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METHOD AND SYSTEM FOR
DETERMINING INDUCTION MOTOR SPEED

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the priority of a provi-
sional patent application Ser. No. 60/306,291, filed Jul. 18,
2001, and a provisional patent application Ser. No. 60/308,
226, filed Jul. 27, 2001. The entirety of the provisional
patent application Ser. No. 60/306,291 is incorporated
herein by reference.

The present invention was made under government Grant
No. DE-FG07-981D13641, awarded by the Department of
Energy. The United States Government has a paid-up license
in the present invention and the right, in limited
circumstances, to require the patent owner to license others
on reasonable terms as provided for under the terms of Grant
No. DE-FG07-981D13641.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates to a method and system for
determining the speed of induction motors in general, and in
particular to a neural network-based method and system for
determining the dynamic speed of induction motors.

2. Description of the Related Art

Induction motors are commonly found in power plants
and various types of manufacturing facilities throughout the
world. An induction motor typically includes a stationary
stator and a rotatable rotor. The ability to accurately deter-
mine the speed of a rotating rotor with respect to a stationary
stator within an induction motor is vitally important to the
every day operations of induction motors. However, it is
generally undesirable to introduce transducers or other
physical sensors for measuring the speed or the position of
a rotating rotor because of the additional cabling and
increased costs. For example, for a small motor, such as 5
horsepower or less, the cost of speed sensor installation
could be comparable to the cost of the motor itself. Also, the
probability of failure of the speed sensor is higher than the
probability of failure of the small motor.

Hence, sensorless rotor speed estimation methods (or
non-intrusive rotor speed estimation methods) have emerged
as a cost-effective alternative over the sensor-based rotor
speed estimation methods. Sensorless rotor speed estimation
methods generally fall under one of the following two
categories, this is, either by using an induction motor model,
or by analyzing the rotor slot harmonic (RSH) content of the
stator current waveform.

The model based speed estimation methods are inconve-
nient because they have to rely on detailed motor
parameters, i.e., a priori knowledge of the motor’s electrical
(and in some cases mechanical) characteristics, in order to
operate properly. However, those parameters are typically
available only to the designer of the motor. Further, many
motor based speed estimation methods assume linear motor
models and time invariant parameters, which leads to poor
speed estimation. The RSH based speed estimation methods
are not completely acceptable either because they sometimes
perform poorly at low motor speeds due to difficulty in
tracking low frequency harmonics. Additionally, RSH based
speed estimation methods require the calculation of the Fast
Fourier Transform (FFT) of the stator current, and as a
result, RSH based speed estimation methods inherit all the
typical limitations of an FFT based scheme. For example, for
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2

an accurate calculation of the RSH, a relatively higher
frequency resolution is required (typically in the range of
1-2 Hz), which implies longer data windows. Also, for
certain rotor-stator slot combinations, primarily those at
lighter loads, the RSH may not be readily detectable. While
the transient speed can be calculated by using a moving
window, it leads to poor time localization of the estimated
speed response. Moreover, FFT based schemes are compu-
tationally burdensome for real-time implementation, and
more expensive data processing equipment is needed, which
would offset any cost advantages the RSH based speed
estimation methods might deliver.

Consequently, it would be desirable to provide an
improved sensorless method and system for determining the
dynamic speed of a rotating rotor.

SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the present
invention, a non-linear, semi-parametric neural network-
based adaptive filter is utilized to determine the dynamic
speed of a rotating rotor within an induction motor, without
the explicit use of a speed sensor, such as a tachometer. The
neural network-based filter is developed using actual motor
current measurements, voltage measurements, and name-
plate information. The neural network-based adaptive filter
is trained using an estimated speed wgg,; calculator derived
from the actual current and voltage measurements. The
training of the neural network-based adaptive filter takes
place off-line; thus, time lags resulting from the FFT-based
estimation can be compensated. The neural network-based
adaptive filter uses voltage and current measurements to
determine the instantaneous speed of a rotating rotor. The
neural network-based adaptive filter also includes an on-line
adaptation scheme that permits the filter to be readily
adapted for new operating conditions during operations and
for adaptation to new motors, though the on-line adaptation
scheme needs only to be used infrequently.

All objects, features, and advantages of the present inven-
tion will become apparent in the following detailed written
description.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention itself, as well as a preferred mode of use,
further objects, and advantages thereof, will best be under-
stood by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 is a block diagram of an induction motor assembly,
in accordance with a preferred embodiment of the present
invention;

FIG. 2 is a detailed block diagram of a neural network
adaptive filter within the induction motor assembly from
FIG. 1, in accordance with a preferred embodiment of the
present invention; and

FIG. 3 is a logic flow diagram of a method for developing
and using the neural network adaptive filter from FIG. 2, in
accordance with a preferred embodiment of the present
invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

Referring now to the drawings and in particular to FIG. 1,
there is depicted a block diagram of an induction motor
assembly, in accordance with a preferred embodiment of the
present invention. As shown, an induction motor assembly
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10 includes an induction motor 11, a three-phase power
supply 13, and a data acquisition system 16. Induction motor
11 is preferably a three-phase motor that is powered by
three-phase power supply 13 via three voltage inputs
14a—14c¢ and three current inputs 15¢—15c¢. It is understood
by those skilled in the art that induction motor 11 can be of
any size having any number of phases. Induction motor 11
is shown to be connected to a load 12. Data acquisition
system 16 is operably associated with each of voltage inputs
14a—14c¢ and each of current inputs 15a—15c via a respective
hall-effect detector (not shown) that is well-known to those
skilled in the art. The hall-effect detectors can unintrusively
detect or measure the voltage values at voltage inputs
14a—14c¢ and the current values at current inputs 15a—15¢
without affecting the normal operations of induction motor
11. Data acquisition system 16 may be implemented with a
data processing system having a general purpose processor
or a digital signal processor, that is well-known to those
skilled in the art. Data acquisition system 16 includes a
speed (wgsz) calculator 18 and a neural network adaptive
filter 19. Neural network adaptive filter 19 is used to
determine the speed of a rotating rotor within induction
motor 11 via a “filtering” process. “Filtering,” as used
herein, refers to the estimation of a variable of interest at the
present time, given data measurements up to and including
the present time.
I. Problem Statement

Consider a discrete time representation of a general
nonlinear state-space model,

X+ D=0, w(O) () y(O=hx(O)+v(0) @

where t=1, 2, . . . is the discrete time instant, y(t) is the nx1
output vector of the nonlinear state-space model; u(t) is the
mx1 input vector; x(t) is the state vector of the model; f and
h are vector-valued unknown nonlinear functions; w(t) is the
process noise; and v(t) is the measurement noise. It is
assumed that w(t) and v(t) are independent zero-mean, white
Gaussian vectors.

The objective of the state filtering problem is to estimate,
%(t), for the state x(t). In linear state filtering, the notation
used to denote the above-mentioned state estimate is
important, because depending on the chosen filtering
method, different optimal state estimates are obtained.
Nevertheless, in real-world nonlinear filtering problems, the
resulting state estimates are not optimal in any sense.
Therefore, the notation X(i|t) is utilized to mean the state
estimate at time t, following the update resulting from the
u(t) and y(t) measurements at time t. This should not be
interpreted to imply an optimal state estimate in the mini-
mum variance or any other sense.

II. Neural Network Method of Filtering

The state filter utilizing neural networks assumes that the
system under consideration is governed by equations (1),
though the functions f(-) and h(-) are assumed to be
unknown. It is also assumed that the value of input u(t),
output y(t) and state x(t) can be measured or computed for
off-line purposes. Appropriate neural networks are used to
develop approximations of the functions entering the filter
equations. The state-space equations (1) can be rewritten in

their innovation form as follows:
REHLD=f o RC-1), 1(0), €(1)) @
I D=y (X(=1), (D), €() ®

where f,,,,....() and b,,,,...(.) are nonlinear functions related to

() and h().
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4
The innovations function, e(t) is defined as Y(O)-Y(H|t-1),
where Y(t) and Y(t|t-1) are defined as follows:

YO=[y(t), yt-1), . . .

Yt-D=[yt-1),5t-1[t-2), . . .

@
®

> y(t-n,)]
§t-n,l-n,-1)]

The innovations term in the state filter accounts for stochas-
tic effects and system modeling uncertainties unpredictable
by the prediction step. Therefore, in the innovations form of
the state-space representation given by equation (2), the state
prediction %(t]t-1) is updated by the innovations term e(t).
The filtered state, &(t|t), is obtained by correcting the pre-
dicted state R(t|t-1) using the innovations term, €(t).

Thus, the state and output predictor equations for an
adaptive filter can be written as:

S 110)=P (D0, (1-1)
$(e+1]0)=I (810005 (A-1))(6)

where £*(.) and h*(.) are nonlinear functions.
The nonlinear functions f*(.) and h*(.) can be approxi-
mated by a neural network, which can be represented as:

f* (-)“fNN(-)
b (Oehipn () ™

where Ty () and hy,(.) are either feed-forward multi-layer
perceptrons (FMLP) or recurrent multi-layer perceptrons
(RMLP) for approximating the state and output predictor
equations.

The state update after the observation of a (t+1)” sample
can be written as follows:

S D)=K g R+ 1[0 9 (1), (¢+1) ©
where the vectors are defined as

Y+ D=[yt+D.y®), - . - ytn,+ DI ©

e(t+D=[E(t+1),EW), . . . ,E(t-n+1)] 10
and

S(t+D=y(tHD-Fna(t+1l) an

is the innovations term as defined in the standard Kalman
filter.

A neural network is used to develop approximations of
functional relations and gains entering a recursive filter
solution. In the present implementation, three neural net-
works are needed to be trained for a neural network adaptive
filter such as neural network adaptive filter 19 from FIG. 1.
With reference now to FIG. 2, there is illustrated a detailed
block diagram of neural network adaptive filter 19, in
accordance with a preferred embodiment of the present
invention. As shown, neural network adaptive filter 19
includes three neutral networks, namely, a neural net current
predictor 21, a neural net speed predictor 22 and a neural net
speed update block 23. Neural net current predictor 21 and
neural net speed predictor 22 are the output and state
predictor networks, which can be represented by functions
fun(s) and hy,(), respectively. Neural net speed update
block 23 is the filter update network that can be represented
by function K,,(). Neural net current predictor 21 and
neural net speed predictor 22, which may be approximated
by either FMLPs or RMLPs, represent dynamic mappings
and can be trained using “teacher forcing” (TF) or “global
feedback” (GF). Neural net speed update block 23, which
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may be approximated by FMLPs, represents a static
(memory-less) mapping that requires no training. Voltage
measurement values, V(t+1), and current measurement
values, I(t+1), from induction motor 11 are supplied to
neural network adaptive filter 19.

a. Off-line Training (for Learning)

The off-line training is divided into two phases: first, the
output predictor is developed, followed by the state predic-
tor network; second, the state update network is then devel-
oped. In the first phase of the off-line training process, FMLP
or RMLP networks are used and they are trained using TF.
The error function to be minimized for neural net current
predictor 21 (i.e., the output predictor network) is given by

NP NP n 12)
E = ;El(f) = ; ; [yNN,k 11 =1) = Yiargerk ([)]2

where ¥ (tlt-1) and ¥,,,.., (1) are the k™ components of
P i(tt-1) and y,,,, . (1), the measured/computed states, and
where n is the number of outputs included in the training.
The error function to be minimized for neural net speed
predictor 22 (i.e., the state predictor network) is given by:

NP NP

E = ZEZ(I) =

=0

L (13)
Z a2 1 7= 1) = Xeargerse O
=0 k=1

where %hd NN k(t[t-1) and x,,,..., (1) are the k” components
of %hd NN k(t|t-1) and Xx,,,..(1), the measured/computed
states, and where 1 is the number of states included in the
training. The error function to be minimized for neural net
speed update block 23 (i.e., filter update network) is given
by:

NP

E; = ZE3([) =

=0

NP (14)
Z Lo i (71 1) = Xrargense (D]
=0 k=1

The error gradients for an FMLP and/or RMLP network
trained with TF can be obtained by using the chain rule. The
detailed computation of these gradients are well-known in
the art and can be found in many recurrent network refer-
ences.

In the second phase of the off-line training process, the
training is performed using GF. The error function mini-
mized for neural net current predictor 21, neural net speed
predictor 22, and neural net speed update block 23 are
similar to equations (12)—~(14), respectively. However, in the
second phase, the multi-step state update error is minimized
because the output predictor response is used in the state
predictor and state update networks, instead of output obser-
vations. Similarly, the error functions of the output and the
state predictors are such that the multi-step ahead prediction
errors are minimized instead. The only observations used in
this phase of the off-line training as network inputs are the
current and past system inputs u(t). All other variables are
generated by one of the three networks involved in the state
filter. The detailed computation of the error gradients
involved in the off-line training phase with GF are well-
known in the art and can be found in many recurrent network
references.

The training data include system inputs and output values,
and the state associated with these inputs and outputs. The
evaluation (or cross-validation) data set is collected in a
similar manner as the training data set.
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6

b. On-line Training (for Learning)

On-line learning of state filter networks, whether FMLP
or RMLP, is complicated by the fact that the only measure-
ments available are those of the system inputs and outputs,
u(t) and y(t), respectively. Therefore, in order to correct for
deviations in the filtered state value, &5, (1|t), the updates for
the weights and biases must be determined from the output
residual term &(t).

As in the first phase of the off-line training, the networks
are decoupled and treated separately during on-line training.
For all networks, only a single-step-ahead gradient propa-
gation training is considered because on-line learning with
GF becomes exceedingly impractical. Such approximation
has minimal impact on the performance of the on-line
filtering algorithm. During on-line training, the error func-
tion to be minimized is of the form:

" (15)
E@+ D)= ) Byt + 11D = Yaargers (¢ + DI
k=1

where all variables are as defined previously. The error
gradients used in off-line training must be modified for use
in the on-line training. The error gradients for neural net
current predictor 21 (i.e., the output predictor network) can
be expressed as follows:

(16)

JEr+1) Iy

= 2+ 11 D) = Yeargee £+ 1178 3

Wy Whny

where wh,;,; is defined as the vector containing the weights
and biases of neural net current predictor 21. For neural net
speed predictor 22 (i.c., the state predictor network), the
equivalent on-line training gradient can be expressed as
follows:

IE(r+1) B

anNN

an

Dby Ky B fan

T
] Axyn(t| 1) Oxyn(@|=1) BwaN

23w+ 11D = Yiarger(t + 1)

where wif,,,; is defined as the vector containing the weights
and biases of neural net speed predictor 22. Finally, the error
gradient for neural net speed update block 23 (i.e., the filter
update network) can be expressed as

AE@r+ 1) B (18)

N Ohny O fwn
= 2P+ 118 = Yeargerlt + DT

Bxpy (T ] D) Owg,,y,

BWKNN

where WK, is defined as the vector containing the weights
and biases of neural net speed update block 23.

Depend on the specific architecture of the network used,
the gradient contained in equations (16)—(18) can be com-
puted using a sentivity-type network. For a FMLP network,
the gradients can be obtained by using backpropagation-type
procedure and for recurrent architecture, such as RMLP
network. Once the error gradients are computed, the weight
update is performed using the steepest descent rule.

III. Rotor Speed Determination Using Adaptive State Fil-
tering

Since an induction motor model, represented by functions
() and h(.) in equations (1) are not available, thus, appro-
priate neural networks are used to develop approximations
of the functions entering filter equations. Such approach of
state filtering is considered adaptive since an empirical
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model must be constructed initially. However, it is assumed
that the motor voltage and current measurements are
available, which are used to identify an inductor motor
model. Further, only name plate information, such as num-
ber of pole pairs (p), slip at rated load (£, 4z.) no load slip
(£,.0), are used to calculated the speed targets wgg,; form the
motor line current. Further, only the measured motor termi-
nal currents and voltage along with the inferred speed
(wgszy) are required for the development of neural network
adaptive filter 19.

The nonlinear state space equations (1) are rewritten in
their innovations form for induction motor speed estimation,
as follows:

19
(20)

OSNN(I+1|t)=finnw((’3NN(t|ﬂ)> UQ), )
Bt 11D @ (D), U, €2)

where £, () and b, (.) are nonlinear functions, wy(.) is
the neural network estimate of the mechanical speed of the
induction motor, @, (.), U()=[V(.), Lss()] for motor run-
ning off the mains, V(.) and I(.) represent the measured
motor line voltages and currents. For the inverter fed induc-
tion motor U()=[V(), Izus().f1()], where f,() is the
fundamental frequency of the input voltage.
The innovations function, e(t), is defined as

EO=I(t)-Trntlt=1) @D
where I, (t]t-1) is defined as
B D= Tt I va(t-11-2), - - - Ia(t-ny+ 10 )] (22)

The speed filter is setup in a predictor-corrector (update)
form. In the state-space representation of the induction
motor given by equation (19), the speed prediction w(t|t-1)
is updated by the innovations term, €(t). The update step uses
most recent motor current measurement and prediction in
the innovations form to correct for stochastic and/or mod-
eling inaccuracies. Therefore, in the prediction step only
most relevant signals are required for computing o (t+1[6):
the filtered speed value uy(t]t), the measured input line
voltages, and the present and/or past motor line current
predictions, {y,(t|t-1), or motor current measurement, I(t).
In the state prediction equation EVN(t|t—1) is also used.

The motor speed estimates, wy(t+1]t+1), are obtained
using the following two steps:

Step 1 (prediction step)—before observing a (t+1)*
sample:

The motor speed and current predictor values are obtained
using the following equations:

I G S N I G ORI GY NG
B 11D =Prn (O (@1, U() T (eli=1)) 23)

where I,(t|t-1) is a vector containing present and past
motor current predictor responses.

Step 2 (update step)—after observing the (t+1)* sample:
(’AJNN(H'1 |t+1)=KNN((1)NN(t+1 [, E s G+ 110) Tpnss(t+1),€(8+1)) (e

where the function Ky,(.) is a FMLP used to approximate
the filter gain, and the vectors are defined as

I+ D=[I(+D,I), . . . I(t-n+1)]"

(D= En(H+1),EpD), - - -+ » Ep(t-n+ D] (25)
where

Et+)=I(t+1)-Typ(t+1]0) (26)

is the innovations term.
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For an inverter fed induction motor, the speed update

equation can be written as
O+ D) =Ky Opn (1[0, T (41108, (1) ,€(0+1)) @7
where all the quantities are as defined previously.

The motor speed estimate m(f+1[t+1) output from neu-
ral net speed update block 23 in FIG. 2 represents the value
computed during on-line use of neural network adaptive
filter 19. Initially, neural network adaptive filter 19 is trained
off-line using the shifted RSH-based speed estimates.

a. Off-line Adaptive Filter Training for Speed Estimation

Before the training is performed, it is assumed that some
reliable speed information is available from experiments
done on the system itself for a wide range of loading
conditions or speed is extracted through off-line signal
processing from motor voltage and current measurements.
In the present implementation, the speed signal used in
training is extracted by the latter method. It should be noted
that the accuracy of neural network speed filter will depend
on the accuracy of the speed signal used for training. The
evaluation (or cross-validation) data set is collected in a
similar manner to the training data set.

Based on the discussion on off-line training in the previ-
ous section, the training is divided into two phases. In the
first phase, the line current predictors are developed, fol-
lowed by the development of the speed predictor. In the
second phase, the state update network is developed. In the
first stage, all the networks are developed separately, and
inputs to the output and state predictor networks are the
present and past voltage, current samples and the speed are
obtained. For developing the filter update network, the
current predictor network is run to generate the innovations
term. The error function to be minimized for the output
predictor network can be given as

NP NP

¢
Ei= ) Ei® =) ) Unalt] 1= D) = largers (01

=0 t=0 k=

The error function for the speed predictor network can be
given as
where wggz(.) is the network target.

NP

NP
Ey= ) Ein =) [ow(|1- ) - o]
t=0

=0

Finally, the filter update network is constructed using FMLP.
The error function to be minimized for the filter update
network is given by
NP
[
=0

NP
Ey= Y Es0 =) low(|D-wgsu®F
=0 t

i. Using RSH to Compute Speed

The rotor slots produce airgap permeance waves with a
spatial distribution dependent on the number of rotor slots,
R. The slots produce a continuous variation of the air-gap
permeance in squirrel-cage induction. This distribution is
dependent on the number of rotor slots, R. During operation,
the rotor-slot MMF harmonics will interact with the funda-
mental component of the air-gap flux because of the stator
current. Normally, the magnitude of these flux harmonics
varies little, except in machines with closed rotor slots.
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Similar airgap flux harmonics occur from the rotor slot
harmonics. Therefore, the air-gap flux will be modulated by
the passing rotor slots. Since the rotor is slot harmonics are
directly related to the rotor currents, their magnitude reduces
with decreasing load. For a sinusoidally fed machine the
expression for slot harmonic can be given as,

R
Wsp = — (W, £ 1)
p

where p is number of pole pairs, w,, ®, and m, are angular
slot harmonic frequency, rotor frequency and synchronous
frequency, respectively. Accounting for the time harmonics
present in the power supply and machine eccentricity the
equation for slot harmonic can be given as

_ . 1-s
th—fl[( Reng)——xv

where k=0, 1, 2, . . . ; R is the number of rotor slots, n =0,
x1,...; (n,is known as eccentricity order), s is the per unit
slip, P is the number of pole pairs, v==+1, £3, . . . is the order
of stator time harmonics that are present in the power supply.
Due to the interaction of 6k=1 harmonics with the rotor slot
permeance wave there is a periodicity of slot harmonics.

In order to use equation (2) to calculate the slip, it is
necessary to know n, v and R. In the present
implementation, only the motor nameplate information is
used along with the initialization method. Since the
eccentricity-related harmonic was not automatically detect-
able for the given induction motor (3-phase, 3 hp) in the
present implementation, the slip in the initialization algo-
rithm was calculated by using the no-load and full-load slip
and rms motor current (assuming motor operation in the
linear region).

The induction motor speed, wgsz, can then be calculated
using the slot harmonic frequency at any slip condition from
the following expression

60
WrsH = E(th £f1)

An FFT-based algorithm with multiple windowing and
with spectral abasing was used. This approach is an inte-
gration of the time-windowing and spectral abasing meth-
ods. The search window is given by

R
Afsy = F(fS(RATED) = fur)

where the value of (£ gazepy) is derived from nameplate
information, and for the experimental set-up used in this
study is found to be 3.5 Hz, corresponding to a slip of 5.83%
of rated speed (60 Hz). The value of f,, is the slip corre-
sponding to no-load (0.1 Hz). The use of f,; improves speed
estimation at no load.

A data buffer of 20 cycles (sampled at 3840 Hz) with
windowing is used to find the RSH. Since 20 cycles of data
is needed to calculate the speed, the RSH estimate lags the
actual speed by about 10 cycles. The training set if formed
by shifting the estimated speed signal by 10 cycles to
compensate for this lag. The three line currents, the three
line voltages, the rms of the average line currents along with
speed estimated from the above harmonic analysis form
neural network the training set.
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b. On-line Adaptive Filter Training for Speed Estimation

i. One-shot Tuning

It is well known that the neural networks give good
performance as an interpolation tool. However, the perfor-
mance of the network may not be good when the test data is
outside the region of training. The response of the speed
filter could drift due to changes in power supply condition or
deteriorating machine health. The filter can be turned by
using 12—-13 cycles of data at steady-state. Since steady-state
data is used in this method to update network weights, the
RSH-based speed is only needed to be calculated once. The
weights of the state predictor and state update network are
adapted simultaneously. This method of tuning can be
implemented on-line for real-time use.

ii. Short Iterative Tuning

If both steady-state and transient performance of the filter
deteriorate due to large drift in operating conditions, one-
shot tuning may not be sufficient to improve the perfor-
mance. Then, some data with both transient and steady-state
representative of the current machine condition should be
used for iterative tuning. This type of tuning can be used
on-line, though it cannot be executed fast enough for real-
time implementation.

c. Adaptive Filter Description

In total, neutral network adaptive filter 19 includes five
neural networks. Three RMLP networks with global
feedback, each with structure 8-5-1, are used for the pre-
diction of the three line currents. The three motor current
predictors are trained using the motor voltages V(t); the
motor currents I(t), rms of current I, (t), and RSH based
speed estimate, wgq,At) using TE. When the validation error
is satisfactory, the training is switched to GF. Now, instead
of I(t), T x(t]t-1) is used.

Neural net speed predictor 22, also an RMLP with struc-
ture 9-7-1, uses the delayed output of neural net current
predictor 21, I, (t|t-1); the rms line current, I_, (t); the line
voltages V(1) to predict the speed and delayed predicted
speed, wyn(tlt-1). As in the case of current predictor, the
training is started using TF, with wge(t) as input. When the
validation error is small the training, the training method is
switched to global feedback with, mya(t/t—1) is used. The
use of TF in the beginning provides the global feedback
training with a good starting point in the error-curver, this
assists in convergence to a better solution. The predictor
networks are evaluated for multi-step prediction capability.
After the training of neural net speed predictor 22, neural net
current predictor 21 are tuned with @y, (tjt-1) instead of
Wgsz(t) as one of the inputs.

Neural net speed update block 23 uses the innovations
from the current predictions, the current estimates and the
output of the state predictor networks to generate the filtered
speed estimate. For the speed filter network, FMLP network
with 8-16-1 structure is used. After training the state filter
network, my(t|t) instead of @y, (t|t—1) is used as input to the
current predictor and state predictor networks. The networks
are fine tuned if necessary.

Referring now to FIG. 3, there is depicted logic diagram
of a method for developing and using neural network
adaptive filter 19, in accordance with a preferred embodi-
ment of the present invention. As shown, voltage and current
measurements are input to a wgg; calculation process 31 to
generate a training data set. The training data set is utilized
in a filter development process 32 to produce a set of filter
parameters. Both wgg, calculation process 31 and filter
development process 32 are performed off-line once for all
similar motors. During on-line operation, the filter param-
eters are fed into a neural network adaptive filtering process
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33 to generate wpa(t]t) values. An on-line adaptation scheme
34 can also be used on-line to adjust filtering process 33.

As has been described, the present invention provides a
neural network-based method and apparatus for determining
the speed of induction motors. Although a three-phase
induction motor is used to illustrate the present invention,
the present invention is also applicable to any poly-phase
motors, such as two-, five- and six-phase motors, inverter-
fed motors, asynchronous motors, etc.

The methods of the present invention are advantageous in
that they require so-called “nameplate” machine information
only, rather than detailed design information for a motor.
Nameplate information is a set of basic information pertain-
ing to the identity of a motor, including the number of
phases, frequency, rated voltage, rated current, rated power,
and power factor. The methods of the present invention are
capable of estimating machine speed over a wide range of
load levels and despite machine deterioration due to wear
and tear.

It is also important to note that although the present
invention has been described in the context of a fully
functional computer system, those skilled in the art will
appreciate that the mechanisms of the present invention are
capable of being distributed as a program product in a
variety of forms, and that the present invention applies
equally regardless of the particular type of signal bearing
media utilized to actually carry out the distribution.
Examples of signal bearing media include, without
limitation, recordable type media such as floppy disks or CD
ROMSs and transmission type media such as analog or digital
communications links.

While the invention has been particularly shown and
described with reference to a preferred embodiment, it will
be understood by those skilled in the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the invention.

What is claimed is:

1. A method for determining the speed of a rotating rotor
within a motor, said method comprising:

developing a neural network-based adaptive filter;

generating a set of filter parameters for said neural
network-based adaptive filter with respect to said motor
before operation of said motor;

measuring present and past current values along with
present and past voltage values for one or more phases
of said motor during operation; and

determining a rotating speed of a rotating rotor within said
motor during operation using said measured present
and past current values along with said measured
present and past voltage values of said motor via said
neural network-based adaptive filter in conjunction
with said set of filter parameters.

2. The method of claim 1, wherein said step of developing
further includes developing a neural network-based adaptive
filter having a neural net current predictor, a neural net speed
predictor, and a neural net speed update block.

3. The method of claim 1, wherein said step of generating
further includes generating said set of filter parameters based
on name plate information of said motor.

4. The method of claim 3, wherein said name plate
information includes number of pole pairs (p), slip at rated
load (f;(;urea) and no load slip ().

5. The method of claim 1, wherein said step of determin-
ing further includes determining a rotating speed estimates
plt+1t+1) by
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before observing a (t+1)* sample, determining a motor
speed and current predictor values using

(;‘)NN(H'l |t)=fNN((;‘)NN(t| 1), U@Ly (tl-1))
Tun(e+1 |t)=hNN((;‘)NN(t| 1), UD Ly (tle-1))

where I, (t|t-1) is a vector containing present and past
motor current predictor responses; and

after observing said (t+1)” sample, determining said
rotating speed estimates using

(;‘)NN(H'l |t+1)=KNN((;)NN(t1|t)> T (e+1]0), pas(e+1),€(+1))

where the function K, () is a feed-forward multi-layer
perceptrons (FMLP) used to approximate the filter gain, and
the vectors are defined as

I+ D=[IE+DIE), - - - L{t=n+ DT

e(t+ D= Epa{t+H1EMMD), - - - ,Ennlt-n+1)]"
where

E(t+1)=I(t+1)-1 0 (t+1]0)

is the innovations term.

6. A computer program product residing on a computer
usable medium for determining the speed of a rotating rotor
within a motor, said computer program product comprising:

program code means for implementing a neural network-
based adaptive filter;

program code means for generating a set of filter param-
eters for said neural network-based adaptive filter with
respect to said motor before operation of said motor;

program code means for measuring present and past
current values along with present and past voltage
values for one or more phases of said motor during
operation; and

program code means for determining a rotating speed of
a rotating rotor within said motor during operation
using said measured present and past current values
along with said measured present and past voltage
values of said motor via said neural network-based
adaptive filter in conjunction with said set of filter
parameters.

7. The computer program product of claim 6, wherein said
program code means for implementing further includes
program code means for implementing a neural network-
based adaptive filter having a neural net current predictor, a
neural net speed predictor, and a neural net speed update
block.

8. The computer program product of claim 6, wherein said
program code means for generating further includes pro-
gram code means for generating said set of filter parameters
based on name plate information of said motor.

9. The computer program product of claim 8, wherein said
name plate information includes number of pole pairs (p),
slip at rated load (£, ...) and no load slip (f,,).

10. The computer program product of claim 6, wherein
said program code means for determining further includes
program code means for determining a rotating speed esti-
mates of myp(t+1[t+1) by
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program code means for determining a motor speed and
current predictor values, before observing a (t+1)%
sample, using

Opr{+ L= aendl Dan L]0, U (0, (t]-1)
Tan(r+1 |t)=hNN(03NN(t| DUD 1y (f-1))

where 1,,(t|t-1) is a vector containing present and past
motor current predictor responses; and
program code means for determining said rotating speed
estimates, after observing said (t+1)” sample, using

(’AJNN(H'1 |t+1)=KNN((1)NN(t1 [, E s G+ 110) Tpnss(t+1),€(8+1))

where the function Kyu() is a feed-forward multi-layer
perceptrons (FMLP) used to approximate the filter gain, and
the vectors are defined as

I(t+D)=[I(t+1),L(D), . . . I(t-n+1)]"

e(t+D)=[EpytHrDEWME), - - - Eap(t-n+1)]"
where

Et+1)=I(t+1)-Typ(t1]0)

is the innovations term.

11. A computer system for determining the speed of a
rotating rotor within a motor, said computer system com-
prising:

means for implementing a neural network-based adaptive

filter;

means for generating a set of filter parameters for said

neural network-based adaptive filter with respect to
said motor before operation of said motor;
means for measuring present and past current values
along with present and past voltage values for one or
more phases of said motor during operation; and

means for determining a rotating speed of a rotating rotor
within said motor during operation using said measured
present and past current values along with said mea-
sured present and past voltage values of said motor via
said neural network-based adaptive filter in conjunction
with said set of filter parameters.
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12. The computer system of claim 11, wherein said means
for implementing further includes means for implementing
a neural network-based adaptive filter having a neural net
current predictor, a neural net speed predictor, and a neural
net speed update block.

13. The computer system of claim 11, wherein said means
for generating further includes means for generating said set
of filter parameters based on name plate information of said
motor.

14. The computer system of claim 13, wherein said name
plate information includes number of pole pairs (p), slip at
rated load (f¢ures) and no load slip (f,,).

15. The computer system of claim 11, wherein said means
for determining further includes means for determining a
rotating speed estimates of @u(t+1[t+1) by

means for determining a motor speed and current predic-

tor values, before observing a (t+1)* sample, using

(;*)NN(H'l |t)=fNN((;‘)NN(t 18, U@ Sun(t]=1))
Tunt+ 1] =h (@ (218), U)o T (E]2-1)

where Tyy(tlt-1) is a vector containing present and past
motor current predictor responses; and

means for determining said rotating speed estimates, after
observing a (t+1)* sample, using

(;‘)NN(H'l |t+1)=KNN((;)NN(t1 [, Ean (E+110) T pags(8+1) € (8+1))
where the function K, () is a feed-forward multi-layer
perceptrons (FMLP) used to approximate the filter gain, and
the vectors are defined as

I+ D=[IE+D,IE), - - - I(t-n+1)]"

(D)= Epp(tHDENND), - . . Eqp(t-n 41T
where

E(t+D)=I(t+1)-Typ(t+1]t)

is the innovations term.



