a2 United States Patent

Jiang et al.

US009666280B2

US 9,666,280 B2
May 30, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(62)

(1)

(52)

FLASH MEMORIES USING MINIMUM PUSH
UP, MULTI-CELL AND
MULTI-PERMUTATION SCHEMES FOR
DATA STORAGE

Applicants:California Institute of Technology,
Pasadena, CA (US); Texas A&M
University System, College Station, TX
(US)

Inventors: Anxiao Jiang, College Station, TX
(US); Eyal En Gad, Pasadena, CA
(US); Jehoshua Bruck, Pasadena, CA
(US)

Assignee: California Institute of Technology,

Pasadena, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/822,680
Filed: Aug. 10, 2015

Prior Publication Data

US 2016/0170684 Al Jun. 16, 2016

Related U.S. Application Data

Division of application No. 13/791,856, filed on Mar.
8, 2013, now Pat. No. 9,230,652.

(Continued)
Int. CL.
G1IC 16/04 (2006.01)
GI1IC 11/56 (2006.01)
(Continued)
U.S. CL
CPC ... G1IC 16/0441 (2013.01); GO6F 3/0619

(2013.01); GO6F 3/0643 (2013.01);
(Continued)

Data Values

I

(58) Field of Classification Search
CPC ... G11C 16/0441; G11C 11/5628; HO3M
2201/52; GO6F 12/0246
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,107,550 A * 8/1978 Jacquart B61L 7/088
257/E27.082
4,686,554 A * 8/1987 Ohmic.c..... HOIL 31/1105
257/291
(Continued)

OTHER PUBLICATIONS

Aritome et al., “Reliability Issues of Flash Memory Cells”, Pro-
ceedings of the IEFE, 81(5):776-788 (May 1993).
(Continued)

Primary Examiner — Joseph D Torres
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

57 ABSTRACT

Rank modulation has been recently proposed as a scheme
for storing information in flash memories. Three improved
aspects are disclosed. In one aspect the minimum push-up
scheme, for storing data in flash memories is provided. It
aims at minimizing the cost of changing the state of the
memory. In another aspect, multi-cells, used for storing data
in flash memories is provided. Each transistor is replaced
with a multi-cell of m transistors connected in parallel. In yet
another aspect, multi-permutations, are provided. The para-
digm of representing information with permutations is gen-
eralized to the case where the number of cells in each level
is a constant greater than one.

20 Claims, 14 Drawing Sheets

1808 \

DM Controller
1804

i Encoder/Decoder A]

Codewords

Memory Device

Source/
Destination
1810

Information values
1806

US 9,666,280 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 61/608,465, filed on Mar.
8, 2012, provisional application No. 61/608,245, filed
on Mar. 8, 2012.

(51) Int. CL

GOGF 12/02 (2006.01)
GOGF 3/06 (2006.01)
(52) US.CL
CPC ... GOGF 3/0679 (2013.01); GOGF 12/0246

(2013.01); G1IC 11/5621 (2013.01); G11C
11/5628 (2013.01); G11C 11/5635 (2013.01);
G1IC 16/0483 (2013.01); HO3M 2201/52

(2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

4,701,884 A * 10/1987 Aoki ..cccccevenne HOLL 27/10805
257/E27.085
5,739,568 A * 4/1998 Kojima Gl1C 11/5621
257/316
5,789,777 A * 8/1998 Kojima Gl1C 11/5621
257/314
2004/0004218 Al* 1/2004 Jinno GO09G 3/006
257/66
2009/0132758 Al* 5/2009 Jiang GOG6F 11/1072
711/103
2009/0132895 Al* 5/2009 Jiangc....... GOG6F 11/1072
714/781
2012/0170626 Al* 7/2012 Adachi HO4L 27/0008
375/219
2013/0121084 Al* 5/2013 Jeon G11C 11/5642
365/185.24
2013/0268723 Al* 10/2013 Jiang G11C 16/0441
711/103

OTHER PUBLICATIONS

Barg and Mazumdar, “Codes in Permutations and Error Correction
for Rank Modulation,” IEEE Transactions on Information Theory,
56(7): 3158-3165 (Jul. 2010).

Cappelletti et al., “Memory Architecture and Related Issues” in
Flash Memories, Kluwer Academic Publishers, 1st Edition (1999),
5:241-360.

En Gad et al., “Compressed Encoding for Rank Modulation,” in
Proceedings of the 2011 IEEE Inernational Symposium on Infor-
mation Theory Proceedings, ISIT2011, St. Petersburg, Russia, pp.
884-888 (Aug. 2011).

Farnoud et al., “Rank Modulation for Translocation Error Correc-
tion,” in Proceedings of the IEEE International Symposium on
Information Theory Workshop (ISIT), pp. 2988-2992 (Jun. 2012).
Fiat and Shamir, “Generalized “Write-Once” Memories,” IEEE
Transactions on Information Theory, IT-30(3):470-480 (May 1984).
Fu and Han Vinck, “On the Capacity of Generalized Write-once
Memory with State Transitions Described by an Arbitrary Directed
Acyclic Graph,” IEEE Transactions on Information Theory,
45(1):308-313 (Jan. 1999).

Gal and Toledo, “Alogrithms and Data Structures for Flash Memo-
ries”, ACM Computing Surveys, 37(2):138-163 (Jun. 2005).

Jiang et al., “Correcting Charge-Constrained Errors in the Rank-
Modulation Scheme,” IEEE Transactions on Information Theory,
56(5):2112-2120 (May 2010).

Jiang et al., “Rank Modulation for Flash Memories”, IEEE Trans-
actions on Information Theory, 55(6):2659-2673 (Jun. 2009).
Kleve, T., “Spheres of Permutations under the Infinity Norm—
Permutations with limited displacement,” Reports in Informatics
from Department of Informatics, University of Bergen, Bergen,
Norway, Tech. Rep. 376, (Nov. 2008), 38 pages (including cover
sheet and citation sheet).

Pavan et al., “Flash Memory Cells—An Overview”, Proceedings of
The IEEE, 85(8):1248-1271 (Aug. 1997).

Rivest and Shamir, “How to Reuse a “Write-Once” Memory,”
Information and Control, 55:1-19 (1982).

Tamo and Schwartz, “Correcting Limited-Magnitude Errors in the
Rank-Modulation Scheme,” [EEE Transactions on Information
Theory, 56(6):2551-2560 (Jun. 2010).

Wang and Bruck, “Partial Rank Modulation for Flash Memories,”
Proceedings of the 2010 IEEE International Symposium on Infor-
mation Theory (ISIT2010), Austin, TX, U.S.A., pp. 864-868 (Jun.
2010).

Wang et al., “On the Capacity of Bounded Rank Modulation for
Flash Memories,” Proceedings of the 2009 IEEE International
Symposium on Information Theory, pp. 1234-1238 (Jun. 2009).

* cited by examiner

U.S. Patent May 30, 2017 Sheet 1 of 14 US 9,666,280 B2

U.S. Patent May 30, 2017 Sheet 2 of 14 US 9,666,280 B2

FIG. 3

(b)

FIG. 4

U.S. Patent May 30, 2017 Sheet 3 of 14 US 9,666,280 B2

=&

FIG. 5

U.S. Patent May 30, 2017 Sheet 4 of 14 US 9,666,280 B2

605
600\ (START)

i /610

Receive data values y={v, v, - - -, v,] €S,
To be stored in data storage containing current values
u=[u,u, -, u) €5,

l /615

‘Let v be an element of S. {

i P 620

|Let S be a set of symbols in a rank modutation coding scheme. |

i P 625

Let n be a number of ranks in v to be stored in a group of n rank
locations in data storage.
l s 630

Program the group of n rank locations according to the rank modulation
coding scheme and the value v such thatfor fori=n-1,n-2,...,1
The programmed value of a rank location v; is increased until it is
greater than the value of a rank location Y1 by a minimum cell
differentiation amount.

635

\ 4

CONTINUE

FIG. 6

U.S. Patent May 30, 2017

Bit L | Bit
Line Bit Line Line

Select Il _
WL4 —
WL3 —
WL2 —

WL1 —

WLO —

Ground |

Select | __Lrl

Traditional NAND flash
structure

FIG. 7A

Sheet 5 of 14

US 9,666,280 B2

WL4

WL3

WL2

WL1

WLO

St —lﬁ
| | |
1 1

o

Ground
Select _‘dﬁ

Multi-cell NAND flash
structure

FIG. 7B

U.S. Patent May 30, 2017 Sheet 6 of 14 US 9,666,280 B2

805

//

Dispose a plurality of transistors on a device each of which is capable of

storing charge, wherein each of the plurality of transistors comprises a

gate. a source and a drain. 815
v <

Form connections between the sources of each of the plurality of

transistors.
l P 820

Form connections between the drains of each of the plurality of

transistors.
l P 825

Storing data in the plurality of transistors, the data corresponding to a
sum of charges stored in each of the plurality of transistors.

830
{ CONTINUE)

FIG. 8A

8585

o~

Generating a code word having a plurality of symbols selected from a

set of symbols.
7 — 865

Storing each of the plurality of symbols in a data storage location of the
data device, wherein each data storage location comprises a plurality of

parallel connected devices.
870
{ CONTINUE)

FIG. 8B

P 860

U.S. Patent May 30, 2017 Sheet 7 of 14 US 9,666,280 B2

U.S. Patent May 30, 2017 Sheet 8 of 14 US 9,666,280 B2

FIG. 11 FIG. 12
noisy
ECC CRM CRM
Conventional {codeword) - Compressed | Codeword [nojgy | codeword recovered
deta— "o > |Rank Moduiation ™ channel [decoder |00

FIG. 13

U.S. Patent May 30, 2017 Sheet 9 of 14 US 9,666,280 B2

1405
1400 f
\ START

! /1410

Define a predetermined rank configuration (d1, d2 . . . dn), wherein di is
the number of cells in the i th rank;

4
! /1 15

Receive a new multi-permutation defined by v="0uwv., -, w] €5 that fits
the predetermined rank configuration.

l 1420

Initiate a process o add charge to each cell in a plurality of memory
locations such that the plurality of cells represent the new multi-
permutation.

1425

h 4

CONTINUE

FIG. 14A

U.S. Patent May 30, 2017 Sheet 10 of 14 US 9,666,280 B2

1455
1450 f
\ START

il /1 460

Determine a sequential order of an initial analog level of a stored value in each cell of a plurality
of cells in a data device wherein the sequential order is defined as a value x comprising

Xy, X9, X },{x s Xgirat s X },---, x 4. X 1 st X
{{ 1oY2s di di+1>dy+2 dy+dy { HZ;I:;‘]IT’ 2+Z?=11di’ Z;‘Y:ldij]

1465

v
CONTINUE

FIG. 14B

U.S. Patent May 30, 2017 Sheet 11 of 14 US 9,666,280 B2

1550\\‘ 1555
{ START)

i ///1560

Define a predetermined rank configuration (d1, d2 . . . dn), wherein di is
the number of cells in the i th rank;

‘ /1 565

Receive a new mulfi-permutation defined by v = [, vo, - . W] €5, that fits
the predetermined rank configuration.

Retain the analog levels of cells of arank nin v.

Program the cells ofrankiinvfori=n—1,n- 2. .., 1 such that the
analog levels of cells in a rank { are all higher than the analog levels of
the cells of rank /+1 in v by at least a minimum rank differentiation.

1580

Y

CONTINUE

FIG. 15

US 9,666,280 B2

Sheet 12 of 14

May 30, 2017

U.S. Patent

91 "Old
8091
091
Jajjonuon Aowey
0igt
J9}JOJUOD0IOIN
Zigl viot
EMA%ME a0BdjU| 2191 2oeu8Iu|
Alowep 903 1SOH
919l
Joyng eleq

909}
801A8(] 1SOH

U.S. Patent May 30, 2017 Sheet 13 of 14 US 9,666,280 B2
COMPUTER SYSTEM
1700
STORAGE SUBSYSTEM
1715
MEMORY SUBSYSTEM
1720 FILE USER
STORAGE INTERFACE
ROM RAM SUBSYSTEM QUTPUT
1745 1750 1725 DEVICES
1730
h
A
y
y h
S A v) 4
1710 COMMUNICATION USER
INTERFACE
PROCESSOR(S) SUBSYSTEM C
1705 INPUT
1740 DEVICES
A 1735

\ 4

COMMUNICATION NETWORKS AND
OTHER SYSTEMS

1755

FIG. 17

U.S. Patent May 30, 2017 Sheet 14 of 14 US 9,666,280 B2

Data Values

Encoder/Decoder SOWCPT/
1808 Destination
1810

Codewords

DM Controlier Information values
1804 1806

Memory Device
1802

FIG. 18

US 9,666,280 B2

1
FLASH MEMORIES USING MINIMUM PUSH
UP, MULTI-CELL AND
MULTI-PERMUTATION SCHEMES FOR
DATA STORAGE

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a divisional application of U.S. Non-
Provisional application Ser. No. 13/791,856 filed Mar. 8,
2013 entitled “Flash Memories using Minimum Push Up,
Multi-cell and Multi-Permutation Schemes for Data Stor-
age” and U.S. Provisional Application Ser. No. 61/608,245
entitled “Compressed Encoding for Rank Modulation” by
Anxiao Jiang, Eyal En Gad and Jehoshua Bruck filed Mar.
8, 2012 and claims the benefit of U.S. Provisional Applica-
tion Ser. No. 61/608,465 entitled “Multi-Cell memories and
compressed Rank Modulation” by Anxiao Jiang, Eyal En
Gad, and Jehoshua Bruck filed Mar. 8, 2012. Priority of the
filing dates of the prior applications is hereby claimed, and
the disclosures of the prior applications are hereby incorpo-
rated by reference for all purposes.

FEDERAL FUNDING STATEMENT

This invention was made with government support under
ECCS0802107 and CCF0747415 awarded by the National
Science Foundation. The government has certain rights in
the invention.

BACKGROUND

The present disclosure generally relates to data storage
devices, systems and methods. In various examples, data
modulation techniques in data storage devices such as flash
memory devices are described.

Flash memories are one type of electronic non-volatile
memories (NVMs), accounting for nearly 90% of the present
NVM market. See, for example, the Web site of Saifun
Semiconductors [td. (available at www.saifun.com) and
Web-Feet Research, Inc. (available at www.web-fee-
tresearch.com). Today, billions of flash memories are used in
mobile, embedded, and mass-storage systems, mainly
because of their high performance and physical durability.
See, for example, P. Cappelletti et al., Chapter 5, “Memory
Architecture and Related Issues™ in Flash memories, Kluwer
Academic Publishers, 1st Edition, 1999), and E. Gal and S.
Toledo, ACM Computing Surveys, 37(2):138-163 (2005).
Example applications of flash memories include cell phones,
digital cameras, USB flash drives, computers, sensors, and
many more. Flash memories are now sometimes used to
replace magnetic disks as hard disks, such as the 64 GB hard
disk by SanDisk (see “SanDisk launches 64 gigabyte solid
state drives for notebook PCs, meeting needs for higher
capacity,” available at the Web site URL of http://biz.ya-
hoo.com/cnw/070604/sandisk.html?.v=1). See also the Web
article on the 256 GB hard disk by PQI (“PQI unveils 256
GB solid state drive,” available at the URL of
www.guru3dd.com/newsitem.php?id=5392). Based on the
popular floating-gate technology, the dominance of flash
memories is likely to continue.

Some problems exist that may limit the improvement of
flash memories with respect to their speed, reliability, lon-
gevity, and storage capacity. Flash memories may have a
limited lifetime due to the quality degradation caused by
block erasures; a flash memory can endure only about
10°~10° block erasures before it becomes no longer usable

10

15

20

25

30

35

40

45

50

55

60

65

2

(see S. Aritome et al., Proceedings of the IEEE, 81(5):776-
788 (1993), and P. Cappelletti et al., ibid. Removing charge
from any single cell for data modification may require the
block to be erased and all the 10° or so cells in it to be
reprogrammed (or programmed to another block). The writ-
ing speed may be constrained by a conservative cell-pro-
gramming process that is about ten times slower than
reading. One purpose of such conservative programming is
to avoid over-programming, a serious error that may only be
correctable by block erasure and reprogramming. Data reli-
ability may be limited by errors caused by charge leakage,
disturbs, and the like. See S. Aritome et al., ibid; P. Cap-
pelletti et al., ibid; and P. Pavan et al., Proceedings of The
IEEE, 85(8):1248-1271 (August 1997). The errors become
more common when multi-level cells are used to increase
the storage capacity.

SUMMARY

In some examples, a minimum push-up scheme to store
data in flash memories is described. In some embodiments,
the minimum push-up scheme starts with data values v=[v,,
V,, . .., V,]ES, that are received to be stored in data storage
containing current values u=[u,, u,, . . . , 0,]ES,,. Next, v is
defined as an element of S where S is defined as a set of
symbols in a rank modulation coding scheme. Further, n is
defined as a number of ranks in v to be stored in a group of
n rank locations in data storage of the data device. The group
of n rank locations are programmed according to the rank
modulation coding scheme and the value v such that for
i=n-1,n-2, ..., 1 the programmed value of a rank location
v, is increased until it is greater than the value of a rank
location v,,; by a minimum cell differentiation amount.

In some embodiments each of the n rank locations may
comprise a cell of the device data storage. In further embodi-
ments, each rank location may comprise a plurality of cells
of the device data storage. In other embodiments, each rank
location may comprise an equal number of cells of the
device data storage. In still further embodiments, program-
ming may comprise increasing the value of all cells in the
rank location v, until the value in each of the cells v, is
greater than the value in each of the cells in the rank location
V,,;. In other embodiments, the current values of u=[u,,
u,, ..., Uu,]ES, are read from the device data storage before
the programming of the group of n rank locations with v.

In another aspect, a new scheme, multi-cells, used for
storing data in flash memories is provided. NAND flash
memory is the most widely used type for general storage
purpose. In NAND flash, several floating gate transistors are
connected in series where we can read or write only one of
them at a time. Each transistor is replaced with a multi-cell
of m m transistors connected in parallel. The control gates,
the sources and the drains of the transistors are connected
together. That way, their current sums together in read
operations, and the read precision increases by m times,
allowing the storages of mq levels in a single multi-cell. In
write operations, the same value is written to all the tran-
sistors, such that the sum of their charge levels provides the
desired total level.

In some embodiments processes for manufacturing and
operating a data device are provided. A plurality of transis-
tors, each of which is capable of storing charge, are disposed
on a device. Each of the plurality of transistors comprises a
gate, a source, and a drain. Connections are formed between
the sources, gates and drains of each of the plurality of
transistors. Each connection is capable of carrying electrical
current. Next, data is stored in the plurality of transistors.

US 9,666,280 B2

3

The data corresponds to a sum of charges stored in each of
the plurality of transistors. In further embodiments connec-
tions may be formed between the gates of each of the
plurality of transistors.

In yet further embodiments, a process for operating a data
device is provided. First, a code word is generated that has
a plurality of symbols selected from a set of symbols. Each
of'the plurality of symbols is stored in a data storage location
of the data device. Each data storage location comprises a
plurality of parallel connected devices. In some embodi-
ments the plurality of parallel connected devices may com-
prise transistors.

In yet another aspect, multi-permutations, used for storing
data in flash memories is provided. The paradigm of repre-
senting information with permutations is generalized to the
case where the number of cells in each level is a constant
greater than 1, multi-permutations.

Namely, the states that the cells can take are no longer
permutations of a set, but permutations of a multiset. For
example, if the number of cells at each level is 22, the two
cells in each level do not need to be identical in their analog
values, they just need to be distinguishable with other levels
(but do not need to be mutually distinguishable). Hence, the
encoding and decoding use relative levels, and the scheme
has good resistance to drift; namely, the advantages of the
permutation based relative scheme that we described above
still apply. The case where the multiplicities of all the
elements in the multiset are equal, is denoted by z. This
generalization becomes interesting especially when z is
large, and n is still much larger than z. In that case (if q is
still much larger than n), it can be proven that the upper
bound on the total capacity is 2q bits per cell, and that there
exists a construction that approaches this bound. The instan-
taneous capacity of the construction is approaching 2 bits
per cell.

In some embodiments, a computer method of operating a
data device where a predetermined rank configuration (d,,
d, ...d,) is defined. Further, d, is the number of cells in the
i rank. A new multi-permutation is received and defined by
v=[v,, V5, . . ., v,|ES, that fits the predetermined rank
configuration. A process is then initiated in response to
receiving the new multi-permutation, adding charge to each
cell in a plurality of memory locations such that the plurality
of cells represent the new multi-permutation. The process
may be continued.

In other embodiments, the sequential order of an initial
analog level of a stored value in each cell of a plurality of
cells in a data device is determined. The sequential order is
defined as a value x comprising

(51, %20 oo s Xy b ¥y o1 Xty a2s o > Fap iy)

. ’{x1+z?;11d;’x2+2?;11d1’ ’fole;’}]

In further embodiments, a predetermined rank configura-
tion (d;, d, . . . d,) is defined, wherein d, is the number of
cells in the i rank. A new multi-permutation is received and
defined by v=[v,, v,, ..., v,]ES,, that fits the predetermined
rank configuration. The analog levels of cells of a rank n in
v are retained. Finally, the cells of rank i in v for I=n-1,
n-2 ..., 1 such that the analog levels of cells in a rank i are
programmed to all be higher than the analog levels of the
cells of rank i+1 in v by at least a minimum rank differen-
tiation. The process may be continued.

10

15

20

25

30

35

50

55

60

65

4

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the
illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the drawings and the
following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of a memory cell arrangement
using “push to the top” operations in accordance with the
description herein.

FIG. 2 is a representation of a memory cell arrangement
using “minimal push up” operations in accordance with the
description herein.

FIG. 3 is a representation of a memory cell arrangement
using typical “minimal push up” operations in accordance
with the description herein.

FIG. 4 is a representation of a memory cell arrangement
depicting a rare case of “minimal push up” operations in
accordance with the description herein.

FIG. 5 is a state diagram for the states of three cells in
accordance with the description herein.

FIG. 6 is a process that depicts a programming approach
that minimizes the increase of cell levels in accordance with
the description herein.

FIG. 7A is a schematic diagram of a traditional arrange-
ment of a NAND flash memory structure accordance with
the description herein.

FIG. 7B is a schematic diagram of a multi-cell arrange-
ment of a NAND flash memory structure accordance with
the description herein.

FIG. 8A is a process for manufacturing and operating a
data storage device in accordance with the description
herein.

FIG. 8B is a process for operating a data storage device
in accordance with the description herein.

FIG. 9 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 10 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 11 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 12 is a representation of a memory cell arrangement
in accordance with the description herein.

FIG. 13 is a representation of system model for com-
pressed rank modulation in accordance with the description
herein.

FIG. 14A is a process for operating a data device in
accordance with the description herein.

FIG. 14B is a process for reading a data device in
accordance with the description herein.

FIG. 15 is a process for writing to a data device in
accordance with the description herein.

FIG. 16 is an illustration of a memory device constructed
in accordance with the present invention.

FIG. 17 is a block diagram of a computer apparatus to
perform the operations of FIGS. 6, 8A, 8B, 14 and 15 for
communicating with a memory device such as depicted in
FIG. 16.

FIG. 18 is a block diagram that shows data flow in a
memory device that operates according to the rank modu-
lation scheme described herein.

DETAILED DESCRIPTION

The contents of this Detailed Description are organized
under the following major headings:

US 9,666,280 B2

5
1. Introduction to Rank Modulation
II. Permutation “Minimum Push Up”
A. Rewrite Model and the Transition Graph
B. Worst-case Decoding Scheme for Rewrite
1II. Multi-Cells
A. Multi-Cell Flash Memory
B. Notations and Model Properties
C. Upper Bounds
D. Construction for the Average Case
E. Existence for the Worst Case
IV. Multi-Permutations
A. Compressed Rank Modulation
1. Initial Write
2. Subsequent Rewrites
3. Programming Symmetric Cells
4. Rebalancing Permutations
5. Record Weights
V. Example Embodiments
VI. Conclusion
Subheadings in the description are not listed above but may
be present in the description below.

1. INTRODUCTION TO RANK MODULATION

The amount of charge stored in a flash memory cell can
be quantized into q=2 discrete values in order to represent up
to log 2q bits. (The cell is called a single-level cell (SLC) if
q=2, and called a multi-level cell (MLC) if g>2). The q states
of a cell are referred to as its levels: level 0, level 1,,
level q-1. The charge is quantized into discrete levels by an
appropriate set of threshold levels. The level of a cell can be
increased by injecting charge into the cell, and decreased by
removing charge from the cell. Flash memories have a
property that although it is relatively easy to increase a cell’s
level, it is very costly to decrease it. This results from the
structure of flash memory cells, which are organized in
blocks of about 10°~10° cells. In order to decrease any cell’s
level, its entire containing block is erased first (which
involves removal of the charge from all the cells of the
block) and after then it can be reprogrammed. Block era-
sures are not only slow and energy consuming, but also
significantly reduce the longevity of flash memories,
because every block can endure only about 10*~10° erasures
with guaranteed quality. See, for example, P. Cappelletti, C.
Golla, P. Olivo, and E. Zanoni, Flash Memories. Kluwer
Academic Publishers, 1999. Therefore, reducing the number
of block erasures improves the longevity of flash memories.

In MLC flash memory, the process of programming a cell
to a specific level is designed carefully. The target level is
approached from below in order to avoid overshooting of the
cell, which may result in an undesirable block erasure.
Consequently, these attempts use multiple programming
cycles, and they work only up to a moderate number of
levels per cell, e.g. 8 or 16 levels. In order to avoid the
problem of exact programming of a cell level, a framework
of the rank modulation coding was introduced. See, for
example, A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck,
Rank modulation for flash memories, IEEE Trans. on
Inform. Theory, vol. 55, no. 6, pp. 2659-2673, June 2009,
hereinafter Rank Modulation for flash memories. The main
idea of this coding scheme is to represent the information by
the relative values of the cell levels rather than by their
absolute values. Given a set of N cells, their levels induce a
permutation which is used to encode the data. One of the
features of the rank modulation scheme is that in program-
ming, a cell is charged to a higher level than that of the
previous cell in the permutation, and therefore there is

10

15

20

30

40

45

55

6

reduced risk of overshooting. Another feature of represent-
ing data by the ranking of the cells, is that the threshold
levels are no longer needed. This mitigates the effects of
retention in the cells (slow charge leakage).

Rank Modulation for flash memories described rewriting

codes for the rank modulation scheme, in order to reuse the
memory between block erasures. In general, a motivation
behind rewriting codes for flash memories is to increase the
number of times data can be rewritten between two erasure
operations while preserving the constraint that cells only
increase their level.
In rank modulation, a feature is to minimize the increase in
the highest charge level among the cells after a rewriting
operation. An observation is that rewriting of different
permutations may increase the highest charge level of the
cells by different magnitudes. For example, assume the
current permutation be (3,1,2), such that the first cell has the
highest level, e.g. its rank is 3, then the third cell (rank 2) and
finally the second cell (rank 1). Now assume the cells are
rewritten and are to represent the permutation (2,3,1). This
can be done by adding sufficient charge to cell 2 such that
its level is greater than the first cell’s level. Now consider a
different case, where the cells need to represent the permu-
tation (1,2,3). In this case, the level of both cell 2 and cell
3 are raised to be higher than the level of cell 1, as shown
in FIG. 1. Since some gap may be needed between them, and
also some gap between cell 2 and cell 1, it is possible that
the increase in the level of the highest cell in the second
example, may be twice as much as the increase in the first
example.

A consequence from the previous operation(s) is, that if
every permutation represents different information, then the
number of rewrites before incurring a block erasure can vary
between different input data sequences. In order to obtain a
large number of rewrites, rewriting codes let multiple per-
mutations represent the same information (that is, introduc-
ing redundancy). Thus, when a certain data is to be written,
there would be at least one permutation corresponding to
that data that could be written without increasing the charge
of the highest cell by a large amount. In Rank Modulation
for flash memories, rewriting codes were studied under a
strong constraint of push-to-the-top operations. In every
push-to-the-top operation, a single cell is set to be the
top-charged cell. This scheme provides easy implementation
and fast programming, but it suffers a relatively low rate.

The work on rank modulation coding for flash memories
paved the way for additional results in this area. First,
error-correcting codes in the rank modulation setup attracted
a lot of attention. See, for example, A. Barg and A. Mazum-
dar, “Codes in permutations and error correction for rank
modulation,” IEEE Trans. on Inform. Theory, vol. 56, no. 7,
pp- 3158-3165, July 2010; F. Farnoud, V. Skachek, and O.
Milenkovic, “Rank modulation for translocation correc-
tion,” in Proceedings of the IEEE International Symposium
on Information Theory Workshop (ISIT), June 2012, pp.
2088-2992; A. Jiang, M. Schwartz, and J. Bruck, “Correct-
ing charge-constrained errors in the rank-modulation
scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 5, pp.
2112-2120, May 2010; I. Tamo and M. Schwartz, “Correct-
ing limited-magnitude errors in the rank-modulation
scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 6, pp.
2551-2560, June 2010. Other variations of rank modulation
were studied as well. A new concept of bounded/local rank
modulation was introduced and its capacity was calculated.
See, for example, Z. Wang, A. Jiang, and J. Bruck, “On the
capacity of bounded rank modulation for flash memories,”
in Proc. 2009 IEEE Int. Symp. Information Theory, June

US 9,666,280 B2

7

2009, pp. 1234-1238. Here, the data is not represented by a
single permutation, but rather, a sequence of permutations of
a given size, which may overlap, are used to represent the
data. Yet another variation, called partial rank modulation,
was introduced. See, for example, Z. Wang and J. Bruck,
“Partial rank modulation for flash memories,” in Proceed-
ings of the 2010 IEEFE International Symposium on Infor-
mation Theory (ISIT2010), Austin, Tex., U.S.A., June 2010,
pp. 864-868. Now the data is represented by a single
permutation, but only the highest k cell levels, for some
fixed k, may be considered for the information representa-
tion.

II. PERMUTATION “MINIMUM PUSH UP”

The cost of changing the state in the scheme—namely, the
cost of the rewriting step—is measured by the number of
“push-to-top” operations that are used, because it represents
by how much the maximum cell level among the n cells has
increased. See, for example, A. Jiang, R. Mateescu, M.
Schwartz, and J. Bruck, “Rank modulation for flash memo-
ries,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659-2673, June 2009. Reducing this cell-level increment
may be performed in one embodiment because the cells have
a physical limit that upper bounds the cell levels. The less
the cell levels are increased, the more rewrites can be
performed before a block erasure operation is used, and the
longer the lifetime of the memory will be.

An example is shown in FIG. 1, where the state of n=4
cells is to be changed from u=[2,1,3.4] to v=[2,1,4,3]
u=[2,1,3,4]. (Here the cells are indexed by 1, 2, . . ., n. And
their state is denoted by the permutation [u,, u,, . . ., n]ES,,
where cell u, has the highest charge level and u,, has the
lowest charge level. Fori=1, ..., n, cell u, has rank i.) Three
“push-to-top” operations are used, where cell 4, cell 1 and
cell 2 are pushed sequentially. They are represented by the
three edges in FIG. 1. The cost of this rewriting is 3.

It can be seen from the above example, however, that the
“push-to-top” operation is a conservative approach. To
change the state from u=[2,1,3,4] to v=[2,1,4,3], when cell
4 is pushed, the level of cell 4 is pushed to be greater than
cell 3. There is no need to make the level of cell 4 to be
greater than the levels of all the other n-1=3 cells (i.e., cells
1, 2 and 3). Similarly, when cell 1 is pushed, its level is
pushed to be greater than cell 3 and cell 4, instead of cells
2, 3 and 4. So a more moderate programming approach as
shown in FIG. 2 can be taken, and the increment of the cell
levels (in particular, the increment of the maximum cell
level) can be substantially reduced. So, the cost of rewriting
can be reduced, which improves the overall rewriting per-
formance and the longevity of the memories.

Described in this disclosure is a programming approach
that minimizes or otherwise reduces the increase of cell
levels as illustrated in FIG. 6. To change the cell state from
u=u,, u,, . .., W,|ES, to v=[v,, v,, ..., V,]|ES,, the cells
are programmed based on their order in v, so that every cell’s
level increases as little as possible:

For i=n-1, n-2, . . ., 1 perform:

{Increase the level of cell v,, to make it greater than the
level of the cell v,,,}.

Note that in the above programming process, when cell v,
is programmed, cell v,, | already has the highest level among
thecells v,,;,V,,,, . . ., v,,. The programming operation here
is referred to as the “minimal-push-up” operation. (In com-
parison, if cell v, is programmed to make its level greater
than the maximum level among the cells v, . . ., v,_;,

Viis - - - 5V, then it becomes the original “push-to-top”

10

15

20

25

30

35

40

45

50

55

60

8

operation.) The “minimal-push-up” approach is robust, as it
has reduced risk of overshooting. And it reduces increment
of the maximum level of the n cells (e.g., the rewrite cost).
A. Rewrite Model and the Transition Graph

For coding schemes, a good robust discrete model is used
for the rewriting. A discrete model is described herein for
measuring the rewriting cost, which is suitable for both the
“push-to-top” approach and the “minimal-push-up”
approach. To rigorously describe the cost of a rewrite
operation (i.e., a state transition), the concept of virtual
levels is used. Let u=[u, u,, . . ., u,]JES, denote the current
cell state, and let v=[v, v,, . . ., v, JES,, denote the new state
that the cells change into via increasing cell levels. Let
d(u—v) denote the number of push-up operations that are
applied to the cells in order to change the state from u into
v. Fori=l, 2,...,d(u—v), letp, [n]a(l, 2, ..., n) denote
the integer and let B, < [n]\{p,} denote the subset, such that
the i-th push-up operation is to increase the p,-th cell’s level
to make it greater than the levels of all the cells in B,. (For
example, for the rewriting in FIG. 1, we have d(u—v)=3,
p,=4,B,={1,2,3}, p,=1, B,={2,3,4}, ps=2,B,={1,3,4}. And
for the rewriting in FIG. 2, we have d(u—v)=3, p,=4,
B,={3}, p.=1, B,={3,4}, ps=2, B;={1,3,4}.) Such push-up
operations have reduced risk of overshooting.

For the current state u, we assign the virtual levels n,
n-1,...,2,1tothecellsu;, u,,...,u,,,u,, respectively.
The greater a cell’s level is, the greater its virtual level is. It
is noted that when the virtual level increases by one, the
increase in the actual cell level is not a constant because it
depends on the actual programming process, which is noisy.
However, when a cell a is programmed to make its level
higher than a cell b, the difference between the two cell
levels will concentrate around an expected value. (For
example, a one-shot programming using hot-electron injec-
tion can achieve stable programming performance at high
writing speed.) Based on this, a discrete model for rewriting
is provided, which may be a usable tool for designing coding
schemes.

Consider the ith push-up operation (fori=1, . . ., d(u—v)),
where the level of cell p, is increased to make it greater than
the levels of the cells in B,. For any j=[n], let |, denote cell
j’s virtual level before this push-up operation. Then after the
push-up operation, the virtual level of cell p, may be

1 +max/j;
JeB;

namely, it is greater than the maximum virtual level of the
cells in B, by one. This increase represents the increment of
the level of cell p,. After the d(u—v) push-up operations that
change the state from u to v, fori=1, . . . , n, let 1, denote the
virtual level of cell i. The cost of the rewriting process is
described as the increase in the maximum virtual level of the
n cells, which is

maxf —n=1, —n.
ieln] 1

Example 1
For the rewriting process shown in FIG. 1, the virtual

levels of cells 1, 2, 3, 4 change as (3,4,2,1)—(3,4,2,5)—(6,
4,2,5)—(6,7,2,5). Its cost is 3.

US 9,666,280 B2

9

For the rewriting process shown in FIG. 2, the virtual
levels of cells 1, 2, 3, 4 change as (3,4,2,1)—(3,4,2,3)—(4,
4,2.3)—(4,5,2,3). Its cost is 1.

The model captures the typical behavior of cell program-
ming. Yet when the minimal-push-up operations are used,
the number of cells to push may not always be a constant
when the old and new states u, v are given. An example is
shown in FIGS. 3 and 4, where the state changes from
u=[1,2,3,4] to v=[2,1,4,3]. An example programming pro-
cess is shown in FIG. 3, where two cells—<cell 4 and then
cell 2—are pushed up sequentially. (Note that based on the
discrete model, the rewriting cost is 1. This is consistent with
the increase of the maximum cell level here.) But as shown
in FIG. 4, in the rare case where cell 4’s level is significantly
over-raised to the extent that it exceeds the level of cell 1,
cell 1 will also be programmed, leading to three minimal-
push-up operations in total. However, we would like to show
that above discrete model is still a robust model for the
following reasons. First, in this paper we focus on the typical
(i.e., most probable) behavior of cell programming, where
the rewriting cost matches the actual increase of the maxi-
mum cell level well. In the rare case where cell levels are
increased by too much, additional load balancing techniques
over multiple cell groups can be used to handle it. Second,
the rare case—that a cell’s level is overly increased—can
happen not only with the minimal-push-up operation but
also with the push-to-top operation; and its effect on the
increment of the maximal cell level is similar for the two
approaches. So the discrete model still provides a fair and
robust way to evaluate the rewriting cost of different state
transitions.

This disclosure describes codes based on state transitions
using the minimal-push-up operations. Given two states
u=[u(l), u(2), . . ., W(]ES,, and v=[v(1), v(2), . . .,
v(n)]ES,,, let C(u—v) denote the cost of changing the state
from u to v. (Note that u(*), v(*) are both functions. Let u™,
v~! be their inverse functions.) The value of C(u—v) can be
computed as follows. Corresponding to the old state u,
assign virtual levels n, n-1, . . . , 1 to the cells u(l),
u(2), ..., u(n), respectively. Fori=1, 2, . . ., n, let 1, denote
the virtual level of cell i corresponding to the new state v.
Then based on the programming process described previ-
ously, 1;, . . ., 1, can be computed as follows:

1. Fori=1, 2, . . ., n perform:

{Lysn+1-i}

2. Fori=n-1,n-2, ..., 1 do:

Ly max{l,g+ LI}

Then:

Clu—=v)=l,y—n.

It can be seen that 0=C(u—v)n—1. An example of the
rewriting cost is shown in FIG. 5.

The following theorem provides an equivalent definition
of'the cost. According to the theorem, the cost is equal to the
maximal increase in rank among the cells.

Theorem 1

Clu—v) = r_nfa)]((v’l(i) —u (D).

Proof: Assume by induction on k that

10

15

20

25

30

35

40

45

50

55

60

65

10

In base case, k=n, and I, n+l-n+
max,ep, (d=u"(v(i))=1+n-u""(v(n)). This is the result
of the programming process. Now assume that the expres-
sion is true for k. For k-1, by the programming process,

Leory = maxtlygy + 1, n+ 1 -t (v(k — 1))}
:max{n+ l—k+ max (i—u'Ov@)+1,n+
i€lk,... .n]

- (k- 1))}

by the induction assumption

and the induction is proven.
Now 1, is assigned in the definition of the cost:

Clu-v)=lyy-n
=n+l-1+ max (i—u ‘(W) -n
i€[l,... »n)

= r.n;n}c(v’l 0 -u)

Codes for rewriting data based on the “push-to-top”
operation have been studied. See, for example, A. Jiang, R.
Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” [EEE Trans. on Inform. Theory, vol. 55,
no. 6, pp. 2659-2673, June 2009. Since the “minimal-push-
up” approach has lower rewriting cost than the “push-to-
top” operation, rewrite codes can be constructed with higher
rates.

In order to discuss rewriting, a decoding scheme is
defined. It is often the case that the alphabet size used by the
user to input data and read stored information differs from
the alphabet size used as internal representation. In one
embodiment, data is stored internally in one of n! different
permutations. Assume the user alphabet is Q={1,2, ..., q}.
A decoding scheme is a function D:S,—Q mapping internal
states to symbols from the user alphabet. Suppose the
current internal state is uES,, and the user inputs a new
symbol aQ. A rewriting operation given c is now defined
as moving from state uES,, to state v&S,, such that D(v)=c..
The cost of the rewriting operation is C(u—>v).

Next, the transition graph G,=(V,,A,) is defined as a
directed graph with V, =S, i.e., with n! vertices representing
the permutations in S,,. There is a directed edge u—v if and
only if C(u—v)=1. Note that G,, is a regular digraph. Given
a vertex uEV,, and an integer r&{0, 1, . . ., n—1}, the ball
B, (w) is defined as B,, (u)={vEV,IC(u—>v)=r}.

Theorem 2.

1B, ()l=r!{+1)""

Proof: Induction is used on n. When n=2 the statement is
trivial. (So is it when n=r+1, where 1B, ,(W)I=(r+1)!.) Now
the statement is assumed to be true for n=n,, and consider
n=ny+1 and n>r+1. Let u=[u(1), u(2), . . . , u(n)]ES,,, and
without loss of generality (w.l.o.g.) let u(1)=n. Let v=[v(1),
v(2),...,v(IEB, (). Let i=[u(2), u(3), . . ., uW)]ES,, ,,
and let v S,,_; be obtained from v by removing the element

US 9,666,280 B2

11

u(1)=n. By Theorem 1, the first element in u, namely u(1)=n,
can take one of the first r+1 positions in v. Given that
position, there is a one-to-one mapping between pushing-up
the remaining n-1 elements from u to v&S,, and pushing-up
those n-1 elements from 0 to ¥€S,, |, and C(1—¥)=C(u—=v)
r. So the following results: 1B, (0)l=(r+1)IB,,_, (@)= ..
(c+1)" 7 e+ D= (r+1)".

Note that given u, [{v&S ||v-'(i)-u~'(i)l=r for 1<i=n)}| is
the size of the ball under infinity norm. When r=1, that size
is known to be a Fibonacci number. See, for example, T.
Kleve, “Spheres of permutations under the infinity norm—
permutations with limited displacement,” University of Ber-
gen, Bergen, Norway, Tech. Rep. 376, November 2008.

In addition, we note that B, | (u)|=2""". Therefore, the
out-degree of each vertex in G, is 2"'-1. In comparison,
when we allow only the *“push-to-the-top™ operation, IB,, ,
(u)l=n. Hence we get an exponential increase in the degree,
which might lead to an exponential increase in the rate of
rewrite codes. In the next section we study rewrite codes
under a worst-case cost constraint.

B. Worst-case Decoding Scheme for Rewrite

Described herein are codes where the cost of the rewrite
operation is limited by r.

1. The Case of n=<4

The case of r=1 is evaluated first. The first non-trivial case
for r=1 is n=3. However, for this case the additional “mini-
mal-push-up” transitions do not allow for a better rewrite
code. An optimal construction for a graph with only the
“push-to-top” transitions has been discussed. See, for
example, A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck,
“Rank modulation for flash memories,” IEEE Trans. on
Inform. Theory, vol. 55, no. 6, pp. 2659-2673, June 2009.
That construction assigns a symbol to each state according
to the first element in the permutation, for a total of 3
symbols. This construction may also be optimal for a graph
with the “minimal-push-up” transitions.

For greater values of n, in order to simplify the construc-
tion, we limit ourselves to codes that assign a symbol to each
of the n! states. We call such codes full assignment codes.
Note that better codes for which not all the states are
assigned to symbols might exist. When all of the states are
assigned to symbols, each state must have an edge in A, to
at least one state labeled by each other symbol. We define a
set of vertices D in G,, as a dominating set if any vertex not
in D is the initial vertex of an edge that ends in a vertex in
D. Every denominating set is assigned to one symbol. Our
goal is to partition the set of n! vertices into the maximum
number of dominating sets. We start by presenting a con-
struction for n=4.

Construction 1.

Divide the 24 states of S, into 6 sets of 4 states each,
where each set is a coset of <(1,2,3,4)>, the cyclic group
generated by (1,2,3,4). Here (1,2,3,4) is the permutation in
the cycle notation, and <(1,2,3,4))={[1,2,3,4], [2,3,4,1],
[3,4,1,2], [4,1,2,3]}. Map each set to a different symbol.

Theorem 3.

Each set in Construction 1 is a dominating set.

Proof: Let [, be the identity permutation, g=(1,2,3,4) and
G=<g>. For each h&S,, hG is a coset of G. For each v=[v
(1), . .., v(n)]ELG and each u=[u(1), . . . , u(n)]ES, such
that u(1)=v(1), u has an edge to either v or v¥g. For example,
in the coset 1,G=G, for v=I, and uES, such that u(l)=v
(D=1, if u(2) is 2 or 3, a has an edge to 1,-[1,2,3,4], and if
u(2)=4, u has an edge to 1,*g=[4,1,2,3]. Since G is a cyclic
group of order 4, for every uES,, there exists v&hG such that
u(1)=v(1), and therefore hG is a dominating set.

5

10

—

5

20

30

40

45

60

12
For k [n] and BE S, define:
Pref (B)={tls=tu for lul=k and s€B}
where t, u are segments of the permutation s. For example,
Pref;({[1,2,3,4,5],[1,2,3,5,41,[1,3,2,4,51)={[1,2],[1,3]}.
A lower bound is provided to a dominating set’s size.

If D is a dominating set of G,, Theorem 4

n!

3
Zont
4

then |D|

Proof: Each p;EPref;(S,) is a prefix of 3 different prefixes
in Pref,(S,). For example, for n=5, [1,2] is a prefix of
{11,2,31,[1,2,4],[1,2,5]}. Each v D dominates 2" prefixes in
Pref,(8,,). For example, for n=4, every permutation that start
with [1,2],[1,3],[2,1] or [2,3] has an edge to [1,2,3,4]. This
set of prefixes can be partitioned into sets of two members,
each sharing the same prefix in Pref;(S,,). For one such set
B,={p,.1:P2,}, and p; denotes the only member of Pref,
(B,). Since D is a dominating set, all of the members of Pref,
(8,,) are dominated. Therefore, the third prefix p, ;&B, such
that {p,}=Pref,({B,.p, ;}) is dominated by some u€ED, u=v.
Moreover, u dominates also one of the prefixes in B,.
Therefore, at least half of the prefixes in Pref,(S,,) that v
dominates are also dominated by at least one other member
of D. X,, denotes the set of prefixes in Pref,(S,,) that are
dominated by v and not by any u=v such that u€D, and Y,
denotes the prefixes in Pref,(S,,) that are also dominated by
at least one such u=v. Also defined is X=X _,IX,| and
Y=2,,/Y,I. It has been shown that IX |=2">; so X=2">|DI.
In addition, IX,|+Y =22 and so X+Y=2"2IDI. By the
definition of Y,

[STR

|UveD Yv| =

because every element in the above union of sets appears in
at least two of the sets. So:

n! Y
5 =Pl =], %[+, =X+ 5=
X X
X +273|D| - T=3+ 273D = (274 + 273D =327 D).
Therefore
n!
Dz ——.
1Dl = 3.9n-3

Using the above bound, the rate of any full assignment
code € is R(C)=l 1/n log, 3/8 bits per cell. For the case of
n=4, IDIz4. Therefore Construction 1 is an optimal full
assignment code.

2. The Case of n=5
In the case of n=5, a dominating set comprises of at least

51

m = 10 members.

US 9,666,280 B2

13

members. An optimal full assignment code construction is
presented with dominating sets of 10 members.

Construction 2.

Divide the 120 states of S5 into 12 sets of 10 states each,
where each set is composed of five cosets of <(4,5)>, and
two permutations with the same parity are in the same set if
and only if they belong to the same coset of <(1,2,4,3,5)>.
Map each set to a different symbol.

Let g,=(4,5) and g,=(1,2,4,3,5). An example of a domi-
nating set where each row is a coset of g; and each column
is a coset of g, is:

111,2,3,4,5],[1,2,3,5.4]

[2,4,5,3,1],[2,4,5,1,3]

[4,3,1,5,2],[4,3,1,2,5]

[3,5,2,1,4],[3,5,2,4,1]

[5,1,4,2,3],[5,1,4,3,2]}

Theorem 5.

Each set D in Construction 2 is a dominating set.

Proof: Each coset of <g,> dominates 4 prefixes in Pref;
(Ss). For example, the coset<g,>={1,~[1,2,3,4,5],2,=[1,2,3,
5,4]}) dominates the prefixes {[1,2],[1,3],[2,1],[2,3]}. Each
coset representative is treated as a representative of the
domination over the 4 prefixes in Pref;(S;) that are domi-
nated by the coset. According to the construction, a set of
representatives in D that share the same parity is a coset of
<g,>. Let one of the cosets of <g,> in D be called C. For
each v C, the subset {v, g,*v} represents a domination over
a single disjoint prefix in Pref,(S;). For example, for v=I ,,
the subset {1,7[1,2,3,4,5],2,%1,7[2,4,5,3,1]} represent a
domination over the prefix [2]. Since I<g,>|=5, C represents
a complete domination over Pref,(S;), and therefore D is a
dominating set.

The rate of the code may be

1
R= glogzlz =0.717 bits per cell

bits per cell

Recall that optimal codes with “push-to-top” operations
use only n symbols for n cells. Therefore, a rate improve-
ment of

1 1
(glogZIZ)/(glogZS) -1=544%

may be achieved.
3. The Case of r<2

When the cost constraint is greater than 1, the construc-
tions studied above can be generalized. For a construction
for the case r=n—4, the construction begins by dividing the
n! states S,, into

n!

0 sets,

sets, where two states are in the same set if and only if their
first n-5 elements are the same. The sets are all dominating
sets, because we can get to any set by at most n-5 “push-
to-top” operations. Each of these sets to 12 sets of 10
members is further divided, in the same way as in Construc-
tion 2, according to the last 5 elements of the permutations.
By the properties of construction 2, each of the smaller sets
is still a dominating set. The rate of the code is

w

10

15

20

25

30

35

45

50

55

60

65

14

1 n!

R = Zlog, — hits per cell.

!
5 120

bits per cell.

An example method 600 of operating a data device is

illustrated in FIG. 6. Method 600 may include one or more
operations, actions, or functions as illustrated by one or
more of blocks 605, 610, 615, 620, 625, 630 and 635.
Although illustrated as discrete blocks, various blocks may
be divided into additional blocks, combined into fewer
blocks, or eliminated, depending on the particular imple-
mentation.
At block 605 the process can be started. Block 605 can be
followed by block 610, where data values v=[v,, v,, . . .,
v, |ES,, can be received and are to be stored in data storage
containing current values u=[u,, u,, ..., u,]ES, . Block 610
can be followed by block 615, where v can be defined as an
element of S. Block 615 can be followed by block 620,
where S can be defined as a set of symbols in a rank
modulation coding scheme. Block 620 can be followed by
625, where n can be defined as a number of ranks in v to be
stored in a group of n rank locations in data storage of the
data device. Block 625 can be followed by block 630, where
the group of n rank locations can be programmed according
to the rank modulation coding scheme and the value v such
that for i=n-1, n-2, . . ., 1 the programmed value of a rank
location v, is increased until it is greater than the value of a
rank location v,,, by a minimum cell differentiation amount.
Block 630 can be followed by block 635, where the process
may be continued.

In some embodiments each of the n rank locations may
comprise a cell of the device data storage. In further embodi-
ments, each rank location may comprise a plurality of cells
of the device data storage. In other embodiments, each rank
location may comprise an equal number of cells of the
device data storage. In still further embodiments, program-
ming may comprise increasing the value of all cells in the
rank location v, until the value in each of the cells v, is
greater than the value in each of the cells in the rank location
V,,;. In other embodiments, the current values of u=[u,,
u,, ..., Uu,]ES, are read from the device data storage before
the programming of the group of n rank locations with v.

III. MULTI-CELLS

We can store log,q bits on a flash cell with q levels. That
way, each time we want to update the data on the memory,
we would have to erase the whole block. We call this
representation method “the trivial scheme”. We could also
use a bit more sophisticated update schemes. For example,
we could store only 1 bit in each cell, according to the parity
of the level of the cell. If the cell is in level 3, for example,
it stores the value 1. Using this scheme, we can update the
data q-1 times before a block erasure will be required. We
call this scheme “the parity scheme”. Update schemes like
the parity scheme can be especially useful for enterprise
applications of flash memory, where the endurance of the
memory becomes a major design concern. Update schemes
are also known as write once memory (WOM) codes. See,
for example, A. Fiat and A. Shamir, “Generalized “write-
once” memories,” [EEE Trans. on Inform. Theory, vol.
1T-30, no. 3, pp. 470-480, May 1984; F.-W. Fuand A. J. Han
Vinck, “On the capacity of generalized write-once memory
with state transitions described by an arbitrary directed
acyclic graph,” IEEE Trans. on Inform. Theory, vol. 45, no.

US 9,666,280 B2

15
1, pp. 308-313, January 1999; R. L. Rivest and A. Shamir,
“How to reuse a “write-once” memory,” Inform. and Con-
trol, vol. 55, pp. 1-19, 1982.

While the values of the cells in the relative scheme don’t
need to be quantized, discrete levels can be used for analysis
to simplify the calculations. This is to allow a more easy and
useful analysis, and because there should still be a certain
charge difference between the cells in order to avoid errors.
When the cells have q levels, the data can be stored on a set
of q cells according to their relative levels. In other words,
log,(q!) bits can be stored on q cells, or each cell can be used
to store (1/q)log,(q!) bits. If q is large, the capacity of the
trivial scheme described above. However, various update
schemes described herein can be employed that may use
relative levels, such as n cells of q levels, where n<q. As
described further below, a high total capacity can be
achieved with update schemes that use relative cell’s levels.
More specifically, some described examples may achieve an
instantaneous capacity of n bits and a total capacity of
(gq-1)n bits using relative cell’s levels.

Update schemes with high total capacity can become
useful when q has a high value. However, in practical flash
memory devices, q may have a moderately small number.
Various example methods described herein may achieve
high values of q with the existing cell technology. The main
idea is to combine several floating gate transistors into a
virtual cell, which we call a multi-cell.

A. Multi-Cell Flash Memory

NAND flash memory is a widely used type of memory for
general storage purposes. In NAND flash, several floating
gate transistors are typically coupled in series (see FIG. 7A),
where read or write operations occur one at a time. The
present disclosure proposes to replace various transistors
with a multi-cell of m transistors that are coupled together in
parallel, with commonly controlled gates, as shown in FIG.
7B. In read operations, the currents of the transistors sum
together, and the read precision may increase by m times,
allowing to store mq levels in a single multi-cell. In write
operations, the same value can be written into all of the
transistors coupled together with a common gate, such that
the sum of their charge levels gives the desired total level.
The resulting error rates of read and write operations of the
configuration in FIG. 7B are substantially the same as those
error rates found in a traditional flash cell.

If data is stored by n transistors that form n/m multi-cells
of mq levels each, and if the trivial scheme is used, an
instantaneous and total capacity of (n/m)log,(mq) bits
results that is less than the n log,q bits would result using
traditional cells. However, if an update scheme such as the
relative schemes presented in the present disclosure, then a
total capacity may approach n(q-1) bits both with multi-
cells and with traditional cells. In order to use a permutation
of cell’s levels, the number of levels in each should be at
least the number of cells. To approach a total capacity of
n(q-1) bits with permutations, the number of updates the
scheme can take should be greater than the number of cells
we use. By using multi-cells, the number of updates may
increase at the expense of the instantaneous capacity, and the
total capacity is approached faster.

B. Notations and Model Properties

In order to allow easy and fair analysis, discrete levels for
the cell’s charge values can be utilized. In practice there is
generally no need for threshold levels, and analog values can
be used for the cell’s charge values. For example, let c=(c,,
Coy .5 C,), with ¢, {0, 1, ..., q-1} as the state of an array
of n flash cells, each cell having q discrete levels, where c;=c;
for all i=]. The n variables may induce a permutation such as

10

15

20

25

30

35

40

45

50

55

60

65

16
o=[o(1), o(2), . . ., o(n)]ES,, where S, denotes the set of
all permutations over [n]={1, 2, . . ., n}. The permutation o

may be uniquely defined by the constraints ¢, >Cy;, for all
>, i.e., when c is sorted in ascending order as c;<c, <. ..
<c, , then o(i)=j, for all 1=i=n.

To change the permutation from o to o', the cells can be
programmed based on their order in o', so that each cell’s
level may increase as little as possible. For example, let
c=(c';, ¢'5, . . ., ¢',) denote the new cell’s levels to be set.
Initially ¢'yy=Ce(1y, and then, for i=2, 3, . .
Max{Cqy, Coyyt1}. Given two cell states ¢ and ¢, let cost
(c—c") denote the cost of changing the cell state from c to
c'. The cost can be defined as the difference between the
levels of the highest cell, before and after the update
operation. Namely, cost (c—>¢")=C'4,y=Coy,)- As illustrated
by this example, the cost may be a function of o~! and o',
where o' is the inverse of the permutation o. See, for
example, E. En Gad, A. Jiang, and J. Bruck, “Compressed
encoding for rank modulation,” in Proceedings of the 2011
IEEE Int. Symp. on Inform. Theory, ISIT2011, St. Peters-
burg, Russia, August 2011, pp. 884-888. The cost can be
written as:

1 —
S

cost(c > ') = r_nfi)]((o"l () —o L @).

In other words, the cost is the L, quasimetric.

Example 1

Let ¢=(0,1,2,3). So 0-1,2,3,4]. Now let 0'=[3,1,4,2]. The
levels of the cells to represent o' can be increased as follows:
set ¢';=c;=2; ¢';7=max{c,;,c's+1}=max{0,3}=3; and ¢',~4
and ¢',=5. The cost of the update can be determined as
c¢',—c,=5-3=2. The cost can also be calculated directly from
the permutations: o~'=[1,2,3,4], and o''=[2,4,1,3]. Since
o '-o'=[-1, -2,2,1], and the maximum is 2, so this is the
cost.

The set of all the values that the data can take can be denoted
as D. An update scheme, or update code, C may include a
decoding function f and an update function g. The decoding
function f:S,—D may identify the permutation 0€S, as a
representation of the data f(o)€D. The update function
(which may represent an update operation), g:S,xD—S |
may identify the current permutation o€S,, and the update
can change the data to d€D, and the update code can change
the permutation to g(o.d), where f(g(o,d)) may be equal to
d. Note that if f(0)=d, then g(o,d)=0, which corresponds to
the case where w the stored data does not need to change.

Let C,(C) be the instantaneous capacity of an update
code €. The instantaneous capacity can be defined as
C.(€C)=(1/n)logIDI, where the binary logarithm can be used.
Let t,(C) be the maximal number of updates that € can
support for all update sequences. The worst-case total capac-
ity per level can be defined as C,(C)=t (C)C,(C) (q-1).
Similarly, t,C can be defined as the average number of
times the memory can be modified before a block erasure is
required, where we assume that in each update, the data
value can be uniformly distributed, C,(C)=t (C)C,(C)/(q-
1) can be the average total capacity per level of the update
code, and see that lim,,, ,,_...C,(€)=C,(C)/E(cost), where
E(cost) is the expectation of the cost.

Finally, for a fixed o€S,, set

B, (0)={0'€S, |cost(o—o")=r}, k, =B, (0)l.

US 9,666,280 B2

17

We note thatk,, , is independent of o. It was shown in [2] that
K, ,=(r+1y" e+ 1)
C. Upper Bounds

In this section, a bound is derived for C, (€) and C,(C),
when q and n are large numbers, and q is much greater than
n. In addition, a bound for C,(C) is derived in the cases
where C, (€) and C,(C) are asymptotically optimal.
1. Worst Case

To derive a bound, k,, ,, the size of the ball of radius r can
be used. To guarantee that the cost of each update operation
is no more than r, IDI<k, . Otherwise, to write the data state
d, there is no guarantee that there is a permutation in B, (o)
that represents d. The resulting instantaneous capacity can
be determined as
(I/n)log(k,). Let K=lim, .. (1/mlog(k,). By setting
C,C)<K,, we cannot guarantee to write more than (q-n)/r
times, so C, (€)=t (C)C,(C)/(q-1) is less than K /r. In the
following K /r is decreasing in r, which means that K, is an
upper bound to the worst case total capacity.

Lemma 1. K, /r is strictly decreasing in » when r = 1.

Proof:

(L/n)logk, = (L/nnlog((r + "D (r £ 1Y)
= (1 /nr)(nlog(r+ 1) —(r+ 1))
=(1/Mloglr+ 1) —(r+ 1)/ (nr)
- (1/r)log(r + 1),

T — oo

So K, /r=(1/rlogr+1).

On the other hand,

log((r + 2" (r + 2)1)
n(r+1)
< (1/(r+ 1)log(r+2)

(L/(n(r+ D))logk, =

So

K1 /(r+ D)= (1/(r+ D)log(r +2)
<(I/Mloglr+) =<K, /r

So K,/r is strictly decreasing.

It also follows that when C, (C) is asymptotically opti-
mal, C,(€C) is bounded by K, as well. And when C,(C) is
asymptotically optimal, t (C) is optimal, since r=1. As
noted, both upper bounds are determined as K;,. We can
calculate K, quickly: K,=lim,, . (1/n)log 2""*=1. In section
6 we show that there exists a code that approaches both of
the bounds.

2. Average Case

We now find a bound for the average case. Since
t,(€)=t (C), the average total capacity is at least that of the
worst case. In the following theorem we show that, asymp-
totically, the average total capacity is also bounded by K.

Theorem 1.

Let € be a permutation based update code. Then
lim_, . _...C,(€)=K,. Proof: Let r be the largest integer such
that lim,_ .. C,(C)>K,. Therefore, lim,_,..C,(C)<K,,,. Let
deED be a data state that needs to be stored, and o€S,, the
current permutation of the cells. Since f(0) is the decoding
function, let f7'(d) be the set of permutations that are
decoded to d. We start by bounding E(cost), the expected
cost of an update:

10

15

20

25

30

35

40

45

50

55

18

n-l
E(cost) = Z iPr{cost = i} = (r + 1)Pricost = r + 1}
=0
=(r+ DPrif ™ (d) N B, (o) = @}
= (r+ (1 = Pridk,,})
=(r+ 1)1 —k,, /D) = (r+ 1)(1 - 27K~ CiCD)

C.(0) = (OGO (g-1)
<(g-mG(C)/((g - DE(cost)
< C(C)/ ((r + 1)(1 = 22Kr=CilCyy

Since limy,. Ci(C)K i1,

im CoC)= lim Kny/
g/nn—co ginn—sco
((r + 1)(1 = 2Kr=Ci(Oy)

=K /(r+) =K

where the last step is due to Lemma 1.

Once lim,,, , ..C,(C) is optimized, we also want to
optimize C,(C). We now derive an upper bound for that
case.

Theorem 2.

Let C be a permutation based update code. If C (€)—K,
when g/n,n—c, then lim,,_,.C,(€)=K,.

Proof: Set r as before. Therefore, lim, .. C,(C)=K,,,. If
rzl, lim,,, ..C (€)=K, /(r+1)<K,, since K /r is strictly
decreasing, and we have a contradiction, since C,(C)
doesn’t approach K,. So r=0, and therefore lim,_,.
C,(C)=K,.

We see that once C,(C) is asymptotically optimal, t,(C)
is asymptotically optimal as well.

D. Construction for the Average Case

We now present a code that achieves both bounds with
efficient decoding and update procedures. For convenience,
we assume that both log n and n/log n are integers.

Let each data state be a factorial number (also known as
a reflected inversion vector) with n/log n digits,
d=(dy, - . -, dysg »-1)- The i-th digit from the right in a
factorial number has base i, which means that the digit is less
than i. Therefore, the base of digit d, is n/log n—i.

We can see that the instantaneous capacity of the code is
asymptotically optimal. That is because:

Ci(C) = (1/mlogD| = (1/m)log((n/logm)!)

n
nlogn

=

(logn — log(2logn))

=1-log(2logn)/logn —» 1, n - oo

Construction 1.

Permutation based update code.
Decoding:
The decoding function, f(0), can be used to decode a
permutation o to a data state d. The permutation o can be
written as a sequence of log n permutations, 0={0,,
Oy« + 5 Opg ny) €ach taken over n/log n cells. For the
purpose of decoding, we first represent the permutations as
factorial numbers. Namely, for each permutation o, its
factorial is VA(V,(0), V(1), . . ., V(o/log n-1)), with
V,()=I{klk>i and o,(k)>0,(i)}. In other words, each element
is the number of elements following the element in the
permutation that are greater than it.

US 9,666,280 B2

19

The decoding function may be composed of a sequence of
digit functions fo, f1, - - -, g 1 €ach decoding a
different digit. Each digit function

can be used to decode the digit d, according to the vector
VAO={Vo@), V), . . ., Vg (D)} Together,
F@=FV=Fo(VO), FIVA), - s Fuieg wa(V/log
n-1)). Each function f,(V(i)) can take the value of the sum
of the digits with index i in the log n factorial numbers. The
sum can be taken as a modulo of the base of the digit, (n/log
n-i):

fi(V(i)):ijolog "'V (i) mod (0/log n-i)

Update:

The update function, g(o,d), updates the permutation o into
a permutation o', such that f(o")=d. The function takes place
sequentially from d, to d,,,. ,,. The update function is
described by the following algorithm:

1: Set o'=0, V', the factorial number of o', and start with
digit do, i.e. i=0.

2: Identify a sequence s=(Sg, 81, - - - ; S04 ,,.1) Of log n bits,
such that if, for each j, we perform the transposition (i,i+s))
on o', then f,(V'(1))=d,. If such a sequence is found, perform
the transpositions according to s and repeat phase 2 for the
next digit, d,, ;.

3: If there is no binary sequence s such that f,(V'(i))=d,,
identify a ternary sequence s of length log n, i.e., s,£{0,1,2},
such that f(V'(1))=d,. If such a sequence is identified, the
transpositions can be performed according to s and repeat
phase 2 for the next digit.

4: If there is still no appropriate binary sequence s, an
arbitrary index j is selected, and update o, to an appropriate
o', such that f(V")=d.

Example 2

Let n=16. Let 0~[1,2,3,4] for j=0,1,2,3. For each j,
V(0)=3, since there are 3 elements following the element 1
in o; that are greater than 1. Now we decode the data from
the permutations. f,(V(0))=3+3+3+3 mod (4-0)=0, so d,=0.
Similarly, d,;=2x4 mod (4-1)=2, d,=4 mod 2=0 and d,=0.
Note that d,,;,,, ,,.1=0.

We now assume that we want to update the data state to
d=(2,2,0,0). We start with encoding d,=2. We look for a
binary sequence s such that £,(V'(0))=2. We notice that for
each j, if s,=0, then V'(0)=3, and if s=1, then V'j(0)=2. So
we can choose, for example, the sequence s=(1,1,0,0), and
get Fo(V'(0))=2+2+3+3 mod 4=2. In the same way we can
encode each digit in the data state.

We remember that the cost of update is the L., quasimet-
ric: cost (0%0'):maxi6[n](0"1(i)—0‘"1(i)). Therefore, if all
the digits are updated by phase 2, the cost of the update
operation is 1. The number of binary sequences of length log
n is n, and therefore the algorithm can check all of them in
polynomial time. In order to avoid the calculation of the sum
for each sequence, the algorithm can use a binary reflected
Gray code, and calculate only the difference of one trans-
position in each step.

If at least one digit is updated by phase 3, the cost of the
update is 2. The running time of the algorithm remains
polynomial in that case. If the algorithm reaches phase 4, the
cost can be determined as n/log n-1, but the running time
remains polynomial, since we can choose the elements of V',

10

15

20

25

30

35

40

45

50

55

60

20

quickly. Since all the steps in the update algorithm take
polynomial time, the worst-case complexity is polynomial in
n.

We now analyze the expected cost of update. We assume
that o and d are drawn according to uniform distributions,
and start with calculating the probability that the cost is
greater than 1. For every binary sequence s, Pr(f,(V'(i))=d,)
is at least log(n)/n, since the base of d, is at most n/log n. So
the probability that s is not good is at most 1-(log n/n). s can
take one of n values, and for each different value that
probability is independent. Therefore, the probability that
there is no good sequence s is at most (1-(log n/n))”. That
probability is independent for different digits of d. There-
fore, by the union bound, the probability that at least one
digit is updated according to phase 3 is at most (n/log
n)(1-(log n/n))”. This is the probability that the update cost
will be greater than 1. Similarly, the probability that the
update cost is greater than 2 is at most (w/log n)(1-(log
0/n))®” ", since phase 3 uses ternary sequences. We now
show that the expected cost of the update algorithm is
approaching 1:

E(cost)=Z,_o"" "LiPr(cost=i)=1Pr(cost=1)+2Pr
(cost=2)+(n/log n)Pr(cost>2)sl+2(%19g n)(1-
(log n/m)y"* %2 /log?n)(1-(log nm))> "~ "=1+(2n/
log n)exp(-log n)+ (> log?n)exp(-#'2 > log
n)—>1,p—>w0
So C,(C)=t,C(C)(q-1)—1 when g/n,n—c0, and the
code approaches the bounds for the instantaneous and the
average total capacity.
E. Existence for the Worst Case
In this section we show that there exists a code such that
C(C), C,(C) both approach K, when g/n,n—>co.
Theorem 3.
There exists a permutation based update code €, such
that
C,(C), C, (€)=K, for g/n,n—c0.
Proof:
Let IDI=k, ,/n'*<, where € is a positive constant. In the
following we show that there exists a {D,n} code with worst
case update cost of 1. We first calculate the instantaneous
capacity of the code:

Ci(C) = (1/m)log|D|

=(1/mlogk,; — 1 /m)(1 +8)logn —» K|, n — oo

So the instantaneous capacity of such a code is asymptoti-
cally optimal. If we show that the worst-case cost is 1, it
follows that the worst-case total capacity is also asymptoti-
cally optimal.

Suppose {f7'(d)},.,””" is a partition of S, ie.,
FHOHNF(d)=0, d=d'; and U, ,"P'f1(d)=S,. We now
show that there exists a partition of S,, such that for any
o€S, and any dED, there exists a vector o'€f~!(d), such
that cost (0-0')=1. We use a random coding method. With
every o€S,, we connect a random index r, which is uni-
formly distributed over the data set D and all these random
indices are independent. Then {f~*(d)},_,'?, orms a random
partition of S, Fix d€D nd o€S,, then

PR N B) =2) =
PHY 0B, (), 1y # d} = [1 = 1/|DI}*1 exp{—ky /|DI} = exp{-n'**}

US 9,666,280 B2

21

-continued

Therefore,
PriddeDand o €S, st. fH(d) N Buro) =2} <

ID|IS, lexp{—n"*} < 2"nlexp{—n'*?} < expin(l + lnn — %)} - co

This implies that when n is sufficiently large, there exists a
partition of S, uch that the cost of each update is 1.

FIG. 8A depicts a process 800 for manufacturing and
operating a data device. Process 800 may include one or
more operations, actions, or functions as illustrated by one
or more of blocks 805, 810, 815, 820, 825 and 830. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or
eliminated, depending on the particular implementation. The
process starts with block 805. In block 810 a plurality of
transistors each of which is capable of storing charge are
disposed on a device. Each of the plurality of transistors
comprises a gate, a source, and a drain. In block 815
connections are formed between the sources of each of the
plurality of transistors. Each connection is capable of car-
rying electrical current. In block 820 connections are formed
between the drains of each of the plurality of transistors.
Each connection is capable of carrying electrical current. In
block 825 data is stored in the plurality of transistors. The
data corresponds to a sum of charges stored in each of the
plurality of transistors. In block 830 the process may con-
tinue. In some embodiments connections may be formed
between the gates of each of the plurality of transistors.

FIG. 8B depicts a process 850 for operating a data device.
Process 850 may include one or more operations, actions, or
functions as illustrated by one or more of blocks 855, 860,
865 and 870. Although illustrated as discrete blocks, various
blocks may be divided into additional blocks, combined into
fewer blocks, or eliminated, depending on the particular
implementation. The process starts with block 855. In block
860 a code word is generated that has a plurality of symbols
selected from a set of symbols. In block 865 each of the
plurality of symbols is stored in a data storage location of the
data device. Each data storage location comprises a plurality
of parallel connected devices. In block 870 the process may
be continued. In some embodiments the plurality of parallel
connected devices may comprise transistors.

IV. MULTI-PERMUTATIONS

We further generalize the paradigm of representing infor-
mation with permutations to the case where the number of
cells in each level is a constant greater than 1 multi-
permutations. Namely, the states that the cells can take are
no longer permutations of a set, but permutations of a
multiset. For example, if the number of cells at each level is
2 the two cells in each level do not need to be identical in
their analog values, they just need to be distinguishable with
other levels (but do not need to be mutually distinguishable).
Hence, the encoding and decoding may use relative levels,
and the scheme has good resistance to drift; namely, the
advantages of the permutation based relative scheme that we
described above still apply. Another example is the case
where the number of levels is 2, and there are many cells in
each level. In this case, the multi-permutations are balance
binary sequences.

We consider the case where the multiplicities of all the
elements in the multiset are equal, and denote it by z. This
generalization becomes interesting especially when z is
large, and n s still much larger than z. In that case (if q is still

10

15

20

25

30

35

40

45

50

55

60

65

22

much larger than n), we can prove that the upper bound on
the total capacity is 2q bits per cell, and that there exists a
construction that approaches this bound. The instantaneous
capacity of the construction is approaching 2 bits per cell.
These results can be proved using similar techniques to
those we used in the theorems described in this paper. Since
the cost of each update is at least 1, the number of updates
is at most q—1. We note that when the number of updates is
at most q-1, it follows that the total capacity of an update
scheme, even without relative levels, is no higher than 2q
bits per cell, and that there exists a code that achieves this
bound. See, for example, F.-W. Fuand A. J. Han Vinck, “On
the capacity of generalized write-once memory with state
transitions described by an arbitrary directed acyclic graph,”
IEEE Trans. on Inform. Theory, vol. 45, no. 1, pp. 308-313,
January 1999. However, our generalization makes a stronger
claim—that there exists a code that uses multisets (relative
levels) and achieves the total capacity of 2q bits per cell. It
is still an open problem to find a construction that achieves
2q bits per cell.
A. Compressed Rank Modulation

We will focus on the new multi-permutations scheme
introduced above, which we call Compressed Rank Modu-
lation. Before we do that, let us first review the terms in the
original rank modulation scheme. There are n ells, whose
analog levels can be denoted by ¢, c,, . . ., ¢,. (For flash
memories, the analog level of a cell may correspond to its
charge level or threshold-voltage level. For phase-change
memories and memristors, the analog level of a cell may
correspond to its resistance level.) They induce a permuta-

tion [X, X, - . ., X,] of the set {1, 2, . . ., n}, such that
C e, <. <C,
For i=1, 2, . . ., n, the x, th cell is said to have rank i. An

example is shown in FIG. 9, where n=4 cells induce the
permutation [4,2,1,3].

Rank modulation may have two advantages:

Cell programming is efficient and robust. We can program
cells from the lowest level to the highest level, without
the risk of overshooting, and there may be no need to
accurately control the level of any cell.

The state of the cells can be read in a simple way. For the
n ells, their ranks can be determined by sorting. That is,
we just need to measure the order of the cell levels.
There may be no need to measure the exact value of the
cell levels.

We now introduce the new scheme called, Compressed
Rank Modulation. Let n and d,, d,, . . ., d,, be parameters
that are positive integers. There are d,+d,+ . . . +d,, cells,
whose analog levels are denoted by 1,5, . - ., Cy s . . . 4arr
They are assigned n different ranks based on their analog
levels, where the d, cells of the lowest analog levels are
assigned rank 1, the next d, cells are assigned rank 2, . . . and
the top d,, cells are assigned rank n. An example is shown in
FIG. 10, where n=3 d,=d,=d;=2, and the induced permuta-
tion is

[{4.6}.{23}.{1,5}]

(namely, cell 4 and cell 6 have rank 1 (the lowest rank), cell
2 and cell 3 have rank 2 (the middle rank), and cell 1 and cell
5 have rank 3 (the highest rank)).

Another example is as follows:

Example 3

Let n=3, d,=2 d,=3 d;=4. We assign 2,_,” d,=9 cells to
n=3 ranks, such that d, cells are assigned to rank 1, d, cells

US 9,666,280 B2

23

are assigned to rank 2, and d; cells are assigned to rank 3.
For example, the following permutation is valid:

[{1,5},{2,3,8},{4,6,7,9}].

The main advantage of Compressed Rank Modulation,
compared to rank modulation, is that cells of the same rank
can be programmed to very close analog levels. In the
original rank modulation, in order to tolerate noise, we want
there to be a sufficiently large gap between every two analog
cell levels. In the compressed rank modulation, however, for
cells of the same rank, their analog levels can be arbitrarily
close. (And when we program cells, we would like to make
cells of the same rank to have very close analog levels, so
that the gap between the analog cell levels of different ranks
can be large.) This way, we can pack more cells into the
group of cells that use rank modulation. And the storage
capacity can be increased.

Example 4

This example illustrates that the compressed rank modu-
lation can improve the storage capacity. In this example,
cells of the same rank can be programmed to arbitrarily close
analog levels (just for the sake of explanation). For cells of
adjacent ranks, in this example, the gap between their analog
levels can be assumed to be A.

Consider the compressed rank modulation with n=3 nd
d,=d,=d;=2. The rank modulation can represent

6 4
(](] =90 symbols.
202

symbols.

For fair comparison, for the original rank modulation
scheme, consider 6 cells that we partition equally into 2
groups, where every group employs the rank modulation
scheme. Since each group can represent 3!=6 symbols, the
two groups can together represent 6x6=36<90 symbols. So
the compressed rank modulation achieves higher storage
capacity.

The compressed rank modulation scheme may have the
advantages of the original rank modulation scheme:

Cell programming is efficient and robust. When program-
ming cells, we program them from the lowest rank to
the highest rank, without the risk of overshooting. Note
that for cells of the same rank, the order of their analog
levels does not matter. There is no need to accurately
control the analog level of any cell.

The state of the cells can be read in a simple way. All we
need is still just sorting. The d; cells of the lowest
analog levels have rank 1, the next d, cells have rank
2, ..., and the top d, cells have rank n.

We emphasize again that for cells of the same rank, their
analog levels can have arbitrary orders. That makes pro-
gramming simple. For example, the examples in FIGS. 11
and 12 may induce the same permutation as the example in
FIG. 10. Of course, given the permutation [{4,6},{2,3},{1,
5}] we prefer to program it as FIG. 10 or FIG. 12 instead of
FIG. 11, in order to have larger gaps between the analog cell
levels of different ranks.

1. Initial Write

In this section, we discuss how to write data in the
compressed rank modulation scheme.

For flash memories (or PCMs, etc.), when data are written
to cells for the first time, typically, all the cells are in the

20

25

30

35

40

45

50

55

60

65

24

same initial state. (Typically, they all have the lowest analog
levels.) So given a permutation

[x1, %20 0 2 5y),

ey +15 Xdy 42, oo 5 Xdy+dy b oo ,{XHZn—ll 2y Xaprl a2 NTL 4}
= = =

we can program the cells from the lowest rank to the highest
rank, in the following way:

1. Let A>0 e a parameter we choose. Let cells of rank
1—namely, the x; th cell, the x, th cell, . . . the x, th
cell—retain their analog levels.

2. Fori=23, ..., n, do:

Program the cells of rank i uch that their analog levels are

all higher than the analog levels of the cells of rank i-1
by at least A.

It is easy to see that the above programming method has
little to no risk of overshooting, and enables cells to be
programmed efficiently without the need to accurately con-
trol analog cell levels. It is especially useful for flash
memories, where cell levels can only be increased before the
very costly block erasure operation is taken.

2. Subsequent Rewrites

After data are written into cells, there are at two scenarios
where it may be necessary to program the cells again. In the
first scenario, the value of the data needs to be changed. In
the second scenario, the analog cell levels of the cells are
disturbed by noise, and cells need to be reprogrammed to
ensure data reliability. If various cells need to be repro-
grammed by increasing cell levels (which is performed for
flash memories and sometimes also for PCMs), the cells can
be programmed with the following method.

Let (cy, Cos - -+ 5 Cypeape . . . +a,) denote the initial analog
levels of the cells. Let

(51, %20 o s Xay b By Xdyazs oo s Faysdy }s on

{x1+z?;11 2ap Xzt S NI 4]

denote the new permutation we need to program into the
cells, and let (¢, ¢5', . . ., Cyuur . . . 44) denote the new
analog cell levels to be set. We can program the cells from
the lowest rank to the highest rank as follows:

1. Let A>0 e a parameter we choose. For cells of rank
1—namely, the x; th cell, the x, th cell, . . . the x, th
cell—they can either retain their analog levels, or be sz'O-
grammed slightly such that their analog levels become close
to each other.

2. Fori=2,3,...,n,do:

Program the cells of rank i uch that their analog levels are
higher than the analog levels of the cells of rank i-1 by
at least A. In addition, if desirable, we can also make
their analog levels be close to each other.

It can be seen that the programming method is essentially
the same as the one for the initial write. It also avoids
overshooting programming errors, and is robust and effi-
cient.

3. Programming Symmetric Cells

For some memories (such as phase-change memories and
memristors), their cell levels can be both increased and
decreased without block erasures. In such a symmetric case,
it becomes even easier to program cells for the compressed
rank modulation scheme. Those skilled in the art will
understand how to program cells for this case.

US 9,666,280 B2

25

4. Rebalancing Permutations
A compressed rank modulation code has

+dn] (dn,1+dn]
.. d

permutations. We can directly use them to encode data,
either with a one-to-one mapping or with an error-correcting
code. In the following, we describe two additional methods
for encoding data, which can be especially useful if the
number of cells d,+d,+ . . . +d,, is large.

Suppose the input data is a vector (v, V5 . . . ,
Vaway . +a)E0: 1o, n-1})@*d* - -+ where each
integer v, can independently be any integer in the alphabet
{0, 1, ..., n-1}. (Note that coding schemes for such vectors
have been extensively studied in the past.) We would like to
change it into a “similar” permutation so that we can store
it using the compressed rank modulation scheme, and use a
small amount of metadata to remember how the change
happened.

The key is to rebalance the vector in an efficient way so
that it becomes a permutation with the required weight
distribution (d,, d,, . . ., d,)). The approach is illustrated with
the following example.

(d1+d2+...

+d,](dz +d3+ ...
d

dy

Example 5

Let n=4nd d,=d,=d,=d,=5 Suppose we have a codeword
of (d,+d,+d;+d,)log,n=40 bits:

1001001101 101101 11 11 1001 01 10 11 11 00 00
0110
Such a codeword can be easily converted to a vector (v,
Vay oo o Vou)E{0,1,2,3}2° with the simple mapping: 00—0
01—=1 10—>2 11—3, and get

21031231332112330012
(Certainly, we may also choose to use a Gray code for the
mapping. But that is not related to our discussion here.)

To get a permutation where each of the n=4 ranks has 5
cells, we can do it in three steps. First, we transform it to a
codeword where the number of Os or 1s equals the number
of 2s or 3s. By inverting the first i=1 cell (where we change
0 to 3, change 1 to 2, change 2 to 1, and change 3 to 0), we
get

11031231332112330012
which has 10 Os or 1s, and 10 2s or 3s.

The subsequence that contains Os or 1s in the above
codeword is

1101111001
To make it balanced, we invert the first i=2 ells (where we
change O to 1, and change 1 to 0), and get

0001111001

The subsequence that contains 2s or 3s in the above
codeword is

3233322332
To make it balanced, we invert the first i=1 ell (where we
change 2 to 3, and change 3 to 2), and get

2233322332

We merge the above two subsequences based on their
original positions, and get

00021231332112330012
We can now store it as a compressed rank modulation code,
where each of the n=4 anks has 5 ells.

The additional information about the inverting—namely,
i=1 i=2 and i=1-—can be stored as meta-data in additional
cells (possibly using compressed rank modulation as well).

10

15

20

25

30

35

40

45

50

55

60

65

26

(Note that in the above example, the mapping used in
inverting cell levels is not unique. For example, we can
change 0 to 2 instead of 3, or change 1 to 3 instead of 2, etc.
(The key is to switch {0,1} with {2,3} when inverting
cells.))

So we can see that it is feasible to represent existing
codes—e.g., BCH codes, Reed-Solomon codes, LDPC
codes, and other codes—with compressed rank modulation.
The system model is shown in FIG. 13.

5. Record Weights

We now discuss an alternative approach. Suppose the
input data is a vector (vVi, vy, - . ., Vya, d”)E{O,
1, ..., n-1}@*r - - -+ ghere each integer v, and
independently be any integer in the alphabet {0, 1, . . .,
n-1}. Fori=0, 1, . . ., n-1 let d,,,, denote the number of
entries in the vector that are equal to i, that is,
d;, =1{jl1=j=d,+dy+ . . . +d,,v=)}. We record the weight
distribution (d,, d,, . . . , d,,) as metadata. And then, we can
store the vector directly as a compressed rank modulation
permutation. (If any of the d,’s happens to be 0, the com-
pressed rank modulation scheme can be extended easily to
cover this case.)

Examples

FIG. 14A depicts a process 1400 for operating a data
device. The process 1400 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1405, 1410, 1415, 1420, and 1425. Although illus-
trated as discrete blocks, various blocks may be divided into
additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation. The
process starts with block 1405. In block 1410 a predeter-
mined rank configuration (d,, d, . . . d,) is defined, wherein
d, is the number of cells in the i rank. In block 1415, a new
multi-permutation is received and defined by v=[v,,
Vs, . . ., V, |ES,, that fits the predetermined rank configura-
tion. In block 1420 a process is initiated in response to
receiving the new multi-permutation, adding charge to each
cell in a plurality of memory locations such that the plurality
of cells represent the new multi-permutation. In block 1425
the process may be continued.

FIG. 14B depicts a process 1450 for reading a data device.
The process 1450 starts with block 1455. In block 1460 the
sequential order of an initial analog level of a stored value
in each cell of a plurality of cells in a data device is
determined. The sequential order is defined as a value x

comprising
[{Xls Xy v v Xdl}s {Xd1+1s Xagaas v+ Xd1+d2}s R {Xzi,l"'ldis
Xoux, Mlas - - -5 Xz g, } In block 1465 the process may be
continued.

FIG. 15 depicts a process 1550 for writing to a data
device. The process 1550 may include one or more opera-
tions, actions, or functions as illustrated by one or more of
blocks 1550, 1555, 1560, 1565, 1570, 1575, 1580. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or
eliminated, depending on the particular implementation. The
process starts with block 1555. In block 1560 a predeter-
mined rank configuration (d,, d, . . . d,) is defined, wherein
d, is the number of cells in the i rank. In block 1565, a new
multi-permutation is received and defined by v=[v,,
Vs, . . ., v,]JES, that fits the predetermined rank configura-
tion. In block 1570 the analog levels of cells of a rank n in
v are retained. In block 1575 the cells of rank i in v for
i=n—1, n-2 . . ., 1 such that the analog levels of cells in a
rank i are programmed to all be higher than the analog levels

US 9,666,280 B2

27

of the cells of rank i+1 in v by at least a minimum rank
differentiation. In block 1580 the process may be continued.

V. EXAMPLE EMBODIMENTS

FIG. 16 is an illustration of one embodiment of a data
device constructed in accordance with the present invention.
FIG. 16 shows a memory 1602 that is accessed by a memory
controller 1604 that communicates with a host device 1606.
The memory 1602 is used for storing data that is represented
in accordance with a minimum push up, multi-cell or
multi-permutation scheme. The memory may be imple-
mented, for example, as a Flash memory having multilevel
cells. The memory 1602 and memory controller 1604
together comprise a data storage device 1608 that may be
external to the host device or may be integrated with the host
device into a single component or system. For example, the
data storage device 1608 may comprise a Flash memory
device (often referred to as a “thumb drive”) that commu-
nicates with a host computer 1606 via a USB connection, or
the data storage device may comprise a solid state drive
(SSD) that stores data for a host computer system. Alterna-
tively, the data storage device may be integrated with a
suitable host device to comprise a single system or compo-
nent with memory employing a minimum push up, a multi-
cell or a multi-permutation scheme, such as a smart phone,
network router, MP3 player, or the like.

The memory controller 1604 operates under control of a
microcontroller 1610, which manages communications with
the memory 1602 via a memory interface 1612 and manages
communications with the host device via a host interface
1614. Thus, the memory controller supervises data transfers
from the host 1606 to the memory 1602 and from the
memory 1602 to the host 1606. The memory controller 1604
also includes a data buffer 1616 in which data values may be
temporarily stored for transmission over the data channel
controller 1617 between the memory 1602 and the host
1606. The memory controller also includes an Error Cor-
recting code (ECC) block 1618 in which data for the ECC
is maintained. For example, the ECC block 1618 may
comprise data and program code to perform error correction
operations for a minimum push up, a multi-cell or a multi-
permutation scheme. Such error correction operations are
described, for example, in the U.S. patent application
entitled “Error Correcting Codes for Rank Modulation” by
Anxiao Jiang et al. filed Nov. 20, 2008. The ECC block 1618
may contain parameters for the error correction code to be
used for the memory 1602, such as programmed operations
for translating between received symbols and error-cor-
rected symbols, or the ECC block may contain lookup tables
for codewords or other data, or the like. The memory
controller 1604 performs the operations described above for
decoding data and for encoding data.

The operations described above for operating a data
storage device, for reading data from a device, for program-
ming a data storage device, and encoding and decoding, can
be carried out by the operations depicted in FIGS. 6, 8A, 8B,
14 and 15 which can be performed by the microcontroller
1610 and associated components of the data storage device
1608. For example, in an implementation of the rank modu-
lation coding scheme in a USB thumb drive, all the com-
ponents of the data storage device 1608 depicted in FIG. 16
are contained within the USB thumb drive.

The processing components such as the controller 1604
and microcontroller 1610 may be implemented in the form
of control logic in software or hardware or a combination of
both, and may comprise processors that execute software

35

40

45

28

program instructions from program memory, or as firmware,
or the like. The host device 1606 may comprise a conven-
tional computer apparatus. A conventional computer appa-
ratus also may carry out the operations of FIGS. 6, 8A, 8B,
14 and 15. FIG. 17 is a block diagram of a computer
apparatus 1700 sufficient to perform as a host device and
sufficient to perform the operations of FIGS. 6, 8A, 8B, 14
and 15.

FIG. 17 is a block diagram of a computer system 1700 that
may incorporate embodiments of the present invention and
perform the operations described herein. The computer
system 1700 typically includes one or more processors
1705, a system bus 1710, storage subsystem 1715 that
includes a memory subsystem 1720 and a file storage
subsystem 1725, user interface output devices 1730, user
interface input devices 1735, a communications subsystem
1740, and the like.

In various embodiments, the computer system 1700 typi-
cally includes conventional computer components such as
the one or more processors 1705. The file storage subsystem
1725 can include a variety of memory storage devices, such
as a read only memory (ROM) 1745 and random access
memory (RAM) 1750 in the memory subsystem 1720, and
direct access storage devices such as disk drives. As noted,
the direct access storage device may comprise a rank modu-
lation data storage device that operates as described herein.

The user interface output devices 1730 can comprise a
variety of devices including flat panel displays, touch-
screens, indicator lights, audio devices, force feedback
devices, and the like. The user interface input devices 1735
can comprise a variety of devices including a computer
mouse, trackball, trackpad, joystick, wireless remote, draw-
ing tablet, voice command system, eye tracking system, and
the like. The user interface input devices 1735 typically
allow a user to select objects, icons, text and the like that
appear on the user interface output devices 1730 via a
command such as a click of a button or the like.

Embodiments of the communication subsystem 1740
typically include an Ethernet card, a modem (telephone,
satellite, cable, ISDN), (asynchronous) digital subscriber
line (DSL) unit, FireWire (IEEE 1394) interface, USB
interface, and the like. For example, the communications
subsystem 1740 may be coupled to communications net-
works and other external systems 1755 (e.g., a network such
as a LAN or the Internet), to a FireWire bus, or the like. In
other embodiments, the communications subsystem 1740
may be physically integrated on the motherboard of the
computer system 1700, may be a software program, such as
soft DSL, or the like.

The RAM 1750 and the file storage subsystem 1725 are
examples of tangible media configured to store data such as
error correction code parameters, codewords, and program
instructions to perform the operations described herein when
executed by the one or more processors, including execut-
able computer code, human readable code, or the like. Other
types of tangible media include program product media such
as floppy disks, removable hard disks, optical storage media
such as CDs, DVDs, and bar code media, semiconductor
memories such as flash memories, read-only-memories
(ROMs), battery-backed volatile memories, networked stor-
age devices, and the like. The file storage subsystem 1725
includes reader subsystems that can transfer data from the
program product media to the storage subsystem 1715 for
operation and execution by the processors 1705.

The computer system 1700 may also include software that
enables communications over a network (e.g., the commu-
nications network 1755) such as the DNS, TCP/IP, UDP/IP,

US 9,666,280 B2

29
and HTTP/HTTPS protocols, and the like. In alternative
embodiments, other communications software and transfer
protocols may also be used, for example IPX, or the like.

It will be readily apparent to one of ordinary skill in the
art that many other hardware and software configurations are
suitable for use with the present invention. For example, the
computer system 1700 may be a desktop, portable, rack-
mounted, or tablet configuration. Additionally, the computer
system 1700 may be a series of networked computers.
Further, a variety of microprocessors are contemplated and
are suitable for the one or more processors 1705, such as
PENTIUM™ microprocessors from Intel Corporation of
Santa Clara, Calif., USA; OPTERON™ or ATHLON XP™
microprocessors from Advanced Micro Devices, Inc. of
Sunnyvale, Calif., USA; and the like. Further, a variety of
operating systems are contemplated and are suitable, such as
WINDOWS®, WINDOWS XP®, WINDOWS VISTA®, or
the like from Microsoft Corporation of Redmond, Wash.,
USA, SOLARIS® from Sun Microsystems, Inc. of Santa
Clara, Calif., USA, various Linux and UNIX distributions,
and the like. In still other embodiments, the techniques
described above may be implemented upon a chip or an
auxiliary processing board (e.g., a programmable logic
device or graphics processor unit).

The present invention can be implemented in the form of
control logic in software or hardware or a combination of
both. The control logic may be stored in an information
storage medium as a plurality of instructions adapted to
direct an information-processing device to perform a set of
steps disclosed in embodiments of the present invention.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other ways
and/or methods to implement the present invention.

The a minimum push up, multi-cell and multi-permuta-
tion schemes described herein can be implemented in a
variety of systems for encoding and decoding data for
transmission and storage. That is, codewords are received
from a source over an information channel according to a
minimum push up, a multi-cell or a multi-permutation
scheme and are decoded into their corresponding data values
and provided to a destination, such as a memory or a
processor, and data values for storage or transmission are
received from a source over an information channel and are
encoded into a minimum push up, multi-cell or multi-
permutation scheme.

The operations of encoding and decoding data according
to a minimum push up, multi-cell or multi-permutation
scheme can be illustrated as in FIG. 18, which shows data
flow in a data device 1802 that operates according to the
minimum push up, multi-cell or multi-permutation schemes
described herein. In FIG. 18, the device includes a Data
Modulation (DM) controller 1804 that stores and retrieves
information values 1806 using one of a minimum push up,
multi-cell or a multi-permutation scheme. The DM control-
ler 1804 includes an encoder and decoder 1808 for encoding
data values into codewords and decoding codewords into
data values. The DM controller encodes data values and
provides codewords to the source/destination block 1810,
and decodes codewords from the source/destination and
provides corresponding data values. The two-way nature of
the data flow is indicated by the double-ended arrows
labeled “data values” and “codewords”. The DM controller
includes interfaces through which the DM controller
receives and provides the data values and the information
values (codewords). The details of such interfaces will be
known to those skilled in the art.

10

20

25

30

35

40

45

50

55

60

65

30

The information values 1806 comprise the means for
physically representing data comprising the data values and
codewords. For example, the information values 1806 may
represent charge levels of memory cells, such that multiple
cells are configured to operate as a virtual cell in which
charge levels of the cells determine a permutation of the
minimum push up, multi-cell or multi-permutation schemes.
Data values are received and encoded to permutations of a
minimum push up, multi-cell or multi-permutation scheme
and charge levels of cells are adjusted accordingly, and
codewords are determined according to cell charge levels,
from which a corresponding data value is determined. Alter-
natively, the information values 1806 may represent features
of a transmitted signal, such as signal frequency, magnitude,
or duration, such that the cells or bins are defined by the
signal features and determine a permutation of the minimum
push up, multi-cell or multi-permutation schemes. For
example, rank ordering of detected cell frequency changes
over time can determine a permutation, wherein the highest
signal frequency denotes the highest cell level. Other
schemes for physical representation of the cells will occur to
those skilled in the art, in view of the description herein.

For information values 1806 in the case of cell charge
levels, the source/destination 1810 comprises memory cells
in which n memory cells provide n cell values whose charge
levels define a minimum push up, multi-cell or multi-
permutation scheme. For storing a codeword, the memory
cells receive an encoded codeword and comprise a destina-
tion, and for reading a codeword, the memory cells provide
a codeword for decoding and comprise a source. In the case
of data transmission, the source/destination 1810 may com-
prise a transmitter/receiver that processes a signal with
signal features such as frequency, magnitude, or duration
that define cells or bins such that the signal features deter-
mine a permutation. That is, signal components comprising
signal frequency, magnitude, or duration may be controlled
and modulated by the transmitter such that a highest signal
frequency component or greatest magnitude component or
greatest time component corresponds to a highest cell level,
followed by signal component values that correspond to
other cell values and thereby define a permutation of the
minimum push up, multi-cell or multi-permutation schemes.
When the source/destination 1810 receives a codeword from
the controller 1804, the source/destination comprises a
transmitter of the device 1802 for sending an encoded signal.
When the source/destination provides a codeword to the
controller 1804 from a received signal, the source/destina-
tion comprises a receiver of the device for receiving an
encoded signal. Those skilled in the art will understand how
to suitably modulate signal components of the transmitted
signal to define minimum push up, multi-cell or multi-
permutation schemes, in view of the description herein.

VI. CONCLUSION

We have presented a programming method that minimizes
rewriting cost for rank modulation, and studied rewrite
codes for a worst-case constraint on the cost. The presented
codes are optimal full-assignment codes. It remains our
future research to extend the code constructions to general
code length, non-full assignment codes and average-case
cost constraint.

We have also presented a new flash cell structure (multi-
cell) that enables a high number of updates between block
erasures. We studied update codes that are based on permu-
tations of relative levels, and presented an asymptotically
optimal construction for the average case. In addition, we

US 9,666,280 B2

31

showed that there exists an asymptotically optimal construc-
tion for the worst case. It remains an open problem to
construct such a code for the worst case.

The embodiments discussed herein are illustrative of one
or more examples of the present invention. As these embodi-
ments of the present invention are described with reference
to illustrations, various modifications or adaptations of the
methods and/or specific structures described may become
apparent to those skilled in the art. All such modifications,
adaptations, or variations that rely upon the teachings of the
present invention, and through which these teachings have
advanced the art, are considered to be within the scope of the
present invention. Hence, the present descriptions and draw-
ings should not be considered in a limiting sense, as it is
understood that the present invention is in no way limited to
only the embodiments illustrated.

We claim:

1. A device for storing data, the device comprising:

a plurality of transistors each of which is capable of
storing charge, wherein each of the plurality of tran-
sistors comprises a gate, a source, and a drain;

a plurality of electrical connections coupled to the source
of each of the plurality of transistors;

aplurality of electrical connections coupled to the drain of
each of the plurality of transistors;

wherein the data stored in the device corresponds to a sum
of charges stored in each of the plurality of transistors.

2. A device as in claim 1, further comprising electrical
connections between the gates of each of the plurality of
transistors.

3. The device as in claim 1 further comprising a non-
transitory computer readable medium embodying informa-
tion indicative of instructions for causing one or more
processors to perform operations comprising:

generating a code word having a plurality of symbols
selected from a set of symbols; and

storing each of the plurality of symbols in a respective
data storage location of the device, wherein at least one
data storage location comprises the plurality of tran-
sistors.

4. The device as in claim 3, wherein the plurality of

transistors comprise floating gate transistors.

5. The device as in claim 1 further comprising a non-
transitory computer readable medium embodying informa-
tion indicative of instructions for causing one or more
processors to perform operations comprising:

defining a predetermined rank configuration (d,, d, . . .
d,), wherein d is the number of cells in the i rank;

receiving a new multi-permutation defined by v=[v,,
Vi - . ., V,|ES, that fits the predetermined rank
configuration; and

in response to receiving the new multi-permutation, ini-
tiate a process to add charge to each cell in a plurality
of memory locations comprising the plurality of tran-
sistors such that the cells represent the new multi-
permutation.

6. The device as in claim 1 further comprising a non-
transitory computer readable medium embodying informa-
tion indicative of instructions for causing one or more
processors to perform operations comprising:

determining a sequential order of an initial analog level of
a stored value in each cell of a plurality of cells in the
device, wherein the sequential order is defined as a
value X comprising

32

[0, %20 o s Xy b ¥y o1 Xy a2s o s By} oon s

{x1+z?;11 4> Fovxpla o 0 ¥EL 4]

7. The device as in claim 1 further comprising a non-
transitory computer readable medium embodying informa-
tion indicative of instructions for causing one or more
processors to perform operations comprising:
defining a predetermined rank configuration (d,, d, . . .
d,), wherein d, is the number of cells in the i rank;

receiving a new multi-permutation defined by v=[v,,
Vy - . ., V,]ES, that fits the predetermined rank
configuration;

retaining analog levels of cells of a rank n in v; and

programming cells, comprising the plurality of transis-

tors, of rank i in v for i=n-1, n-2, . . ., 1 such that
analog levels of cells in a rank i are all higher than
analog levels of cells of rank i+1 in v by at least a
minimum rank differentiation.

8. The device as in claim 7, wherein the analog level in
each of the cells corresponds to a stored charge in a floating
gate transistor.

9. The device as in claim 1 further comprising:

an interface that receives a new data set for a rank of a

plurality of ranks to be stored in a memory comprising

a plurality of cells;

a processor configured to perform operations of:

generating a code word having a plurality of symbols
selected from a set of symbols; and

storing each of the plurality of symbols in a respective
data storage location of the device, wherein at least
one data storage location comprises the plurality of
transistors.

10. The device as in claim 9, wherein the plurality of
transistors comprise floating gate transistors.

11. The device as in claim 1 further comprising:

an interface that receives a new data set for a rank of a

plurality of ranks to be stored in a memory comprising

a plurality of cells;

a processor configured to perform operations of:

defining a predetermined rank configuration (d,,
d, ...d,), wherein d, is the number of cells in the i
rank;

receiving a new multi-permutation defined by v=[v,
Vs .. ., V,|ES, that fits the predetermined rank
configuration; and

in response to receiving the new multi-permutation,
initiate a process to add charge to each cell in a
plurality of memory locations comprising the plu-
rality of transistors such that the cells represent the
new multi-permutation.

12. The device as in claim 1 further comprising:

an interface that receives a new data set for a rank of a

plurality of ranks to be stored in a memory comprising

a plurality of cells;

a processor configured to perform operations of:

determining a sequential order of an initial analog level
of a stored value in each cell of a plurality of cells
comprising the plurality of transistors in the device,
wherein the sequential order is defined as a value x
comprising

20

35

40

45

55

(51, %20 o s Xay b By Xdyazs oo s Faysdy }s on

{x1+zi;11 g Moyl e o ¥EL, all

US 9,666,280 B2

33

13. The device as in claim 1 further comprising:
an interface that receives a new data set for a rank of a
plurality of ranks to be stored in a memory comprising
a plurality of cells comprising the plurality of transis-
tors;
a processor configured to perform operations of:
defining a predetermined rank configuration (d,,
d, ...d,), wherein d, is the number of cells in the i”*
rank;

receiving a new multi-permutation defined by v=[v,,
Vs, . . ., V,JES, that fits the predetermined rank
configuration;

retaining analog levels of cells of a rank n in v; and

programming cells of rank i in v for i=n-1, n-2, . . .,
1 such that analog levels of cells in a rank i are all
higher than analog levels of cells of rank i+1 in v by
at least a minimum rank differentiation.
14. The device as in claim 13, wherein the analog level in
each of the cells corresponds to a stored charge in a floating
gate transistor.
15. The device as in claim 1 further comprising:
a memory configured to store data values:
a memory controller that is configured to store the data
values in the memory by performing operations com-
prising:
generating a code word having a plurality of symbols
selected from a set of symbols; and

storing each of the plurality of symbols in a data storage
location of the device, wherein each data storage
location comprises the plurality of transistors.
16. The device as in claim 15, wherein the parallel
connected devices comprise floating gate transistors.
17. The device as in claim 1 further comprising:
a memory configured to store data values:
a memory controller that is configured to store the data
values in the memory by performing operations com-
prising:
defining a predetermined rank configuration (d,,
d, ...d,), wherein d, is the number of cells in the i”*
rank;

receiving a new multi-permutation defined by v=[v,,
Vs, . . ., V,JES, that fits the predetermined rank
configuration; and

10

15

20

25

30

34

in response to receiving the new multi-permutation,
initiate a process to add charge to each cell in a
plurality of memory locations such that the plurality
of cells, which comprise the plurality of transistors,
represent the new multi-permutation.
18. The device as in claim 1 further comprising:
a memory comprising the plurality of transistors config-
ured to store data values; and
a memory controller that is configured to store the data
values in the memory by performing operations com-
prising:
a processor configured to perform operations of:
determining a sequential order of an initial analog level
of a stored value in each cell of a plurality of cells in
the device, wherein the sequential order is defined as
a value x comprising

(EE7RE ST SR E RS TIPS SR A

{x1+z?;11 g Xeyplgp e Y5, 4]

19. The device as in claim 1 further comprising:

a memory comprising the plurality of transistors config-
ured to store data values:

a memory controller that is configured to store the data
values in the memory by performing operations com-
prising:

defining a predetermined rank configuration (d,, d, . . .
d,), wherein d, is the number of cells in the i rank;
receiving a new multi-permutation defined by v=[v,,

Vs .. ., V,|ES, that fits the predetermined rank
configuration;
retaining analog levels of cells of a rank n in v;
programming cells of rank i in v for i=n-1, n-2, . . .,
1 such that analog levels of cells in a rank i are all
higher than analog levels of cells of rank i+1 in v by
at least a minimum rank differentiation.
20. The device as in claim 19, wherein the analog level in
each of the cells corresponds to a stored charge in a floating
gate transistor.

