a2 United States Patent

Li et al.

US009983808B2

10) Patent No.: US 9,983,808 B2

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

NAND FLASH RELIABILITY WITH RANK
MODULATION

Applicants:California Institute of Technology,
Pasadena, CA (US); Texas A&M
University System, College Station, CA
(US)

Inventors: Yue Li, College Station, TX (US); Eyal
En Gad, Pasadena, CA (US); Anxiao
Jiang, College Station, TX (US);
Jehoshua Bruck, Pasadena, CA (US)

Assignee: California Institute of Technology,
Pasadena, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. days.

Appl. No.: 14/965,869

Filed: Dec. 10, 2015

Prior Publication Data

US 2016/0170672 Al Jun. 16, 2016

Related U.S. Application Data

Provisional application No. 62/090,255, filed on Dec.
10, 2014.

Int. CL.

GO6F 12/00 (2006.01)
GO6F 3/06 (2006.01)
G1IC 11/56 (2006.01)
G1IC 16/08 (2006.01)
G1IC 16/26 (2006.01)
G1IC 7/10 (2006.01)
GlIC 8/12 (2006.01)
GlIC 16/34 (2006.01)

45) Date of Patent: May 29, 2018
(52) US.CL
CPC GOGF 3/0619 (2013.01); GOG6F 3/0638

(2013.01); GO6F 3/0679 (2013.01); G1IC
11/5642 (2013.01); G11C 16/08 (2013.01);
GI1IC 16/26 (2013.01); G11C 7/1006
(2013.01); G1IC 8/12 (2013.01); G11C 16/349
(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0132758 Al* 5/2009 Jiang GO6F 11/1072
711/103
GO6F 11/1072

714/781

2009/0132895 Al* 5/2009 Jiang

* cited by examiner

Primary Examiner — Baboucarr Faal
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

The reliability of NAND flash memory decreases rapidly as
density increases, preventing the wide adoptions of flash-
based storage systems. A novel data representation scheme
named rank modulation (RM) is discussed for improving
NAND flash reliability. RM encodes data using the relative
orders of memory cell voltages, which is inherently resilient
to asymmetric errors. For studying the effectiveness of RM
in flash, RM is adapted to make it simple to implement with
existing flash memories. The implementation is evaluated
under different types of noise of 20 nm flash memory.
Results show that RM offers significantly lower cell error
rates compared to the current data representation in flash at
typical P/E cycles. RM is applied to flash-based archival
storage and shows that RM brings up to six times longer data
retention time for 16 nm flash memory.

25 Claims, 14 Drawing Sheets

(CONTINGE)
N)

US 9,983,808 B2

Sheet 1 of 14

May 29, 2018

U.S. Patent

o wn i, A
-

s e e,

10
G0

FIG. 1

FiG. 2

U.S. Patent

Exponent of RBER

May 29, 2018 Sheet 2 of 14 US 9,983,808 B2
-2 4
.
L
£
£
kel
=
g
% 1PEC g
T o.ERE = SOPEDS -
4 TPRED L 4 100PEDS oo

0123458678

¢ 2 4 & §8 1012

Hetention Period (Month) Helention Period (Month)

FiG. 3

4 1R PE Cycles ‘

Number of Cells

107 Wi
0 50 100 :
Normalized Voltage {a.u.}
ot 300 FE Cycles

s
3
£

fikd

Number of Cells
&

o sy 100 180 200
Normalized Vollage (a.u)

FIG. 4

U.S. Patent May 29, 2018 Sheet 3 of 14 US 9,983,808 B2

Cell State Error Count

Cell State

_— 2
’5:} P

b
<
pxsd

U Chown PRS-
- Down G.8KPEDs
- Diosan 1EPRGS

ik
¥
f+2]

u?b
€2
EN

o
<3
it

i} % !
012343 5 &7 8
Hetention Period (Month)

<
o
1]

FiG.

1k P Cyoles

e PRI
e (}‘3 tx Highet

Lﬁg iﬁaﬁmt
Nonahaowd

Adiavant
& oo st

A
)
il
%
%
@
%
&
¥

012345678
Retention Period { mﬁmh}

5

FiG. 6

Cell Siate Error Count

.
107 ¢ Do 1PED
gi}?%‘?"'% 5“’?‘&@% :

b 2 4 6 8 1012
Hetention Period {Month)

100 E af;’;ygs es i
;,2=< H,sgh:&f

i Adiacen
3 U;} Moradinoent

wit Suinosnt
o Nonaassnt oo

Retention Period {Mamm

U.S. Patent May 29, 2018 Sheet 4 of 14 US 9,983,808 B2

[T ————

R Y

i vy of ZATR TR Lo P
o COmpressor B EGU Encoder —» Modulster) Plash Ulaiel

uuuuuuuu aamnd

1 N 3
e Decomgressor w4 EOO Decoder o Demodulstor e

FiG. 8

US 9,983,808 B2

Sheet 5 of 14

May 29, 2018

U.S. Patent

3

o
5

FiG. 8

R o oo e s oo
BE e e oo oo
“w.....“... o e o pom s e
i

s o e e e o

FiG. 10

US 9,983,808 B2

Sheet 6 of 14

May 29, 2018

U.S. Patent

=
ot

;

PN T 1g vy B pands

AP HUIY 1 v 0wy

% S
R

ww
.
)
)
«F
3 i &
5

£
1

BB SR NG ME 0 pauobg

FiIG. 11

U.S. Patent

May 29, 2018

Sheet 7 of 14

US 9,983,808 B2

b
(3
¥

it Brror Hate

i

% R0t

&ip
K]

e
-

e

o

s

FerronsonsonsiF

4 i H

b

0

FiG. 12

o

U.S. Patent

RBER

Exponant of

May 29, 2018

Sheet 8 of 14

R 100FECS
RM S00PECE -

A {PED

RE 1PEL oo
RRG0PECS .
AR G00PECS

“4? ;;;;;;;;;; oo $oomomomonon Bomomomomont CR— oo

2

4 & 8 10

12

Retention Period (Month)

US 9,983,808 B2

RBER

e = LG o
T TS e

e 32 Months -
A % honths -

3 Months -
1 Month

' 5

5O SO0 150 200 250 300 350 400 g
Number of Scrubbinge/PEC

12 Months
Monihs
donths

1 Mordh

2
&
3

FiG. 13

50 100 150 200 250 30D 350 400
Murmber of Scrubbinge/PEC

U.S. Patent May 29, 2018 Sheet 9 of 14 US 9,983,808 B2

Celtindex 1 2 3 4 5 B Fi a8

Rank 4 3 2 1

FIG. 14

U.S. Patent May 29, 2018 Sheet 10 of 14 US 9,983,808 B2

{ START)

\ 4
Determine stored charge levels of n storage elements of the data
storage device, the n storage elements comprising a virtual cell of the
data storage device,

1402

4

Compare the stored charge levels in the siorage elements and
determine a ranked order of the stored charge levels from highest {o
lowest such that the stored charge levels determine values of a
permutation A corresponding to the data {o be read from the data
storage device, wherein A comprises a sei of integer values g; given by
A =lay, ag ..., 8, and the highest charge level corresponds to the &,
storage element and the lowest charge level corresponds to the a,
storage element.

1404

y

Map the permutation A to a corresponding data value that determines
the data read from the data storage devics.

1406

Provide the datla over a data channel to an exiemal device.
1408

y
{ CONTINUE)

FIG. 15

U.S. Patent May 29, 2018 Sheet 11 of 14 US 9,983,808 B2

{ START)

h 4

Receive a data value over a data channel for storage in g data storage
device configured o operate such that a permutation A corresponding
to the data value is siored in the data storage device, wherein A
comptrisas a set of integer values g; given by A ={ay, a,, ..., a,Jand n
storage elements comprise a virtual cell of the data siorage device that
receives the permutation A

1502

k4

Determine the g values of the permutation A wherein the relative rank
ordering of the stored values of the storage slements in the virtual cell
corresponds {0 the permutation A and wherein the storage elements are
assaciated with respective levels of stored charge.

1504

A 4

Store the g; values of the permutation A in the storage elemenis by
setting the stored charge levels in the storage elements of the virtual
cell such that the highest charge level corresponds o the a; storage

element and the lowest charge level corresponds 10 the &, sferage

glement.

1806

A 4

{ CONTINUE)

FIG. 16

US 9,983,808 B2

Sheet 12 of 14

May 29, 2018

U.S. Patent

L1 Ol
80414
vOLL
JajjoauoD) Aowap
02
IBIOBUOQIDIA
A% Fhil
iwwmﬁ S0BLIBILY QL4 20BHSI
Aiotuspy NG 180H
FAYAS

Byng ee(

90/.1
S0IAB(] 180

U.S. Patent May 29, 2018 Sheet 13 of 14 US 9,983,808 B2

FIG. 18

U.S. Patent May 29, 2018 Sheet 14 of 14 US 9,983,808 B2

[3ata Values

FIG. 19

US 9,983,808 B2

1
NAND FLASH RELIABILITY WITH RANK
MODULATION

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a Non-provisional application which
claims the benefit of U.S. Provisional Application No.
62/090,255, filed Dec. 10, 2014 and entitled “TMPROVING
NAND FLASH RELIABILITY WITH RANK MODULA-
TION” which is incorporated herein in its entirety for all
purposes.

BACKGROUND

This disclosure relates to data storage with NAND flash
devices and, more particularly, utilizing Rank Modulation in
a physical implementation of NAND flash devices that
achieves improved reliability.

BRIEF SUMMARY

In one embodiment, the techniques described herein pro-
vide a computer method of operating a data device in which
the data device receives a binary representation from a host
interface, the binary representation comprising a data value
to be encoded into a rank modulation codeword, wherein the
rank modulation codeword represents a state P of N cells,
such that each cell N stores a charge and has a state
represented by up to r charge levels. The data device then
maps each binary representation of the data value to a state
P of one of the N cells in sequence of the data value bits. The
data device then provides the values of the N cells to a data
destination over an information channel.

In another embodiment, the techniques described herein
provide a computer method of operating a data device in
which the data device receives a binary representation of
data comprising a, values that define a rank modulation
codeword given by A, where A=[a,, a,, . . ., a,] integer
values. The data device then determines a data value that
corresponds to the rank modulation codeword. The data
device then provides the values of the N cells to a data
destination over an information channel.

Other features and advantages of the present invention
should be apparent from the following description of exem-
plary embodiments, which illustrate, by way of example,
aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration that depicts charge levels of a
memory device in an example Rank Modulation system.

FIG. 2 is an illustration that depicts threshold voltage
distributions of a Multi-Level Cell (MLC) memory device.

FIG. 3 is an illustration that depicts memory device
RBER’s, the ratio between the number of bit errors and total
number of bits in a memory block of the memory device.

FIG. 4 is an illustration that depicts voltage drift in cell
threshold charge (voltage levels).

FIG. 5 is an illustration that depicts state errors according
to retention period for cell memory.

FIG. 6 is an illustration that depicts state errors according
to retention period for cell memory.

FIG. 7 is a block diagram of a memory device constructed
in accordance with this disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 is an illustration that depicts charge levels of a
Rank Modulation memory according to different types of
errors.

FIG. 9 is an illustration that depicts cell errors in a Rank
Modulation codeword.

FIG. 10 illustrates reading a Rank Modulation codeword
with the read-retry technique.

FIG. 11 illustrates RBER’s of memory devices according
to different retention periods.

FIG. 12 illustrates adaptive scrubbing performance of
memory using Rank Modulation and of a MLC memory
device.

FIG. 13 illustrates adaptive scrubbing performance of a
TLC memory device using Rank Modulation and Read-
Retry.

FIG. 14 is an illustration that depicts charge levels in cells
of a memory device according to cell index values and
corresponding rank values, in connection with Example 2.

FIG. 15 is a flow diagram that shows reading operations
of a data storage device constructed in accordance with the
description herein.

FIG. 16 is a flow diagram that shows programming
operations of a data storage device constructed in accor-
dance with the description herein.

FIG. 17 is an illustration of a memory device constructed
in accordance with the present invention.

FIG. 18 is a block diagram of a computer apparatus for
performing the programming and reading operations
described herein and for communicating with a memory
device such as depicted in FIG. 17.

FIG. 19 is a block diagram that shows data flow in a
memory device that operates according to the rank modu-
lation scheme described herein.

DETAILED DESCRIPTION

1. Introduction

NAND flash memory is leading a new series of revolu-
tions in data storage. From small mobile devices to large
data centers, flash has been improving computing in many
ways with its excellent properties such as random access and
low power consumption. The density of flash memory keeps
increasing following Moore’s law. The technology node has
shrunk below 20 nm with each cell storing more than one bit.

However, the density of flash grows at the price of
significantly reduced reliability. Data in flash are represented
by the amount of charge held by floating-gates (FGs). In
smaller process nodes, a FG can trap much less charge.
Therefore data become more vulnerable to noise and process
variation, which results in shortened device life time. For
instance, a 34 nm single-level cell storing one bit has 10°
program-erase (P/E) cycle endurance, while a 16 nm multi-
level cell (MLC) storing two bits can only survive 3000 P/E
cycles.

A natural solution to the reliability issue is error-correct-
ing code (ECC). The correction capability of an ECC
depends on the redundancy and the code length used for
protecting information. In general, the scaling of ECC’s
correction capability is much slower than the bit error rates
in flash of higher density. Efficient error correction with
negligible redundancy and short code length design will
become unfeasible. To enable the continued scaling of flash
memory more fundamental changes are needed. We propose
one such change in this work.

This paper tackles the reliability issue from the angle of
data representations. Our goal is to show that flash is much
more reliable by adopting a novel data representation tai-

US 9,983,808 B2

3

lored for resisting typical errors in flash, namely, rank
modulation (RM). RM is first proposed by Jiang et al. [see
A. liang et al., IEEFE Trans. on Inform. Theory, vol. 55, no.
6, pp. 2659-2673, June 2009.], which completes the com-
munication model of flash with a modulator. (A modulator
converts data into a format that is more suitable for the
channel.) Consider the example in FIG. 1 with three ML.Cs.
Program interference or charge leakage tends to shift cell
levels towards the same direction. Current flash memory
reads the bits stored in a cell by comparing the cell voltage
with predetermined reference voltages (marked by dashed
lines). Therefore, bit errors are introduced under disturb and
charge leakage in the example. RM uses the relative order of
cell voltages to represent data. FIG. 1(a) implies the voltage
order such that the leftmost cell is the highest and the
rightmost cell is the lowest. As the voltage order stays the
same after receiving noise, the data corresponding to the
voltage order are still correct. When data are stored using
RM, the cells only need to be programmed to satisfy the
corresponding voltage order instead of being pushed to
predetermined target threshold voltages, which provides
potential for achieving higher reliability. Rank modulation
scheme has received significant amount of attention from the
data storage community since the seminal work, and many
works based on RM have been proposed.

However, the practical performance of RM in flash is still
unknown due to the lack of implementation studies. The
main implementation challenge is to realize direct voltage
comparison between two cells for determining the rank of
each cell. Although recent work suggests solutions with new
circuit architectures [see, e.g., M. Kim et al.,, /EEE Int.
Midwest Symp. on Circuits and Systems, August 2012, pp.
294-297; M. Kim et al., IEEFE Int. Midwest Symp. on Circuits
and Systems, August 2013, pp. 1354-1357], fabricating an
NAND flash chip with such circuits being integrated is a
costly and daunting task without the support from flash chip
manufacturers.

This paper takes an alternative approach to implement
RM in existing flash chips. By noticing that the cell-to-cell
comparison can be achieved via the read-retry feature of
recent NAND flash memories, we implement RM with
existing flash chips for the first time. The approach allows us
to compare the performance between RM and conventional
data representations under different types of noise using the
latest flash memories. The evaluation results motivate the
adoption of RM in flash-based archival storage to achieve
significantly extended data retention time.

The contributions of this paper include:

1. Adaptations that make rank modulation implementable
using existing NAND flash memories (Section 4). The
adaptations are simple and utilize the read-retry feature that
has been made publicly available in recent NAND flash
memories. The scheme does not require modifying flash
chips, nor access to the internal testing commands of flash
manufacturers.

2. Application of RM in the scenarios of flash-based
archival storage using 16 nm MLC and 19 nm TLC (Section
5). The flash packages are baked to emulate long term
enterprise class data retention. For RM and conventional
data representation, we estimate the maximum data retention
time assuming a periodic and an adaptive flash memory
scrubbing algorithms proposed for SSDs. Evaluations show
that RM provides significantly longer retention time than
traditional MLC and TLC can offer.

1I. Background Work

In this section, the basic concepts of NAND flash memo-
ries that will be referred to later in this paper are reviewed.

25

30

40

45

50

55

65

4

Related work is then discussed, including rank modulation,
flash characterization, and related schemes for improving
NAND flash reliability.
A. NAND Flash Basics

1. Organization

NAND flash organizes billions of cells hierarchically. For
instance, a flash chip may contain two planes. A plane has
1000 blocks. A block contains 256 pages with page size 2
KB. Each bit is mapped to a cell made of FG. A cell is the
basic storage unit of flash. Due to the limited availability of
TLC on the electrical component market, all the experiments
in this paper used MLC. In the next, the concepts of ML.C
are introduced, and the concepts of TLC are similar.

Data stored by a cell are represented using charge level.
The amount of charge in a cell is quantized into q levels to
store log, q bits, e.g., for MLC q=4. We refer the two bits in
an MLC as the most significant bit (MSB) and the least
significant bit (LSB), respectively.

A block consists of many wordlines (WLs) and bitlines
(BLs). AWL connects a row of cells. The MSBs (LSBs) of
the cells in a wordline form an upper (a lower) page. A BL
connects the cells of the same column index in their corre-
sponding WLs. This work assumes an even-odd-bitline
(EOBL) architecture for flash due to the chips that are used
in our experiments. The EOBL architecture divides the
bitlines of a block into even BLs and odd BLs. An even
(odd) BL only connects the cells with even (odd) column
indices in their WLs of residence.

2. Programming

A wordline contains four pages, namely, even lower, even
upper, odd lower, and odd upper pages. In each WL, even
(lower) pages are programmed before odd (upper) pages.
The pages in a block are programmed following a specific
order to reduce program interference. This is called sequen-
tial programming. For additional details, reference should be
made to datasheets of NAND flash, available from respec-
tive vendors.

A cell can be programmed to one of four logical states
denoted by P1, P2, P3 and P4. Each state is mapped to two
bits using a Gray code. The distribution of cell threshold
voltages of each state can be approximated using a Gaussian
distribution [see, e.g., Y. Cai, E. F. et al., Proceedings of the
Conference on Design, Automation and Test in Europe,
2013, pp. 1285-1290]. FIG. 2 shows an example of the
distributions. The distributions imply that the cell voltages
after programming are close to the means of the distributions
with high probability, and there is a small chance that a cell
is not programmed to the desired voltage region due to noise
and process variation.

3. Reading

To read the state of a cell, the voltage of the cell is
compared to predetermined reference voltages. L.SBs and
MSBs are read separately. LSB is read with a reference
voltage placed between P2 and P3, e.g., R,. MSB is read
with one reference voltage placed between P1 and P2, e.g.,
R;, and the other one placed between P3 and P4, e.g., R;.

4. Read-Retry

Noise in flash shifts cell voltages, and the default refer-
ence voltages will no longer be optimal as memory ages. To
mitigate this issue, recent NAND flash memories include the
read-retry (RR) feature which provides user multiple refer-
ence voltages for reading. A typical NAND flash using 16
nm and 20 nm technologies supports 8 different reference
voltages between two adjacent states. An example is shown
in FIG. 2.

The reference voltages provided by RR are typically
distributed in the region where the distributions of two

US 9,983,808 B2

5

adjacent states tend to overlap. Previous work have used
more reference voltages in a much wider voltage range for
flash characterizations [Y. Cai, E. F. et al., Proceedings of the
Conference on Design, Automation and Tlest in Europe,

2013, pp. 1285-1290; N. Papandreou et al., Proceedings of 5

the 24th Edition of the Great Lakes Symposium on VLSI,
2014, pp. 151-156], we shall emphasize that these work uses
internal testing commands of flash vendors, which is gen-
erally not available to normal users.

Assume the default reference voltage(s) is (are) the high-
est one(s) among the available choices for a LSB (MSB)
page. If the current read produces too many errors to correct
using ECC, RR is triggered to use the next lower reference
voltage to read the page until error correction is successful
or all references have been tried. As discussed below,
implementations of RM described herein are based on the
RR feature.

B. Rank Modulation

The RM scheme was proposed for improving flash
memory reliability by Jiang et al. [A. Jiang et al., /EEE
Trans. on Inform. Theory, vol. 55, no. 6, pp. 2659-2673,
June 2009], and was later extended to use multiset permu-
tations by En Gad et al. [see E. En Gad et al., Proc. IEEE Int.
Symp. Inf. Theory (ISIT), July 2013, pp. 704-708]. This
extended RM scheme is used in this paper for implementa-
tion study. A similar scheme of multiset permutations for
flash memories was proposed by Sala et al. [see Sala et al.,
IEEE Transactions on Communications, vol. 61, no. 7, pp.
2624-2634, July 2013], including a construction of suitable
error-correcting codes (ECCs). A different construction of
ECCs for multiset permutations was proposed recently by
Buzaglo et al. [see S. Buzaglo, E. et al., Information Theory
(ISIT), 2014 IEEE International Symposium on, June 2014,
pp- 2386-2390]. While ECCs are crucial for the practical use
of RM, we found that the codes proposed in S. Buzaglo, E.
et al., Information Theory (ISIT), 2014 IEEFE International
Symposium on, June 2014, pp. 2386-2390 and in F. Sala et
al., IEEE Transactions on Communications, vol. 61, no. 7,
pp. 2624-2634, July 2013 do not fit the redundancy and
reliability requirements of flash memories in our experi-
ments. Therefore an alternative ECC method is described in
this document. Moreover, previous work focuses on the
theoretical limits of RM, and therefore this document
complements all the work mentioned above and provides
practical insights.

Two different types of reading architectures for have been
proposed for RM. One is based on winner-takes-all circuits
to read the rank of each cell in a group [see M. Kim et al.,
IEEE Int. Midwest Symp. on Circuits and Systems, August
2012, pp. 294-297]. The more recent architecture utilizes a
ramp current [see M. Kim et al., IEEFE Int. Midwest Symp.
on Circuits and Systems, August 2013, pp. 1354-1357].
While the ramp current are moving from high to low, a
comparator flips its output once the cell current is higher
than the ramp current. The process iterates until the rank of
each cell is determined. Note that only reading circuits are
constructed in the previous work, and there is no evaluation
result that is publicly available.

C. Flash Characterization

Flash characterization is important for understanding the
limitations of flash and the properties of noise, which lead to
more efficient algorithms to optimize NAND flash perfor-
mance. Mielke et al. analyzed the raw bit error rates of MLC
NAND flash using 63 nm to 72 nm technologies under
different types of noise [see N. Mielke et al., IEEE Inter-
national Reliability Physics Symposium, April 2008, pp.
9-19]. Grupp et al. characterized SL.Cs and MLCs using 50

20

40

45

55

6

nm to 72 nm technologies from multiple vendors [L. Grupp
et al., 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, December 2009, pp. 24-33]. Yaakobi et
al. characterized TLC NAND flash, and multiple LDPC
codes are evaluated with the data obtained during charac-
terization [see E. Yaakobi et al., International Conference on
Computing, Networking and Communication, January 2012,
pp. 486-491]. Cai et al. analyzed error patterns of 3x-nm
MLC NAND flash [see Y. Cai, E. et al., Design, Automation
Test in Europe Conference Exhibition, March 2012, pp.
521-526]. This work (the disclosure herein) uses the flash
testing methodologies that have been practiced by the
related work above. The difference is that besides charac-
terizing conventional MLCs, this work also presents char-
acterization results for RM. Moreover, it is believed that this
work is the first work that characterizes 16 nm MLC.

D. Schemes for Improving NAND Flash Reliability

There are multiple techniques for improving flash reli-
ability that are related to our work. ECC is a necessary
component in flash-based storage systems. The most widely
used ECC for flash is BCH code, more advanced ECCs such
as LDPC codes are being actively evaluated by flash con-
troller vendors [see, e.g., S. Lin and D. J. Costello, Jr., Error
Control Coding (2nd Edition). Prentice Hall, 2004]. Another
way to utilize ECC is through RAID. RAID has been well
studied for hard disks, and has been adopted by SSDs
recently. For instance, RAID has been applied across SSDs
[see Y. Lee, S. Jung, and Y. H. Song, Proceedings of the Tth
IEEE/ACM International Conference on Hardware/Sofi-
ware Codesign and System Synthesis, ser. CODES+ISSS
’09, 2009, pp. 163-172; Y. Du et al., IEEE International
Conference on Cluster Computing, September 2014, pp.
212-220] as well as the flash chips within an SSD [see J.
Kim et al., 43" Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, June 2013, pp. 1-12].
The RM scheme studied in this work is one layer below
ECCs. Therefore, RM is always used with ECC together. As
RM reduces bit errors before ECC decoding, it helps save
the coding redundancy and makes ECC more efficient.

Memory scrubbing was first used for volatile memories
such as DRAM, and has recently been studied for flash
storage systems by Pan et al. [see Y. Pan et al., I[EEE 18th
International Symposium on High Performance Computer
Architecture, February 2012, pp. 1-10], and Cai et al. [see Y.
Cai et al., IEEE 30th International Conference on Computer
Design, September 2012, pp. 94-101]. Both studies show
significant flash lifetime improvement are obtained using
scrubbing. This work studies the performance of memory
scrubbing in the region of archival storage. Archival storage
requires low cell endurance, long data retention time and
allows higher latency. These requirements are quite different
from the general storage systems studied in the work above.
Further, we show that both of the periodic and adaptive
scrubbing methods studied in Y. Cai et al.,, IEEE 30th
International Conference on Computer Design, September
2012, pp. 94-101, and generally provides higher reliability
when RM is used to represent data.

Dynamic thresholding is a widely studied scheme for
improving flash reliability. To select reference voltage adap-
tively, channel quality tracking algorithms are needed for
guiding the threshold selection process [see, e.g., Y. Cai, O.
et al., IEEE 31st International Conference on Computer
Design, October 2013, pp. 123-130; N. Papandreou et al.,
Proceedings of the 24th Edition of the Great Lakes Sympo-
sium on VLSI, 2014, pp. 151-156]. To realize the tracking
algorithms requires internal access to the flash chip in order
to place reference voltages freely for characterizing cell

US 9,983,808 B2

7

voltage distributions. Note that in this work the performance
of RM is compared with the best results of MLC using eight
reads via RR. Since the voltages provided by RR have been
optimized by chip vendors, the ML.C performance reported
in this document approximates that of the dynamic thresh-
olding schemes. Moreover, the RM scheme discussed herein
does not need internal access to the chip nor require dynamic
tracking of the channel.

More importantly, the practicality of equipping flash
memory with a modulator is explored herein. In such a
scheme, data is represented in a format that is generally
more robust in flash memories. This direction differs from
the related work discussed above.

1II. Rank Modulation

Below, RM is discussed starting with the motivations and
offering a short introduction for RM. The challenges of
implementing RM in flash are then discussed.

A. Motivation

Noise in flash memories introduces highly asymmetric
errors, making cell voltages drift towards the same direction.
There are several different types of noise which cause such
errors including P/E cycling, program interference, charge
leakage, and read disturb. For instance, program interference
increases the voltages of neighboring cells, and P/E cycling
degrades the tunnel oxide of FG, making charge be injected
into FGs more easily when being disturbed.

FIG. 3 shows the RBERs (the ratio between the number
of bit errors and total number of bits in a block) of MLL.C and
TLC increased by 480% and 64% on average after 8-month
and 12-month RPs, respectively. With standard ECCs that
correct RBER ranging between 10~ and 10~> and reach the
desired 107'° uncorrectable bit error rate [see Y. Lee, S.
Jung, and Y. H. Song, Proceedings of the 7th IEEE/ACM
International Conference on Hardware/Software Codesign
and System Synthesis, ser. CODES+ISSS *09, 2009, pp.
163-172], both flash only reliably retain data for less than a
year, and thus do not immediately qualify for archival
storage. The bit errors are mainly caused by downward
voltage drift (FIG. 4). The drift is due to charge loss of
floating gates through stress-induced-leakage-current and
charge trapping of tunnel oxide?. When cell voltage drifts
across predetermined reference threshold voltages (RTV),
an error on the logical state/level of the cell occurs. FIG. 5§
shows that on average 75% of the state errors in TLC and
92% of the state errors in MLC are downward which make
cells move from level X to level Y where Y<X, and adjacent
transitions (i.e., IX-YI=1) are the dominant type of transi-
tions (see FIG. 6). As charge loss occurs uniformly, and cell
voltages drift in similar speed at moderate PECs, if the
relative order of cell voltages is used for representing data,
data will be more resilient to retention errors. This idea
resembles the RM scheme [see, e.g., L. Grupp et al., 42nd
Annual IEEE/ACM International Symposium on Micro-
architecture, December 2009, pp. 24-33].

B. Basic Concepts

RM was proposed to mitigate the noise in flash by
converting data to into a format that is more resilient to
asymmetric errors [see A. Jiang et al., [EEE Trans. on
Inform. Theory, vol. 55, no. 6, pp. 2659-2673, June 2009].
FIG. 4 shows the data flow for writing and reading NAND
flash with RM in SSDs. The only additions are the modulator
and the demodulator compared to the data flow of conven-
tional SSDs. The rank modulator takes in an ECC codeword,
and computes the RM codeword that will be written to the
flash. The reading process simply reverses the writing pro-
cess.

10

15

20

25

30

35

40

45

50

55

60

65

8

The RM scheme is using the relative order of cell thresh-
old voltages to represent data. When voltages shift under
noise, the voltage order will largely stay the same, therefore
data will receive less errors. The relative voltage order of a
group of cells induces a multiset permutation—an ordered
sequence of all the elements from a multiset, where the
number of appearances of each element in the sequence
equals the multiplicity of the element in the multiset.

Specifically, let there be N cells, and let the cells be
divided into r groups of sizes n;, n,, . . ., n,. Denote the
voltages of the cells in the i-th group by (v, 1, V;5, - - -+ ;).
We require that the cells in the groups to satisfy the condition
that Vlsi<r, max{v,,, v,,, s Vi y=min{v,,,
Vielos oo s Vl-+1,nz_+l}, that is, among the N cells, the r, cells
with the lowest voltages are assigned to the first group.
Among the (N-r,) cells that are left, the r, cells with the
lowest voltages are assigned to the second group, and so on.
With the r divided groups, we give the definition of a RM
codeword below.

Definition 1. An (N, (n;, n,, . . ., n,))-RM codeword
formed by N cells is a length-N multiset permutation m=(zt,,
Ty, . . ., My) of a multiset

p

-

{1, L., 1,2,2,...,2,...,n0,
7y n

with multiplicities (n,, n,, . . ., n,) such that the i-th cell
belongs to the w,-th group. Here t; €{1,2, . . ., r} is referred
as the rank of the i-th cell.

Example 2. Example 2 is illustrated by the diagram of
FIG. 14, and may be understood with reference to the
following discussion. Let there be N=8 cells whose thresh-
old voltages are shown below, and that we would like to
divide them into r=4 groups with each group having 2 cells.
As the threshold wvoltages follow the order:
8<4<3<5<2<7<1<6, therefore, cells 8 and 4 have rank 1,
cells 3 and 5 have rank 2, cells 2 and 7 have rank 3, and the
rest of the cells have rank 4. Therefore, the corresponding (8,
(2,2,2,2))-RM codeword is (4,3,2,1,2,4,3,1), which is a
multiset permutation of the multiset {1,1,2,2,3,3,4,4}.

Ideally, RM also allows overprogramming and underpro-
gramming errors to be fixed, and makes programming more
reliable. We illustrate the benefits of RM in the next
example.

Example 3. Let there be N=2 cells, r=2 ranks, and let the
mapping between RM codeword and binary be (1,2)<50 and
(2,1)<51, that is, if the left cell has lower voltage, the RM
codeword (1,2) stores bit 0, otherwise stores bit 1 (FIG.
5(a)). Assume we want to store bit 0, but the right cell is
overprogrammed, making its voltage higher than the left cell
(FIG. 5(b)). The overprogramming error can be mitigated by
further pushing the left cell to be above the right cell (FIG.
5(¢)). (In principal, a cell’s voltage can be increased without
block erasure.) Now assume program interference occurs
(FIG. 5(d)), since the order remains, the data stored correctly
reads “0”. Assume charge leakage happens (FIG. 5(e)).
Although both voltages decrease. The data is still correct.

In Example 3, 1 bit is stored using two cells. Therefore,
the capacity is 0.5 bit/cell, which is even lower than that of
SLC. In fact, the capacity of RM significantly increases with
N. The following theorem characterizes the capacity of RM.

US 9,983,808 B2

An (N, (ny, m2, ... 1) — Theorem 4

RM codeword stores(log,2 / N bits per cell.

nylng! .. n,!)

In this work, particular interest is directed to the balanced
RM (BRM) scheme where each group has the same size, i.e.,
n,=n,=...=n,=N/r and r divides N. BRM eases hardware
implementation as reading cells of different ranks can reuse
the same hardware. The next corollary shows the capacity of
balanced RM for large N is almost the same as conventional
r-level cells.

Corollary 5. A BRM code stores log, r bits/cell as N—co.

Example 6. The table below shows the capacity scaling of

BRM for r=4, 8 and 16. The unit is bits/cell.
N/r r=4 r=28 r=16
1 1.15 1.91 2.77

4 1.6 2.53 3.48
16 1.86 2.82 3.81
64 1.95 2.94 3.93

256 1.99 2.98 3.98

log,r 2.00 3.00 4.00

An RM codeword is erroneous if cells are assigned with
wrong ranks. In general, if the rank of a cell is wrong, at least
there is another cell whose rank will be wrong. Based on this
observation, it is possible to define the measure of cell errors
for RM, which will be used in later evaluations.

Definition 7. Given an initial (N, (n;, n,, . . ., n,))-RM
codeword n=(x;, m,, . . ., ®,) and a noisy version w'=(x',
T, ..., ®,), the number of cell errors in ' is computed by
[Hilm=n,, 1<i=n}1/2].

The cell error measure above is half of the Hamming
distance between an input and an output codewords. The

15

20

10

two additional features: (1) Cell-to-cell voltage comparison
for reading a permutation. Recent works [see, e.g., M. Kim
et al., IEEE Int. Midwest Symp. on Circuits and Systems,
August 2012, pp. 294-297; M. Kim et al., IEEE Int. Midwest
Symp. on Circuits and Systems, August 2013, pp. 1354-
1357] have suggested new NAND flash architectures to
realize this. (2) Manipulation of the target programming
voltage for a cell. Then, a permutation can be written
adaptively for higher capacity. The feature may be supported
in the internal testing mode of flash chips. Unfortunately,
fabricating a new architecture and obtaining access to inter-
nal information of the chip are both costly and even unfea-
sible at this early stage of RM development.

It is possible to show that, by sacrificing some benefits
while keeping the essence of the idea, RM is able to work
with existing flash memories. Doing so allows exploring
RM under flash noise, and comparing the performance
between flash memories with and without RM.

IV. Rank Modulation for Existing Flash

An alternative approach is now proposed to program and
read (N, (n;, n,, . . ., n,))-RM codewords for cells with
r-level using the RR feature introduced in Section 2. The
performance provided by this approach serves as an empiri-
cal lower bound for RM.

A. Programming

Let r be an integer power of 2. Denote the states of an
r-level cell by P1, P2, ..., Pr. An (N, (n;, n,, . . . ,n,))-RM
codeword is stored in N cells by programming cells with
rank i to state Pi. In practice, this requires sequentially
programming the log, r pages sharing the same N cells with
the binary bits mapped from the desired cell states using the
Gray code. The next example illustrate the programming
process. Algorithm 1 below specifies the reading method.

Algorithm 1 Write an (N, (1, n,, ...

, 1,))-RM Codeword

Require: r must be an integer power of 2.

Require: The first log,r pages (pgy, PLas ---

> P8logyr) ©f @ WL must be available to be written

to, here the very first page pg, of a WL refers to the LSB page.

..., C)t the N cells to be programmed.
z: length-N vector, denoting the input RM codeword.

» Diogyy) < the binary bits corresponding representing the state P,;) of a cell

with r levels with b, being the LSB and by, being the MSB.

L: (c1, Ca,

2:

3: b: a log,r by N binary matrix.
4: for i from 1 to N do

5: (by, by, ...

6: for j from 1 to log,r do
7: m[j][i] < b;

8: for i from 1 to log,r do

9:

Program page pg; to store the bits (m[i][1], m[i][2], ...

> [i][N]).

intuition of the measure is to count the number of two
adjacent rank switches. This is illustrated with the next
example.

Example 8. Consider the (5, (1,1,1,1,1))-RM codeword
(1,2,3,4,5) of 5 cells with their voltages being shown in FIG.
6(a). Assume charge leakage happens, resulting the cell
voltages in FIG. 6(b). As the voltage order between the
leftmost two cells are not distinguishable, and cell 5 has a
large drop, the noisy RM codeword may become (2,1,4,5,3).
Following Definition 7, there are [5/2]=3 cell errors: one
error is introduced due to the random tiebreaking between
the leftmost two cells. The other two errors are due to the
voltage drop of the rightmost cell.

C. Implementation Challenges

The first goal is to evaluate the effectiveness of the RM
scheme in flash. which requires a flash memory to support

50

55

60

65

Example 9. Let ML.C use the Gray mapping in FIG. 2. To
program the (7, (1,3,2,1))-RM codeword (2,1,2,3,2.4,3)
using 7 MLCs, we first program the LSB page with bits
(1,1,1,0,1,0,0), and then the MSB page with bits (0,1,0,0,0,
1,0).

Remark 10. The adaptive programming of RM is disabled
as the target threshold programming voltages of different
ranks can not be changed due to lack of internal access to the
flash. Programming errors are unrecoverable as current
multi-level flash generally forbids rewriting without block
erasure.

B. Reading

The cells storing an RM codeword are ranked approxi-
mately by RR. The multiple reference voltages provided by
RR divides the whole threshold voltage interval into many
bins. Each of the pages sharing the cells is read multiple

US 9,983,808 B2

11

times with different reference voltages. The results of mul-
tiple reads are combined to determine the bin of each cell.
As the location of a bin implies the voltage interval of the
containing cells, we thus rank cells by comparing their bin
indices.

Algorithm 1 specifies the reading method. The v reference
voltages between two adjacent states together induce (r-1)
v+1 bins. Each page involved is read v times with decreasing
reference voltages (Lines 6-11). Note that some pages use
more reference voltages to determine output bits, e.g., the
MSB pages of ML.C use one voltage between states P1 and
P2 and the other one between P3 and P4. When a page is
read again, all the reference voltages needed by a page shift
together to use the next lower values that are available. The
bin of each cell is computed following a predetermined
mapping between bit string generated from multiple reads
and bin index (Lines 12-13). The bin indices are sorted
(Lines 14-15), and the ranks are assigned according to the
sorted order (Lines 16-20). The next example (Example 11)
illustrates Algorithm 2 for reading using MLC.

10

15

12
TABLE 1-continued

The output bits of each read. The numbers
in the first row are cell indices.

Reference 1 2 3 4 5 6 7
(R3, R9) 0 1 1 0 0 1 0
(R2, R®) 0 1 0 0 0 1 0
(R1, R7) 0 1 0 0 0 1 0

Table 2 below shows the mapping between s and bin
index. For each cell, we take the bit sequence stored in the
corresponding column of m, and look up its bin index,
obtaining the bin indices (4,1,3,7,5,10,7). Sorting the bin
indices gives cell indices in the ascending voltage order
(2,3,1,5,7,4,6). Given n;=1, n,=3, n,=2, n,=1, cell 2 gets
rank 1, cells 1, 3, 5 get rank 2, cells 7 and 4 get rank 3, and
cell 6 gets rank 4.

Algorithm 2 Read an (N, (n;, ny, ...

, ,))-RM Codeword

1 (Cy, Cgy -, Gyt the N cells to be read.
(pg1> PLs -
v: the number of reads used for each page.
m: a vlog,r by N binary matrix.
T X, ¥, z: length-N integer vectors.
a<1
: forifrom 1 to log,r do
for j from 1 to v do
Read pg; with the j-th highest reference voltage(s).
Store the output bits in the a-th row of m.
11: a<—a+1l

CoRar ke

12: for i from 1 to N do

13: x[i] < the index of the bin mapped from the bit pattern
(m[1][i], m[2][i], ... , m[Vlog,r][i]) of c;.

14: for i from 1 to N do

15:

ties
being broken randomly.

16: a<1

17: for i from 1 to r do

18: for j from 1 to n; do

19: z[y[a]] < i

20: a<a+1

21: Output z as the RM codeword.

s Piog,): the logr pages sharing the same cells, with pg, being the LSB page.

y[i] < the index of the cell whose bin index is the i-th smallest element of x with

Example 11. We continue with Example 9 by reading the
codeword. As shown in FIG. 7, let RR provide v=3 reference
voltages between two states, and let the bins be labelled with
indices from 1 to 10. Let the cells have the voltages shown
in the figure. L.SB is first read three times using the reference
voltages following the order R6, R5, R4. Then MSB page is
read with reference voltage pairs following the order (R3,
R9), (R2, R8), (R1, R7). The matrix m generated by multiple
reads is in Table 1. We use s=(m;, m,, m,, 15, 15, 1,) to denote
the bits obtained by reading a cell multiple times, where m,
and 1, are the values of the MSB and the LSB stored by the
cell output by the i-th reads, respectively.

TABLE 1

The output bits of each read. The numbers
in the first row are cell indices.

Reference 1 2 3 4 5 6 7
R6 1 1 1 0 1 0 0
RS 1 1 1 0 1 0 0
R4 1 1 1 0 0 0 0

45

50

55

60

65

TABLE 2

Mapping between bin index and s.

s Index s Index
(1,1,1,1,1,1) 1 0,0,0,0,0,1) 6
0,1,1,1,1, 1) 2 0,0,0,0,0,0) 7
0,0,1,1,1, 1) 3 1,0,0,0,0,0) 8
0,0,0,1,1, 1) 4 1,1,0,0,0,0) 9
0,0,0,0,1, 1) 5 1,1,1,0,0,0) 10

C. Modulation and Demodulation Algorithms

The data flow in FIG. 3.2 is completed by specifying the
algorithms of the modulator and the demodulator. The
algorithms provide conversions between binary ECCs and
RM codewords. Two classes of modulation and demodula-
tion algorithms designed for different granularities of page
programming or availability of input data are proposed. The
algorithms will be described mainly in terms of MLC for
simplicity.

Modulation Algorithm I Assume only one page of input
data is available to the modulator. Then separate modula-
tions can be carried out for each page that belongs to the

US 9,983,808 B2

13

same WL. Such constraints are often found in MLC or SLC
flash, where only one page of input data is required for each
programming. In ML.C, if the input data is for an L.SB page,
the modulator takes in a length-N ECC codeword, and
output a length-N RM codeword using only two ranks. The
cells to store bit 1 have rank 1, and the other cells have rank
2. (In MLC, a cell whose LLSB is 1 is either in P1 or P2,
whose voltage is lower than those of the cells at P3 and P4.)
If the input data will be stored in an MSB page, the
modulator first decodes the corresponding ECC bits in the
paired LSB page. (LSB is programmed before MSB in
flash.) Together with the input ECC codeword for the MSB
page, the cells form a RM codeword with 4 ranks. The rank
of each cell is the cell level that corresponds to the LSB and
the MSB stored in the cell.

Handling Unbalanced RM Codeword In practice, the
number of cells in each rank n=(n,, n,, . . ., n,) may not be
the same due to the arbitrary binary ECC bits that the RM
codewords to be mapped from. We call such RM codewords
unbalanced RM codewords (URMC:s), and call the sequence
n the rank information (RI) of a RM codeword. In order to
read an URMC, the RI of the codeword needs to be given to
the reader. Therefore, after generating RM codewords for a
page, metadata are created to record the number of cells in
each rank. In MLC where r=4, we record only n, (or, n,) for
RM codewords on L.SB pages, and n, and n; (or, n, and n,)
for codewords on MSB pages. All metadata are converted to
binary. It is easy to show that such metadata are sufficient for
reassemble n. An RM codeword and its metadata are stored
together in a page where RM codeword sits in the data area,
and metadata will be written to the spared area. Furthermore,
we group all the metadata in a page together, compress them,
and protect them with ECC that has a lower rate than the
ECC used for the user data.

Demodulation Algorithm I Demodulation is the reverse of
the modulation. To retrieve a length-N ECC codeword from
an L.SB page, the metadata is first decoded to compute n,
and n,. Then, Algorithm 1 is applied to read out the N, (n,,
n,)-RM codeword. After that, we map rank 1 to bit 1, and
rank 2 to bit 0, yielding the output ECC codeword.

To retrieve an ECC codeword from an MSB page, we
decode the metadata for the corresponding ECC codewords
in the paired L.SB page and the MSB page. This recovers n,,
n,, n; and n, for the RM codeword formed by both pages.
Then, we apply Algorithm 1 to read the (N, (n,, n,, ns, n,))
codeword from the L.SB and the MSB pages. We output the
ECC codeword in the MSB page by assigning bit 0 to cells
with rank 2 and 3, and bit 1 to the rest of the cells.

Modulation Algorithm II Now let us assume the data for
all the pages of a wordline are available at the time of
modulation. Such constraint are often found in TLC and
beyond, where more than one WLs’ input data are required
to be available to the programming command in order to
reduce the cell-to-cell interference. The constraints may also
be raised from MLC as the input data of a WL are typically
buffered by flash controller.

To modulate, the data of each page in a WL are combined
together to calculate the RM codewords. The binary bits of
each cell are first mapped to the traditional cell levels
following the Gray mapping used by existing NAND flash.
We then split the cell levels into consecutive size-N chunks,
and directly view each chunk as a length-N rank modulation
codeword. Similar to Modulation Algorithm I, we also need
to save the RI of each URMC as metadata. For each RI n,
we only store the binary bits that correspond to (n,,
n, ..., n.) (n can be automatically deduced.) The
metadata bits of all the RM codewords in the WL are

10

15

20

25

30

35

40

45

50

55

60

65

14

concatenated together, compressed and protected with ECC.
The ECC codewords are then evenly split into log, r chunks,
and are written into the spared area of each page of the WL.

Demodulation Algorithm II To demodulate, we read out
the data stored in the spared area of each page, and reas-
semble the metadata. Decoding of metadata outputs the RI
of each URMC. With the computed RI, we use Algorithm
4.2 to output each URMC stored in the same wordline. Each
RM codeword symbol is then converted to cell level, which
is further mapped back to log, r binary bits following the
Gray mapping. The output bits form a noisy copy of the
initial input ECC bits.

Note that a lazy demodulation can be implemented in
practice which first reads an ECC codeword and checks if it
decodes. Upon failure, demodulation can be used. More-
over, as demodulation of an MSB page produces the bits in
the paired L.SB page, a caching scheme can be used to buffer
the L.SB page when a MSB page is read, and immediately
returns the LSB data when needed.

D. Further Optimizations

As mentioned, a cell error can be introduced to a RM
codeword when two cells initially assigned with different
ranks are found in the same bin. If random tiebreaking is
unlucky, the ranks of the two cells will switch, and one bit
error will be introduced to each cell after demodulation. A
further optimized RM reading algorithm is proposed, which
reduces the number of bit errors due to lack of resolution.
This algorithm is referred to as Adaptive Rank Reading
(Algorithm 3).

Algorithm 3 Adaptive Rank Reading

Require: N =%, " n,
Ensure: The rank r; is assigned for all j from 1 to N
b<0 //bin index (1 is the lowest reading bin)
<1 // rank to assign
for i from 1 to r do
n; < n;
N<o0
while N < N do
S0
while S = @ do
b« b+ 1 // increment bin index
S « the set of cell indices in bin b
forallj €ES do
if n; > IS1/2 then
el
if n; < IS1/2 then
_p=l+1
if n; = [SI/2 then
1; <= pick L or [+ 1 randomly
// now update temporary metadata
k < ISI
while k > 0 do
if m; >k then
o< n-k
k=0
else
k=k-T
n,< 0
I=1+1
N<N+I8I

// temporary metadata
/ / number of cells already assigned

Adaptive rank reading Algorithm 3 above specifies an
improved RM reading algorithm. Specifically, assume we
have n cells found in the same grid, and we can only assign
k of them to rank i, and give the rest of them to rank i+1.
Instead of using random tie breaking, we choose to assign all
the n cells to the same rank. The rank to be assigned is
determined by voting: if k>n-k, rank i is assigned, otherwise
rank i+1 will be assigned. Note that, once the adaptive

US 9,983,808 B2

15

reading is used, we also update the number of the cells in
each rank. The next example illustrates Algorithm 3.

Example 12. We use a (7, (1,3,2,1))-RM scheme with 10
bins. We find that cells 1, 2 and 3 are in bin 3, cell 5 is in
bin 5, cells 4 and 7 are in bin 7, and cell 6 is in bin 10. The
rest of the bins are empty. Algorithm 4.4 starts by assigning
the temporary metadata (n;,n,,n,,0,)=(1,3,2,1). After
assigning the set S to be empty, the algorithm increment the
bin index until bin b=3, in which S takes the value (1,2,3).
The algorithm then finds that n,=1 is smaller that |SI/2=3/2,
and therefore assigns r;, r, and r;, the ranks of cells 1, 2 and
3, to the value 1+1=2.

Next, the algorithm updates the temporary metadata. It
first find that n,=1 is not greater then k=3, and thus updates
k to 3-1=2, and n;/=n, to 0. The algorithm then increment 1
to 2, and reiterate the while loop. In the second iteration, the
algorithm finds that n,=3 is greater than k=2, and thus it
updates n, to 1, and k to 0, finishing the while loop. The
algorithm then updates N to 3, and continue to the next bins.

Theorem 13. Let a Gray mapping be used between rank
and binary, and let there be n cells found in the same bin. If
we know that k of the cells belongs to rank i, and the rest
belongs to rank (i+1). Algorithm 1 introduces 2 min{k, n-k}
bits errors, and Algorithm 4.4 introduces min{k, n-k} errors
to the binary data correspond to the output codeword.

Error correction with metadata The metadata updated by
operation of Algorithm 3 can be used to correct more bit
errors. Assume n cells are found in the same bin, and our
algorithm assigned rank i to all of them, and further assume
that comparing the initial and the updated metadata suggests
one cell should be given rank i+1. To find this cell, a quick
enumeration can be used, and the error detection algorithm
of the ECC is used to verify if the guess is correct. This
method can be easily extended to efficiently (i.e. in O(N)
time) correct any error on RM codeword symbols that
introduces at most 1 bit error in the corresponding data from
each of the page that shares the same WL.

Reference threshold voltage calibration The reliability
performance of RM can be further improved by calibrating
the RTVs used during demodulation. Errors introduced by
demodulator are mainly caused by the cells whose threshold
voltages fall in the overlap region between two adjacent V,
distributions. Placing the reference voltages in those regions
will provide a better resolution for estimating the analog
voltages of those problematic cells, and thus ranks will be
assigned to those cells more precisely. As the overlap
regions gradually shift with the number of PECs and reten-
tion period, we need to constantly keep track of the region,
and gradually adjust the RTVs’ locations for better perfor-
mance.

simple online calibration method is proposed. In this
method, one wordline is used to store a sequence of “pilot”
RM codewords mapped from pseudo-random input binary
data generated using a fixed seed. In practice, the seed can
be a combination of the block address as well as the index
of'the WL.. Any WL in a block may be chosen for storing the
pilot data. We also need to make sure that pilot data and user
data that will be read using the calibrated RTVs are stored
together in the same kind of blocks, that is, the blocks that
have carried almost the same number of P/E cycles, and will
experience the same amount of retention period.

The idea of the online calibration method is to empirically
find the best sets of RTVs that yields the minimum number
of'bit errors when reading the pilot RM codewords. To do so,
we first measure the V, distributions for the pilot wordline
using read-retry and the genie input RM codewords regen-
erated using the seed we have chosen. The distributions

20

30

40

45

50

16

provide the number of cells of different levels in each bin.
With the distribution data, we create a virtual flash channel
where we can test the bit error rates of RM reading using
different RTV settings. The space for enumeration has four
dimensions, namely, the number of RTVs used between two
adjacent distributions, the gap between two adjacent refer-
ence voltages placed in the same overlap region, the overlap
region where a sequence of voltages will be placed, and the
location of the first reference voltage to be placed in a given
overlap region.

Notice that the enumeration space is still small in practice:
there are only three overlap regions for MLLC and seven for
TLC; The number of starting RTV locations ranges from 5
to 10, the number of different practical voltage gaps is
between 2 to 6, and the typical number of voltages to be used
in each region is between 2 and 4. Reading the RM code-
words from the virtual channels using different voltage
combinations in the space yields different bit error rates, and
the ones that have the best performance will be chosen. In
case there is a tie (which happens quite frequently when the
cells are relatively new), tiebreaking is done by choosing the
voltage combination whose central voltage is closer to the
center of the overlap region.

The proposed calibration methods are specifically
designed for archival data storage, where large chunks of
data are written together to flash, and only one WL of pilot
data is needed for each big chunk. In such scenarios, the
space overhead is negligible.

E. Discussion

The proposed methods are simple to implement in recent
NAND flash memories. Note that we also lose a few benefits
of the initial RM scheme as pointed out in the remarks
above. However, our methods still keep the core benefits of
RM. Moreover, the reliability of RM and conventional data
representations can be easily compared under the same noise
of the latest flash memories. These comparisons will sig-
nificantly deepen our understanding of RM in practice.

V1. Rank Modulation Based Archival Storage

In this section, we first discuss the motivation of flash-
based archival storage. Then, we propose modulation and
demodulation algorithms for RM that are suitable for SSDs.
Finally, we evaluate the performance of RM scheme for
archival storage.

A. Archival Storage with Flash

Recent development in NAND flash based storage makes
flash become appealing for archival storage. Archival data
once written are not likely to be read in the future, conven-
tional archival storage systems thus use tape and hard disk
drive (HDD) as storage media to provide high capacity and
reasonable access speed. As the density of NAND flash
grows, SSD is rapidly catching up with HDD on capacity
and price. More importantly, flash memory naturally offers
random data access, which enables very efficient data dedu-
plication [B. Debnath et al., Proceedings of the USENIX
Annual Technical Conference, 2010] and data compression
algorithms for even higher capacity. Interestingly, Facebook
recently posed the challenges on using cheap flash for “cold
storage” to store aged photos, videos and user updates that
are rarely accessed nowadays to save costs in their data
centers [J. Taylor, Proceedings of Flash Memory Summit,
2013, pp. 1285-1290]. Very recently, Gupta et al. show that
SSD-based archival storage are very cost competitive to
HDD-based systems for long term data retention [P. Gupta
et al., Proceedings of the 22th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, September 2014].

US 9,983,808 B2

17

However, flash memories with high density are less
reliable. The required long term data retention time brings a
large number of charge leakage errors to cells, causing ECC
failure. A commonly used solution for mitigating retention
errors is memory scrubbing (MS) [Y. Pan et al., IEEFE 18th
International Symposium on High Performance Computer
Architecture, February 2012, pp. 1-10; Y. Cai et al., IEEE
30th International Conference on Computer Design, Sep-
tember 2012, pp. 94-101], namely, flash controller periodi-
cally reads data, corrects errors, and writes the corrected data
back to flash so that the uncorrectable bit error rate (LIBER)
stays below 10713,

In flash-based archival storage, write and read traffic
mainly comes from MS since data are rarely accessed by
user. With a reasonable scrubbing frequency, a memory cell
only needs to survive a small number of P/E cycles. For
instance, to achieve 100-year data retention period, and
assume a block is every 6 months, then the required cell
endurance is about 200 P/E cycles. Observing that RM
provides much lower RCERs at small P/E cycles, we apply
RM to archival storage. By experimenting with high density
NAND flash, we show that RM achieves substantially
longer data retention time than conventional ML.C under two
commonly used MS schemes.

B. Evaluation using 16 nm MLC

The focus of our experiments is to compare the maximum
data retention time provided by RM and conventional ML.C
using the same amount of coding redundancy. The flash
memories used in the experiments of this section are 64 Gb
MLC flash from vendor B manufactured on 16 nm technol-
ogy node, which is the most advanced NAND flash from this
vendor. The chip has page size 16 KB, and supports 8
reference voltages between two adjacent states. To read RM
codeword, we used 4 reference threshold voltages among the
8 available voltages between two states, and again made the
selected voltages as far apart from each other as possible. We
made MLC use all the 8 RR options and selected the output
given by the best read using genie data.

Both RM and conventional MLC used BCH code as ECC
with code length N=2047. The metadata of RM codewords
were compressed using Huffman code, and were protected
using BCH code. The code rates of RM for LSB and MSB
pages which measure the ratio between the number of user
data bits and the total number of bits used by a codeword are
giVen by Rlsb:Nrecc/(N+rhl |—10g2N-|/rmeta) and Rmsb:Nrecc/
(N+2r,,,[log, N/t,.....) Where r, .. is the rate of the BCH code
which protects user data, the rates r,,, and r, , are the average
compression rates for the metadata of LSB and MSB pages,
respectively. r,,,, is the rate of the BCH code for protecting
metadata. The average rate Ry,, of the RM scheme is given
by (R;,+R,.s»)/2. For conventional ML.C, the code rate
R,/ simply equals the code rate of the ECC used for its
user data. For performance comparison, we made both
schemes have the same coding redundancy, namely,
RyzcRazar

To emulate the noise in archival storage, we cycled the
blocks up to only 1000 P/E cycles. At each sampling P/E
cycle, we sequentially write the ECC codewords of pseudo-
random data into the blocks using RM and conventional
MLC, and saved those ECC codewords as genie data. These
data are considered as the data written due to MS. Then, we
baked the chips to emulate up to one year enterprise class
data retention following the JEDEC standard [“Solid state
drive (SSD) requirements and endurance test method,”
http://www.jedec.org/standards-documents/docs/jesd218a,
2014]. Therefore, we are able to emulate the errors for
different scrubbing periods up to one year.

10

15

20

25

30

35

40

45

50

55

60

65

18

After each baking, the ECC codewords were read and
compared with the genie data to calculate raw bit error rates
(RBERs). For instance, the RBER measured at P/E cycle=60
and 1-month data retention corresponds to the bit error rate
that a monthly MS algorithm faces at the time when the
archival data have been preserved for five years. In order to
recover the errors, the correction capability t of the ECC for
user data need to selected to make UBER smaller than 10",
where UBER is calculated by

UBER=(Z__,, M (MHRBER(1-RBER)")/N.

We studied the performance of RM and conventional
MLC using two common scrubbing schemes. The first
scheme is periodic scrubbing, which refreshes a block with
a fixed frequency. The second scheme refreshes block adap-
tively [Y. Cai et al., IEEE 30th International Conference on
Computer Design, September 2012, pp. 94-101], by increas-
ing frequency at higher P/E cycles.

Scrubbing with fixed period. We used 0.5 month, 1 month,
and 6 months as scrubbing period t,, and 10 years and 30
years as data retention time t,. We let r,,.,,=0.90, and r;,; and
1,, were experimentally measured to be 0.67. Table 3 lists
the required P/E cycles given different t, and t,.

TABLE 3

P/E cycles needed for different t. and t,.

t,. t,=05m t,=1m t,=6m
10 years 240 120 20
30 years 720 360 60

The data obtained from the baking experiments charac-
terize the RBER functions f,, (PEC, T) and f, ;; .(PEC, T) of
PIE cycle PEC and baking time T for RM and MLC,
respectively. To determine the rate of each scheme’s ECC
which protects user bits, we first took the RBER data of RM,
and compute the minimum correction capability tx,, of the
ECC for RM-based MS to reach a target P/E cycle PEC,,,
in Table 4 corresponding to some t, and t,, namely, t,,,is the
minimum correction capability that makes UBER<107'°
under RBER {,,(PECy,,, t.). Then, tz,, further determines
r,.. and Rz, As we assume R, ,; —Ry,,in our comparison,
we can determine the correction capability t,,, - for the ECC
of the MLC-based MS. By finding the maximum RBER
RBER,; ~ that MLC can cover to reach the same UBER
promised by the RM-based MS, we can determine the P/E
cycle PEC,, . by approximating the solution of f,, .
(PEC, ;0 t,)~"RBER, ; ~using the RBER data of MLLC. And
the maximum retention time that MLLC can provide with the
same coding redundancy PEC,; ~-t,, which is compared to
the time t, that achieved by the RM-based MS. Table 4 lists
the computed correction capabilities and rates of the ECCs
of both schemes for the same-redundancy comparisons.

TABLE 4

The ECC rates and correction capabilities
for same redundancy comparisons.

Each tuple is orderedby (1. teasr Rasz o tasg o).

t,. t,=0.5m t,=1m t,=6m

10y 0.951,9, 0.947,10
30y 0941, 11, 0.936, 12

0.951, 9, 0.947, 10
0.941, 11, 0.936, 12

0.951, 9, 0.947, 10
0.951, 9, 0.947, 10

FIG. 11 shows the RBER data of RM and MLC after
0.5-month, 1-month and 6-month data retention. The lower

US 9,983,808 B2

19

horizontal solid line and dashed line correspond to the
RBERs that can be tolerated by the BCH code of RM to
achieve 10-year and 30-year data retention time, respec-
tively. The higher solid line and dashed line correspond to
the RBERs that the ECC of MLC can tolerate using the same
redundancy of RM. The maximum P/E cycles PEC, ; - that
MLC can support under different scrubbing periods can be
obtained from the intersection between the RBER lines and
the RBER curves of MLC. We summarize the maximum
retention time of the MLLC scheme in Table 6 given RM can
achieve 10 year and 30 year retention. For t=10y, the
RBERs of MLC are always larger than the RBER that
MLC’s ECC can handle, therefore with the same coding
redundancy, the MLC scheme can not be used in this setting.
For t,=30y, RM obtained up to 6 times data retention time
improvements.

TABLE 5

The maximum data retention time supported by conventional
MLC, and the improvements of RM over MLC.

t, t. = 10y Improvement t, =30y Improvement
0.5m Oy N/A 717y 4.2x
1m Oy N/A Sy 6%
6 m Oy N/A 15.5y 1.93x

Adaptive scrubbing Since the number of errors is smaller
at the very beginning of data retention, an adaptive scrub-
bing with increasing scrubbing frequency can be used. FIG.
13 shows the performance of adaptive scrubbing in MLC
and RM. Each curve in the figure shows the RBER at
different P/E cycles with fixed scrubbing periods. Three
scrubbing periods are used: 3 days, 1 month and 6 months.
For RM, we let the user data be protected by a BCH code
correcting 10 errors. The correction capability of the BCH
code for MLC is set to 11 errors for same redundancy
comparisons. The horizontal lines in the figure mark the
RBER that each ECC is able to correct. If a curve is below
a horizontal line for a range of P/E cycles, then the corre-
sponding scrubbing frequency can be used for reliable data
recovery. We let adaptive scrubbing always use the lowest
frequency that is available. From the results, we can see that
for RM 6-month scrubbing period is used from 0 to 300 P/E
cycles, 1-month period is used from 301 to 530 P/E cycles,
and 3-day period is used from 151 to 940 P/E cycles,
therefore, the total retention period is about 172.6 years.
Compared to MLC which only covers 39.3 years, RM
provides 4.4x longer data retention time with the same
coding redundancy.

C. Evaluation Using 19 nm TLC

FIG. 13 shows the RBERs of reading 19 nm TLC with
RM using 4 RTVs between adjacent logical states and 512
cells in each group. For comparison purposes, we let cells be
read using read-retry (RR), where each page was sensed
using 31 sets of RTVs optimized for retention by the vendor,
and the read that yielded the least errors for each page was
chosen. This approach resembles a class of dynamic thresh-
olding schemes [N. Mielke et al., IEEFE International Reli-
ability Physics Symposium, April 2008, pp. 9-19]. Measure-
ments show that using RM yields 60%, 46% and 27% lower
RBERs for blocks that carried 1, 100, and 300 PECs,
respectively, and thus provides higher reliability for flash
with moderate PECs. This property is particularly attractive
to archival applications.

Table 6 compares the RPs of MS using RM and RR
estimated using FIG. 13. ECCs with multiple code rates

10

15

20

25

30

35

40

45

50

55

60

65

20
were considered. RM-based MS provides up to 196 years of
RP for fresh blocks, and up to 146 years of RP for aged
blocks which had carried 50 PECs before storing the test
data, outperforming RR-based MS by 18% and 26%, respec-
tively. Similar encouraging results were also obtained for
MLC, which we skip for space reasons.

FIG. 15 is a flow diagram that shows the operations of a
data storage device using the rank modulation coding
scheme as described herein. The data storage device may
comprise a variety of systems and components, whether as
a device external to computing devices for data storage, or
integrated with other components of a system for data
storage. The data storage device may be implemented, for
example, as a Flash memory external device, such as a
USB-compatible “thumb drive” or the like, or the storage
device may be implemented as an internal component such
as a “solid state drive” (SSD) for use in place of a hard disk
drive in desktop and laptop computers. The data storage
device receives data for programming (storage) from a host
device, and provides data read from the data storage to a host
device. Data passes to and from the data storage device over
a data channel. For example, in the case of a thumb drive,
the host device may comprise the computing device with
which the thumb drive communicates via the USB data
channel, and in the case of the SSD, the host device may
comprise the SSD controller that manages the data interface
to an associated system bus of a computer in which the SSD
is installed.

A data storage device that operates in accordance with the
rank modulation scheme determines a permutation of a
codeword that corresponds to a data value. That is, such a
device represents permutations as cells such that a group of
cells represent a single virtual cell associated with a permu-
tation corresponding to data. This is illustrated by the flow
chart box 1502 of FIG. 15, which shows that the device
receives a binary representation from a host interface, the
binary representation comprising a data value to be encoded
into a rank modulation codeword, wherein the rank modu-
lation codeword represents a state P of N cells, such that
each cell N stores a charge and has a state represented by up
to r charge levels. At box 1504, the device next maps each
binary representation of the data value to a state P of one of
the N cells in sequence of the data value bits. Then, at box
1506, the values of the N cells are provided to a data
destination over an information channel.

FIG. 16 is a flow diagram that shows reading operations
of a data storage device that includes storage elements such
as memory cells. The reading operations will determine
charge levels of the n storage elements in a virtual cell so as
to identify a corresponding permutation of integer values a,
given by A=[a,, a,, . . . , a,]. The permutation then
determines a corresponding data value. In the first operation,
indicated by box 1602, the data storage device receives a
binary representation of data comprising a, values that define
a rank modulation codeword given by A, where A=[a,,
a,, . ..,a,| integer values. At the next operation, box 1604,
the device determines a data value that corresponds to the
rank modulation codeword. At the last operation, box 1606,
the device provides the values of the N cells to a data
destination over an information channel.

The rank modulation code may be implemented for an
information channel comprising a transmitted signal, rather
than comprising a data connection to memory cells. In that
situation, the operations of FIG. 16 would be performed
analogously. For example, the read operation of box 1602
corresponds to receiving a signal and determining signal
features, rather than reading memory cell charge levels. The

US 9,983,808 B2

21

signal features can comprise modulation of the signal fre-
quency, magnitude, or duration over time. The determining
operation (box 1604) relates to determining a rank ordering,
such as in accordance with signal features. Thus, in the case
of using signal frequency, the highest detected signal fre-
quency over a predetermined duration defines the highest
cell value, the next highest detected signal frequency defines
the next highest cell value, and so forth, to determine a
codeword.

FIG. 17 is an illustration of a data device constructed in
accordance with the present invention. FIG. 17 shows a
memory 1702 that is accessed by a memory controller 1704
that communicates with a host device 1706. The memory
1702 is used for storing data that is represented in accor-
dance with a rank modulation coding scheme. The memory
may be implemented, for example, as a Flash memory
having multilevel cells. The memory 1702 and memory
controller 1704 together comprise a data storage device
1708 that may be external to the host device or may be
integrated with the host device into a single component or
system. For example, the data storage device 1708 may
comprise a Flash memory device (often referred to as a
“thumb drive”) that communicates with a host computer
1706 via a USB connection, or the data storage device may
comprise a solid state drive (SSD) that stores data for a host
computer system. Alternatively, the data storage device may
be integrated with a suitable host device to comprise a single
system or component with rank modulation memory, such as
a smart phone, network router, MP3 player, or the like.

The memory controller 1704 operates under control of a
microcontroller 1710, which manages communications with
the memory 1702 via a memory interface 1712 and manages
communications with the host device via a host interface
1714. Thus, the memory controller supervises data transfers
from the host 1706 to the memory 1702 and from the
memory 1702 to the host 1706. The memory controller 1704
also includes a data buffer 1716 in which data values may be
temporarily stored for transmission over the data channel
controller 1716 between the memory 1702 and the host
1706. The memory controller also includes an ECC block
1718 in which data for the ECC is maintained. For example,
the ECC block 1718 may comprise data and program code
to perform error correction operations for rank modulation
code. Such error correction operations are described, for
example, in the U.S. patent application entitled “Error
Correcting Codes for Rank Modulation” by Anxiao Jiang et
al. filed Nov. 20, 2008. The ECC block 1718 may contain
parameters for the error correction code to be used for the
memory 1702, such as programmed operations for translat-
ing between received symbols and error-corrected symbols,
or the ECC block may contain lookup tables for codewords
or other data, or the like. The memory controller 1704
performs the operations described above for decoding data
and for encoding data.

The operations described above for operating a data
storage device, for reading data from a device, for program-
ming a data storage device, and encoding and decoding, can
be carried out by the operations depicted in FIGS. 13, 14,
and 15, which can be performed by the microcontroller 1710
and associated components of the data storage device 1708.
For example, in an implementation of the rank modulation
coding scheme in a USB thumb drive, all the components of
the data storage device 1708 depicted in FIG. 17 are
contained within the USB thumb drive.

The processing components such as the controller 1704
and microcontroller 1710 may be implemented in the form
of control logic in software or hardware or a combination of

30

40

45

55

22

both, and may comprise processors that execute software
program instructions from program memory, or as firmware,
or the like. The host device 1706 may comprise a conven-
tional computer apparatus. A conventional computer appa-
ratus also may carry out the operations described herein and
depicted in FIGS. 15 and 16. FIG. 18 is a block diagram of
a computer apparatus 1800 sufficient to perform as a host
device and sufficient to perform the operations described
herein and depicted in FIGS. 15 and 16.

FIG. 18 is a block diagram of a computer system 1800 that
may incorporate embodiments of the present invention and
perform the operations described herein. The computer
system 1800 typically includes one or more processors
1805, a system bus 1810, storage subsystem 1815 that
includes a memory subsystem 1820 and a file storage
subsystem 1825, user interface output devices 1830, user
interface input devices 1835, a communications subsystem
1840, and the like.

In various embodiments, the computer system 1800 typi-
cally includes conventional computer components such as
the one or more processors 1805. The file storage subsystem
1825 can include a variety of memory storage devices, such
as a read only memory (ROM) 1845 and random access
memory (RAM) 1850 in the memory subsystem 1820, and
direct access storage devices such as disk drives. As noted,
the direct access storage device may comprise a rank modu-
lation data storage device that operates as described herein.

The user interface output devices 1830 can comprise a
variety of devices including flat panel displays, touch-
screens, indicator lights, audio devices, force feedback
devices, and the like. The user interface input devices 1835
can comprise a variety of devices including a computer
mouse, trackball, trackpad, joystick, wireless remote, draw-
ing tablet, voice command system, eye tracking system, and
the like. The user interface input devices 1835 typically
allow a user to select objects, icons, text and the like that
appear on the user interface output devices 1830 via a
command such as a click of a button or the like.

Embodiments of the communication subsystem 1840
typically include an Ethernet card, a modem (telephone,
satellite, cable, ISDN), (asynchronous) digital subscriber
line (DSL) unit, FireWire (IEEE 1394) interface, USB
interface, and the like. For example, the communications
subsystem 1840 may be coupled to communications net-
works and other external systems 1855 (e.g., a network such
as a LAN or the Internet), to a FireWire bus, or the like. In
other embodiments, the communications subsystem 1840
may be physically integrated on the motherboard of the
computer system 1800, may be a software program, such as
soft DSL, or the like.

The RAM 1850 and the file storage subsystem 1825 are
examples of tangible media configured to store data such as
error correction code parameters, codewords, and program
instructions to perform the operations described herein when
executed by the one or more processors, including execut-
able computer code, human readable code, or the like. Other
types of tangible media include program product media such
as floppy disks, removable hard disks, optical storage media
such as CDs, DVDs, and bar code media, semiconductor
memories such as flash memories, read-only-memories
(ROMs), battery-backed volatile memories, networked stor-
age devices, and the like. The file storage subsystem 1825
includes reader subsystems that can transfer data from the
program product media to the storage subsystem 1815 for
operation and execution by the processors 1805.

The computer system 1800 may also include software that
enables communications over a network (e.g., the commu-

US 9,983,808 B2

23
nications network 1855) such as the DNS, TCP/IP, UDP/IP,
and HTTP/HTTPS protocols, and the like. In alternative
embodiments, other communications software and transfer
protocols may also be used, for example IPX, or the like.

It will be readily apparent to one of ordinary skill in the
art that many other hardware and software configurations are
suitable for use with the present invention. For example, the
computer system 1800 may be a desktop, portable, rack-
mounted, or tablet configuration. Additionally, the computer
system 1800 may be a series of networked computers.
Further, a variety of microprocessors are contemplated and
are suitable for the one or more processors 1805, such as
PENTIUM™ microprocessors from Intel Corporation of
Santa Clara, Calif., USA; OPTERON™ or ATHLON XP™
microprocessors from Advanced Micro Devices, Inc. of
Sunnyvale, Calif., USA; and the like. Further, a variety of
operating systems are contemplated and are suitable, such as
WINDOWS®, WINDOWS XP®, WINDOWS VISTA®, or
the like from Microsoft Corporation of Redmond, Wash.,
USA, SOLARIS® from Sun Microsystems, Inc. of Santa
Clara, Calif., USA, various Linux and UNIX distributions,
and the like. In still other embodiments, the techniques
described above may be implemented upon a chip or an
auxiliary processing board (e.g., a programmable logic
device or graphics processor unit).

The present invention can be implemented in the form of
control logic in software or hardware or a combination of
both. The control logic may be stored in an information
storage medium as a plurality of instructions adapted to
direct an information-processing device to perform a set of
steps disclosed in embodiments of the present invention.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other ways
and/or methods to implement the present invention.

The rank modulation scheme described herein can be
implemented in a variety of systems for encoding and
decoding data for transmission and storage. That is, code-
words are received from a source over an information
channel according to a rank modulation scheme and are
decoded into their corresponding data values and provided
to a destination, such as a memory or a processor, and data
values for storage or transmission are received from a source
over an information channel and are encoded into a rank
modulation scheme.

The operations of encoding and decoding data according
to the rank modulation scheme can be illustrated as in FIG.
19, which shows data flow in a data device 1902 that
operates according to the rank modulation scheme described
herein. In FIG. 19, the device includes a Rank Modulation
(RM) controller 1904 that stores and retrieves information
values 1906. The RM controller 1904 includes an encoder
and decoder 1908 for encoding data values into codewords
and decoding codewords into data values. The RM control-
ler encodes data values and provides codewords to the
source/destination block 1910, and decodes codewords from
the source/destination and provides corresponding data val-
ues. The two-way nature of the data flow is indicated by the
double-ended arrows labeled “data values” and “code-
words”. The RM controller includes interfaces through
which the RM controller receives and provides the data
values and the information values (codewords). The details
of such interfaces will be known to those skilled in the art.

The information values 1906 comprise the means for
physically representing data comprising the data values and
codewords. For example, the information values 1906 may
represent charge levels of memory cells, such that multiple
cells are configured to operate as a virtual cell in which

10

20

25

30

35

40

45

50

55

60

65

24

charge levels of the cells determine a permutation of the rank
modulation code. Data values are received and encoded to
permutations of a rank modulation code and charge levels of
cells are adjusted accordingly, and rank modulation code-
words are determined according to cell charge levels, from
which a corresponding data value is determined. Alterna-
tively, the information values 1906 may represent features of
a transmitted signal, such as signal frequency, magnitude, or
duration, such that the cells or bins are defined by the signal
features and determine a permutation of the rank modulation
code. For example, rank ordering of detected cell frequency
changes over time can determine a permutation, wherein the
highest signal frequency denotes the highest cell level. Other
schemes for physical representation of the cells will occur to
those skilled in the art, in view of the description herein.

For information values 1906 in the case of cell charge
levels, the source/destination 1910 comprises memory cells
in which n memory cells provide n cell values whose charge
levels define a rank modulation permutation. For storing a
codeword, the memory cells receive an encoded codeword
and comprise a destination, and for reading a codeword, the
memory cells provide a codeword for decoding and com-
prise a source. In the case of data transmission, the source/
destination 1910 may comprise a transmitter/receiver that
processes a signal with signal features such as frequency,
magnitude, or duration that define cells or bins such that the
signal features determine a permutation. That is, signal
components comprising signal frequency, magnitude, or
duration may be controlled and modulated by the transmitter
such that a highest signal frequency component or greatest
magnitude component or greatest time component corre-
sponds to a highest cell level, followed by signal component
values that correspond to other cell values and thereby
define a permutation of the rank modulation code. When the
source/destination 1910 receives a codeword from the con-
troller 1904, the source/destination comprises a transmitter
of the device 1902 for sending an encoded signal. When the
source/destination provides a codeword to the controller
1904 from a received signal, the source/destination com-
prises a receiver of the device for receiving an encoded
signal. Those skilled in the art will understand how to
suitably modulate signal components of the transmitted
signal to define rank modulation code permutations, in view
of the description herein.

VI. Conclusion

In summary, a simple method to make RM implementable
using existing flash memories has been described and dis-
closed. The implementation of RM has been evaluated under
different types of noise in flash, and evaluation results show
that RM provides excellent reliability compared to conven-
tional MLC. Moreover, it has been demonstrated that the use
of RM in flash-based archival storage significantly extends
the data retention time. The disclosure herein not only brings
RM into practice, but also can shed new light on designing
more reliable flash memory in the future.

What is claimed is:

1. A data device comprising:

a host interface that is configured to receive a binary
representation of a data value to be encoded into a rank
modulation codeword;

a controller that is configured to:
receive the binary representation from the host inter-

face, wherein the rank modulation codeword repre-
sents a state P of N cells, such that each of the N cells
stores a charge and has a state represented by up to
r charge levels;

US 9,983,808 B2

25

map each binary representation of the data value to a
state P of one of the N cells in sequence of bits of the
data value;

provide values of the N cells to a data destination over
an information channel,

receive a binary representation of data comprising a,
values that define a rank modulation codeword given
by A, where A=[a, a,, . . . , a,] integer values;

detect a cell error in an a, value of the rank modulation
codeword such that two or more cells having differ-
ent ranks are initially mapped to a same a,, integer
value; and

assign each of the two or more cells to different a,
integer values, the assigning comprising an adaptive
rank reading process in which a rank to be assigned
to each of the two or more cells is determined in a
rank voting process.

2. A data device as in claim 1, wherein the data destination
comprises a transmitter that transmits a signal containing the
codeword and the information channel comprises a commu-
nication channel over which the transmitter transmits the
signal.

3. A data device as in claim 1, wherein the data destination
comprises a memory in a data device and the information
channel comprises a data connection of the data device.

4. A data device as in claim 1, wherein assigning each of
the two or more cells to different a, integer values comprises
randomly assigning each of the two or more cells to different
a,, integer values in a random tie breaking process.

5. A data device as in claim 1, wherein N cell values
comprise charge levels of N memory cells of the data device
and the a, values correspond to the charge levels.

6. A data device as in claim 1, wherein the controller is
further configured to map each binary representation of the
data value to a state P of one of the N cells in a sequence
comprising Least Significant Bit to Most Significant Bit.

7. A data device as in claim 1, wherein the rank modu-
lation codeword is comprised of a plurality of ranks, and the
controller is configured to map each binary representation of
the data value to one of the N cells, wherein a number of N
cells in at least one rank is different from a number of N cells
in a second rank.

8. A data device as in claim 7, wherein the controller is
further configured to provide metadata to the data destina-
tion along with the values of the N cells.

9. A data device as in claim 8, wherein the metadata
relates to a corresponding rank, and the metadata indicates
a number of cells in the corresponding rank.

10. A computer method of operating a data device, the
computer method comprising:

receiving a binary representation from a host interface, the

binary representation comprising a data value to be

encoded into a rank modulation codeword, wherein the

rank modulation codeword represents a state P of N

cells, such that each of the N cells stores a charge and

has a state represented by one of r charge levels;

mapping each binary representation of the data value to a

state P of one of the N cells in sequence of bits of the

data value;

providing values of the N cells to a data destination over

an information channel;

receiving a binary representation of data comprising a,,

values that define a rank modulation codeword given

by A, where A=[a,, a,, . . ., a5] integer values;

5

10

15

20

25

30

35

40

45

50

55

60

65

26

detecting a cell error in an a, value of the rank modulation
codeword such that two or more cells having different
ranks are initially mapped to a same a, integer value;
and

assigning each of the two or more cells to different a,

integer values, the assignment comprising an adaptive
rank reading process in which a rank to be assigned to
each of the two or more cells is determined in a rank
voting process.

11. A computer method as in claim 10, wherein the data
destination comprises a transmitter that transmits a signal
containing the codeword and the information channel com-
prises a communication channel over which the transmitter
transmits the signal.

12. A computer method as in claim 10, wherein the data
destination comprises a memory in a data device and the
information channel comprises a data connection of the data
device.

13. A computer method as in claim 10, wherein assigning
each of the two or more cells to different a, integer values
comprises randomly assigning each of the two or more cells
to different a,, integer values in a random tie breaking
process.

14. A computer method as in claim 10, wherein N cell
values comprise charge levels of N memory cells of the data
device and the a, values correspond to the charge levels.

15. A computer method as in claim 10, the method further
comprising:

mapping each binary representation of the data value to a

state P of one of the N cells in a sequence comprising
Least Significant Bit to Most Significant Bit.

16. A computer method as in claim 10, wherein the rank
modulation codeword is comprised of a plurality of ranks,
the method further comprising:

mapping each binary representation of the data value to

one of the N cells, wherein a number of N cells in at
least one rank is different from a number of N cells in
a second rank.

17. A computer method as in claim 16, the method further
comprising:

providing metadata to the data destination along with the

values of the N cells.
18. A computer method as in claim 17, wherein the
metadata relates to a corresponding rank, and the metadata
indicates a number of cells in the corresponding rank.
19. A computer method of operating a data device, the
method comprising:
receiving a binary representation of data comprising a,
values that define a rank modulation codeword given
by A, where A=[a,, a,, . . ., a5] integer values;

detecting a cell error in an a, value of the rank modulation
codeword such that two or more cells of N cells having
different ranks are initially mapped to a same a, integer
value;

assigning each of the two or more cells to different a,

integer values, the assignment comprising an adaptive
rank reading process in which a rank to be assigned to
each of the two or more cells is determined in a rank
voting process

determining a data value that corresponds to the rank

modulation codeword;

providing the values of the N cells to a data destination

over an information channel.

20. A computer method as in claim 19, wherein assigning
each of the two or more cells to different a, integer values

US 9,983,808 B2

27

comprises randomly assigning each of the two or more cells
to different a, integer values in a random tie breaking
process.

21. A computer method as in claim 19, wherein N cell
values comprise charge levels of N memory cells of the data
device and the a, values correspond to the charge levels.

22. A computer method as in claim 19, the method further
comprising:

mapping each binary representation of the data value to a

state P of one of the N cells in a sequence comprising
Least Significant Bit to Most Significant Bit.

23. A computer method as in claim 19, wherein the rank
modulation codeword is comprised of a plurality of ranks,
the method further comprising:

mapping each binary representation of the data value to

one of the N cells, wherein a number of N cells in at
least one rank is different from a number of N cells in
a second rank.

24. A computer method as in claim 23, further compris-
ing:

providing metadata to the data destination along with the

values of the N cells.

25. A computer method as in claim 24, wherein the
metadata relates to a corresponding rank, and the metadata
indicates a number of cells in the corresponding rank.

#* #* #* #* #*

10

15

20

25

28

