
EFFICIENT DESIGN AND COMMUNICATION FOR  

3D STACKED DYNAMIC MEMORY 

 

 

An Undergraduate Research Scholars Thesis 

by 

ANDREW DOUGLASS 

 

 

Submitted to the Undergraduate Research Scholars program at  

Texas A&M University 

in partial fulfillment of the requirements for the designation as an 

 

 

UNDERGRADUATE RESEARCH SCHOLAR 

 

 

Approved by Research Advisor:                                       Dr. Sunil Khatri 

 

 

May 2017 

 

 

Major: Computer Engineering  



TABLE OF CONTENTS 

 

Page 

ABSTRACT .................................................................................................................................. 1 

ACKNOWLEDGMENTS ............................................................................................................ 2 

NOMENCLATURE ..................................................................................................................... 3 

CHAPTER 

I. INTRODUCTION ...................................................................................................... 6 

History of DRAM Architectures ........................................................................... 6 

Rambus DRAM  ................................................................................................. 10 

Graphics DRAM  ................................................................................................ 11 

Current DIMM Issues ......................................................................................... 12 

3D Stacked Memory ........................................................................................... 15 

 

II. RING BASED MEMORY ........................................................................................ 19 

Skew Cancellation for HBM ............................................................................... 19 

Massed Refresh ................................................................................................... 20 

Simultaneous Multi Layer Access ...................................................................... 20 

Ring-Based Interconnect ..................................................................................... 20 

 

III. SIMULATION RESULTS ....................................................................................... 26 

16nm Process ...................................................................................................... 26 

3D Clock Ring .................................................................................................... 27 

Current DRAM Speeds ....................................................................................... 29 

Low Power Ring Memory .................................................................................. 36 

High Performance Ring Memory ........................................................................ 43 

 

IV. CONCLUSION ......................................................................................................... 49 

Importance .......................................................................................................... 49 

Future Research .................................................................................................. 49 

 

REFERENCES ........................................................................................................................... 51 

APPENDIX: MEMORY SIMULATION DATA TABLES....................................................... 54 



1 

ABSTRACT 

Efficient Design and Communication for 3D Stacked Dynamic Memory 

  

Andrew Douglass 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

Research Advisor: Dr. Sunil Khatri 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

 As computer memory increases in size and processors continue to get faster, memory 

becomes an increasing bottleneck to system performance. To mitigate the slow DRAM memory 

chip speeds, a new generation of 3D stacked DRAM will allow lower power consumption and 

higher bandwidth. To communicate between these chips, this paper proposes the use of ring 

based standing wave oscillators for fast data transfer. With a fast clocking scheme, multiple 

channels can share the same bus to reduce TSVs and maintain similar memory latencies. 

Simulations with the new clocking scheme and data transfers are performed to show the 

improvements that can be made in memory communication. Experimental results show that a 

ring based clocking scheme can obtain two times the speed up of current stacked memory chips. 

Variations of this clocking scheme can also provide half the power consumption with 

comparable speeds. These ring-based architectures allow higher memory speeds without 

compromising the complexity of the hardware. This allows the ring-based memory architecture 

to trade off power, throughput, and latency to improve system performance for different 

applications.  

 



2 

  

ACKNOWLEDGEMENTS 

 

I would like to thank my mentor, Dr. Sunil Khatri, for his guidance and continual support 

throughout the course of this research project. I would also like to thank Abbas Fairouz for his 

help with SPICE simulations and the time he dedicated to my questions.  

Thanks also go to my friends, colleagues, and the faculty staff for making my time at 

Texas A&M University a great experience. I also want to extend my gratitude to the staff of the 

Undergraduate Research Scholars program, which provided many training sessions and 

assistance to all students involved in the program.  

Finally, I want to thank my mother and father for being role models to me and always 

supporting my goals.  

  



3 

NOMENCLATURE 

 

DRAM Dynamic Random Access Memory (DRAM) is a form of volatile memory that 

involves a transistor and a capacitor to store bits of information.   

 

JEDEC The Joint Electron Device Engineering Council (JEDEC) is an organization made 

up from many industry leaders who create the standards in DRAM memory.  

 

DIMM Dual In-line Memory Module (DIMM) is a printed circuit board that contains 

multiple random access memory chips connected to a large bus with separate 

electrical contacts on each side of the module.  

 

SO-DIMM Small Outline Dual In-line Memory Module (SO-DIMM) is a smaller version of 

DIMM that is used for devices where space is limited (e.g. Laptops, Tablets, and 

Routers).  

 

DMC Dynamic Memory Controller (DMC) is the hardware device that translates 

addresses, queues requests, and communicates with memory modules.  

 

MC Memory Chips (MCs) are integrated circuits found on the DIMM printed circuit 

board that contain memory arrays to store data as bits.  

 

Channel An independent bus that communicates between the DMC and the DIMM, which 

often consists of a data portion, a control portion, and an address portion.  

 

 
Figure 1: Multi-channel DRAM architecture. 

 

Rank A set of DRAM memory chips that share a control bus and operate 

simultaneously to provide the total bits for the data bus (shown in Figure 2).     

 



4 

 
Figure 2: Both sides of a DIMM with ranks labeled. 

 

Bank A subset of memory arrays that operate independently to allow pipelining of 

requests to different banks.    

 

Bit-line Bit-lines represent columns in a memory array that fill with the value from a 

memory cell during reading and drive to the desired value when writing (shown in 

Figure 3). 

 

Word-line Word-lines represent rows in a memory array that drive to a high voltage when 

reading from or writing to the specified row (shown in Figure 3).  

 

 
Figure 3: DRAM array bit-lines and word-lines. 

 

DDR Double Data Rate (DDR) is a computer bus that transfers data on both the positive 

edge and negative edge of the clock signal.  

 

Sense Amps A circuit used to detect small voltage changes on the bit-lines when reading data 

to determine what state (1 or 0) the specified capacitor was storing.  

 

Refresh The process of occasionally reading data into the sense amps and immediately 

writing that data back to the capacitors to prevent the loss of information.  

 



5 

Skew Skew is the maximum time difference that it takes for a signal to arrive at one 

endpoint compared to another endpoint in the same distribution network.   

 

H-Tree Named for the shape it resembles, it is a clock distribution scheme used to 

minimize clock skew between its end points by maintaining similar delays 

through each signal path.  

 

I/O Bus Input/Output (I/O) bus is the set of pins on the DIMM that carry the data to the 

module during writes and from the module during reads.  

 

PLL Phase-locked loop (PLL) is a control system that outputs a signal whose phase is 

the same as the input reference signal.  

 

SWO Standing Wave Oscillator (SWO) is a type of oscillator circuit with an inverter 

pair on one end and a short on the other to create a clock signal with the same 

phase at every point along its resonant wires.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

CHAPTER I 

INTRODUCTION 

 

Though cheaper and larger, forms of non-volatile memory have long latencies. This can 

severely slow down the time it takes for a system to execute a desired program. To overcome this 

issue, forms of volatile memory store data temporarily so that the CPU can access it quickly. As 

processors improve, memory has continued to lag behind and cause bottlenecks to system 

performance. To alleviate this issue, clocking for the I/O data bus has increased with each 

generation of new DDR memories to obtain larger memory transfers in the same time frame. 

Though this proves effective for smaller burst lengths, larger burst lengths will be wasting 

overhead by transferring data to cache that will not be used. This likelihood increases as memory 

sizes continue to grow and multi-core systems become more prevalent. As a result, different 

computer system applications use different DRAM architectures. These designs specialize and 

vary in power consumption, throughput, and cost. The following sections explain the history of 

these designs and their weaknesses. Using this knowledge, later sections will look at solutions to 

the issues that currently plague memory designs.        

History of DIMM Architectures 

 DRAM has been one of the fastest growing aspects of modern computing devices since 

its first forms in the 1960s. One of the first mainstream designs was the Fast Page Mode DRAM 

(FPM DRAM). This architecture involved keeping the row access strobe (RAS) active while 

continuously signaling the column access strobe (CAS) to read a series of data from the same 

row (shown in Figure 4). By keeping a row active in the MC, the latency needed to open that row 



7 

is induced once for every set of consecutive column addresses. Though simple in nature, this 

design provided significant speed increases with almost no added cost to the devices.  

 

 
Figure 4: FPM DRAM read operation [1]. 

 

Following the era of FPM DRAM came Extended Data Out DRAM (EDO DRAM), 

which added a series of latches following each column multiplexer. This allowed the memory 

module to hold the data at the output pins while a concurrent column address travels across the 

address pins (shown in Figure 5). This slightly faster version started to take over FPM DRAM in 

1995 and quickly led to the introduction of the Burst EDO DRAM (BEDO DRAM).  

Similar to EDO DRAM, BEDO DRAM would burst four consecutive column addresses 

worth of data given the starting column (shown in Figure 6). This again increased the data 

transfer rate by incurring the CAS latency only once before data became available for each 

strobe of the CAS line. This method relies on the use of spatial locality to increase overall 

throughput of a particular process.  

 



8 

 
Figure 5: EDO DRAM read operation [1]. 

 

 
Figure 6: BEDO DRAM read operation [1]. 

 

 As seen from the developments in DRAM that have been discussed so far, each new 

design is inexpensive to implement but yields tremendous performance advantages [1]. These 

low-cost changes have become increasingly rare since the introduction of Synchronous DRAM 

(SDRAM), which was in most modern computing systems by the turn of the 21st century. Unlike 



9 

its predecessors, SDRAM used a single-edged clock to synchronize the information that travels 

between the DIMM and the DMC (shown in Figure 7). Initial designs of SDRAM were slower 

than BEDO DRAM, but the introduction of a clock allowed reliable communication with the 

DMC. This led to the modern DDR DRAM architectures that currently dominate the market. 

 

 
Figure 7: SDRAM read operation [1]. 

 

 As the name suggests, DDR SDRAM differs from SDRAM by passing data on both the 

positive and negative edge of the clock cycle. This effectively doubled the rate of data transfer 

without having to double the clock speed. By using the positive and negative edge, DDR 

maintains low signal integrity requirements for the connection between the DMC and the DIMM. 

Since the introduction of DDR SDRAM in 2000, three more generations of DDR have each 

shown improvements in the data transfer rate. To achieve these improvements, engineers have 

created a standard architectural layout with specified timing parameters for communication. 

Using techniques like phased-locked loops (PLLs), engineers are able to ensure faster timing 



10 

with reliable accuracy. By clocking the I/O bus faster, and making the prefetch larger in each 

generation, engineers have been able to increase memory speeds despite traditionally slow MCs.   

 

 

Figure 8: DDR SDRAM read operation [1]. 

 

Rambus DRAM 

 One of the main competitors to SDRAM in the 1990s was Rambus DRAM (RDRAM). 

Developed by Rambus Inc. for almost two decades, these memory modules had a unique narrow 

bus compared to the traditional large dedicated busses in SDRAM [2]. The simple RDRAM 

interconnect, between the DMC and the DIMM, communicated at significantly faster speeds. 

The smaller data bus, however, meant that address, data, and control information would all need 

to be share the same lines. To accomplish this, RDRAM uses a protocol similar to network 

packets, where DRAM chips are responsible for deciphering each packet. These complex DRAM 

chips not only increase cost but also create more complexities in the internal DIMM hardware. 



11 

Although certain system controllers, such as the Intel i850, used the Rambus architecture, it 

eventually faded out of production in favor of the lower cost DDR architecture [2, 3].   

Graphics DRAM 

 Graphics DDR SDRAM (GDDR SDRAM) is a similar memory architecture to DDR, but 

specifically designed to communicate with the GPU. Instead of placing MCs on a DIMM, MCs 

are placed directly on the PCB surrounding a graphics processor. With a larger data bus than 

DDR interfaces, GDDR achieves higher throughput using a multi-channel architecture. Each 

modern GDDR5 DRAM MC provides up to 8Gbps [4]. By placing 12 MCs around the GPU, a 

traditional 6-channel GDDR5 configuration can achieve upwards of 84Gbps. Some graphics 

cards, such as the AMD Radeon R9 290 series, have up to 16 MCs placed around the GPU but 

only maintain about 80Gbps due to their slower 5Gbps MCs [5]. By using a wider bus, GDDR5 

is able to alleviate the processing bottleneck needed for higher end graphics programs. Figure 9 

shows a modern GDDR5 layout where each MC provides 32-bits to form 6 independent 

channels.  

 With the success of GDDR5 and the growing concerns over memory bottlenecks, JEDEC 

finalized a new standard called GDDR5X [6]. This memory standard doubled the prefetch size 

from 8n to 16n and effectively allowed 512-bit transfers per memory access. GDDR5X also 

contains MCs that have speeds up to 12Gbps [7]. Provided as a cheaper alternative to 3D stacked 

memories, GDDR5X can be found in graphics cards like the Nividia GeForce GTX 1080 Ti. To 

improve this technology, Samsung executives have proposed GDDR6, with up to 14Gbps per 

MC [8]. Though projected for a 2018 release date, new graphics cards often take longer than 

expected to reach the market.  



12 

 

Figure 9: GDDR5 top view based on Nvidia’s GeForce GTX Titan Black [9]. 

 

Current DIMM Issues 

Scalability 

 Since the introduction of the first DDR memory module, engineers have increased 

transfer speeds by increasing the data rate for a DIMM’s I/O bus. As a result, the internal DRAM 

hardware has seen few changes with new generations of DDR SDRAM (shown in Table 1). To 

hide the slow internal DRAM core, each generation of DDR has increased the prefetch length. 

This means more data returns for each column and row address that travels to the DIMM. For 

DDR4 modules, they use bank groups to divide the prefetch into two groups of eight. These bank 

groups act independently to achieve faster data rates than DDR3 while using the same slow 

DRAM cores [10, 11]. Through this technique has been successful in the past, larger prefetch 

architectures will not only be difficult to achieve, but will likely transfer data that goes unused.  



13 

Table 1: DDR MC clock versus I/O data bus clock [11, 12, 13, 14]. 

DDR Generation Internal Memory Chip Clock (MHz) I/O Data Bus Clock (MHz) 

DDR 100 – 200 100 – 200 

DDR2 100 – 266 200 – 533 

DDR3 100 – 266 400 – 1066 

DDR4 133 – 266 1066 – 2133 

 

 

Pin Count 

 DRAM cells have decreased in price since the introduction of DDR SDRAM. This allows 

engineers to pack more memory cells into DIMMs without creating large price tags. Packaging 

costs on the other hand, are not decreasing at similar rates. This means that pin count has become 

a critical contributor to the manufacturing costs of DIMMs [1]. In current architectures, reducing 

pin count to reduce costs would decrease memory bandwidth. However, pin count also plays a 

large role in power consumption and heat dissipation.   

Heat and Power Consumption 

 DIMMs are not designed to consume significant amounts of power or dissipate a lot of 

heat. In fact, they are considered more simplistic hardware devices because they rely heavily on 

the DMC to tell them what actions to perform. DIMMs will consume more power and dissipate 

more heat as they become larger and their hardware becomes more complex. Additionally, Fully 

Buffered DIMMs (FB DIMMs) also increase heat dissipation due to the extra registers required 

to buffer incoming data [1]. By increasing DIMM sizes, the number of FB DIMMs, and faster 

I/O clocking, DRAM systems become large contributors to power consumption and heat 

dissipation. Growing power and heat issues threaten system designs like blade servers, which 

rely on shared cooling and power devices within an enclosure.     



14 

 Refresh Rate 

 As DIMMs continue to grow in size, they are capable of storing significant amounts of 

memory. According to JEDEC standards, rows containing memory need to be refreshed every 

64ms to prevent data loss (32ms for temperatures over 85oC) [15, 16]. That means that larger 

memories will need to spend more time refreshing rows in the same time frame. With increasing 

chip density and more rows in a refresh bundle, the time spent refreshing cells becomes a 

significant problem to memory performance. This will be counterproductive to the advancements 

made in data transfer rates with future DDR generations. Figure 10 shows the proportional 

relationship between the capacity of the memory and the time spent refreshing cells. Note that 

values are doubled when the temperature is above 85oC.  

 

 

 

Figure 10: Time spent refreshing memory for temperatures below 85oC [16]. 

 

 

 

1.4%
2.6%

3.9% 4.5%

~9%

~18%

1Gb 2Gb 4Gb 8Gb 16Gb 32Gb

P
er

ce
n

t 
o

f 
Ti

m
e 

Sp
en

t 
R

ef
re

sh
in

g

Chip Size

Growing Problem of Refresh



15 

Commodity Status 

 DIMMs have been marked as a commodity compared to other components within a 

computer system. As a commodity item, cost plays a major factor when considering different 

DRAM architectural decisions. This can affect memory speeds as engineers trade off the 

complexity, power consumption, and the effected cost. In order to make a new architectural 

design competitive in today’s market, the designer needs to prove that the faster speeds are worth 

the higher price tag.  

3D Stacked Memory 

 To alleviate many of the issues discussed above, industry leaders have developed new 

DRAM architectures involving stacked MCs. Unlike traditional DDR memories, where each MC 

connects directly to the PCB, 3D memories involve placing MCs on top of each other to create a 

“stack”. This allows similar memory sizes to take up significantly less form factor and 

communicate with each other using through-silicon vias (TSVs). By using TSVs instead of the 

traditional pin connections, 3D stacked memories have larger bus widths, and higher channel 

counts, to achieve higher throughput.   

High Bandwidth Memory 

 High Bandwidth Memory (HBM) is a version of 3D stacked memory developed by AMD 

and Hynix. Designed to communicate with GPUs, it targets high throughput by using a 1024-bit 

wide data bus spread across 8 channels (128 bits per channel). By stacking the chips, 1GB of 

HBM takes approximately 35mm2 of space compared to 672mm2 in a traditional GDDR5 

architecture [17]. With a smaller footprint, these 3D stacks are placed on an interposer with the 

processor (shown in Figure 11). The close proximity, higher chip count, and wide data bus allow 

HBM to achieve over 100GB/s per stack [17, 18, 19]. 



16 

  

Figure 11: HBM cross sectional view [17]. 

 

 HBM had limited shipping with AMD’s Radeon R9 Fury, Nano, and Fury X graphics 

cards before developments quickly began on its replacement HBM2. Unlike its predecessor, 

HBM2 can stack up to 8 dies as opposed to HBM’s 4. HBM2 also introduced pseudo channels to 

break individual channels into two sets of sub-channels (shown in Figure 12). In what is called 

legacy mode (mode used in HBM), each read/write command will transfer 256 bits during 2 

cycles. Using pseudo channel mode (mode used in HBM2), the “128-bit bus is split into 2 

individual 64-bit segments” [20] that still transfers 256 bits but reduces the four-bank activation 

window time [1, 20]. In summary, HBM2 provides up to 256GB/s per stack compared to HBMs 

128GB/s and can offer up to 8GB per stack compared to HBMs 4GB [21, 22]. The recent Nvidia 

Quadro GP100 graphics card incorporated 4 stacks of HBM2 with a memory sizes of 16GB. 

AMD’s Vega graphics cards plan to hold HBM2 as well, when they are released in the coming 

months of 2017.  

 



17 

 

Figure 12: HBM2 pseudo channels overview [21, 22]. 

 

 Continuing their push forward, industry leaders plan to release HBM3 between 2019 and 

2020. With up to 16 stacked dies and 16GB per stack, HBM3 promises to double the data 

transfer rate to 512GB/s per stack [23]. These advancements in 3D stacked memory pose future 

power issues as stacks grow in size and more TSVs are used to increase bandwidth. To avoid the 

potential power and bandwidth walls, this paper proposes the use of 3D ring based SWOs to 

achieve an efficient communication scheme. The results show that using this scheme can reduce 

TSVs and power consumption while maintaining similar speeds to current HBM standards.    

Wide I/O Memory 

 Wide I/O Memory is a 3D stacked memory backed by Samsung that specializes in low 

power applications. Designed with the mobile market in mind, Wide I/O originally promised 

stacks of DRAM to be place directly on top of the processor. This engenders significant thermal 

and power issues to ensure that the processor heat does not cause memory failure. Instead, most 



18 

architectural layouts still use an interposer like HBM. Wide I/O promised up to 17GB/s, but 

failed to make it into production [24].  

 Wide I/O 2 Memory builds on its predecessor by improving bandwidth to 68GB/s and 

minimizing power consumption. Unlike the 512-bit data bus used by Wide I/O, Wide I/O 2 

increases the bus width to match HBM at 1024 bits [25]. Targeting high-end low power 

applications, Wide I/O 2 became a JEDEC standard in 2014. To date, this 3D stacked memory 

has yet to make it to production, partly due to its high price tag for a mobile market.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

CHAPTER II 

RING BASED MEMORY 

 

Over the past two decades, researchers have proposed many solutions to solve the current 

memory bottlenecks. The developments of HBM and WideIO promise significant upgrades from 

the current DIMM speeds but engender new issues. One issue is distributing a low skew clock, to 

all DRAM dies, to increase speeds with minimal power consumption. Another problem is that 

refreshing memory continues to increase latencies and causes longer queue lengths in the DMC. 

Finally, TSVs have limited clocking speeds and 3D memories must rely on higher channel 

counts to achieve higher throughput. In order to increase speeds in future 3D memory 

generations, research papers have explored solutions to solve these issues.  

Skew Cancellation for HBM 

 A paper released last year by Ahn and Yoo, from Hanyang University, explored a 

solution to reduce skew between 32 DQ lines used for the data bus [26]. Increases in skew will 

reduce the window for valid data and result in decreased bandwidth. To achieve this lower read 

skew rate, they use buffers on the logic die that are adjusted by successive approximation register 

logic. For write skew, they form loopback paths on the logic die by controlling the buffer delays. 

After cancellation, they are able to achieve 15 times less skew with a difference of 18ps still left 

between the DQ lines [26]. This is an important aspect of HBM as less skew will result in faster 

clocking and therefore faster memory speeds.  

 

 



20 

Massed Refresh 

 Another paper published by Thakkar and Pasricha from Colorado State University 

proposes a technique to reduce refresh time for Hybrid Memory Cubes. This is another form of 

3D stacked memory that is developed by Intel and other memory based companies. The paper 

produced from Colorado State suggests using subarray-level and bank-level concurrency to 

reduce the time spent refreshing cells [27]. By mapping multiple DRAM rows to subgroups, 

which are refreshed concurrently, significant time is saved refreshing the memory. This reduces 

the power consumption by 5.8% and improves throughput by 6.3% [27].  

Simultaneous Multi Layer Access 

 A technical report published by professors at Carnegie Mellon University proposed an IO 

organization to increase memory bandwidth [28]. They used the internal bandwidth of multiple 

layers to increase IO speeds. By time-multiplexing across DRAM dies, the professors claim up to 

55% improvements in performance for multi-programmed workloads. The most important factor, 

however, is that it maintains low costs by leveraging internal global bit-lines instead of adding 

external global bit-lines [28]. The report was published in 2015 and performance measurements 

are based on HBM standards instead of the higher bandwidth HBM2.   

Ring-Based Interconnect 

 As mentioned in the previous summaries on 3D stacked memory research, there are a 

number of proposed techniques to improve the communication between DRAM chips. In this 

paper, the focus is on ring-based SWOs to provide a low skew, fast clock to all memory layers. 

The SWO uses two clock wires connected on one side by a Mobius Crossing and an inverter pair 

(shown in Figure 13). Extraction points along the ring contain differential amplifiers (clock 



21 

recovery circuits) to obtain a clock from the standing wave. Because of the Mobius Crossing, a 

virtual crossing exists at the midpoint of the ring opposite the inverter pair. The differential 

signal seen near this virtual crossing is not large enough to extract a fully differential clock. This 

creates a “dead-zone” where clock recovery circuits cannot exist. As the resonant ring gets faster, 

the size of the “dead-zone” increases. The virtual crossing also creates a phase change, where the 

positive and negative inputs to the differential amplifier flip to ensure all DRAM dies see the 

same rising edge.  

 

 

Figure 13: Standing wave ring clock [29, 30]. 



22 

 The memory architecture using a ring-based topology (MART) utilizes both a 3D 

resonant SWO and a series of data lines. These wires intersect each channel to form insertion-

extraction stations (IE stations), where data is injected or removed from the rings. To ensure that 

all IE stations receive a full amplitude clock, and no station falls in the “dead-zone”, longer 

traces are placed at the top of the stack (shown in Figure 14 right). This increases the total length 

of the SWO, but maintains minimal skew compared to traditional clocking schemes. Because of 

the increased SWO length, the TSVs used for the ring need to be wider to reduce resistance. This 

allows the ring to oscillate at faster speeds despite the increased length. Figure 14 shows a 

traditional HBM stack (left) compared to a MART stack (right) where the dotted line shows the 

division between channels on the same DRAM die. The 212-bit bus for the traditional HBM 

stack represents all lines for a single channel [20].  

 

  

Figure 14: Cross sectional view of HBM (left) and MART (right) for a 4GB stack. 

 

 With each rotation of the SWO, addresses and data travel between IE stations. Because 

there are 9 total IE stations, the clock needs to oscillate at 18GHz to provide a round trip time 

similar to traditional HBM TSVs (0.5 nanoseconds). Each IE station is equidistant apart to 



23 

ensure that information arrives within the desired period. The stations contain a series of flip-

flops to buffer the data and address lines between DRAM chips. The differential amplifiers, that 

extract the full amplitude clock from the ring, will drive the clock input to these flip-flops. A 

series of multiplexers and asynchronous FIFOs are used in each IE station to communicate 

between the channels and the 3D data rings. This is an area of ongoing research and this paper 

assumes that the IE stations operate at the desired ring frequency. 

 Control lines and the address bus also utilize the ring and the IE stations. This allows the 

address and die selection to move consistently with the data during write commands. The data is 

then stored temporarily in the IE station while the bit-lines and corresponding row activate to 

write the data. Three control lines are added to select which of the 8 channels the address/data 

corresponds to. By sharing the address and control lines, the number of TSVs decreases to 

reduce power consumption and manufacturing costs.  

By using the energy recycling capabilities of the ring, this high frequency clock will 

consume less power while maintaining high transfer rates. The ring relies on parasitic 

capacitance and inductance to operate. To create a predictable environment for the clock, shield 

planes are used to provide the dominate ground capacitances in relation to the clock wires. It is 

important to note that the 3D ring is still a TSV, where the cylindrical clock wires will travel 

through the silicon of each die to connect each section together. The Mobius Crossing and 

inverter pair are located on the logic die to allow the longer traces at the top of the stack to 

accommodate the “dead-zone”. Figure 15 shows the dimensions of the ground plane and clock 

TSVs to achieve speeds of 18GHz.  



24 

 

Figure 15: Cross-sectional view of 3D clock wires. 

 

For 8GB HBM stacks, manufactures grind the substrate down to maintain similar heights 

to 4GB HBM stacks. Each DRAM die in an 8GB stack represents an independent channel to 

create an 8-channel architecture similar to the 4GB stacks. The channels, however, are larger and 

consist of 1GB each compared to 512MB. These larger stacks typically only exist in servers and 

high performance computers. Table 2 shows the heights of for all HBM stacks according to the 

JEDEC standard while Figure 16 shows the traditional HBM configuration and the MART 

configuration for 8GB stacks.  

 

Table 2: HBM stack heights [19]. 

Stack Size Minimum (μm) Typical (μm) Maximum (μm) 

2GB / 4GB / 8GB 695 720 745 

 

 



25 

  

Figure 16: Cross sectional view of HBM (left) and MART (right) for an 8GB stack. 

 

  



26 

CHAPTER III 

SIMULATION RESULTS 

 

The (MART) was tested using three main simulation tools. HSPICE provided electronic 

simulations to ensure the clock operated at the desired frequency. Raphael produced the 

capacitance, inductance, and resistance extraction for the clock wires to operate. Finally, using 

the timing parameters obtained from the previous two simulation tools, Ramulator provided 

DRAM simulations using CPU traces [31]. Ramulator is a C/C++ open source program provided 

by the SAFARI group at Carnegie Mellon University. It has pre-built DRAM models for DDR3, 

LPDDR3, DDR4, LPDDR4, GDDR5, WideIO, WideIO2, and HBM. Though this program is 

only an estimate of memory performance, it presents useful insight into the operation and utility 

of different memory architectures.  

16nm Process 

 The simulations performed in this paper used the 16nm PTM fabrication process 

provided by Arizona State University [32]. Before simulating the ring, the high-to-low and low-

to-high propagation delays were measured for a minimum size inverter in an inverter chain. By 

varying the width of the PMOS in the inverter, a width of 44nm was chosen to equalize these 

delays. This was critical to ensure that the inverter pair in the ring switches at the same rate for 

each clock rotation. Figure 17 shows the HSPICE results with the NMOS length at 16nm, the 

NMOS width at 32nm, the PMOS length at 16nm, and the PMOS width varied from 20nm to 

80nm.  

 



27 

 

Figure 17: 16nm process delay equalization. 

 

3D Ring Clock 

 In order for the ring to operate, the capacitance, resistance, and inductance of the clock 

wires were extracted using Raphael. After obtaining the desired values, a distributed model of 

the clock wires was constructed in HSPICE. This distributed model utilized 24 individual T-

sections that evenly distributed the resistance, capacitance, and inductance across the length of 

the ring. As mentioned in Table 2, the typical height of a 2GB, 4GB, and 8GB HBM stack is 

720μm [19]. Thus, the length of the ring must be at least 2200μm for two reasons. First, the ring 

is double the height of the stack because it must connect to all 8 channels. Second, the extra trace 

at the top of the stack must be at least 33% of the total ring length to accommodate the “dead-

zone”. This left 1474μm of the ring capable of extracting a full differential clock, which meets 

the requirement for the stack height.  



28 

 Because 9 IE stations exist, the clock simulated in HSPICE was adjusted to run at 

18GHz. Clock extraction points were placed at the 16 T-sections closest to the inverter pair. 

These 16 T-sections also included differential amplifiers to extract a full differential clock signal 

with minimal skew. These differential amplifiers use a DC bias transistor and a current mirror 

active load to provide a single-ended output driven by two inverters (shown in Figure 18). The 

size and number of these inverters can vary based on the number of flip-flops they drive in each 

IE station.   

 Figure 19 shows the 16 extracted points along the SWO that receive a full differential 

clock. The period of the extracted clock is 55.79ps, which equates to 17.92GHz. The rising skew 

between the 16 points is 2.54ps, while the falling skew is 3.55ps. This is 5 times less than the 

skew minimization technique used by Ahn and Yoo [27]. Based on these results, the SWO can 

deliver a clock to all IE stations and maintain a round trip time of 0.5 nanoseconds. This allows 

comparable speeds to current HBM standards but utilizes fewer TSVs.   

 

 

Figure 18: Differential amplifier circuit to extract clock signal [29, 30].  



29 

 

Figure 19: 18GHz extracted ring clock signal at 16 different locations.  

 

Current DRAM Speeds 

 Using the built-in models from Ramulator [31], modern DRAM architectures were 

simulated with 9 different CPU traces. Each DRAM architecture was run using multiple channels 

to accurately represent the memory in its fastest configuration. DDR memories had a maximum 

of 8 ranks per channel, since capacitance loading on more ranks is not feasible [33]. The 3D 

stacked memories, HBM and WideIO2, had 8 channels based on the JEDEC standard [28, 29]. 

Every DRAM chip was run with the maximum clock speed available to show the fastest speeds 

the memory configuration was capable of. HBM was run with only 4Gb since 8Gb was not 

available in the Ramulator package. Table 3 shows an overview of the configuration settings for 

each DRAM architecture.  

 Every DRAM configuration was run twice, once with the cache enabled (to simulate an 

accurate computer system) and once with the cache disable (to exercise the DRAM architecture). 



30 

The CPU traces used came from the SPEC CPU 2006 benchmarks and contained a variety of 

trace sizes and memory requests. Table 4 shows the total number of memory requests as well as 

the percentage of those requests that were write commands. The final column marks the 

percentage of the read and write requests that were caught by the cache. 

 

Table 3: Ramulator DRAM simulation configurations.  

DRAM Architecture # of Channels Ranks per Channel I/O Bus Speed (MHz) Memory Size 

DDR3 2 8 2133 8Gb 

LPDDR3 2 2 2133 8Gb 

DDR4 4 8 2400 8Gb 

LPDDR4 2 2 3200 8Gb 

GDDR5 6 1 7000 8Gb 

WideIO2 8 2 1066 8Gb 

HBM 8 2 1000 4Gb 

 

 

Table 4: SPEC CPU 2006 trace statistics.  

CPU Trace Total Number of Requests 
% of Requests that 

are Write Commands 
% Requests that are 

Cache Hits 

429.mcf 16965722 9.93 32.8 

470.lbm 9988010 42.8 41.9 

450.soplex 8748061 35.1 73.7 

459.gemsfdtd 6918110 26.5 18.4 

462.libquantum 6447884 16.3 3.1 

437.leslie3d 4563215 25.2 11.2 

433.milc 4333369 26.1 3.06 

471.omnetpp 3984337 2.89 97.9 

483.xalancbmk 3772390 2.55 95.8 

Note: Cache size was 1MB, with a block size of 64 and an associativity of 8.  



31 

 Based on the configurations shown in Table 3, Ramulator provides the theoretical 

maximum bandwidth that is achievable. This parameter is typically marketed by memory 

manufactures to show the potential speeds of different DRAM architectures. Though a 

configuration may have higher theoretical bandwidth, it does not guarantee better performance 

for all applications. Table 5 shows the theoretical maximum bandwidth for each configuration 

that was run with Ramulator. Though GDDR5 has the highest theoretical bandwidth, the results 

show that it is not necessarily the fastest architecture when running different CPU traces.   

 

Table 5: Ramulator theoretical maximum bandwidth.  

DRAM Architecture Maximum Bandwidth (GBps) 

GDDR5 336 

WideIO2 136 

HBM 128 

DDR4 76.8 

DDR3 34.1 

LPDDR3 34.1 

LPDDR4 25.6 

 

 

 The different DRAM architectures were tested against the 9 different CPU traces using 

the configurations in Table 3. The first important statistic examined from the results is the 

latency seen by each command that travels from the DMC to the DRAM. Though this latency 

can measure the average time a single command takes to execute in memory, it does not 

accurately represent the parallelization of multi-channel architectures. Instead, a clear line 

separates the low power memory options (LPDDR3, LPDDR4, and WideIO2) from the 



32 

traditional DRAM architectures (DDR3, DDR4, HBM, GDDR5). This shows that the low power 

memory options use slower DRAM cores to reduce power consumption. Despite the separation 

between lower power and traditional memories, there is no clear distinction between the memory 

architectures for different traces. Figures 19 and 20 show the average latency per command 

without and with a cache.    

 

 

Figure 20: Average latency per command without cache (Appendix, Table 9).  

 

15

25

35

45

55

65

75

85

95

La
te

n
cy

 (
n

s)

Average Latency per Command

LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM



33 

 

Figure 21: Average latency per command with cache (Appendix, Table 10). 

 

 Though the average latency per command is a useful statistic to measure the speeds of the 

DRAM core, it does not accurately represent the parallelization utilized by multiple channels. 

Measuring the total latency of all read commands over a CPU trace shows the differences 

between the different memory configurations. The configurations that utilize more channels and 

ranks resulted in significant speed increases over the lifetime of the program. Those that had at 

least 4 channels were approximately 50% faster than those with 2 channels. Traces 471.omnetpp 

and 483.xalancbmk had very small latencies because of their high cache hit rate. The results in 

Figures 22 and 23 show the total latency in milliseconds. It is important to notice that HBM 

performed better than all memory architectures for every CPU trace.     

 

20

30

40

50

60

70

80

La
te

n
cy

 (
n

s)
Average Latency per Command

LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM



34 

 

Figure 22: Total read latency without cache (Appendix, Table 11).  

 

 

Figure 23: Total read latency with cache (Appendix, Table 12).  

10

20

40

80

160

320

640

La
te

n
cy

 (
m

s)
Total Read Latency

LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM

0.2

1

5

25

125

625

La
te

n
cy

 (
m

s)

Total Read Latency

LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM



35 

 An accurate representation of the parallelization achieved by using multiple channels is 

the average queue length in the DMC. This statistic shows that the channel count is proportional 

to the average length of the queue, since commands are divided amongst different channels when 

possible. The longer the average queue length, the longer the latency for the command to execute 

in memory. Figures 24 and 25 show the average number of commands waiting in the queue per 

channel. The number of commands waiting idle grows as more commands are issued to the 

DRAM. This explains the higher average queue length for traces that have more memory 

commands compared to those with a higher cache hit rate (471.omnetpp and 483.xalancbmk).  

 

 

Figure 24: Average queue length without cache (Appendix, Table 13).  

 

0

1

2

3

4

5

6

7

8

9

Q
u

eu
e 

Le
n

gt
h

Average Queue Length per Channel

LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM



36 

 

Figure 25: Average queue length with cache (Appendix, Table 14).   

 

Consistently, in the results presented, HBM was faster than other DRAM architectures 

for all CPU traces. The increases in speed were more for larger programs, such as 429.mcf, 

compared to smaller programs, like 471.omnetpp. The results prove that the higher channel 

counts of 3D stacked memories like HBM and WideIO provide larger throughput compared to 

traditional DDR architectures. Because HBM proved faster than any other memory 

configurations, it is the basis for comparison with the MART.   

Low Power Ring Memory 

 Using the HBM model as a template, the MART model was adjusted to incorporate the 

shared data bus. In the low power MART (LPMART) scheme, all 8 channels share the same 64-

bit data bus and 14-bit address bus (this is based on a WideIO type interface). This makes a total 

of 156 TSVs for the address/data bus in Figures 14 and 16 (78 on each side of the dotted line). 

0

1

2

3

4

5

6

Q
u

eu
e 

Le
n

gt
h

Average Queue Length per Channel

LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM



37 

Adding the clock wires and the control lines, the total number of TSVs needed for the LPMART 

is 296. Table 6 shows the TSV comparison between a traditional HBM and the LPMART 

scheme.  

 

Table 6: Total number of TSVs for HBM and LPMART (assuming 8 channels) [20].    

TSV Function HBM LPMART 

Data 1024 128 

Column Address 64 16 

Row Address 48 12 

Clock 16 4 

Control Lines 544 136 
   

Total 1696 296 

 

 

 HBM TSVs have an average height that goes through 2.5 DRAM/Logic dies for each 

clock cycle (for a 4GB stack). The LPMART only goes through 1 die per clock cycle because 

there are registers in every IE station. This gives an approximation for the capacitance each TSV 

experiences per clock cycle that can be applied to the following equation.  

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶 𝑉𝐷𝐷
2  𝑓𝑠𝑤 

 Assuming the same 𝑉𝐷𝐷, the frequency of the TSVs in HBM is 1GHz compare to 18GHz 

for the LPRM. HBM however, utilizes both edges of the clock and therefore doubles the 

switching frequency. Despite the faster clocking speed of the TSVs in the LPMART, the 

reduction in the number of TSVs and the smaller capacitance cause the LPMART interface to 

consume approximately 40% less power than HBM (shown in Table 7). These power savings, 



38 

however, only deal with the TSVs in the DRAM stacks and do not include the power 

consumption of the DRAM cores. This is an area of ongoing research to provide definite results 

to backup these claims.  

 

 Table 7: Dynamic power estimate for HBM and LPMART.    

 HBM LPMART 

𝐶 ~ 𝐿𝑒𝑛𝑔𝑡ℎ 2.5 1 

𝑓𝑠𝑤 2 18 

Number of TSVs 1696 296 

~𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 8480 5328 

 

 

 After calculating the power estimates, Ramulator simulations show the speed comparison 

between the LPMART scheme and other 3D stacked memories. Because the IE stations may 

have conflicts, where they cannot insert data onto the ring because other data already has that 

slot, the LPMART will have delayed latencies during busy bus periods. These latencies are 

minimal, however, since the activity of the data bus on a traditional HBM architecture is below 

5% and a conflict will only delay data by one clock cycle (less than 0.06ns for an 18GHz clock). 

The smaller data bus of the LPMART, compared to HBM, causes decreased speeds but remains 

faster than the WideIO2 architecture. Unlike HBM, the LPMART will not have overhead 

between read and write commands because the ring is unidirectional. This reduces the column 

write latency and results in better performance for traces with more write requests. When looking 

at the performance results of the LPMART, it has speeds roughly in between WideIO2 and 



39 

HBM. With projected decreases in power consumption and manufacturing costs over HBM, the 

LPMART provides a new alternative to achieve faster speeds than WideIO2.   

 Figures 26 and 27 show the average latency incurred per command sent to the DRAM 

stack. As expected, HBM outperforms other 3D stacked memories in all traces. LPMART and 

WideIO2 follow a similar trend because both utilize the same DRAM dies. LPMART increases 

speeds over WideIO2 by 11%, but is slower than HBM by as much as 24%. For both the cache 

and no-cache configuration, the average latency per command maintained similar differences 

across all traces. The slower speeds of the LPMART and WideIO2 DRAM cores causes higher 

latencies per command, similar to the results shown for low power options in Figures 20 and 21.  

 

 

Figure 26: Average latency per command without cache (Appendix, Table 15). 

 

 

20

25

30

35

40

45

50

55

60

65

70

La
te

n
cy

 (
n

s)

Average Latency per Command

WideIO2 HBM LPMART



40 

 

Figure 27: Average latency per command with cache (Appendix, Table 16).  

 

 To see a better comparison for the performance between the different 3D stacked 

memories, it is best to look at the total read latency. Here we see that, similar to the per 

command basis, HBM is the fastest in all cases while LPMART falls between HBM and 

WideIO2. LPMART is up to 17% faster than WideIO2, but can be up to 50% slower than HBM 

(Figure 28 and 29). Though this is a conservative range, LPMART is typically slower than HBM 

because of its narrow data bus. These statistics are similar for the cache configuration, but an 

overall reduction in latency occurs because of the reduction in DRAM requests. With a cache 

enabled, LPMART can be 5% slower than HBM and achieve speeds upwards of 20% faster than 

WideIO2.   

 

25

30

35

40

45

50

55

60

65

70
La

te
n

cy
 (

n
s)

Average Latency per Command

WideIO2 HBM LPMART



41 

 

Figure 28: Total read latency without cache (Appendix, Table 17).  

 

 

Figure 29: Total read latency with cache (Appendix, Table 18).  

 

10

20

40

80

160

La
te

n
cy

 (
m

s)
Total Read Latency

WideIO2 HBM LPMART

0.2

1

5

25

125

La
te

n
cy

 (
m

s)

Total Read Latency

WideIO2 HBM LPMART



42 

 The final statistic measured between the 3D stacked memories is the average queue 

length for each channel. Because every 3D stacked memory used in these tests has 8 channels, 

the comparison shows the explicit speed seen by the communication scheme and the DRAM 

cores. With the cache disabled, the LPMART has the highest average queue length compared to 

WideIO2 and HBM (Figure 30). This is a result of the shared TSVs between all 8 channels and 

the conflicts that occur when the data bus is busy. Compared to WideIO2, LPMART has 23% 

larger queue lengths on average. When the cache is enabled, the difference seen between the 3D 

stacked memories is significantly reduced and the average queue lengths per channel are similar 

(Figure 31). Instead of a 23% increase, the queue length of the LPMART is only 4% larger than 

WideIO2.  

 

 

Figure 30: Average queue length without cache (Appendix, Table 19). 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Q
u

eu
e 

Le
n

gt
h

Average Queue Length per Channel

WideIO2 HBM LPMART



43 

 

Figure 31: Average queue length with cache (Appendix, Table 20).  

 

High Performance Ring Memories 

 By utilizing the ring in a 3D stacked memory, TSVs are reduced without compromising 

the performance. If the MART commination scheme is duplicated in Figure 16, the number of 

channels in the stack could be doubled from 8 to 16 (shown in Figure 32). With the data bus 

being 128-bits wide, the total number of TSVs used in a 16-channel architecture would be 848 

(including address and control lines). Though this increases power consumption by 

approximately 80%, it still reduces manufacturing costs by utilizing fewer TSVs. With 16 

channels, the parallelization for commands issued to the DRAM dies doubles and causes 

significant increases in speed over current HBM standards. By doubling the MART from 2 to 4 

rings, four sets of 128-bit wide data busses can be used to create 32 independent channels. This 

would also double the power consumption but would only utilize 1696 TSVs, similar to HBM 

stacks. Table 8 shows the power estimates for the different channel architectures.  

0

0.2

0.4

0.6

0.8

1

1.2

Q
u

eu
e 

Le
n

gt
h

Average Queue Length per Channel

WideIO2 HBM LPMART



44 

 

Figure 32: Side view of 8-channel (left) and 16-channel (right) MART for an 8GB stack. 

 

Table 8: Dynamic power estimate for different channel counts.    

 8-channel MART 16-channel MART 32-channel MART 

Number of TSVs 424 848 1696 

~𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 7632 15264 30528 

 

 

 By utilizing more channels, the DMC requests are evenly distributed across different 

sections of the DRAM dies. This reduces the time spent refreshing DRAM and allows concurrent 

commands to operate in parallel. To measure the performance for scalable channel counts, the 

MART was run in Ramulator with the same CPU traces. The average latency per command for 

the different channel counts saw few changes (Figure 33). These results show that more channels 

increase parallelization rather than single threaded commands. With the cache enabled, the 

latencies remained constant, but the difference between the different architectures decreased 

(Figure 34).  

  



45 

 

Figure 33: Average latency per command without cache (Appendix, Table 21). 

 

 

Figure 34: Average latency per command without cache (Appendix, Table 22). 

25

30

35

40

45

50

55

La
te

n
cy

 (
n

s)
Average Latency per Command

8 Channels 16 Channels 32 Channels

25

30

35

40

45

50

55

La
te

n
cy

 (
n

s)

Average Latency per Command

8 Channels 16 Channels 32 Channels



46 

 Each time the channel count is doubled, the total read latency for all requests in a CPU 

trace is reduced by 100%. This is a result of increased concurrency in the DRAM dies and the 

reduction in the refresh time needed to ensure no data is lost. Figure 35 shows that for almost 

every CPU trace, the latency is cut in half. The exception comes from the 433.milc trace, which 

has a low cache catch rate, which in turn means that commands are not made to consecutive or 

similar locations in memory. This CPU trace also has a high write command percentage, which 

increases overhead in the internal DRAM cores. Figure 36 shows the same measurement with the 

cache enabled. Despite decreased latencies, doubling channel counts continues to double 

performance across most CPU traces.  

  

 

Figure 35: Total read latency without cache (Appendix, Table 23).  

 

4

8

16

32

64

128

La
te

n
cy

 (
m

s)

Total Read Latency

8 Channels 16 Channels 32 Channels



47 

 

Figure 36: Total read latency with cache (Appendix, Table 24). 

 

 The final statistic measured was the average queue length for each channel configuration. 

It is important to note that these queue lengths are on a per channel basis; therefore, increasing 

the channel count divides the commands evenly amongst those channels. This reduces the total 

number of commands a channel encounters, which decreases congestion in the memory queues. 

There is a larger discrepancy between the 8-channel and the 16-channel configurations in terms 

of queue length. This decrease in the length of the queue is not as significant between the 16-

channel and the 32-channel architectures. The reason for this is that a limit exists on the smallest 

the queue length can reach for each CPU trace. As the channel count increases, the queue length 

will approach values close to zero.    

 

0.05

0.5

5

50

La
te

n
cy

 (
m

s)
Total Read Latency

8 Channels 16 Channels 32 Channels



48 

 

Figure 37: Average queue length without cache (Appendix, Table 25).  

 

 

Figure 38: Average latency per command without cache (Appendix, Table 26). 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Q
u

eu
e 

Le
n

gt
h

Average Queue Length per Channel

8 Channels 16 Channels 32 Channels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u

eu
e 

Le
n

gt
h

Average Queue Length per Channel

8 Channels 16 Channels 32 Channels



49 

CHAPTER IV 

CONCLUSION 

 

 As memory continues to bottleneck system performance, 3D stacked memory can 

provide significant increases in throughput. With computer programs demanding more memory, 

fast data access is becoming necessary for high computing devices. These devices rely on large 

amounts of data for applications like virtual reality and DNA modelling. If these programs have 

quick access to their data, they can process more commands in a given period. This can have 

massive implications for fields like medical research that rely on data computations to study cells 

and symptoms of sickness.  

Importance  

 By using a 3D resonant ring, the memory architecture using a ring-based topology 

(MART) can trade off power, throughput, and latency to match different application 

requirements. By using a narrow bus, and connecting it to all channels, the MART can provide 

low power consumption with speeds up to 20% faster than WideIO2. With multiple ring 

topologies in the same stack, the channel count can double from 8 to 16, and then to 32. This 

provides speeds up to 4 times faster than traditional HBM. This scalable architecture allows 

higher throughput and faster system performance for increasingly large programs. With all 

systems relying on memory to operate, the topology proposed in this paper provides significant 

impact on computing systems from lightweight IoT to large-scale data centers.  

Future Research 

 The memory architecture using a ring-based topology provides a platform for future 

research on 3D memory communication schemes. By varying the number of 3D resonant rings, 



50 

the MART can accommodate different computer system requirements. To verify the low power 

options presented in this paper, ongoing research is occurring with simulation tools such as 

DRAMPower [34]. Utilizing HSPICE for the communication scheme and DRAMPower for the 

DRAM cores, researchers can verify the power consumption between different ring 

architectures, rather than utilizing the assumptions made in this paper. Research has also begun 

on verifying the operation of the IE stations, to ensure they can maintain the desired frequencies 

of the clock. Finally, research can look at new methods of incorporating the ring into other 

memory architectures. This includes 3D stacks based resistive random-access memory, such as 

3D XPoint, and 3D SSDs. With more memory-based architectures becoming 3D, the ring-based 

architecture proposed in this paper can provide a fast and efficient communication scheme to 

improve system performance.  

 

  

 

  



51 

REFERENCES 

 

[1] Jacob, Bruce, Spencer W. Ng, and David T. Wang. Memory Systems: Cache, DRAM, 

Disk. Burlington: Morgan Kaufmann Publishers, 2008. Print. 

 

[2] Crisp, Richard. “Direct RAMbus technology: the new main memory standard.” IEEE 

Micro 17.6 (1997). Web. 

 

[3] Przybylski, Steven. “Intel gambles on a sure DRAM thing.” Electronic Engineering 

Times 45.947 (1997). Web. 

 

[4] “GDDR5 Part Catalog.” Micron Technology Inc., Feb. 2017. Web. 

 

[5] Smith, Ryan. “The AMD Radeon R9 290 Review.” ANANDTECH, 5 Nov. 2013. Web. 

 

[6] JEDEC Standard: GDDR5X SGRAM (JESD232A). JEDEC Solid State Technology 

Association. August 2016.  

 

[7] Shilov, Anton. “GDDR5X Standard Finalized by JEDEC: New Graphics Memory up to 

14 Gbps.” ANANDTECH, 22 Jan. 2016. Web.  

 

[8] Parrish, Kevin. “The Sixth Generation of On-Board Memory For GPU Cards Won’t 

Arrive Until 2018.” Digital Trends, 22 Aug. 2016. Web.  

 

[9] Chester, Edward. “Nvidia GTX Titan Black launched, set to be new performance king.” 

Bit-tech, 18 Feb. 2014. Web.  

 

[10] Allan, Graham. “DDR4 Bank Groups in Embedded Applications.” DesignWare 

Technical Bulletin. Synopsys, 22 Dec. 2016. Web. 

 

[11] JEDEC Standard: DDR4 SDRAM (JESD79-4). JEDEC Solid State Technology 

Association. September 2012.  

 

[12] JEDEC Standard: DOUBLE DATA RATE SDRAM (JESD79F). JEDEC Solid State 

Technology Association. February 2008.  

 

[13] JEDEC Standard: DDR2 SDRAM (JESD79-2F). JEDEC Solid State Technology 

Association. November 2009.  

 

[14] JEDEC Standard: DDR3 SDRAM (JESD79-3F). JEDEC Solid State Technology 

Association. July 2012.  

 

[15] JEDEC Standard No. 21-C. Page 3.11.5.2. JEDEC Solid State Technology Association.  

 



52 

[16] Nair, Prashant, Chia-Chen Chou, and Moinuddin Qureshi. “A Case for Refresh Pausing 

in DRAM Memory Systems.” IEEE High Performance Computer Architecture 19 

(2013): 627-38. Web.  

 

[17] “High-Bandwidth Memory, Reinventing Memory Technology.” Advanced Micro 

Devices, Inc., 2013. Web.  

 

[18] Wasson, Scott. “AMD’s high-bandwidth memory explained.” The Tech Report: PC 

Hardware Explored. The Tech Report, 19 May 2015. Web. 

 

[19] JEDEC Standard: HBM (JESD235A). JEDEC Solid State Technology Association. 

November 2015. 

 

[20] “HBM2 Deep Dive.” Monitor Insider, 2 Feb. 2016. Web. 

 

[21] Jun, Hongshin, Dr. “HBM (High Bandwidth Memory) for 2.5D.” Semicon Taiwan 2015. 

SK Hynix Inc., Sept. 2015. Web.  

 

[22] Shilov, Anton. “JEDEC Publishes HBM2 Specification as Samsung Begins Mass 

Production of Chips.” ANANDTECH, 20 Jan. 2016. Web.  

 

[23] Walton, Mark. “HBM3: Cheaper, up to 64GB on-package, and terabytes-per-second 

bandwidth.” ARS Technica, 23 Aug. 2016. Web.  

 

[24] JEDEC Standard: WIDE I/O SINGLE DATA RATE (JESD229). JEDEC Solid State 

Technology Association. December 2011. 

 

[25] JEDEC Standard: WIDE I/O 2 (JESD229-2). JEDEC Solid State Technology 

Association. August 2014.  

 

[26] Ahn, K., and C. Yoo. “Skew cancellation technique for >256-Gbyte/s high-bandwidth 

memory (HBM).” Electronics Letters 52.13 (2016): 1155-157. Web. 

 

[27] Thakkar, Ishan, and Sudeep Pasricha. “Massed Refresh: AN Energy-Efficient Technique  

            to Reduce Refresh Overhead in Hybrid Memory Cube Architectures.” IEEE (2016): n.  

            pag. Web. 

 

[28] Lee, Donghyuk, Gennady Pekhimenko, Samira Khan, Saugata Chose, and Onur Mutlu. 

“Simultaneous Multi Layer Access: A High Bandwidth and Low Cost 3D-Stacked 

Memory Interface.” SAFARI Technical Report 2015.008 (2015). Web.  

 

[29] Mandal, Ayan. Efficient Design and Clocking for a Network-on-Chip. Diss. Texas A&M  

University, 2013. Web. 8 Aug. 2016. 

 

[30] Cordero, Victor. Clock Distribution Scheme using Coplanar Transmission Lines. Diss.  

Texas A&M University, 2008. Web. 12 Aug. 2016. 



53 

 

[31] Kim, Yoongu, Weikun Yan, and Onur Mutlu. “Ramulator: A Fast and Extensible DRAM 

Simulator.” IEEE Computer Architecture Letters 15.1 (2015): 45-49. Web.  

 

[32] Cao, Yu. “Latest Models.” Predictive Technology Model. Nanoscale Integration and 

Modeling (NIMO) Group, ASU., 30 Sept. 2008. Web. 

 

[33] Denneman, Frank. “Memory Deep Dive: Memory Subsystem Organization.” 

Frankdenneman.nl. WordPress, 18 Feb. 2015. Web.  

 

[34] Chandrasekar, Karthik, Christian Weis, Yonghui Li, Sven Foossens, Matthias Jung, Omar 

Naji, Benny Akesson, Norbert When, and Kees Goossens. DRAMPower: Open-source 

DRAM Power & Energy Estimation Tool. Web.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

APPENDIX 

MEMORY SIMULATION DATA TABLES 

 

Current DRAM Speeds 

Table 9: Average latency per command without cache in nanoseconds.   

CPU Trace LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM 

429.mcf 87.5 86.5 51.2 43.6 48.9 69.0 48.6 

470.lbm 69.1 62.7 31.3 26.2 39.6 62.4 36.3 

450.soplex 56.7 50.4 28.6 24.7 30.1 47.4 31.4 

459.gemsfdtd 58.3 54.7 27.8 25.4 38.2 62.7 43.0 

462.libquantum 36.5 30.2 20.0 19.8 20.3 31.1 24.6 

437.leslie3d 54.2 49.0 28.2 27.3 36.4 59.1 36.2 

433.milc 52.5 46.8 28.3 26.9 29.1 44.1 31.0 

471.omnetpp 69.8 67.7 40.0 39.5 44.1 64.7 45.0 

483.xalancbmk 56.3 53.0 31.5 33.3 38.8 58.3 41.3 

Note: See page 32. 

 

Table 10: Average latency per command with cache in nanoseconds. 

CPU Trace LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM 

429.mcf 80.7 79.5 45.1 40.8 47.7 65.3 46.5 

470.lbm 73.1 68.7 34.3 27.4 42.6 60.3 44.1 

450.soplex 76.7 70.5 36.9 29.7 39.7 56.6 42.5 

459.gemsfdtd 63.0 59.0 29.8 28.0 42.9 62.5 35.9 

462.libquantum 47.1 42.2 25.7 23.2 27.1 38.2 30.6 

437.leslie3d 66.3 60.8 32.6 29.0 42.4 62.0 42.0 

433.milc 62.4 56.9 32.9 28.6 34.1 47.5 36.5 

471.omnetpp 50.9 48.0 29.6 31.2 36.8 47.1 36.1 

483.xalancbmk 60.0 56.9 34.5 33.4 43.1 54.6 40.6 

Note: See page 33. 



55 

Table 11: Total read latency without cache in milliseconds.   

CPU Trace LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM 

429.mcf 667 659 390 166 143 132 92.7 

470.lbm 197 179 89.4 37.3 42.7 44.7 25.9 

450.soplex 161 143 81.3 35.2 32.3 33.8 22.4 

459.gemsfdtd 148 139 70.7 32.2 36.3 39.8 20.8 

462.libquantum 98.5 81.5 54.1 26.8 20.4 21.1 16.6 

437.leslie3d 92.6 86.7 48.2 23.3 23.2 25.2 15.4 

433.milc 63.3 56.4 34.1 26.9 24.7 30.3 21.3 

471.omnetpp 136 132 77.8 38.8 32.8 31.1 21.7 

483.xalancbmk 104 97.7 58.2 30.8 26.9 26.4 18.7 

Note: See page 34. 

 

Table 12: Total read latency with cache in milliseconds. 

CPU Trace LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM 

429.mcf 413 407 232 104 93.5 83.7 59.5 

470.lbm 134 126 62.7 25.1 29.9 27.5 20.1 

450.soplex 57.8 53.1 27.8 11.2 11.6 10.6 7.98 

459.gemsfdtd 121.9 114.2 57.6 27.1 31.6 30.3 22.8 

462.libquantum 127 114 69.3 31.3 28.1 25.8 20.6 

437.leslie3d 98.9 90.8 48.7 21.7 24.0 23.2 15.7 

433.milc 74.0 67.6 39.0 28.4 28.9 32.4 24.9 

471.omnetpp 2.16 2.07 1.28 0.76 0.64 0.51 0.39 

483.xalancbmk 4.56 4.27 2.59 1.24 1.19 0.97 0.73 

Note: See page 34. 

 

 

 

 



56 

Table 13: Average queue length per channel without cache.    

CPU Trace LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM 

429.mcf 7.18 7.15 7.75 3.57 2.48 1.63 1.51 

470.lbm 7.88 8.18 5.89 2.19 2.12 1.58 1.21 

450.soplex 4.91 5.06 4.95 1.85 1.47 0.96 0.82 

459.gemsfdtd 3.14 3.29 2.72 1.20 1.02 0.74 0.57 

462.libquantum 3.63 3.59 3.41 1.23 1.03 0.65 0.59 

437.leslie3d 3.19 3.26 2.52 1.05 0.92 0.66 0.56 

433.milc 1.83 1.83 2.06 1.12 0.98 0.81 0.67 

471.omnetpp 3.57 3.56 3.24 1.34 1.06 0.76 0.65 

483.xalancbmk 2.07 2.02 1.90 0.91 0.71 0.51 0.47 

Note: See page 35. 

 

Table 14: Average queue length per channel with cache. 

CPU Trace LPDDR4 LPDDR3 DDR3 DDR4 GDDR5 WideIO2 HBM 

429.mcf 5.01 5.09 4.84 1.72 1.43 1.01 0.93 

470.lbm 5.65 5.73 4.30 1.19 1.30 0.97 0.88 

450.soplex 3.60 3.65 2.46 0.69 0.80 0.57 0.48 

459.gemsfdtd 2.88 2.93 2.16 0.84 0.85 0.61 0.63 

462.libquantum 3.92 4.02 2.97 1.02 1.11 0.59 0.58 

437.leslie3d 4.05 4.07 2.91 0.78 0.81 0.58 0.52 

433.milc 1.71 1.69 1.45 0.76 0.75 0.66 0.65 

471.omnetpp 0.18 0.17 0.11 0.04 0.04 0.03 0.02 

483.xalancbmk 0.33 0.31 0.19 0.07 0.07 0.05 0.04 

Note: See page 36. 

 

 

 

 



57 

Low Power Ring Memory 

Table 15: Average latency per command without cache in nanoseconds. 

CPU Trace WideIO2 HBM LPRM 

429.mcf 69.0 48.6 61.8 

470.lbm 62.4 36.3 55.1 

450.soplex 47.4 31.4 41.5 

459.gemsfdtd 62.7 43.0 55.8 

462.libquantum 31.1 24.6 26.4 

437.leslie3d 59.1 36.2 51.9 

433.milc 44.1 31.0 38.4 

471.omnetpp 64.7 45.0 57.9 

483.xalancbmk 58.3 41.3 52.2 

Note: See page 39. 

 

Table 16: Average latency per command with cache in nanoseconds.  

CPU Trace WideIO2 HBM LPRM 

429.mcf 65.3 46.5 58.5 

470.lbm 60.3 44.1 53.3 

450.soplex 56.6 42.5 49.6 

459.gemsfdtd 62.5 35.9 55.6 

462.libquantum 38.2 30.6 32.1 

437.leslie3d 62.0 42.0 54.9 

433.milc 47.5 36.5 41.5 

471.omnetpp 47.1 36.1 41.9 

483.xalancbmk 54.6 40.6 48.8 

Note: See page 40. 

 

 

 



58 

Table 17: Total read latency without cache in milliseconds.   

CPU Trace WideIO2 HBM LPRM 

429.mcf 132 92.7 118 

470.lbm 44.7 25.9 39.4 

450.soplex 33.8 22.4 29.6 

459.gemsfdtd 39.8 20.8 35.4 

462.libquantum 21.1 16.6 17.8 

437.leslie3d 25.2 15.4 22.1 

433.milc 30.3 21.3 26.4 

471.omnetpp 31.1 21.7 27.9 

483.xalancbmk 26.4 18.7 23.6 

Note: See page 41. 

 

Table 18: Total read latency with cache in milliseconds.   

CPU Trace WideIO2 HBM LPRM 

429.mcf 83.7 59.5 74.9 

470.lbm 27.5 20.1 24.4 

450.soplex 10.6 7.98 9.33 

459.gemsfdtd 30.3 22.8 26.9 

462.libquantum 25.8 20.6 21.6 

437.leslie3d 23.2 15.7 20.5 

433.milc 32.4 24.9 28.4 

471.omnetpp 0.51 0.39 0.46 

483.xalancbmk 0.97 0.73 0.87 

Note: See page 41. 

 

 

 

 



59 

Table 19: Average queue length per channel without cache.   

CPU Trace WideIO2 HBM LPRM 

429.mcf 1.63 1.51 1.74 

470.lbm 1.58 1.21 1.62 

450.soplex 0.96 0.82 1.10 

459.gemsfdtd 0.74 0.57 0.76 

462.libquantum 0.65 0.59 0.82 

437.leslie3d 0.66 0.56 0.67 

433.milc 0.81 0.67 0.91 

471.omnetpp 0.76 0.65 0.77 

483.xalancbmk 0.51 0.47 0.51 

Note: See page 42. 

 

Table 20: Average queue length per channel with cache.   

CPU Trace WideIO2 HBM LPRM 

429.mcf 1.01 0.93 1.04 

470.lbm 0.97 0.88 0.96 

450.soplex 0.57 0.48 0.57 

459.gemsfdtd 0.61 0.63 0.61 

462.libquantum 0.59 0.58 0.61 

437.leslie3d 0.58 0.52 0.58 

433.milc 0.66 0.65 0.66 

471.omnetpp 0.03 0.02 0.03 

483.xalancbmk 0.05 0.04 0.05 

Note: See page 43. 

 

 

 

 



60 

High Performance Ring Memory 

Table 21: Average latency per command without cache in nanoseconds.   

CPU Trace 8 Channels 16 Channels 32 Channels 

429.mcf 52.9 52.4 46.2 

470.lbm 40.6 42.8 42.7 

450.soplex 35.8 36.9 39.7 

459.gemsfdtd 40.5 42.5 45.8 

462.libquantum 28.9 31.0 35.3 

437.leslie3d 40.8 43.7 44.9 

433.milc 34.9 36.1 36.6 

471.omnetpp 49.3 46.5 44.4 

483.xalancbmk 45.5 44.9 43.9 

Note: See page 45. 

 

Table 22: Average latency per command with cache in nanoseconds.   

CPU Trace 8 Channels 16 Channels 32 Channels 

429.mcf 50.7 47.3 44.9 

470.lbm 48.5 47.1 43.7 

450.soplex 46.8 45.3 42.1 

459.gemsfdtd 47.6 47.2 46.9 

462.libquantum 35.7 35.7 36.5 

437.leslie3d 46.7 47.5 45.9 

433.milc 40.3 49.4 43.3 

471.omnetpp 40.0 39.0 38.8 

483.xalancbmk 44.8 44.7 44.6 

Note: See page 45. 

 

 

 



61 

Table 23: Total read latency without cache in milliseconds.   

CPU Trace 8 Channels 16 Channels 32 Channels 

429.mcf 100.8 49.7 21.8 

470.lbm 29.0 15.3 7.61 

450.soplex 25.5 13.1 7.01 

459.gemsfdtd 25.7 13.5 7.28 

462.libquantum 19.5 10.5 5.96 

437.leslie3d 17.4 9.31 4.79 

433.milc 23.9 7.64 6.80 

471.omnetpp 23.7 11.3 5.45 

483.xalancbmk 20.6 10.2 5.05 

Note: See page 46. 

 

Table 24: Total read latency with cache in milliseconds.   

CPU Trace 8 Channels 16 Channels 32 Channels 

429.mcf 65.0 30.3 14.4 

470.lbm 22.2 10.8 5.0 

450.soplex 8.80 4.23 1.94 

459.gemsfdtd 23.0 11.4 5.67 

462.libquantum 24.1 12.1 6.15 

437.leslie3d 17.4 8.87 4.29 

433.milc 27.5 10.4 8.03 

471.omnetpp 0.44 0.19 0.09 

483.xalancbmk 0.80 0.41 0.19 

Note: See page 47. 

 

 

 



62 

Table 25: Average queue length per channel without cache.   

CPU Trace 8 Channels 16 Channels 32 Channels 

429.mcf 1.44 0.69 0.32 

470.lbm 1.22 0.61 0.31 

450.soplex 0.81 0.38 0.19 

459.gemsfdtd 0.64 0.33 0.17 

462.libquantum 0.51 0.26 0.14 

437.leslie3d 0.56 0.28 0.14 

433.milc 0.68 0.29 0.26 

471.omnetpp 0.65 0.32 0.16 

483.xalancbmk 0.47 0.24 0.12 

Note: See page 48. 

 

Table 26: Average queue length per channel with cache.   

CPU Trace 8 Channels 16 Channels 32 Channels 

429.mcf 0.92 0.43 0.20 

470.lbm 0.89 0.43 0.19 

450.soplex 0.50 0.22 0.09 

459.gemsfdtd 0.58 0.29 0.14 

462.libquantum 0.67 0.27 0.12 

437.leslie3d 0.53 0.26 0.12 

433.milc 0.64 0.39 0.29 

471.omnetpp 0.03 0.01 0.01 

483.xalancbmk 0.04 0.02 0.01 

Note: See page 48. 

 

 

 


