 

2.9.2 Cv Software Translator 

Serial statements have a very direct translation when translated into software. The result looks 

very similar to the given Cv code.  

 
 
//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvV<int> a; 
 CvV<int> b; 
 CvFunctionStruct_MyFunction returnValue; 
 
 a = 3*input1; 
 b = a – 3; 
 Value.output1 = b/2; 
 return returnValue; 
} 
 

Figure 25. 

Translating Cv to C++ for serial statements. 
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Because the = operator in the CvV class has been overridden, the translated code just needs to 

assign a value to the variable. This will set _value and _writeValue of the variable. The output 

variable is able to be directly assigned within the function. Once the function has reached the end 

of its code, the returnValue is returned, containing the output variable that has been properly 

set. The serial statements occur in order, as given in the Cv Code.  

 

2.9.3 Cv Hardware Translator 

When translating Cv to hardware, serial statements may or may not require CHard. If a function 

contains only a block of serial statements, then the code will not require CHard. However, if the 

code contains other constructs that requires CHard, then the serial statements will require CHard. 

For examples that require CHard, we refer the reader to the sections on the individual constructs 

that require CHard (Sections 2.10.6, 2.13.2.1, 2.13.2.2, 2.14.2.2, 2.14.2.4, 2.15.2.3, 2.16.2.1, and 

2.17.3). In the example given in Figure 24, the function just contains a series of assignments. 

Therefore, this function does not contain any CHard constructs and does not require CHard.  

 
 
//Verilog Code 
module myFunction (input clock, input reset, input start,  
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] a; 
reg [31:0] b; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  a = 0; 
  b = 0; 
  output1 = 0; 
 end 
 else if( start ) begin 
  a = 3*input1; 
  b = a - 3; 
  output1 = b/2; 
 end 
 else begin 
  a = a;  
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  b = b; 
  output1 = output1;   
 end 
end 
endmodule 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end 
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 

Figure 26. 

Translating Cv to Verilog for serial statements. 

 

In Figure 26, no CHard is created. All of the functionality is executed within one clock cycle as 

expected.  

 

2.10 Parallel Statements 

According to the grammar:  

 

 ParallelStmt ::= Stmt || Stmt | ParallelStmt ||  Stmt 

 

Two or more statements are declared in parallel using the || symbol. In addition to this, multiple 

statements can be chained in parallel using the || symbol with successive statements. Statements 

in parallel are executed simultaneously. All variables on the right side of parallel assignments 

will use the value of the variable prior to entering the parallel section. Once all right hand 
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expressions have been evaluated, the variables on the left are assigned the results. A variable can 

only be assigned a value in one parallel statement. 

 
 
//Cv Code 
a = 2 + b; 
|| b = 3 – a + c; 
|| c = 3*b; 
 

Figure 27. 

Cv code showing parallel construct. 

 

In Figure 27 the three statements are executed in parallel. This is declared using the parallel 

symbol, ||. It is read that the assignment to b is in parallel with the statement above it, the 

assignment to a. Also, the assignment to c is in parallel with the statement above it, the 

assignment to b, which is also in parallel to the assignment to a. If a is initially 3, b is initially 5, 

and c is initially 6, then after execution the resulting values for a, b, and c would be 7, 6, and 15 

respectively. This is because neither a, nor b, nor c will change their value until all expressions 

are evaluated.  

 

Two sets of parallel statement can be structured as follows to create parallel statements in series: 

 

 
//Cv Code 
//Parallel Statement Set 1 
a = 2 + b; 
|| b = 3 – a + c; 
|| c = 3*b; 
//Parallel Statement Set 2 
a = b - 3; 
|| b = a*2; 
|| c = a + b; 
 

Figure 28. 

Cv code showing how the parallel construct can be used to place two sets of parallel statements 

in series. 

 



43 
 
 

 

First, the top three assignments will occur in parallel. Once these calculations are completed, the 

second set of three assignments occur in parallel. This is denoted by the break in the parallel 

symbols. The assignment to a in Parallel Statement Set 2 is not prefaced by a parallel symbol, 

and therefore indicates that it must take place after Parallel Statement Set 1.  

 

Next, the examples from Figure 27 and Figure 28 are placed in functions, and it is shown how 

the examples are translated into software and hardware. The first example is presented, followed 

by its translation, and then the second example is presented, followed by its translation.  

 

2.10.1 First Example 

 
 
//Cv Code 
int output1 MyFunction(int input1) { 

int a; 
int b; 
int c; 
 
a = 2 + b; 
|| b = 3 – a + c; 
|| c = 3*b; 

} 
 

Figure 29. 

Cv code with parallel statements in a function. 

 

Figure 29 has a function containing three statements that execute in parallel.  

 

 

 

2.10.2 Cv Software Translator 
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/C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvV<int> a;  
 CvV<int> b; 
 CvV<int> c; 
 CvFunctionStruct_MyFunction returnValue; 
 
 a ^ 2 + b; 
 b ^ 3 – a + c; 
 c ^ 3*b; 
 a.AfterParallelUpdate( ); 
 b.AfterParallelUpdate( ); 
 c.AfterParallelUpdate( ); 
 return returnValue; 
} 
 

Figure 30. 

Translating Cv to C++ for a function containing parallel statements. 

 

In the translation in Figure 30 there are two main differences when compared to the serial 

statement example. The first is that the assignment is done with the caret (^) operator, and after 

the caret assignments each of the variables calls the AfterParallelUpdate function. The caret 

operator is used during parallel assignments to set the of each variable’s _writeValue inside of 

the CvV class (Section 2.8). In Cv when variables are assigned values in parallel, all of the right 

hand expression must be evaluated before the left hand variables are updated. This is 

accomplished by every variable having a _value and a _writeValue. When an assignment is 

performed using the = operator in C++, both the _value and _writeValue are set in the CvV 

variable. However, when assignment is performed using the ^ operator, only the _writeValue is 

assigned. When the value of a variable is read, the _value of the CvV variable is what is read. 

Therefore, the ^ operator writes the assigned right hand value to the _writeValue of the variable 

and other statements read the _value of the variable. Once all of the parallel statements have 

executed, each variable that was assigned a value calls the AfterParallelUpdate function of the 
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CvV class. This function copies the value of _writeValue over to _value, and updates all 

dependors of the class. For more information on dependors, see the Event Driven section 

(Section 2.12). At the end of the function the returnValue is still returned, even though nothing 

was assigned to it. 

 

One of the remaining goals of Cv is to use threads to execute parallel statements in software. 

Currently parallel statements are executed in series. In the future, parallel statements will be 

executed using threads for true parallelism. 

 

2.10.3 Cv Hardware Translator 

 
 
//Verilog Code 
module myFunction (input clock, input reset, input start,  
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] a; 
reg [31:0] b; 
reg [31:0] c; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  a <= 0; 
  b <= 0;  
  c <= 0; 
  output1 = 0; 
 end 
 else if(start) begin //parallel statements executed here 
  a <= 2 + b; 
  b <= 3 – a + c; 
  c <= 3*b; 
 end 
 else begin 
  a <= a; 
  b <= b; 
  c <= c; 
  output1 = output1; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
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  done <= 0; 
 end 
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 

Figure 31. 

Translating Cv to Verilog for a function containing parallel statements. 

 

Because the only statements in this function are parallel statements, the function does not require 

CHard. Instead, all of the parallel assignments happen simultaneously at the rising edge of the 

clock.  

 

2.10.4 Second Example 

 
 
//Cv Code 
int output1 MyFunction(int input1) { 
 int a; 
 int b; 
 int c; 
   
      //Parallel Statement Set 1 

a = 2 + b; 
|| b = 3 – a + c; 
|| c = 3*b; 
//Parallel Statement Set 2 
a = b - 3; 
|| b = a*2; 
|| c = a + b; 

} 
 

Figure 32. 

Cv code with two sets of parallel statements in series within a function. 

 

In Figure 32 two sets of parallel statements are executed in series. Parallel Statement Set 1 is 

executed, and once it finishes, Parallel Statement Set 2 is executed. Both software and hardware 

must respect this order of operation.  
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2.10.5 Cv Software Translator 

 
 
//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvV<int> a;  
 CvV<int> b; 
 CvV<int> c; 
 CvFunctionStruct_MyFunction returnValue; 
 
      //Parallel Statement Set 1 
 a ^ 2 + b; 
 b ^ 3 – a + c; 
 c ^ 3*b; 
 a.AfterParallelUpdate( ); 
 b.AfterParallelUpdate( ); 
 c.AfterParallelUpdate( ); 
      //Parallel Statement Set 2 
 a ^ b - 3; 
 b ^ a * 2; 
 c ^ a + b; 
 a.AfterParallelUpdate( ); 
 b.AfterParallelUpdate( ); 
 c.AfterParallelUpdate( ); 
 return returnValue; 
} 
 

Figure 33. 

Translating Cv to C++ for a function containing two sets of parallel statements in series. 

 

This example is very similar to the previous in terms of how the caret operator and 

AfterParallelUpdate functions work. Because this function has two sets of parallel statements in 

series, Parallel Statement Set 1 is executed and a, b, and c each calling AfterParallelUpdate. 

Next, Parallel Statement Set 2 is executed, followed by a, b, and c each calling 

AfterParallelUpdate. 

 

2.10.6 Cv Hardware Translator 
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Unlike Section 2.10.3, which did not require CHard, this example will require CHard. This is 

because there are two sets of parallel statements performed in series. This means that the second 

set of parallel statements cannot be computed until after the first set of parallel statements has 

finished.  

 
 
//Verilog Code 
module myFunction (input clock, input reset, input start,  
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] a; 
reg [31:0] b; 
reg [31:0] c; 
reg [1:0] functionCounter; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  a <= 0; 
  b <= 0;  
  c <= 0; 
  output1 <= 0; 
 end 
 else if(start) begin 
            //Parallel Statement Set 1 
  a <= 2 + b; 
  b <= 3 – a + c; 
  c <= 3*b; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
                  //Parallel Statement Set 2 
   1: a <= b – 3; 
   b <= a * 2; 
   c <= a + b; 
  endcase 
 end 
 else begin 
  a <= a; 
  b <= b; 
  c <= c; 
  output1 <= output1; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
  functionCounter <= 0; 
 end 
 else if(start) begin 
  done <= 0; 
  functionCounter <= 1; 
 end 
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 else if(functionCounter != 0) begin 
  case(functionCounter) 
   1: functionCounter <= 0; 
   done <= 1; 
   default: functionCounter <= functionCounter + 1; 
  endcase 
 end 
 else begin 
  functionCounter <= 0; 
  done <= done; 
 end 
end 
endmodule 
 

Figure 34. 

Translating Cv to Verilog for a function containing two sets of parallel statements in series. 

 

In the Figure 34 there are two sets of parallel statements. Parallel Statement Set 1 is executed 

when start is high, and Parallel Statement Set 2 is executed when the functionCounter is 1. 

This means that the function takes two clock cycles to execute. Once the functionCounter is 1, 

the function has completed, and the functionCounter is set back to 0, and done is set high.  

 

2.11 Non-Blocking Statements 

In hardware design, non-blocking statements are used to assign values to variables in parallel at 

the edge of an event. For example: 

 
 
//Verilog Code 
always@(posedge clock) begin 
 a <= b + 2; 
 b <= a * 2; 
end 
 

Figure 35. 

Verilog code using non-blocking statements. 

 

In this example the values of a and b are set in parallel. The right hand expressions are evaluated 

using the previous values of a and b, and a and b are not assigned new values until both right 

hand expressions are evaluated. This same semantic is used in Cv. In Cv, all non-blocking 
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statements are collected and evaluated prior to the rest of the function. Also, in Cv, it is illegal to 

use the values of variables that are assigned with non-blocking statements, in assignments that 

are not non-blocking statements. According to the Cv grammar: 

 

AssignExpr ::= LValue = Expr | ( ident +, )  = Call | LValue <> NonCallExpr 

 

The non-blocking assignment in Cv is the assignment that uses the <> operator.  

 

Example 

 
 
//Cv Code 
int output1 MyFunction(int input1){ 
 int a; 
 int b; 
 int c; 
 
 a <> input1*2; 
 b = input1 – 3; 
 c <> input1 – 4; 
 output1 <> c + 3; 
} 
 

Figure 36. 

Cv code containing non-blocking statements. 

 

In this example there are four assignments. Variables a, c, and output1 are assigned using non-

blocking assignments, and the variable b is assigned using a normal assignment. The non-

blocking assignments will be gathered and executed in parallel. Once the non-blocking 

statements have been executed, the remaining code, in this case the assignment to variable b, will 

be executed.  

 

Cv Software Translator 
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//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvFunctionStruct_MyFunction returnValue; 
 CvV<int> a; 
 CvV<int> b; 
 CvV<int> c; 
 
 //non-blocking assignment 
 a ^ input1 * 2; 
 c ^ input1 – 4; 
 returnValue.output1 ^ c + 3;  
 a.AfterParallelUpdate( );   
 c.AfterParallelUpdate( );   
 returnValue.output1.AfterParallelUpdate( );   
 
 //serial statement 
 b = input1 – 3; 
 
 return returnValue; 
} 
 

Figure 37. 

Translating Cv to C++ for a function containing non-blocking statements. 

 

In Figure 37 all of the non-blocking statements are collected and executed first. The non-

blocking assignment are executed using the caret operator. This operator evaluates right hand 

and stores the value in the _writeValue member of the CvV class (Section 2.8), leaving the 

_value member of the CvV class available to be read without change. Once all assignments are 

done using the caret operator, a, c, and returnValue.output1 each call the AfterParallelUpdate 

function from the CvV class to copy the _writeValue member over to the _value member. 

Evaluating non-blocking statements in software is identical to evaluating parallel statements 

(Section 2.10). The difference is that all non-blocking statements are executed before the rest of 

the code. 

 

Cv Hardware Translator 
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//Verilog Code 
module myFunction (input clock, input reset, input start,  
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] a; 
reg [31:0] b; 
reg [31:0] c; 
 
//non-blocking block 
always@(posedge clock) begin 
 if(reset) begin 
  a <= 0; 
  c <= 0; 
  output1 <= 0; 
 end 
 else if(start) begin 
  a <= input1 * 2; 
  c <= input1 – 4; 
  output1 <= c + 3; 
 end 
 else begin 
  a <= a; 
  c <= c; 
  output1 <= output1; 
 end 
end 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  b = 0;  
 end 
 else if(start) begin 
  b = input1 – 3; 
 end 
 else begin 
  b = b;  
 end 
end 
 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end 
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 

Figure 38. 

Translating Cv to Verilog for a function containing non-blocking statements. 
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Non-blocking statements are native to Verilog, and therefore the Cv Hardware Translator uses 

the Verilog non-blocking semantic. A third always block is made for non-blocking statements, 

and all non-blocking assignments are placed in the new always block. Non-blocking statements 

never force a function to require CHard.  

 

2.12 Event Driven Statements 

According to the grammar: 

 

EventDriven ::= LValue ~ EventDrivenExpr ; 

 

The LValue is either a variable or a computation accessing an element of an array. The tilde 

operator ( ~ ) declares that this is an event driven assignment. In an event driven assignment, 

anytime one of the parameters on the right side of the tilde changes, the LValue on the left is 

automatically updated. For example, if a and b are both integers, and we have the statement: 

a ~ b + 4; 

then if b is equal to 6, then a is equal to 10. If something changes the value of b to 8, then a is 

automatically changed to 12. The operations that are legal for the right side of an event driven 

statement are: addition, subtraction, multiplication, division, modulus, negation, less than, 

greater than, less than or equal to, greater than or equal to, equal to, not equal to, and, or, left 

shift, and right shift. The only expression that is not allowed to be used in an event driven 

statement is a function call.  

 

 

2.12.1 Example 
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//Cv Code 
int a MyFunction (int b, int c){ 
 a ~ b + c; 
} 
 

Figure 39. 

Cv code containing event driven statements. 

 

In this example a is event driven assigned to b + c. Any time that b or c change, a will 

automatically be updated.  

 

2.12.2 Cv Software Translator 

The event driven semantic is accomplished in software by the CvC and CvV classes. Within the 

CvC class there are 2 members: 

 
 
//C++ code 
vector<CvC*> _dependors; 
vector<CvC*> _dependencies; 
 

Figure 40. 

Private members of the CvC class in C++. These members are used to implement the event 

driven construct in software.  

 

Because each variable in Cv is translated into a CvV, which is inherited from the CvC class, each 

variable has dependors and dependencies. Given the event driven example: 

 
 
//Cv Code 
a ~ b + c; 
 

Figure 41. 

An event driven statement in Cv.  
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For variable a, variables b and c would be added to a’s dependencies vector. For variables b and 

c, a would be added to their dependors vector. Every CvC, and therefore CvV, also has a 

member of that class that is a pointer to a function that takes a pointer to a CvC. For discussion 

this function will be called the variable’s Update Function. The Update Function is what updates 

the left hand variable when one of the right hand variables is changed.  

 

Next, the overridden = operator is discussed. When a CvV variable is assigned a new value each 

of its dependors call the dependor’s Update Function. This is what enables a change to variables 

b and c to automatically update variable a. Once b or c has changed, a, which is one of b and c’s 

dependors, will call its Update Function. Variable a’s Update Function is created when the Cv 

Software Translator is compiling the event driven statement. Each event driven statement creates 

a unique function. For this example, the function would be: 

 
 
//C++ Code  
void CvEventFunction_1(CvC* cvc) { 
 Cvc* b = cvc->GetDependencies( )[0]; 
 Cvc* c = cvc->GetDependencies( )[1]; 
 cvc->SetValue(b->Me<int>( ) + c ->Me<int>( )); 
} 
 

Figure 42. 

C++ functions generated to execute the event driven statement. 

 

Because this is the Update Function for the variable a, when CvEventFunction_1 is called, the 

CvC* argument will point at variable a. When a calls its Update Function 

(CvEventFunction_1), variables b and c will get selected out of a’s dependencies, added 

together, and set as a’s _value using SetValue; 
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The example function would be translated as follows: 

 
//C++ Code 
void CvEventFunction_1(CvC* cvc) { 
 Cvc* b = cvc->GetDependencies( )[0]; 
 Cvc* c = cvc->GetDependencies( )[1]; 
 cvc->SetValue(b->Me<int>( ) + c ->Me<int>( )); 
} 
struct CvFunctionStruct_MyFunction { 
 CvV<int> a; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> b, CvV<int> c) { 
 CvFunctionStruct_MyFunction returnValue; 
 returnValue.a.AddDependency(b); 
 returnValue.a.AddDependency(c); 
 b.AddDependor(a); 
 c.AddDependor(a); 
 a.AddFunction(CvEventFunction_1); 
 
 return returnValue; 
} 
 

Figure 43. 

Translating Cv to C++ for event driven statements. 

 

In Figure 43, a adds b and c as its dependors. Then b and c each add a as a dependency. This is 

how different variables set their dependors and dependencies.  

 

2.12.3 Cv Hardware Translator 

Verilog has built in event driven semantics using the assign operator. Therefore this is what Cv 

will use to translate the Cv code.  

 
 
//Verilog Code 
module MyFunction(input clock, input reset, input start, input [31:0] b,           
      input [31:0] c, output reg done, output wire [31:0] a); 
 
assign a = b + c;  
endmodule 
 

Figure 44. 

Translating Cv to Verilog for event driven statements. 
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The above code uses the assign statement in Verilog to implement the event driven semantic in 

Cv. Although outputs are normally reg variables after being translated from Cv, a has been 

changed to a wire. This is because Verilog requires that the left hand side of an assign 

statement is a wire. The Cv compiler knows how Verilog types need to be declared in order to 

be comply with Verilog rules. 

 

2.13 Function Calls 

Function calls are integral to software languages, and are closely related to module instantiations 

in Verilog. Because the two are closely related, module instantiations can be used in hardware to 

implement function calls. According to the grammar: 

 

Call ::= ident ( Actuals ).ident | ident ( Actuals ) 

AssignExpr ::= LValue = Expr | ( ident +, ) = Call | LValue <> Expr 

 

The first definition ( ident(Actuals).ident) is used to target individual outputs of a function, 

while the second definition ( ident(Actuals) )is used to set multiple variables to the output of the 

function call. To set multiple variables to the outputs of a function call, the syntax for the second 

definition of the AssignExpr ( ( ident +, ) = Call ) is used.  

 

The Example section of Section 2.13 has been omitted. Because there are many special cases for 

the Cv Hardware Translator that differ from the Cv Software Translator, all examples are 

presented in Section 2.13.1 (Cv Software Translator) and Section 2.13.2 (Cv Hardware 

Translator). 
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2.13.1 Cv Software Translator 

When translating Cv function calls to C++, the two look very similar. There are two cases to 

consider: targeting an individual output of a function, and setting multiple outputs of a function.   

 

2.13.1.1 Targeting an Individual Output 

Each functions is translated to return a struct, and elements of a struct are accessed using the dot 

notation. Because of this, the C++ syntax to access a value within a struct that has been returned 

matches the Cv syntax for accessing an output of a function.  

 

Example: 

 
 
//Cv Code 
int a FunctionToBeCalled(int y){ 
 a = y * 2; 
} 
int output1 MyFunction(int input1){ 
 output1 = FunctionToBeCalled(input1).a + 3; 
} 
 

Figure 45. 

Cv code containing a function call. 

 

In Figure 45, output1 is being assigned the value of the output a from FunctionToBeCalled 

plus 3. To get the value of a specific output from a function call, the function call is followed by 

“.” and the output variable’s name. In Figure 45, the output variable a from 

FunctionToBeCalled is selected using this method. 
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Translated into C++: 

 
 
//C++ Code 
struct CvFunctionStruct_FunctionToBeCalled { 
 CvV<int> a; 
}; 
CvFunctionStruct_FunctionToBeCalled FunctionToBeCalled(CvV<int> y) { 
 CvFunctionStruct_FunctionToBeCalled returnValue; 
 returnValue.a = y * 2; 
 return returnValue; 
} 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvFunctionStruct_MyFunction returnValue; 
 returnValue.output1 = FunctionToBeCalled(input1).a + 3; 
 return returnValue; 
} 
 

Figure 46. 

Translating Cv to C++ for code containing a function call. 

 

As demonstrated above, the function call looks very similar to the Cv code. The function call is 

made and is provided input1 as the argument to FunctionToBeCalled. Because 

FunctionToBeCalled returns a struct, containing a CvV<int> a, which is the desired output, 

this can select this using .a syntax.  

 

2.13.1.2 Setting Multiple Outputs 

To set multiple outputs of a function, the function call cannot be an inline call and must be a 

separate assignment. The following syntax is an example of assigning multiple outputs of a 

function to variables. 

 
 
//Cv Code 
(a, b, c) = CallSomeFunction(x); 
 

Figure 47. 

An example of Cv code calling a function and setting multiple outputs. 
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Here CallSomeFunction returns three variables, whose types would match a, b, and c. The 

variable a would be assigned to the first output of CallSomeFunction, b would be assigned to 

the second output, and c would be assigned to the third. The number of variables being assigned 

must match the number of outputs of the function.  

 

Example: 

 
 
//Cv Code  
int a, int b FunctionToBeCalled(int y){ 
 a = y * 2; 
 b = y – 3; 
} 
int output1 MyFunction(int input1){ 
 int c; 
 int d; 
 
 (c, d) = FunctionToBeCalled(input1); 
 output1 = c + d; 
} 
 

Figure 48. 

Cv code calling a function and setting multiple outputs. 

 

Translated into C++: 

 
 
//C++ Code 
struct CvFunctionStruct_FunctionToBeCalled { 
 CvV<int> a; 
 CvV<int> b; 
}; 
CvFunctionStruct_FunctionToBeCalled FunctionToBeCalled( CvV<int> y ) { 
 CvFunctionStruct_FunctionToBeCalled returnValue;  
 returnValue.a = y * 2; 
 returnValue.b = y – 3; 
 return returnValue; 
} 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction( CvV<int> input1 ) { 
 CvFunctionStruct_MyFunction returnValue; 
 CvV<int> c; 

CvV<int> d; 
 
CvFunctionStruct_FunctionToBeCalled FunctionToBeCalled_1 =      
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        FunctionToBeCalled(input1); 
c = FunctionToBeCalled_1.a; 
d = FunctionToBeCalled_1.b; 
 
returnValue.output1 = c + d; 

 return returnValue; 
} 
 

Figure 49. 

Translating Cv to C++ for a function call that returns multiple outputs. 

 

When translated into C++, a struct that the called function returns is created and set equal to the 

output of the called function. Then, the variables assigned to the outputs of the function are 

assigned in order to the variables inside the struct. This can be seen where c and d are assigned to 

variables a and b inside the FunctionToBeCalled_1.  

 

2.13.2 Cv Hardware Translator 

When translating Cv function calls into Verilog three scenarios exist: function calls that occur 

inline with other statements, function calls in series with other statements, and function calls that 

occur purely in parallel. 

 

2.13.2.1 In Line Function Calls 

It is very common in software to see function calls made inline as a part of an assignment. For 

example: 

 
 
//C++ Code 
int x = 3 + CallToFunction(x); 
 

Figure 50. 

Showing an example of a function call in C++. 

 



62 
 
 

 

Therefore, Cv also supports inline function calls. This section presents two examples. The first 

example uses one inline call. The second examples uses two inline calls in the same line. 

 

Example 1: 

 
 
//Cv Code 
int a MyFunctionToBeCalled( int y ){ 
 a = y*2 + 3; 
} 
int output1 MyFunction( int input1 ){ 
 int myInt; 

myInt = 4; 
 output1 = myInt + input1 + MyFunctionToBeCalled(input1).a; 
} 
 

Figure 51. 

Cv code containing an inline function call. 

 

Figure 51 provides two functions, where MyFunction calls MyFunctionToBeCalled in the 

assignment of the variable x. Because Cv allows functions to have more than one output, the call 

must attach the variable output from the called function, using the “.” notation. This can be seen 

in Figure 51 by selecting output variable a from MyFunctionToBeCalled using the .a syntax 

after the function call. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunctionToBeCalled(input clock, input reset, input start, 
      input [31:0] y, output reg done, output reg [31:0] a); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  a = 0; 
 end 
 else if(start) begin 
  a = y*2 + 3; 
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 end  
 else begin 
  a = a; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end  
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 
module MyFunction(input clock, input reset, input start,    
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
//instantiate the module to be called 
reg startMyFunctionToBeCalled_1; 
wire doneMyFunctionToBeCalled_1; 
wire [31:0] myFunctionToBeCalled_1_a; 
MyFunctionToBeCalled myFunctionToBeCalled_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startMyFunctionToBeCalled_1), 
 .y(input1), 
 .done(doneMyFunctionToBeCalled_1), 
 .a(myFunctionToBeCalled_1_a) 
); 
 
reg [1:0] functionCounter;  
reg [31:0] myInt; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  myInt <= 0; 
  startMyFunctionToBeCalled_1 <= 0; 
  output <= 0; 
 end 
 else if(start) begin 
  myInt <= 4; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: startMyFunctionToBeCalled_1 <= 1; 
   2: startMyFunctionToBeCalled_1 <= 0; 
   3: output1 <= myInt + input1 + MyFunctionToBeCalled_1_a; 
  endcase 
 end 
 else begin 
  myInt <= myInt; 
  startMyFunctionToBeCalled_1 <= startMyFunctionToBeCalled_1; 
  output <= output; 
 end 
end 
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//control block 
always@(posedge clock) begin 
 if(reset) begin 
  functionCounter <= 0; 
  done <= 0; 
 end 
 else if(start) begin  
  functionCounter <= 1; 
  done <= 0; 
 end 
 else if(functionCounter != 0) begin 
  2: 
  if(doneMyFunctionToBeCalled_1) begin 
   functionCounter <= 3; 
  end 
  else begin  
   functionCounter <= 2; 
  end 
  3: functionCounter <= 0; 
  done <= 1; 
  default: functionCounter <= functionCounter + 1; 
 end 
 else begin 
  functionCounter <= 0; 
  done <= done; 
 end 
end 
endmodule 
 

Figure 52. 

Translating Cv to Verilog for an inline function call. 

 

In Figure 52, first MyFunctionToBeCalled is translated into a module. MyFunctionToBeCalled 

does not require CHard, as can be seen by the lack of a functionCounter in 

MyFunctionToBeCalled . Then MyFunction is translated into a module. While translating 

MyFunction the Cv compiler recognizes that there is an inline function call in MyFunction. The 

module for MyFunctionToBeCalled is instantiated and indexed. This can be seen in Figure 52 

where the instantiation for MyFunctionToBeCalled is myFunctionToBeCalled_1, where 1 is 

the index. Indexing instantiations allows for multiple function calls to be made to the same 

function, and each instantiation will receive a different index. Because MyFunction uses an 

inline function call, MyFunction will automatically require CHard. The result of 

MyFunctionToBeCalled must have finished before MyFunction  can use the result of 
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MyFunctionToBeCalled . Therefore, in one clock cycle the start signal for 

MyFunctionToBeCalled will be raised high. The next clock cycle the start signal for 

MyFunctionToBeCalled is set low. This can be seen in Figure 52 when 

startMyFunctionToBeCalled_1 is set high on the clock cycle when the functionCounter is 1, 

and set low when the functionCounter is 2. Next, the control block does not allow the function 

to proceed until the done signal from MyFunctionToBeCalled is high. This can be seen in 

Figure 52 in the control block when the functionCounter is 2. If 

doneMyFunctionToBeCalled_1 is high then the functionCounter increments to 3, otherwise 

the functionCounter remains at 2, and the next clock cycle the function will check again to see 

if doneMyFunctionToBeCalled_1 is high. Once MyFunctionToBeCalled is done, the result is 

used in the next clock cycle in the computation. This is seen in Figure 52 in the flow block when 

the functionCounter is 3, output1 <= myInt + input1 + MyFunctionToBeCalled_1_a. 

 

Example 2: 

If multiple function calls are made in the same inline statement, then each function is started at 

the same time. The control block waits to see the done signal from each module started before 

proceeding.  

 
 
//Cv Code 
int a MyFunctionToBeCalled1(int y){ 
 a = y*2 + 3; 
} 
int b MyFunctionToBeCalled2(int z){ 
 b = z/5 + 4; 
} 
int output1 MyFunction(int input1){ 
 output1 =  MyFunctionToBeCalled1(input1).b + 
MyFunctionToBeCalled2(input1).a; 
} 
 

Figure 53. 
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Cv code containing inline function calls being added together. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunctionToBeCalled1(input clock, input reset, input start, 
      input [31:0] y, output reg done, output reg [31:0] a); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  a = 0; 
 end 
 else if(start) begin 
  a = y*2 + 3; 
 end  
 else begin 
  a = a; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end  
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 
module MyFunctionToBeCalled2(input clock, input reset, input start, 
      input [31:0] z, output reg done, output reg [31:0] b); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  b = 0; 
 end 
 else if(start) begin 
  b = z/5 +4; 
 end  
 else begin 
  b = b; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end  
 else if(start) begin 
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  done <= 1; 
 end 
 else begin  
  done <= done; 
 end 
end 
endmodule 
 
module MyFunction(input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
//instantiate the module to be called  
reg startMyFunctionToBeCalled1_1; 
wire doneMyFunctionToBeCalled1_1; 
wire [31:0] MyFunctionToBeCalled1_1_a; 
reg startMyFunctionToBeCalled2_1; 
wire doneMyFunctionToBeCalled2_1; 
wire [31:0] myFunctionToBeCalled2_1_b;  
MyFunctionToBeCalled MyFunctionToBeCalled1_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startMyFunctionToBeCalled1_1), 
 .y(input1), 
 .done(doneMyFunctionToBeCalled1_1), 
 .a(myFunctionToBeCalled1_1_a) 
); 
MyFunctionToBeCalled myFunctionToBeCalled2_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startMyFunctionToBeCalled2_1), 
 .z(input1), 
 .done(doneMyFunctionToBeCalled2_1), 
 .b(myFunctionToBeCalled2_1_b) 
); 
 
reg [1:0] functionCounter;  
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  myInt <= 0;  
  startMyFunctionToBeCalled1_1 <= 0; 
  startMyFunctionToBeCalled2_1 <= 0; 
  output <= 0; 
 end 
 else if(start) begin 
  startMyFunctionToBeCalled1_1 <= 1; 
  startMyFunctionToBeCalled2_1 <= 1; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: startMyFunctionToBeCalled1_1 <= 0; 

startMyFunctionToBeCalled2_1 <= 0; 
   2: output1 <= MyFunctionToBeCalled1_1_a +  
                                              MyFunctionToBeCalled2_1_b;
  
  endcase 
 end 
 else begin  
  startMyFunctionToBeCalled1_1 <= startMyFunctionToBeCalled1_1; 
  startMyFunctionToBeCalled2_1 <= startMyFunctionToBeCalled2_1; 
  output <= output; 
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 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  functionCounter <= 0; 
  done <= 0; 
 end 
 else if(start) begin  
  functionCounter <= 1; 
  done <= 0; 
 end 
 else if(functionCounter != 0) begin 
  1: 
  if(doneMyFunctionToBeCalled1_1 & doneMyFunctionToBeCalled2_1)      
            begin 
   functionCounter <= 2; 
  end 
  else begin  
   functionCounter <= 1; 
  end 
  2: functionCounter <= 0; 
  done <= 1; 
  default: functionCounter <= functionCounter + 1; 
 end 
 else begin 
  functionCounter <= 0; 
  done <= done; 
 end 
end 
endmodule 
 

Figure 54. 

Translating Cv to Verilog for code containing 2 inline functions being added together. 

 

In Figure 54, in MyFunction there are two function calls made within the same line. When 

MyFunction is translated into Verilog startMyFunctionToBeCalled1_1 and 

startMyFunctionToBeCalled2_1 are both raised high during the same clock cycle. This can be 

seen in Figure 54 when startMyFunctionToBeCalled1_1 and 

startMyFunctionToBeCalled2_1 are set high when the start is high. In addition to this, the 

control block does not continue with execution until both doneMyFunctionToBeCalled1_1 and 

doneMyFunctionToBeCalled2_1 are both high. This can be seen in Figure 54 in the control 

block of MyFunction when the functionCounter is 1. This allows for functions to be called 

that require different numbers of clock cycles.  
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2.13.2.2 Function Calls in Series 

This section covers function calls that are in series with other statements, but are not made inline 

with other computations. 

 

Example: 

 
 
//Cv Code 
int a MyFunctionToBeCalled(int y){ 
 a = y*2 + 3; 
} 
int output1 MyFunction(int input1){ 
 int myInt; 

myInt = 4; //line 1 
 output1 = MyFunctionToBeCalled(input1).a; //line 2 
 output1 = myInt + input1 + output1; //line 3 
} 
 

Figure 55. 

Cv code containing a function call in series with other statements. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunctionToBeCalled(input clock, input reset, input start, 
      input [31:0] y, output reg done, output reg [31:0] a); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  a = 0; 
 end 
 else if(start) begin 
  a = y*2 + 3; 
 end  
 else begin 
  a = a; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end  
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 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 
module MyFunction(input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
//instantiate the module to be called 
reg startMyFunctionToBeCalled_1; 
wire doneMyFunctionToBeCalled_1; 
wire [31:0] myFunctionToBeCalled_1_a; 
MyFunctionToBeCalled myFunctionToBeCalled_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startMyFunctionToBeCalled_1), 
 .y(input1), 
 .done(doneMyFunctionToBeCalled_1), 
 .a(myFunctionToBeCalled_1_a) 
); 
reg [2:0] functionCounter;  
reg [31:0] myInt; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  myInt <= 0; 
  startMyFunctionToBeCalled_1 <= 0; 
  output <= 0; 
 end 
 else if(start) begin 
  myInt <= 4; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: startMyFunctionToBeCalled_1 <= 1; 
   2: startMyFunctionToBeCalled_1 <= 0; 
   3: output1 <= MyFunctionToBeCalled_1_a; 
   4: output1 <= myInt + input1 + output1;   
  endcase 
 end 
 else begin 
  myInt <= myInt; 
  startMyFunctionToBeCalled_1 <= startMyFunctionToBeCalled_1; 
  output <= output; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  functionCounter <= 0; 
  done <= 0; 
 end 
 else if(start) begin  
  functionCounter <= 1; 
  done <= 0; 
 end 
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 else if(functionCounter != 0) begin 
  2: 
  if(doneMyFunctionToBeCalled_1) begin 
   functionCounter <= 3; 
  end 
  else begin  
   functionCounter <= 2; 
  end 
  4: functionCounter <= 0; 
  done <= 1; 
  default: functionCounter <= functionCounter + 1; 
 end 
 else begin 
  functionCounter <= 0; 
  done <= done; 
 end 
end 
endmodule 
 

Figure 56. 

Translating Cv to Verilog for a function call in series with other statements. 

 

This example is very similar to the example in Section 2.13.2.1. In Figure 55 the function call in 

line 2 is made by itself (not inline), however it is in series with the line 1 and line 3. Therefore, 

the function call must be made after line 1, but before line 3. This will require the Cv compiler to 

use CHard.  The only difference in the translated Verilog is in the flow block when the 

functionCounter is 3. Here output1 is set to the result of MyFunctionToBeCalled. Then, 

when the functionCounter is 4, the addition is performed. This is an accordance to how the 

code was written in Cv.  

 

2.13.2.3 Function Calls in Parallel 

In hardware, or Verilog, when modules are instantiated within one another, they operate in 

parallel. Therefore, in Cv there is a way to call functions such that the functions behave in the 

same manner that is traditional to hardware developers. When function calls are made in parallel 

then they can be translated without creating CHard.  
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Example: 

 
 
//Cv Code 
int a MyFunctionToBeCalled(int y){ 
 a = y*2 + 3; 
} 
int output1 MyFunction(int input1){ 
 int outputOfFunction;  
 outputOfFunction = MyFunctionToBeCalled(input1).a; 
 || output1 = input1 + outputOfFunction; 
} 
 

Figure 57. 

Cv code calling a function in parallel with other statements. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunctionToBeCalled(input clock, input reset, input start, 
      input [31:0] y, output reg done, output reg [31:0] a); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  a = 0; 
 end 
 else if(start) begin 
  a = y*2 + 3; 
 end  
 else begin 
  a = a; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end  
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 
module MyFunction(input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
//instantiate the module to be called 
wire doneMyFunctionToBeCalled_1; 
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wire [31:0] outputOfFunction; 
MyFunctionToBeCalled myFunctionToBeCalled_1( 
 .clock(clock), 
 .reset(reset), 
 .start(start), 
 .y(input1), 
 .done(doneMyFunctionToBeCalled_1), 
 .a(outputOfFunction) 
); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 = 0; 
 end 
 else if(start) begin 
  output1 = input1 + outputOfFunction; 
 end 
 else begin 
  output1 = output1; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end 
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
 

Figure 58. 

Translating Cv to Verilog for code containing function calls in parallel with other code. 

 

In the example above (Figure 58) there are several things different than the examples before Fig 

58 examples. In this discussion MyFunction is the focus. MyFunctionToBeCalled is identical to 

the previous examples in the section. The start input for the instantiation of 

MyFunctionToBeCalled, is the same start input to MyFunction. This is because 

MyFunctionToBeCalled needs to start at the same time as the code in MyFunction. Also, in the 

Cv code in Figure 57, outputOfFunction is assigned to MyFunctionToBeCalled(input1).a. 

Therefore in this situation outputOfFunction is defined as a wire, and is the output a in 
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MyFunctionToBeCalled. It can also be seen in the Figure 58 that CHard is not created. Using 

this style of design, hardware developers can create hardware similarly to methods used today.  

 

2.14 If Statement 

If statements are conditional expressions that execute a desired branch based on a given 

expression. According to the grammar: 

 

IfStmt ::= if ( Expr ) Stmt < else Stmt > 

 

The if statement is the keyword if, followed by a test expression to evaluate in parenthesis, and 

then a statement (or a statement block) to execute if the test expression is true. Optionally an else 

condition can follow. It is common to see the else followed by another if statement, making a 

chain of if, else if, else if, etc.  

 

The example section of if statement has been omitted. Because there are many special cases for 

the Cv Hardware Translator that differ from the Cv Software Translator, all examples are 

presented in the Cv Software Translator (Section 2.14.1) and Cv Hardware Translator (Section 

2.14.2). 

 

2.14.1 Cv Software Translator 

Like other constructs, the translated C++ code highly resembles the Cv code. The test condition 

must be manipulated so that it return a C++ bool (Boolean value), and not a CvV<bool>. 

 

Example: 
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//Cv Code 
int output1 MyFunction(int input1) { 
 int a; 
 
 if(input1 == 2) 
  a = 3; 
 else if(input1 == 3) { 
  a = 4; 
  a = 5 * a; 
 } 

else 
 a = 6; 
output1 = a * 9; 

} 
 

Figure 59. 

Cv code containing if statements. 

 

In Figure 59, the input1 is tested for values 2 and 3. The integer a is set to a certain value 

depending on the value of input1. Output1 then uses a to calculate its value. 

 

Translated into C++: 

 
 
//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvFunctionStruct_MyFunction returnValue; 
 CvV<int> a; 
 
 if(CvV<bool>(input1 == 2).Me( )) { 
  a = 3; 
 } 
 else if(CvV<bool>(input1 == 3).Me( )) { 
  a = 4; 
  a = 5 * a; 
 } 
 else { 
  a = 6; 
 } 
  
 returnValue.output1 = a * 9; 
 
 return returnValue; 
} 
 

Figure 60. 
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Translating Cv to C++ for code containing if statements. 

 

In the translation it can be seen that the structure of the if statements is almost identical to the Cv 

code. In the test of each if statement the expression is wrapped by, CvV<bool>( test expression 

).Me( ). This is because comparing a CvV variable (Section 2.8) returns another CvV variable, 

instead of a C++ bool. C++ requires that the test expression of an if statement is a C++ bool. 

Therefore, first the expression is transformed into a CvV<bool>, and second the Me function is 

accessed. The Me function for any CvV variable returns the _value member. Because the 

variable has set the template type to bool, the Me function will return the Boolean result of the 

test expression.  

  

2.14.2 Cv Hardware Translator 

The Cv Hardware Translator must be concerned with the following scenarios given an if 

statement: If statements that require CHard, if statements that don’t require CHard, if statements 

containing non-blocking statements, and when the if statement contains a call in the test 

expression. These 4 scenarios are presented below with examples. 

 

2.14.2.1 If Statement Does not Require CHard 

The first scenario to consider is when the function does not require CHard.  

 

Example: 

 
 
//Cv Code 
int output1 MyFunction (int input1) { 
 int myInt; 



77 
 
 

 

 if(input1 == 2) 
  myInt = 6; 
 else if(input1 == 3) 
  myInt = 10; 
 else 
  myInt = 3; 
 output1 = 4*myInt; 
} 
 

Figure 61. 

Cv code containing if statement that do not require CHard. 

 

This code uses if statements in series with other assignments. However, there are no loops 

involved, so the code does not require CHard. 

 

Translating to Verilog: 

 
 
//Verilog Code 
module myFunction (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] myInt; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  myInt = 0; 
 end 
 else if(start) begin 
  if(input1 == 2) begin 
   myInt = 6; 
  end 
  else if(input1 == 3) begin 
   myInt = 10; 
  end 
  else begin 
   myInt = 3; 
  end  
  output1 = 4*myInt; 
 end 
 else begin 
  myInt = myInt; 
  output1 = output1; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) 
  done <= 0; 
 end 
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 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 done 
end 
 
endmodule 
 

Figure 62. 

Translating Cv to Verilog for code containing if statements that do not require CHard. 

 

MyFunction does not require CHard. As stated in the CHard section, all of the code to be 

implemented from the user is placed in the flow block, and is executed when start is high. It 

can be seen how there is a direct translation between the code Figure 61, and the resulting 

Verilog in Figure 62.  

 

2.14.2.2 If Statement Requires CHard 

Next an if statement is presented that requires CHard. In this if statement a function call is used.  

 

Example: 

 
 
//Cv Code 
int a CalledFunction(int y)  
{ 
        //some code 
} 
 
int output1 MyFunction ( int input1 ) { 
 int myInt; 
 if(input1 == 2) 
  myInt = 6; 
 else if(input1 == 3)  
  myInt = CalledFunction(input1).a; 
 else 
  myInt = 3; 
 output1 = 4*myInt; 
} 
 

Figure 63. 
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Cv code containing if statements. Because one of the if statements contains a function call, the 

code requires CHard. 

 

Because CalledFunction occurs in the if statement, and is in series with the last statement in 

the function, this function requires CHard.  

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunction (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [3:0] functionCounter; 
reg [31:0] myInt; 
reg startCalledFunction_1; 
wire doneCalledFunction_1; 
wire [31:0] calledFunction_1_a; 
CalledFunction calledFunction_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startCalledFunction_1), 
 .y(input1), 
 .done(doneCalledFunction_1), 
 .a(calledFunction_1_a) 
); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  myInt <= 0; 
  startCalledFunction_1 <= 0; 
  output1 <= 0; 
 end 
 else if(start) begin 
  //nothing will happen here, control block is deciding which   
            //branch to take 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter) 
   1: myInt <= 6; 
   2: startCalledFunction_1 <= 1; 
   3: startCalledFunction_1 <= 0; 
   4: myInt <= calledFunction_1_a; 
   5: myInt <= 3; 
   6: output1 <= myInt*4; 
  endcase 

end 
 else begin 
  myInt <= myInt; 
  startCalledFunction_1 <= startCalledFunction_1; 
  output1 <= output1;   
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 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
  functionCounter <= 0; 
 end 
 else if(start) begin 
  done <= 0; 
  if(input1 == 2) begin 
   functionCounter <= 1; 
  end 
  else if(input1 == 3)  
   functionCounter <= 2; 
  end 
  else begin 
   functionCounter <= 5; 
  end 
 end  
 else if(functionCounter != 0) begin 
  case(functionCounter) 
   1: functionCounter <= 6; 
   3: if(doneCalledFunction_1) begin 
    functionCounter <= 4; 
   end 

else begin 
 functionCounter <= 3; 
end 
4: functionCounter <= 6; 
5: functionCounter <= 6; 
6: functionCounter <= 0; 
done <= 1; 

  endcase  
 end 
 else begin 
  functionCounter <= 0; 
  done <= done; 
 end 
end 
 

Figure 64. 

Translating Cv to Verilog for if statements containing code that requires CHard. 

 

In Figure 64 attention should be paid to how instructions are placed within the flow block, as 

well as the jumps made in the control block. In the flow block, when start is high the flow 

block does nothing. This is because when a function requires CHard the if Statement uses one 

clock cycle to determine which branch of the if Statement to take. After this, when the 

functionCounter is not equal to 0, all of the instructions within all if and else if blocks are 

laid out sequentially. This is because the control block will when instructions get executed. 
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Because there is a function call, startCalledFunction_1 must be raised high, and then 

MyFunction must wait until doneCalledFunction_1 is high to continue. In the control block it 

is shown how the branches are chosen. First, when start is high, the control block evaluates the 

if statement, and determines the appropriate branch to take. If input1 is equal to 2, then the 

functionCounter is assigned 1. Else, if input1 is 3, then the functionCounter is assigned 2. 

If neither of these two test expressions are true, then the functionCounter is assigned 5. By 

assigning the functionCounter to 1, the instruction within the first if statement is executed. 

Else, if the functionCounter is assigned to 2, then the code from the else if statement is 

executed. In this branch, the function call is made by raising startCalledFunction_1. 

MyFunction waits until doneCalledFunction_1 if high to continue. If the functionCounter is 

assigned to 5, then the code for the else block is executed. When any of the branches are done 

executing, the functionCounter is assigned to 6, which is the first statement after the end of the 

if statement. This can be seen in Figure 64 when the functionCounter is 1, 4, or 5, the 

functionCounter is assigned to the value 6. This will prevent MyFunction from executing 

statements in other branches of the if statement.  

 

2.14.2.3 Non-Blocking Statements 

It is common in hardware design to use if statements containing non-blocking statements 

(Section 2.11). Therefore, in Cv this same design philosophy is supported. Normally all non-

blocking assignments are extracted and placed together in an always block. However, with if 

statements, the entire if statement must be extracted and placed in the non-blocking block.  

 

Example: 



82 
 
 

 

 
 
//Cv Code 
int output1 MyFunction(int input1) { 
 int myInt; 
  
 if(input1 == 2) 
  myInt <> 3; 
 else 
  myInt <> 4; 
 output1 <> myInt*2; 
} 
 

Figure 65. 

Cv code containing if statements that contain non-blocking statements. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module myFunction (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] myInt; 
//non-blocking block 
always@(posedge clock) begin 
 if(reset) begin 
  myInt <= 0; 
  output1 <= 0; 
 end 
 else if(start) begin 
  if(input1 == 2) begin 
   myInt <= 3; 
  end 
  else begin 
   myInt <= 4; 
  end 
  output1 <= myInt*2; 
 end 
 else begin 
  myInt <= myInt; 
  output1 <= output1; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end 
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
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endmodule 
 

Figure 66. 

Translating Cv to Verilog for code containing if statements that contain non-blocking statements. 

 

In Figure 66 the entire if statement is extracted and placed in the non-blocking block. There is no 

code to put in the flow block, so the flow block is omitted. Because this function only contains 

non-blocking statement, it does not require CHard, and therefore does not depend on a 

functionCounter.  

 

2.14.2.4 Calls Within If Statement Test Expression 

The next situation that must be considered is when there is a function call within the test 

expression of the if statement.  

 

Example: 

 
 
//Cv Code  
int a CalledFunction1(int y)  
{ 
        //some code 
} 
 
int b CalledFunction2(int z)  
{ 
        //some code 
} 
 
int output1 MyFunction(int input1) { 
 int myInt; 
  
 if(CallFunction1(input1).a == 2) 
  myInt = 3; 
 else if(CallFunction2(input1).b == 4) 
  myInt = 4; 
 else 
  myInt = 5; 
 output1 = myInt*2; 
} 
 

Figure 67. 
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Cv code containing if statements that use function calls in their test expressions. 

 

In Figure 67 the if and else if Statements each contain a function call. Therefore, the values 

of the outputs of CalledFunction1 and CalledFunction2 must be determined before the 

appropriate branch from the if statement can be selected. Function calls within the an if 

statement’s test expression always require CHard.  

 

Translated into Verilog: 

 
 
//Verilog Code 
module myFunction (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [3:0] functionCounter; 
reg [31:0] myInt;  
reg startCalledFunction1_1; 
wire doneCalledFunction1_1; 
wire [31:0] calledFunction1_1_a; 
reg startCalledFunction2_1; 
wire doneCalledFunction2_1; 
wire [31:0] calledFunction2_1_b;  
CalledFunction1 calledFunction1_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startCalledFunction1_1), 
 .y(input1), 
 .done(doneCalledFunction1_1), 
 .a(calledFunction1_1_a) 
); 
CalledFunction2 calledFunction2_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startCalledFunction2_1), 
 .z(input1), 
 .done(doneCalledFunction2_1), 
 .b(calledFunction2_1_b) 
); 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 <= 0; 
  myInt <= 0; 
  startCalledFunction1_1 <= 0; 
  startCalledFunction2_1 <= 0; 
 end 
 else if(start) begin 
  startCalledFunction1_1 <= 1; 
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  startCalledFunction2_1 <= 1;   
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: startCalledFunction1_1 <= 0; 
   startCalledFunction2_1 <=0; 
   2: myInt <= 3; 
   3: myInt <= 4; 
   4: myInt <= 5; 
   5: output1 = myInt*2; 
  endcase 
 end 
 else begin 
  output1 <= output1; 
  myInt <= myInt; 
  startCalledFunction1_1 <= startCalledFunction1_1; 
  startCalledFunction2_1 <= startCalledFunction2_1; 
 end 
end 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0;  
  functionCounter <= 0; 
 end 
 else if(start) begin 
  done <= 0;  
  functionCounter <= 1;   
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)   
   1: if(doneCalledFunction1_1 & doneCalledFunction2_1)   
                  begin 
    if(calledFunction1_1_a == 2) begin 
     functionCounter <= 2; 
    end 
    else if(calledFunction2_1_b == 4) begin 
      functionCounter <= 3; 
    end 
    else begin 
     functionCounter <= 4; 
    end 
   end 
   else begin 
    functionCounter <= 1; 
   end 
   2: functionCounter <= 5; 
   3: functionCounter <= 5; 
   4: functionCounter <= 5; 
   5: functionCounter <= 0; 
                  done <= 1; 
   default: functionCounter <= functionCounter + 1; 
  endcase 
 end 
 else begin 
  functionCounter <= 0; 
  done <= done; 
 end 
end 
endmodule 
 

Figure 68. 
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Translating Cv to Verilog for code containing if statements that use function calls in their test 

expressions. 

 

In the above translation the flow block initially starts CalledFunction1 and 

CalledFunction2. The flow block then waits until doneCalledFunction1_1 and 

doneCalledFunction2_1 are high. In the control block, once doneCalledFunction1_1 and 

doneCalledFunction2_1 are high, the if statement determines which branch to take. If the first 

branch is taken then the functionCounter is assigned 2. If the second branch is taken the 

functionCounter is assigned 3. If the last branch is taken the functionCounter is assigned 4. 

Because there is only one statement per branch, the functionCounter is assigned 5 when the 

functionCounter equals 2, 3, or 4. This shows how the proper branch is selected, and when the 

selected branch has finished executing, the statement after the if statement is executed (output1 

= myInt*2). 

 

2.15 For Loop 

For loops allow a section of code to be run multiple times. According to the grammar:  

 

ForStmt ::= for ( <Expr>; Expr; <Expr> ) Stmt 

 

For loops have four elements; initialize (init), test expression, step, and statement. The statement 

can be a single line statement or a statement block. Below Example 1 displays a for loop with a 

single line statement, and Example 2 displays a for loop with a statement block. In the initialize 

step, a loop index may be set to an initial value. The initialize step is not required. The test step is 

a Boolean expression that is evaluated each time the for loop is run. The first time the for loop is 

run, the initialize statement will be executed, followed by evaluating the test. The step is the 
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statement to be executed at the completion of the for loop. Once all of the computations within 

the for loop are completed, the step statement is executed. Then the test is reevaluated. If the test 

is true, then the code in the for loop will be run again. If the test if false, then the function will 

resume at the end of the for loop.  

 
 
//Pseudo Code 
//Example 1 
for(init; test; step) 
 single line statement 
 
//Example 2 
for(init; test; step) { 
 statement block 
} 
 

Figure 69. 

Examples of for loops using a single line statement with no braces, and a statement block 

contained in braces. 

 

The example section of the for loop section has been omitted. Because there are many special 

cases for the Cv Hardware Translator that differ from the Cv Software Translator, all examples 

are presented in the Cv Software Translator and Cv Hardware Translator sections. 

 

2.15.1 Cv Software Translator 

The Cv Hardware Translator must focus on the difference between a static and dynamic for loop, 

(see Section 2.15.2), however the Cv Software Translator does not translate static and dynamic 

for loops differently.  

 

 

 

Example: 
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//Cv Code 
int output1 MyFunction(int input1){ 
 int i; 
  
 for(i = 0; i < input1; i = i + 1){ 
  output1 = output1 + 2*i; 
 } 
} 
 

Figure 70. 

Cv code containing a for loop. 

 

Translated into C++: 

 
 
//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvFunctionStruct_MyFunction returnValue; 
 CvV<int> i; 
 
 for( i = 0; CvV<bool>(i < input1).Me( ); i = i + 1) { 
  returnValue.output1 = returnVariable.output1 + 2 * i; 
 } 
 
 return returnValue; 
} 
 

Figure 71. 

Translating Cv to C++ for code containing for loops. 

 

In Figure 71 the for loop is created in C++, and the only syntactically change is in the test of the 

for loop. Similar to the test in the if statement (Section 2.14), the test expression is wrapped as a 

CvV<bool>, and then the Me function returns the C++ bool for the expression. The for loop will 

execute, setting the value of output1 in the returnValue , and at the end of MyFunction , the 

returnValue will be returned.  

 

2.15.2 Cv Hardware Translator 
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For hardware there are two cases to consider with for loops; dynamic and static for loops. 

Dynamic for loops do not have a set number of iterations, and can vary given the current 

operating parameters. Static for loops have a set number of iterations, and do not vary with the 

current operating parameters. Dynamic for loops require CHard, while static for loops can be 

translated into Verilog for loops, and do not require CHard. Figure 72 has an example of a 

dynamic for loop and an example of a static for loop. 

 
 
//Pseudo Code  
//Static For Loop 
for(i = 0; i < 20; i = i + 1) { 
 //code 
} 
 
//Dynamic For Loop 
for(i = 0; i < input1; i = i + 1){ 
 //code 
} 
 

Figure 72. 

Pseudo code showing the difference between the static and dynamic for loops. The static for loop 

goes from i = 0 to 19, and this can be determined at compile time. The dynamic for loop does not 

contain a guaranteed upper bound. 

 

If the index of the loop is adjusted within the for loop, then the translation will require CHard 

(Section 2.15.2.1). The static for loop (Section 2.15.2.2) starts with i equal to 0, and loops until i 

is greater than or equal to 20. It can be determined at compile time that this for loop will run 

twenty times, and it will not require CHard. In the dynamic for loop (Section 2.15.2.3) the test is 

i < input1. At compile time it cannot be determined what the value of input1 will be. 

Therefore this for loop is dynamic, and will require CHard.   

 

 

2.15.2.1 Adjusting Index Within For Loop 
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//Cv Code 
for(i = 0; i < 20; i = i + 1) { 
 //code 
 i = SomeFunction(i).output1; 
 //code 
} 
 

Figure 73. 

Cv code containing a for loop that would appear to be static. However, because the loop adjusts 

the index variable, this loop will be treated as dynamic and require CHard. 

 

In Figure 73 the index variable i is altered within the function by setting i equal to output1 of 

SomeFunction. This will require CHard. If elements of either the initialize, step, test ,or 

statement contain constructs that require CHard, such as function calls, then the otherwise static 

for loop will require CHard. Next, examples of static and dynamic for loops within functions are 

given. 

 

2.15.2.2 Static For Loop  

Example: 

 
 
//Cv Code 
int output1 MyFunctionStaticForLoop (int input1) { 
 int i;  
 
 output1 = 0; 
 for(i  = 0; i < 10; i = i + 1) 
  output1 = output1 + 1; 
} 
  

Figure 74. 

Cv code containing a static for loop. 

 

In this example a static for loop is used to iterate over the code ten times. 

 

Translated into Verilog: 
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//Verilog Code 
module MyFunctionStaticForLoop (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [31:0] i; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 = 0; 
  i = 0; 
 end 
 else if(start) begin 
  output1 = 0; 
  for(i  = 0; i < 10; i = i + 1) begin 
   output1 = output1 + 1; 
  end 
 end 
 else begin 
  output1 = output1; 
  i = i; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  done <= 0; 
 end 
 else if(start) begin 
  done <= 1; 
 end 
 else begin 
  done <= done; 
 end 
end 
endmodule 
 

Figure 75. 

Translating Cv to Verilog for code containing a static for loop.  

 

Verilog supports static for loops, so this construct is used. In Verilog static for loops are 

translated into multiple instances of the hardware described. If the desire is to loop over a set of 

code twenty times, Verilog will create and link twenty different instances of the hardware 

described within the for loop. Because the for loop is static, and does not contain any constructs 

that require CHard, MyFunctionStaticForLoop does not require CHard. This is reflected in the 

absence of the functionCounter, and will be done one clock cycle after start is high.  
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2.15.2.3 Dynamic For Loop 

Example: 

 
 
//Cv Code  
int output1 MyFunctionDynamicForLoop (int input1) { 
 int i;  
 
 output1 = 0; 
 for(i  = 0; i < input1; i = i + 1) 
  output1 = output1 + 1; 
} 
 

Figure 76. 

Cv code containing a dynamic for loop. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunctionDynamicForLoop (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg [3:0] functionCounter; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 <= 0; 
            i <= 0; 
 end 
 else if(start) begin 
  output1 <= 0; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: i <= 0; 
   2: // do nothing, control block is testing i < input1 
   3: output1 <= output1 + 1; 
   4: i <= i + 1; 
   5: //do nothing, control block is testing i < input1  
  endcase 

end  
else begin 
      output1 <= output1; 
      i <= i; 
end 

end 
 
//control block 
always@(posedge clock) begin 
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 if(reset) begin 
  functionCounter <= 0; 
  done <= 0; 
 end 
 else if(start) begin 
  functionCounter <= 1; 
  done <= 0; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   2:  

if(i < input) begin 
 functionCounter <= 3; 

   end 
   else 
    functionCounter <= 0; 
    done <= 1; 
   end 

   5:  
if(i < input) begin 
 functionCounter <= 3; 

   end 
   else 
    functionCounter <= 0; 
    done <= 1; 
   end 

   default: 
    functionCounter <= functionCounter + 1; 
    done <= done; 
  endcase 
 end 
      else begin 
            functionCounter <= 0; 
            done <= done;  
      end 
end 
endmodule  
 

Figure 77. 

Translating Cv to Verilog for code containing a dynamic for loop. 

 

In the for loop the instructions must be executed in this order: initialize followed by repeating 

test, statement, step, until the test expression is false. In the flow block the statement are laid out 

sequentially and the control of which statement is executed is handled in the control block. When 

the functionCounter is 2 and 5 the flow block does nothing. When the functionCounter is 2 

and 5 the control block is testing the test expression to determine if the for loop should be run 

again. If the test expression is true then the functionCounter is set to 3, the first statement in 

the for loop. Once the for loop has finished, when the functionCounter is 4, the flow block 
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executes the step (i <= i + 1). Because there is only a for block in this function, when the 

functionCounter is 5 and the test expression is false, then MyFunctionDynamicForLoop is 

done and done is set high.  

 

2.16 While Loop 

A while loop is used to continually loop over a set of code until the test expression is false. 

According to the grammar: 

 

WhileStmt ::= while ( Expr ) Stmt 

 

While loops have two elements; test expression and statement. The statement can be a single line 

statement, or a statement block.  

 
 
//Pseudo Code 
//Example 1 
while(test)  
 single line statement 
 
//Example 2 
while(test) { 
 statement block 
} 
 

Figure 78. 

Examples of while loops using a single line statement with no braces, and a statement block 

contained in braces. 

 

In Example 1 of Figure 78 a while loop has a test expression in parenthesis and a single line 

statement following the while statement. The single line is the only statement that will executed 

for the while loop. In Example 2 of Figure 78 a statement block (within braces) is used. To 

include multiple statements to be looped over a statement block must be used. All code within 

the braces will be executed as long as the test expression is true.  
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The example section of the while loop section has been omitted. Because there are many special 

cases for the Cv Hardware Translator that differ from the Cv Software Translator, all examples 

are presented in the Cv Software Translator (section 2.16.1) and Cv Hardware Translator 

(Section 2.16.2). 

 

2.16.1 Cv Software Translator 

The while loop, much like the for loop, translates very closely to C++, only wrapping the test 

expression in a CvV<bool>. 

 

Example: 

 
 
//Cv Code 
int output1 MyFunction(int input1){ 
 output1 = 0; 
 while(output1 < input1)  
  output1 = 2*output1 + input1; 
} 
 

Figure 79. 

Cv code containing a while loop. 

 

Translated into C++: 

 
 
//C++ Code 
struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvFunctionStruct_MyFunction returnValue; 
  
 returnValue.output1 = 0; 
 while(CvV<bool>(output1 < input1).Me( )) { 
  returnValue.output1 = 2*returnValue.output1 + input1; 
 } 
 return returnValue; 



96 
 
 

 

} 
 

Figure 80. 

Translating Cv to C++ for code containing a while loop. 

 

In Figure 80 the while loop is created and the test expression (output1 < input1) is wrapped in 

a CvV<bool>, which accesses the Boolean value of the test expression through the Me function.  

 

2.16.2 Cv Hardware Translator 

To translate a while loop into hardware two situations must be considered: when the statement of 

the while loop contains constructs that require CHard, and when the statement of the while loop 

does not contain constructs that require CHard. Each of these cases are presented in the examples 

that follow.  

 

2.16.2.1 While Loops Containing Constructs that Require CHard 

In Figure 81 MyFunction contains a while loop, and a function call within the while loop. When  

there is a function call within a while loop the function will automatically require CHard.  

 

Example: 

 
 
//Cv Code  
int a CalledFunction(int y)  
{ 
        //some code 
} 
 
int ouptut1 MyFunction( int input1 ) { 
 output1 = 0; 
 while(output1 < 10)  
  output1 = output1 + CalledFunction(input1).a; 
} 
 

Figure 81. 
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Cv code containing a while loop. This while loop contains a function call, and therefore requires 

CHard. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunction (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 

 
reg startCalledFunction_1; 
wire doneCalledFunction_1; 
wire [31:0] calledFunction_1_a;  
CalledFunction calledFunction_1( 
 .clock(clock), 
 .reset(reset), 
 .start(startCalledFunction_1), 
 .y(input1), 
 .done(doneCalledFunction_1), 
 .a(calledFunction_1_a) 
); 
 
reg [2:0] functionCounter; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 <= 0; 
  startCalledFunction_1 <= 0; 
 end 
 else if(start) begin 
  output1 <= 0; 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: //test the test condition in the control block 
   2: startCalledFunction_1 <= 1; 
   3: startCalledFunction_1 <= 0; 
   4: output1 <= output1 + calledFunction_1_a; 
  endcase 
 end 
 else begin 
            output1 <= output1; 
            startCalledFunction_1 <= startCalledFunction_1; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  functionCounter <= 0; 
  done <= 0; 
 end 
 else if(start) begin 
  functionCounter <= 1; 
  done <= 0; 
 end 
 else if(functionCounter != 0) begin 
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  case(functionCounter)  
   1: if(output1 < 10) begin 
    functionCounter <= 2; 
   end 
   else begin 
    functionCounter <= 0; 
    done <= 1; 
   end 

3: if(doneCalledFunction_1) begin 
    functionCounter <= 4; 
   end 
   else begin 
    functionCounter <= 3; 
   end 
   4: functionCounter <= 1; 
   default: functionCounter <= functionCounter + 1; 
   
  endcase 
 end 
 else begin 
  functionCounter <= 0; 
  done <= done; 
 end 
end 
endmodule    
 

Figure 82. 

Translating Cv to Verilog for code that contains a while loop. The while loop contains a function 

call, and therefore requires CHard. 

 

In Figure 82 the computations to consider are setting output1 to 0, output1 < 10, the inline 

function call to CallFunction, and output1 = output1 + CalledFunction(input1).a. 

These statements are observed in the flow block of MyFunction. When start is high output1 is 

set to 0. Once the functionCounter is 1, output1 is tested in the control block to see if 

output1 is less than 10. When the functionCounter is 1, the flow block does nothing. When 

the functionCounter is 1, if the test expression is true the while loop is run again. The 

startCallFunction_1 is set high when functionCounter is 2, and startCallFunction_1 is 

set low when the functionCounter is 3. When the functionCounter is 3, the control block tests 

to see if doneCallFunction is high. If doneCallFunction is high, then the functionCounter 

is set to 4 to execute the addition and assignment. When the functionCounter is 4, the 

functionCounter is set to 1, to evaluate the test expression of the while loop. This process will 
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continue until the test expression is false. When the test expression is false, the 

functionCounter will be set to 0, and done will be set high.  

 

2.16.2.2 While Loops Containing Constructs that do not Require CHard 

In Figure 83 MyFunction contains a while loop that does not contain any constructs that require 

CHard. In the control block the test expression from the while statement is evaluated, and once 

the test expression is false done is set high. Also, there is an additional signal, inProgress, that 

goes high when start is high, and stays high until the test expression is false. If there were 

serial statements before or after the while loop then MyFunction would require CHard.  

 

Example: 

 
 
//Cv Code 
int ouptut1 MyFunction( int input1 ) { 
 while(output1 < 10)  
  output1 = output1 + input1; 
} 
 

Figure 83. 

Cv code containing a while loop. The while loop does not contain any constructs that require 

CHard, and therefore does not require CHard. 

 

Translated into Verilog: 

 
 
//Verilog Code 
module MyFunction (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg inProgress; 
 
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 = 0; 
 end 
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 else if(start) begin 
  output1 = 0; 
 end 
 else if(inProgress) begin  
  output1 = output1 + input1; 
 end 
 else begin 
  output1 = output1; 
 end 
end 
 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  inProgress <= 0; 
  done <= 0; 
 
 end 
 else if(start | inProgress) begin 
  if(output1 < 10) begin 
   inProgress <= 1; 
   done <= 0; 
  end 
  else begin 
   inProgress <= 0; 
   done <= 1; 
  end 
 end 
 else begin 
  inProgress <= 0; 
  done <= done; 
 end 
end 
endmodule 
 

Figure 84. 

Translating Cv to Verilog for code containing a while loop. The while loop does not contain any 

constructs that require CHard, and therefore does not require CHard. 

 

2.17 Return Statement 

Software languages commonly use return statements to return a value from a function. Hardware 

languages do not use return statements and instead set the outputs of a module directly. In Cv the 

outputs of a function are set directly, and a return statement can be used if needed. A function 

will automatically be finished when it reaches the end of its code, but a return statement can be 

used to make a function complete earlier.  
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In contrast to software languages, in Cv a return statement is not followed by a value to return. 

Instead a return statement is always just a return, as seen below. 

 
 
//Cv Code 
return; 
 

Figure 85. 

A return statement in Cv. In Cv return statements do not have an argument. 

 

When a return is encountered, the function exits and returns the current values that the outputs 

have been set to. 

 

2.17.1 Example 

 
 
//Cv Code 
int output1 MyFunction(int input1){ 
 if( input1 == 1 ) 
  output1 = 2; 
 else { 
  output1 = 3; 
  return; 

} 
 
 output1 = output1 * 2; 
} 
 

Figure 86. 

Cv code containing a return statement. 

 

In Figure 86 a return statement is used to exit the function within the else clause of the if 

statement. 

 

2.17.2 Cv Software Translator 

 
 
//C++ Code 
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struct CvFunctionStruct_MyFunction { 
 CvV<int> output1; 
}; 
CvFunctionStruct_MyFunction MyFunction(CvV<int> input1) { 
 CvFunctionStruct_MyFunction returnValue; 
 if( CvV<bool>(input1 == 1).Me( ) ){ 
  returnValue.output1 = 2; 
 } 
 else { 
  returnValue.output1 = 3; 
  return returnValue; 

} 
returnValue.output1 = returnValue.output1 * 2; 

 return returnValue; 
} 
 

Figure 87. 

Translating Cv to C++ for code containing a return statement. 

 

When translating to C++, return statements are replaced by returning the returnValue. This 

makes the function return the values of the outputs that have already been set.  

 

2.17.3 Cv Hardware Translator 

When a return statement is present, the Cv Hardware Translator will require CHard. This is 

because the return statement is handled by altering the control block.  

 
 
//Verilog Code 
module MyFunctionStaticForLoop (input clock, input reset, input start, 
      input [31:0] input1, output reg done, output reg [31:0] output1); 
 
reg[2:0] functionCounter;  
//flow block 
always@(posedge clock) begin 
 if(reset) begin 
  output1 <= 0; 
 end 
 else if(start) begin 
  //do nothing, control block is evaluating if statement 
 end 
 else if(functionCounter != 0) begin 
  case(functionCounter)  
   1: output1 = 2; 
   2: output1 = 3; 
   3: //do nothing, the control block is returning 
   4: output1 = output1 * 2;    
  endcase 
 end 
 else begin 
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output1 <= output1; 
 end 
end 
//control block 
always@(posedge clock) begin 
 if(reset) begin 
  functionCounter <= 0; 
  done <= 0; 
 end 
 else if(start) begin 
  if( input1 == 1) begin 
   functionCounter <= 1; 
  end 
  else begin 
   functionCounter <= 2; 
  end 
            done <= 0; 
 end 
 else if(functionCounter != 0) begin 
  1: functionCounter <= 4; 
  2: functionCounter <= 3; 
  3: functionCounter <= 0; //return statement being executed here 

done <= 1; 
  4: functionCounter <= 0; 
  done <= 1; 
            default: functionCounter <= functionCounter + 1; 
 end 
 else begin 
            functionCounter <= 0; 
            done <= done; 
 end 
end 
endmodule  
 

Figure 88. 

Translating Cv to Verilog for a function containing a return statement. 

 

When the functionCounter is equal to 3, the return statement would be executed. Although it 

is not the end of the function code, the done output is set high, and the functionCounter is set 

to 0.  

 

2.18 Comments 

Comments are text in the code that do not execute any instructions, but inform the user of 

intended meaning. Therefore this section presents examples, but nothing on the Cv Software 

Translator, or CV Hardware Translator. 
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2.18.1 Example 

In Cv there are two styles of comments, line comments and block comments. Line comments use 

the “//” symbol and comment out the remainder of the line. For example: 

 
 
//Cv Code 
x = 5; //assigning 5 to x 
 

Figure 89. 

Cv code using a line comment. The “assigning 5 to x” will not be executed.  

 

In this example x = 5 will be executed, however the //assigning 5 to x will not, and is just 

text.  

 

Block comments use the pair of symbols /* and */ to denote the start and stop of a comment 

block. Anything contained in within the two symbols is a comment and will not be executed. For 

example: 

 
 
//Cv Code 
x = 5; 
y = 6; 
/* 
a = 2; 
b = 3;  
c = 7; 
*/ 
 

Figure 90. 

Cv code using a block comment. The text between “/*” and “*/” will not be executed. 

In the code above 5 will be assigned to x, and 6 will be assigned to y. The other lines will not be 

executed.  

 

Assignments to a, b, and c occur within a comment block. These commands will not be 

executed, and a, b, and c will not be assigned values.  
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CHAPTER III 

EXPERIMENTAL EVALUATION 

 

To assess the functionality of Cv, several representative algorithms have been selected as a basis 

for comparison. These algorithms were then written in three languages -- Cv, C++, and Verilog. 

Because Cv can be compiled into software or synthesized into hardware, the Cv software was 

compared to the C++ implementation, while the Cv hardware was compared to the Verilog 

implementation. These results have been compared on different figures of merit for the hardware 

and software implementations because the two platforms naturally have different ways that they 

are evaluated. Software results have been compared in terms of executable size, peak memory 

usage, and execution time. Hardware results have been compared based on FPGA area utilization 

(number of LUT’s) and the number of clock cycles required to complete the computation. Power 

consumption is often proportionate to the number of LUT’s, or gates, and therefore the number 

of LUT’s can be used as a proxy for the expected power consumption.   

 

In Section 3.1 we present the representative  algorithms used, along with pseudo code and a brief 

description for each algorithm. Section 3.2 will present the results and comparisons. In Section 

3.2 the Cv implementation of each algorithm is presented, followed by its software and hardware 

results. 
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3.1 Selected Test Algorithms 

3.1.1 Fast Fourier Transform 

The Fourier Transform was initially used to transform a signal from the time domain to the 

frequency domain. The Fourier Transform has been applied to many engineering problems such 

as electromagnetics, audio, and image processing [11]. The Fast Fourier Transform (FFT) is a 

digital implementation that takes advantage of the symmetry between roots of –1 to compute the 

Fourier Transform faster. Pseudo code describing the FFT is shown in Figure 91. 

 
 
arrayOut FFT(numberOfElements, arrayIn) 
{ 
 //divide phase 
 if(numberOfElements == 1) 
  return arrayIn[0] 
 evenFFT = FFT(numberOfElements/2, even elements of arrayIn) 
 oddFFT = FFT(numberOfElements/2, odd elements of arrayIn) 
 
 //conquer phase 
 for( i = 0 to numberOfElements/2 – 1) 
 { 
  complexSinusoid = e^(2*pi*k*i/numberOfElements) 
  arrayOut[i] = evenFFT[i] + complexSinusoid*oddFFT[i] 
  arrayOut[i + numberOfElements/2] = evenFFT[i]–      
                  complexSinusoid*oddFFT[i] 
 } 
 return arrayOut; 
} 
 

Figure 91. 

Pseudo code showing the Fast Fourier Transform. 

 

The FFT is a recursive algorithm that uses a divide and conquer approach. In the divide phase, 

arrayIn is recursively divided into two separate arrays, one array contains the even elements of 

arrayIn , and the other array contains the odd elements of arrayIn . These two arrays are 

recursively further divided. The even elements of an array are the elements with an array index 

of 2n, where n is greater than or equal to 0 and is an integer. The odd elements of an array are the 

elements with an array index of 2n – 1, where n is greater than or equal to 1 and is an integer. In 
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the conquer phase, the array is recursively recombined while multiplying by roots of –1. The root 

of –1 is calculated by the complex exponential. The even and odd arrays are then recombined 

into a single array, using the complexSinusoid. The FFT is completed by recursively 

recombining each even and odd array.  

 

3.1.2 Insertion Sort 

In computer science sorting a list of elements is an algorithm that is used very often. There are 

many different sorting algorithms, both recursive and non-recursive. Insertion Sort is a non-

recursive algorithm that begins on the left hand side of an array (array[0]), and progresses to the 

right hand side of the array (array[array size – 1]). Each element of the array is continually 

swapped with its left neighbor until the element’s left neighbor is less than the element. Pseudo 

code describing Insertion Sort is shown below. 

 
 
arrayOut InsertionSort(numberOfElements, arrayIn)  
{ 
 for(i = 1 to numberOfElements – 1) 

{ 
 j = i; 
 while(data[j] < data[j-1] & j > 0) 
 { 
  temp = data[j] 
  data[j] = data[j-1] 
  data[j-1] = temp 
  j = j - 1 
 } 
} 
return arrayOut 

} 
 

Figure 92. 

Pseudo code showing the Insertion Sort. 

 

3.1.3 Matrix Multiplication 
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Matrix operations are widely used in many applications, including circuits, quantum mechanics, 

three dimensional computer images, seismic surveys, and robotics [12]. Multiplying two n x n 

matrices results in an n x n matrix. Pseudo code describing Matrix Multiplication is shown in 

Figure 93.  

 
 
matrixOut MatrixMultiplication(dimension, matrixA, matrixB) 
{ 
 for(i = 0 to dimension) 

{ 
 for(j = 0 to dimension) 
 { 
  for(k = 0 to dimension) 
  { 
   matrixOut[i][j] = matrixOut[i][j] + matrixA[i][k] *  
                        matrix[k][j] 
  } 
 }  

 } 
 Return matrixOut 
} 
 

Figure 93. 

Pseudo code for Matrix Multiplication. 

 

There are several different matrix multiplication algorithms that are used to optimized matrix 

multiplication. The MatrixMultiplication algorithm shown is known as the brute force 

method. The algorithm does not use any optimizations, and sets matrixOut[i][j] equal to the dot 

product of row i of matrixA and column j of matrixB.  

 

3.1.4 Hash Table Algorithm 

A hash table is a data structure that is used to efficiently store and retrieve data. The hash table 

uses different buckets to store data. Each piece of data to be stored has a key-value pair. The hash 

table uses a hash function on the key to determine which bucket to store the key-value pair. 

Pseudo code describing storing data in a hash table is shown in Figure 94. 
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LinkedList < LinkedList* > hashTable 
Void StoreData(key, value) 
{ 

hashKey = HashFunction(key) 
hashTable[hashKey].Add(key, value) 

} 
 

Figure 94. 

Pseudo code for storing data in a Hash Table. 

 

The hash table in this example is represented by the LinkedList hashTable, whose elements 

each point to a different LinkedList. First a hashKey is generated from the given key. The 

hashKey indicates which LinkedList to use from the hashTable. The given key-value pair is 

then added to the LinkedList selected.  

 

3.2 Results 

In this section the Cv implementation and results for each algorithm are presented. For each 

algorithm, first the Cv code is presented, followed by the software results, and lastly the 

hardware results. The C++ code was compiled using G++ [10] and executed on Ubuntu [13]. The 

Verilog code was synthesized using Xilinx ISE [14] and simulated using Xilinx ISE Simulator 

ISIM [15]. The Verilog was synthesized using the Xilinx Virtex 6 XC6VLX75T as the device. In 

the first two examples, we compared that the results from Cv (for hardware as well as software 

compilation) against the results obtained by compiling the Verilog code and the C++ code 

respectively. In the last two examples, Verilog and C++ code were not compared.  
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3.2.1 Fast Fourier Transform 

3.2.1.1 Cv Implementation 

FFT is inherently a recursive algorithm. Cv currently does not support recursion, and so we had 

to construct a non-recursive FFT algorithm. In addition to this there are no library functions 

defined for sine, cosine, exponents, and logarithms in Cv. Each of these functions were 

implemented as Cv functions. Sine and cosine were implemented as a look up table made using 

if statements. The Cv sine and cosine functions take integer arguments instead of decimal 

numbers. This is because the functions are only defined for certain angles. The decimal angle in 

radians would be equal to the integer angle times pi, then divided by 180. Exponents were 

implemented in a function with a for loop to perform repeated multiplications. Logarithms were 

implemented in a function with a for loop to perform repeated divisions.  

 

The FFT algorithm is implemented in the function CvFFT . CvFFT calculates the FFT for an 8 

sample signal. The FFT could be reconfigured for a larger number of samples by changing the 

size of the arrays and the numberOfSamples variable. Initially the inputArray is rearranged in 

the same style as in the recursive implementation. Arrays that are suffixed with Hold are used to 

perform calculations on elements that have not yet been modified. Second, the array is 

rearranged in the same style as in the recursive implementation. The elements of the array are 

multiplied by complex exponentials while recombining.   

 
 
double result Sin(int angle) 
{ 
 if(angle == 0) 
  result = 0.0; 
 else if(angle == 1) 
  result = 0.38268343; 
 else if(angle == 2) 
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  result = 0.70710678; 
 else if(angle == 3) 
  result = 0.92387953; 
 else if(angle == 4) 
  result = 1.0; 
 else if(angle == 5) 
  result = 0.92387953; 
 else if(angle == 6) 
  result = 0.70710678; 
 else if(angle == 7) 
  result = 0.38268343; 
} 
 
double result Cos(int angle) 
{ 
 if(angle == 0.0) 
  result = 1.0; 
 else if(angle == 1) 
  result = 0.92387953; 
 else if(angle == 2) 
  result = 0.70710678; 
 else if(angle == 3) 
  result = 0.38268343; 
 else if(angle == 4) 
  result = 0.0; 
 else if(angle == 5) 
  result = - 0.38268343; 
 else if(angle == 6) 
  result = - 0.70710678; 
 else if(angle == 7) 
  result = - 0.92387953; 
} 
 
int result Pow(int base, int exponent) 
{ 
 int i; 
 if(exponent == 0) 
  result = 1; 
 else 
 { 
  result = base; 
  for(i = 0; i < exponent - 1; i = i + 1) 
   result = result * base; 
 } 
} 
 
int result Log(int base, int argument) 
{ 
 int i; 
 int test; 
 result = 1; 
 test = argument; 
 while(test != base) 
 { 
  test = test / base;  
  result = result + 1; 
 }  
} 
 
double realResult[8], double imaginaryResult[8] CvFFT(double inputArray[8]) 
{ 
 int numberOfSamples; 
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 int i; 
 int j; 
 int k; 
 int length; 
 int blockSize; 
 int repetitions; 
 int index1; 
 int index2; 
 double original[8]; 
 double modified[8]; 
 double modifiedHold[8]; 
 double realResultHold[8];  
 double imaginaryResultHold[8];  
 double sin; 
 double cos; 
 int angle; 
 numberOfSamples = 8; 
 original = inputArray; 
  
 modified = original; 
 modifiedHold = modified; 
  
            // divide 
 length = Log(2, numberOfSamples).result; 
 for (i = length; i > 0; i = i - 1) 
 { 
  blockSize = Pow(2, i).result; 
  repetitions = numberOfSamples / blockSize; 
  for(j = 0; j < repetitions; j = j + 1) 
  { 
   for (k = 0; k < blockSize / 2; k = k + 1) 
   { 
    index1 = j * blockSize + k; 
    index2 = j * blockSize + k * 2; 
    modified[index1] = modifiedHold[index2]; 
   } 
   for (k = 0; k < blockSize / 2; k = k + 1) 
   { 
    index1 = blockSize / 2 + j * blockSize + k; 
    index2 = j * blockSize + k * 2 + 1; 
    modified[index1] = modifiedHold[index2]; 
   } 
  } 
  modifiedHold = modified; 
 } 
 realResult = modified;  
 realResultHold = realResult; 
 
 //conquer 
 for (i = 1; i <= length; i = i + 1) 
 { 
  blockSize = Pow(2, i).result; 
  repetitions = numberOfSamples / blockSize; 
  for(j = 0; j < repetitions; j = j + 1) 
  { 
   for (k = 0; k < blockSize / 2; k = k + 1) 
   { 
    angle = k * 16 / blockSize; 
    sin = Sin(angle).result; 
    cos = Cos(angle).result; 
     
    index1 = j * blockSize + k; 
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    index2= j * blockSize + k + blockSize/2; 
     
    realResult[index1] = realResultHold[index1] 
            + realResultHold[index2]*cos 
            + imaginaryResultHold[index2]*sin; 
     
    imaginaryResult[index1] =   
                                imaginaryResultHold[index1] -   
                                realResultHold[index2]*sin +  
                                imaginaryResultHold[index2]*cos; 
     
           
    realResult[index2] = realResultHold[index1] 
            - realResultHold[index2]*cos 
            - imaginaryResultHold[index2]*sin; 
     
    imaginaryResult[index2] =                                                   
                                imaginaryResultHold[index1] 
            + realResultHold[index2]*sin 
            - imaginaryResultHold[index2]*cos; 
   } 
  } 
  realResultHold = realResult; 
  imaginaryResultHold = imaginaryResult; 
 } 
} 
 

Figure 95. 

Cv implementation of the FFT and associated functions. 

 

3.2.1.2 Software Results 

 

Table 2. 

Fast Fourier 

Transform 
Cv Software C++ Cv/C++ 

Executable Size 68 KB 9 KB 7.55 

Peak Memory Use 1064 KB 1064 KB 1 

Execution Time 10.468 seconds 0.035 seconds 299.09 

Software results for the FFT. 

The C++ implementation was written using the same non recursive algorithm style as the Cv 

implementation. This allows the two algorithms to be compared. The Cv implementation resulted 

in a larger executable and longer execution time. However, the peak memory used was equal for 
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both implementations. The execution time was determined by running the FFT algorithm on a 

random eight element array 10,000 times.  

 

3.2.1.3 Hardware Results 

Table 3. 

Fast Fourier 

Transform 
Cv Hardware Verilog Cv/Verilog 

Number of LUT’s 13,141 5,413 2.427 

Clock Cycles 3188 70 45.54 

Hardware results for the FFT. 

 

The Verilog implementation was done using the Xilinx IP Core Generator. The IP Core 

Generated algorithm provides a well refined algorithm implementation for comparison that is 

highly optimized for the Xilinx device. Because of this, it is not surprising that the Verilog 

implementation with IP Core Generator produces better results. The Verilog implementation 

used fewer LUT’s and fewer clock cycles than the Cv implementation.  

 

3.2.2 Matrix Multiplication 

3.2.2.1 Cv Implementation 

There are several highly refined matrix multiplication algorithms, and many of these refined 

algorithms use recursive approaches. With Cv we are not trying to test the effectiveness of an 

algorithm, but instead the effectiveness of the Cv language and the correctness of the translation 

tools. Therefore, the Cv implementation is a brute force matrix multiplication algorithm that 

loops through the mathematical definition of matrix multiplication.  
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int result[5][5] MatrixMultiplication (int a[5][5], int b[5][5]) 
{ 
 int i; 
 int j; 
 int k; 
 int size; 
  
 size = 5; 
  
 for(i = 0; i < size; i = i + 1) 
 { 
  for(j = 0; j <size; j = j + 1) 
  { 
   for(k = 0; k < size; k = k + 1) 
   { 
    result[i][j] = result[i][j] + (a[i][k] * b[k][j]); 
   } 
  } 
 } 
} 
 

Figure 96. 

Cv implementation of Matrix Multiplication. 

 

3.2.2.2 Software Results 

 
Table 4. 

Matrix 

Multiplication 
Cv Software C++ 

Cv/C++ 

Executable Size 37 KB 9 KB 4.111 

Peak Memory Use 1064 KB 824 KB 1.291 

Execution Time 7.802 seconds 0.024 seconds 325.083 

Software result for the Matrix Multiplication. 

 

The C++ implementation was written using the same brute force method as the Cv 

implementation. This will allow the two results to be closely compared. The C++ executable is 

smaller than the Cv executable. The C++ implementation also used less memory and took less 

time to execute. In the FFT and Matrix Multiplication the C++ implementation had a smaller 
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executable size, and less run time. However, in the FFT the Cv and C++ implementations had the 

same peak memory usage. In contrast, the C++ implementation of the Matrix Multiplication used 

about 30% less memory. The execution time was determined by running the Matrix 

Multiplication algorithm on two random 5 x 5 element matrices 10,000 times. 

 

3.2.2.3 Hardware Results 

 

Table 5. 

Matrix 

Multiplication 
Cv Hardware Verilog Cv/Verilog 

Number of LUT’s 3,360 2191 1.536 

Clock Cycles 501 18  27.833 

Hardware results for the Matrix Multiplication. 

 

The hardware implementation was done using systolic matrix multiplication. This algorithm is 

more refined than the brute force method, and therefore it is expected to produce better results. 

The Verilog implementation required fewer LUT’s and clock cycles. This comparison holds true 

for both the FFT and the Matrix Multiplication. 

 

The Cv FFT and Matrix Multiplication implementations were compared to the C++ and Verilog 

implementations.  

 

In addition to these algorithms, we have also written Insertion Sort and a Hash Table in Cv. The 

statistics for these functions are presented for Cv, but are not compared to C++ and Verilog 

implementations.  
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3.2.3 Insertion Sort 

3.2.3.1 Cv Implementation 

The sorting algorithm selected to use was Insertion Sort. There are many sorting algorithms, 

many of which are recursive algorithms. Insertion Sort is not a recursive algorithm. Insertion 

Sort works by sorting a subset of the array, and continually increasing the subset until it is the 

full array. The Insertion Sort was implemented on a sixteen element array. This implementation 

could easily be extended to larger arrays by changing the parameters in the code. 

 
 
int a[16] InsertionSort(int d[16]) 
{ 
 int i; 
 int j; 
 int temp; 
 int data[16]; 
  
 data = d; 
 for(i = 1; i < 16; i = i + 1) 
 { 
  j = i; 
  while(data[j] < data[j-1] & j > 0) 
  { 
   temp = data[j]; 
   data[j] = data[j-1]; 
   data[j-1] = temp; 
   j = j - 1; 
  } 
 } 
  
 a = data; 
} 
 

Figure 97. 

Cv implementation of Insertion Sort. 
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3.2.3.2 Software Results 

 

Table 6. 

Insertion Sort Cv Software 

Executable Size 38 KB 

Peak Memory Use 1064 KB 

Execution Time 2.762 seconds 

Software results for Insertion Sort. 

 

The execution time was determined by running the Insertion Sort algorithm on a random sixteen 

element array 10,000 times. 

 

3.2.3.3 Hardware Results 

Table 7. 

Insertion Sort Cv Hardware 

Number of LUT’s 2180 

Clock Cycles 351.6 

Hardware results for Insertion Sort. 

 

The number of clock cycles is an average of sorting ten different sixteen element data sets.  

 

3.2.4 Hash Table 

3.2.4.1 Cv Implementation 

Hash Tables are efficient methods to store and retrieve data. We have implemented the storing of 

data in a Hash Table. Retrieving data is more trivial and similar to searching any list. In our Cv 
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implementation we use four main pieces of data: bucketStart, hashData, keys, and pointers. 

HashData holds the data that is stored. The hash function used is the remainder when the key is 

divided by eight. Each piece of data is always stored in the rightmost available location of 

hashData. The elements of bucketStart hold the array index of hashData for the first element 

of each bucket. Pointers holds the indices of each element for the next element in the bucket. 

Keys stores the respective key for each value stored in hashData.  

  
 
int n1 HashTable(int key, int value) 
{ 
 int bucketStart [8]; 
 int hashData [100]; 
 int keys [100]; 
 int pointers [100]; 
  
 int nextAvailable; 
 int hashKey; 
 int position; 
 int i; 
 int loops; 
  
 loops = 100; 
  
 hashKey = key%8; 
 position = bucketStart[hashKey]; 
 if(nextAvailable == 0) 
 { 
  nextAvailable = 1; 
 } 
 if(position == 0) 
 { 
  hashData[nextAvailable] = value; 
  keys[nextAvailable] = key; 
  bucketStart[hashKey] = nextAvailable; 
  nextAvailable = nextAvailable + 1; 
 } 
 else 
 { 
  for(i = 0; i < loops; i = i + 1) 
  { 
   if(pointers[position] != 0) 
   { 
    position = pointers[position]; 
   } 
   else 
   { 
    i = loops; 
   } 
  } 
   
  hashData[nextAvailable] = value; 
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  keys[nextAvailable] = key; 
  pointers[position] = nextAvailable; 
  nextAvailable = nextAvailable + 1; 
 } 
} 
 

Figure 98. 

Cv Implementation of the Hash Table. 

 

3.2.4.2 Software Results 

Table 8. 

Hash Table Cv Software 

Executable Size 66 KB 

Peak Memory Use 1064 KB (2916) 

Execution Time 33.594 seconds 

Software results for the Hash Table. 

 

The execution time was determined by running the Hash Table algorithm on a random 99 key-

value pairs 10,000 times. 

 

3.2.4.3 Hardware Results 

Table 9. 

Hash Table Cv Hardware 

Number of LUT’s 67,013 

Clock Cycles 47.08 

Hardware results for the Hash Table. 

 

The hardware results reflect running the Hash Table algorithm on a 99 random key-value pairs. 

The number of clock cycles is the average number of clock cycles to store one element in the 
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hash table. As the number of elements increases, the number of clock cycles needed to store one 

element increases. The number of LUT’s required is much greater than the other example 

algorithms. This increase in LUT’s is due to the large arrays used to store data. To reduce the 

number of LUT’s, the number of bits per integer could be reduced.   
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CHAPTER IV 

FUTURE WORK 

 

In this thesis, we have presented the philosophy and semantics of Cv, for both hardware and 

software use. We have been able to implement and demonstrate Cv on a variety of algorithms 

that find common use in industrial practice. Our preliminary results demonstrate correctly 

translating Cv code into hardware and software. As Cv undergoes further development, we 

anticipate several potential improvements. Cv also has several applications beyond the currently 

envisioned use of Cv as a language that is compiled into only software or only hardware. The 

remainder of this section first discusses improvements to be made to Cv, followed by future 

applications of Cv. 

 

4.1 Improvements 

There are several improvements that can be made to Cv. Some of these improvements are based 

on an analysis of  the results we have gathered, while others are general improvements that have 

been discovered while developing Cv. We next discuss  improvements based upon the current 

results, followed by a discussion on general improvements. 

 

4.1.1 Improvements Based on Current Results 

In each case that was compared against C++ and Verilog, the Cv implementation took longer and 

required more resources. Given that Cv adds a new level of abstraction, a decrease in optimality 
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is not surprising. The two key areas that Cv performed the worst in were execution time in 

software, and number of clock cycles in hardware.  

 

To analyze the cause of the Cv software implementation being slower than the C++ 

implementation, it was initially suspected that the CvC and CvV special classes were increasing 

(slowing) software execution time. When translating Cv to C++, we will call the C++ that is 

produced the resulting C++ (RC++). By manually altering the RC++, all CvV variables were 

removed, and changed to their corresponding C++ data types. After this alteration, the RC++ 

code was found to execute at the same speed as the C++ implementation. The next step was to 

determine why the CvV class was slowing down the Cv software. It was determined that the 

amount of casting in the CvC and CvV classes were slowing down the Cv software.  The casting 

is due to using C++ templates to create a high amount of flexibility. To improve this bottleneck, 

the CvC and CvV classes would need to narrow their focus to the basic data types, and not be a 

template class with template functions. It is conjectured that this would improve the speed of the 

RC++ code significantly. 

 

The second area where Cv performed poorly was the number of clock cycles required in 

hardware. When translating Cv to Verilog, we will call the Verilog that is produced the resulting 

Verilog (RV). The functions that were used to test Cv all required CHard so that the number of 

clock cycles could be compared. When translating Cv to Verilog, function calls, double 

operations, and loops require multiple clock cycles. However, all other single line statements 

take a single clock cycle to execute. Because all statements are given a single clock cycle, the 

number of clock cycles required is increased beyond what is required.  Often several small 



124 
 
 

 

instructions could be combined to execute in a single clock cycle. By better analyzing the user’s 

code, the Cv translator can improve the number of statements that are executed in a clock cycle. 

This can possibly be implemented as a post-processing step which operates on the RV code as 

well. It is anticipated that this change will improve the number of clock cycles needed to execute 

hardware obtained from Cv.  

 

4.1.2 General Improvements 

With the current implementation of Cv there are software and hardware features that are not 

currently supported. A few popular features that should be supported in the future include: object 

oriented design, pointers, and recursion.  

 

Software and hardware both already support object oriented designs. In software languages such 

as C++, C#, and Java, objects can be constructed out of classes. Each class has data values that 

belong to it, and functions it can perform. Verilog has modules that contain data values, and can 

perform operations on the data values as well. The problem with Cv is that in Verilog, a separate 

module is created for each function call. Therefore, a function call to the same function creates 

multiple instantiations of a module. By calling a function several times, unneeded hardware is 

created, which increases resource utilization. By switching to an object oriented model where the 

user creates each object manually, the user will have control over how many objects and modules 

are instantiated in hardware.   

 

Pointers and recursion are two popular features in software languages that have not yet been 

implemented in Cv. Pointers have the ability to change the variable they point to, and often it 
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cannot be determined at compile time what variable the pointer is pointing to. In addition to this, 

loops in software make it possible to allocate an unlimited number of objects with pointers. 

Hardware does not have the ability to create more resources when needed. Therefore this makes 

pointers a challenge to implement in hardware. Recursive functions, if implemented in Cv, are 

also challenging to translate to Verilog. A recursive function in software is a function that makes 

a call to itself. The challenging aspect of recursive functions is that it cannot be determined at 

compile time how many times a function will be called. In addition to this, each time a recursive 

function is called, more resources must be allocated. Similar to pointers, hardware cannot create 

more resources when needed, making recursive functions that allocate more resources 

challenging to implement. Pointers and recursive functions in hardware are areas of interest that 

we hope to introduce in a future version of Cv. 

 

To support both pointers and recursion in hardware, we envision the use of a scratchpad 

memory, whose contents may be used to allocate additional resources as required. This is a 

subject of future work. 

 

4.2 Future Applications 

Due to the unique philosophy of Cv compared to current software and hardware languages, Cv is 

better prepared to be adapted to new platforms being developed. The two subjects that we will 

focus on are co-design systems, and object architect systems.  
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4.2.1 Co-design Systems 

Currently Cv focuses on using a single piece of code, and being able to translate the entire code 

to either software, or hardware. However, there is great value in the possibility of translating part 

of the user’s code to software, and the remainder of the user’s code to hardware. These two parts, 

working together in a parallel software and hardware environment, have the potential to increase 

speed and efficiency of digital systems. By analyzing the user’s code, the part of the code that is 

computationally intensive can be translated into hardware and run on an FPGA, while the rest of 

the code can be translated to software and run on the CPU. Parts of the Cv code that are natively 

matched for hardware (or software) can be compiled into hardware (software). This would 

alleviate a key restriction of our current Cv implementation. Some research groups have been 

doing research on co-design systems, and it is likely that Cv will have an impact in this area. 

 

Currently large technology companies such as Intel, IBM, and Microsoft are designing hardware 

boards and systems that use a CPU and FPGA on the same platform [16] [17] [18]. These 

parallel architectures have been used to accelerate specific applications, and have been used 

primarily in enterprise-class server systems. In order for these platforms to succeed in the 

enterprise-class server applications as well as in consumer applications, tools will need to exist 

that allow developers to easily take advantage of these architectures. Currently programming 

languages do not adequately describe hardware, and HDL’s do not properly instruct software. 

Instead, a language that can create software and hardware from a single code base will be ideal to 

power these systems. This is a key area where Cv can be enhanced, to meet the needs of a 

changing computing environment. By enabling Cv to translate the computationally intense code 

to hardware, and the rest of the code to software (or translating the parts of the code that are 



127 
 
 

 

natively matched for hardware (software) to hardware (software)), we would be able to impact a 

rapidly developing industrial computing platform which could be the future of the computing 

industry in the years ahead. 

 

4.2.2 Object Architect Systems 

A new architecture that is being researched is called the object architecture. In the object 

architecture, all “items” (program or data) associated with the computer are objects located in the 

cloud. Therefore the only thing the computer needs is a CPU capable of manipulating these 

objects, RAM, and other hardware components. This model removes the hard drive, and places a 

heavy focus on the cloud, but fails to greatly reduce the other hardware.  

  

A modification to object architecture is to use an FPGA in conjunction with the CPU, and use the 

FPGA to execute the other hardware functions. With this model a new obstacle is incurred; files 

no longer have hardware that can interpret their structure. Using Cv, each type of file can carry 

with it the associated code to describe how to interpret the file. Cv eliminates the need for large 

amounts of specific hardware, and allows each type of file to dynamically create its needed 

hardware on the FPGA. 
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