
TEXTBOOK DEPENDENCY WEB

An Undergraduate Research Scholars Thesis

by

JOSEPH MARTINSEN

Submitted to the Undergraduate Research Scholars program at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Philip B. Yasskin

May 2019

Major: Computer Engineering

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 2

ACKNOWLEDGMENTS . 3

NOMENCLATURE . 4

LIST OF FIGURES . 5

1. INTRODUCTION . 6

1.1 Background . 6
1.2 Resulting Platform . 6

2. LITERATURE REVIEW . 10

2.1 Existing Technology . 10
2.2 Approach . 10

3. THE ALGORITHM . 12

3.1 Introduction . 12
3.2 Motivation for the Algorithm . 12
3.3 The Design . 13

4. THE IMPLEMENTATION . 19

4.1 The Textbook . 19
4.2 Textbook Build Process . 19
4.3 The Tech Stack . 20
4.4 Integration with Textbook . 20

5. CONCLUSION . 22

5.1 Challenges . 22
5.2 Broader Impact . 23
5.3 Future Plans . 23

REFERENCES . 24

ABSTRACT

Textbook Dependency Web

Joseph Martinsen
Department of Computer Engineering

Texas A&M University

Research Advisor: Dr. Philip B. Yasskin
Department of Mathematics

Texas A&M University

After a textbook has been written and published, one may want to customize it for

a particular audience; it may be desirable to delete or reorder some of the chapters or

sections. However, there may be dependencies among the chapters, sections, examples

and exercises which make it very tedious to rearrange the order of not only the chap-

ters but also, the associated exercises. Martinsen has defined a structure to describe the

dependencies among the chapters and sections in a portion of the online Calculus book,

MYMathApps Calculus, being written by Dr. Yasskin and Dr. Meade. Further, he has

built a GUI for an instructor or institution to reorder the chapters and sections by drag and

drop consistent with the required dependencies as specified by the original author.

1

DEDICATION

To my everything, Savannah.

2

ACKNOWLEDGMENTS

Firstly, I would like to express my sincerest gratitude to Dr. Yasskin, without his time

and effort he has invested in me, this would not of been possible.

To Akash Rao for important modification to the build process and templates of the

textbook allowed for the thesis to be better integrated.

To Alexander Shung and Siyuan Yang for manually converting the existing hierarchy

into a far more usable one.

3

NOMENCLATURE

Editor A particular instructor or a representative of the adopt-
ing institution or the publisher who wants to reorder the
textbook

DAG Directed Acyclic Graph

Graph Database A particular database utilizes a graph structures for
queries with nodes, edges and properties to represent
and store data

Net Refers to the DAG structe use for dependencies

Unit Book/Part/Chapter/Section//Cul-de-sac/Page providing
the content of the book

Topic The content contained in a unit

Assessment A tutorial/exercises providing a problem that is given to
a student to solve

GUI Graphical user interface

4

LIST OF FIGURES

FIGURE Page

1.1 Textbook selection. 7

1.2 Textbook selection. 8

1.3 Unit hierarchy. 9

1.4 Reordering units. 9

3.1 parent child topic. 14

3.2 Unrelated topics. 15

3.3 Unit mapping. 15

5

1. INTRODUCTION

1.1 Background

Textbooks go through a long and arduous process before a student or professor is able

to view and use it. This process requires much work and effort into not only validating the

content of the textbook but also validating the ordering of the textbook as whole. Much

like a jigsaw puzzle, each chapter fits one after another based on the dependency of the

topics being taught. On top of these chapters being ordered, the exercises must also be

placed in the correct place in order to not give an exercise that is based on a topic that has

not been presented to the reader previously.

After all this work on ordering has been completed (among other meticulous things),

the textbook is finally ready for publication. As with many good textbooks, many profes-

sors and institutions may enjoy the content within the textbook but would prefer delivering

the content to a student in a different order than the current order of the textbook. Most

of the time, the work and effort that has gone into meticulously ordering the chapters

and exercises must now be revisited again and modified. This process is nearly as time

consuming and laborious as the first going through this process and is frequently done

imperfectly.

1.2 Resulting Platform

In order to achieve a desired solution, a full stack web application was built. The

integration points from the textbook to the application consists of five networks. In the

current version of the platform, uploading three of the networks into the platform is all that

is required for the structures and dependencies of any given textbook to be fully understood

and used Fig 1.1. After transforming these networks into a directed acyclic graph that is

6

then stored into the graph database, a figure can be generated as is show for units in Fig

1.2.

Figure 1.1: The selection and upload of networks for a given textbook

The second piece of the platform a interactive graphical table of contents where the

units can be dragged around to reorder them Fig 1.3. It the actual piece of the platform

that allows an editor to reorder and restructure the original ordering of the textbook. Each

unit and sub unit can be toggled to view more or less about units. There is also a button to

toggle all units to be viewed or to collapse all units until only the independent root units

are viewable.

7

Figure 1.2: The selection and upload of networks for a given textbook

On top of being toggleable, each unit is draggable Fig 1.4. This allows for each unit to

be moved to any other point in the structure of the tree or table of contents. During each

of these movements, a request is sent to the server to verify that all dependencies are met.

If any dependency is not met, a message is then sent to the front end for it to be displayed

to the user.

8

Figure 1.3: Unit hierarchy.

Figure 1.4: Reordering of units through the use of dragging.

9

2. LITERATURE REVIEW

2.1 Existing Technology

In the current field, most re-orderings of chapters and exercises are done by hand by

either the textbook authors or an editor who is either a particular instructor or a represen-

tative of the adopting institution or the publisher. An exception is TopHatTM who, for their

interactive textbooks, has the ability to reorder in a drag and drop manner but one lacking

feature is feedback of any sort being provided to the editor [1]. I was able to test drive

this product and it felt much like changing the order of a power point presentation as it

is in its current state. Besides the technology features that TopHat offers on the rest of

their platform, which is outside the scope of this discussion, much of what their reordering

seems to achieve can simply be done by reordering the pages of the textbook in some sort

of PDF viewer.

From speaking with several Math professors at the Joint Math Meeting 2019, this idea

of being able to reorder structural components of their textbook is an issue they commonly

face and is not brand new. None of the professors I interacted with were aware of a simple

and useful tool that would help them complete this task. There was one platform for

identifying dependencies between subjects and textbooks that then allows a professor to

generate a curriculum based off these topics, but this is done on a much higher textbook

level, not by chapter, section or exercise.

2.2 Approach

My approach to this situation is similar to that used by TopHat but builds heavily

on the fact that the original author has an idea of the flow of a textbook, including the

repercussions that may result from changes to the order. While it is not feasible for a

10

professor to provide this feedback in person, the realtime feedback aspect can be preserved

by creating a platform that understands the original authors concerns and then provides

them to the editor of the textbook as soon as they attempt to make a change that may result

in possible conflict of dependencies.

There are existing papers on utilizing trees and identifying the differences between

two different trees. One state of the art algorithm identifies differences then generates the

minimum of differences from one tree to another [2][3]. An adaptation of this algorithm

was utilized by the React core team at Facebook [4]. This algorithm was used under the

basis of two different assumptions. One was "two elements of different types will produce

different trees" and the other was "The developer can hint at which child elements may be

stable across different renders with a key prop" [4]. While the diffing of trees is not a major

portion of the design, the idea of topics instead of using key props is utilized for efficiently

resolving dependencies while using a depth first search that validates dependencies on

nodes already visited.

11

3. THE ALGORITHM

3.1 Introduction

The core portion of the platform that will allow reordering of aspects of the textbook

can simply summed up as The Algorithm. This underlying algorithm is independent of

the technology or implementation. It is simply a high level description and analysis of the

proposed solution to the given problem.

With an understanding of the algorithm, the implementation should follow in a natural

and simple manner.

3.2 Motivation for the Algorithm

The algorithm has other items to consider outside simply just solving the given issue.

As with most algorithms, there is a thought and focus on completing the desired task in an

efficient and optimal manner. This means that if the algorithm is able to provide feedback

but if it is done in an clunky manner, the algorithm is still considered a failure and not

useful.

In addition to efficiency, correctness is another major point of focus. In this context,

correctness relates to properly conveying the thoughts and concerns of the original author

to the editor trying to modify the order of a textbook. As a result of a particular action

or modification by the editor, there should never arise a situation where a suggestion or

warning provided by the algorithm conflicts with the thoughts or viewpoints of the original

author of the textbook. These messages provided by the algorithm should be simply an

extension of the original if not exactly the same as if the author was at the computer sitting

with the user of the platform.

Correctness also relates to truly reordering the textbook as desired and specified by the

12

one who modified the order of the textbook. After a change by the editor, they should be

able to clearly understand what type of change they are proposing, how this affects the

textbook as a whole, how nearby sections or chapters may be affected and finally after

committing these changes, the actual textbook should properly reflect these changes as

desired by the editor.

3.3 The Design

3.3.1 Structure

The design first has to answer the question of what. What information is necessary to

properly accomplish the given task. At the root of everything, there is the interdependency

of topics. This is the core dependency upon which all other dependencies are built upon or

derived from. All the following data types all directly or indirectly are tied to a particular

topic or group of topics. A unit is very generic and could designate several different types.

A unit is either a book, part, chapter, section, page or cul-de-sac. For the purpose of

dependency mapping, there has not been a use case that distinctly separates the types of

units for the purpose of dependency mapping. So they have been simply grouped together

into type unit. An assessment is a tutorial or exercise providing a problem that is given to a

student to solve. These are different from the units because of how they are presented and

how the underlying content is used. A unit is simply a presentation of content and/or topics

to the reader. An assessment is a formal way of allowing students to practice their skills

and test the students knowledge. Another special consideration of assessments is their

dynamic and flexible nature. Unit structure is what the editor will likely spend a majority

of time reordering and tweaking. Once the unit structure is in place, the assessments should

automatically reorder and populate to the correct units given the new unit dependency

mapping. For the purpose of relating these two, a unique id is assigned to each topic, unit

and assessment.

13

The next topic of focus is how to properly structure the necessary information to com-

plete the given task. Since this is in fact a hierarchical dependency mapping problem at its

core, a directed acyclic graph (DAG) was chosen to map and store the dependencies. The

reason being because a given topic can have one of two true relations and one metarelation

with any another topic. A given topic may depend on another topic because material must

first be introduced in the latter topic in order to properly deliver the content in the former

topic. This is an example of a child relationship. The reverse relation is also a relationship.

This reverse relationship is an example of a parent relationship Fig 3.1.

Figure 3.1: Parent child topics.

Finally, the metarelation is the situation where two topics are located on similar levels

of the hierarchy in the dependency mapping and do not have a parent or child relationship

with one another. These topics are independent of one another, meaning that the order of

these two topics in no way affect one another Fig 3.2.

14

Figure 3.2: Unrelated topics. Can have any number of parents and children but do not
relate to one another.

The previous dependency mapping completely describes the requirements for mapping

topics but units and assessments require more mappings.

Units have two relationships to map too. A particular unit can introduce one or more

topics. However, units can also depend on other units. A given unit then depends on N

topics and M units. A list of unique ids of these N topics and M units are stored on the

unit node Fig 3.3.

Figure 3.3: Unit mapping.

The final mapping is for the assessment data type. Assessments have three different

15

possible data types it can depend on. They can depend on a topic, a unit or another assess-

ment. The topic and unit dependency should ideally be the same but for our purposes, both

must be satisfied in order for this dependency to be satisfied. In the absence of one, specif-

ically the topic dependency, the other can be used. This is because if the topic dependency

is missing for an assessment but unit dependencies are listed, the topic dependency can be

generated by traversing the unit dependency mapping for the given units the assessment

depends on. The final dependency on assessments is independent of topic or unit. The

situation for assessment dependency arises when the results of one assessment is used in

another assessment. In this situation, a given assessment should follow immediately after

the dependent assessment or after another assessment that shares the same dependency on

the same assessment.

Outside of dependency mapping, there is the actual order of the textbook and order of

assessments. They can be contained with a DAG much like all the other mappings. These

are what actually describes how the textbook will actually be ordered. These mappings

are the only ones that are mutated for the sole purpose of reordering a textbook. There is

a base mapping that is initially defined by the author for the first publication of the book.

These base mappings should be structured in a way such that all dependencies are satisfied.

Finally it must be formally defined what satisfying all dependencies means. In short,

a unit or assessment satisfies it’s dependencies when its position in the book occurs after

all of its dependencies. The book satisfies all of its dependencies when all of its units and

assessments satisfy their dependencies.

3.3.2 Flow

For a textbook that is going to be integrated into this dynamic modification flow, sev-

eral dependency trees/DAGs need to be laid out describing the textbook. Specifically the

different orderings as defined by the original author and an editor and how they interact

16

with one another must be laid out. They are as follows.

1. Net of topic interdependency (created by author)

2. Net of unit interdependency + topic dependency (created by author)

3. Net of assessment interdependency + topic or unit dependency (created by author)

4. (a) Net of unit ordering (created by author)

(b) Net of unit ordering (created by editor)

5. (a) Net of assessment ordering (created by author)

(b) Net of assessment ordering (created by editor)

The workflow is as follows.

1. Original author creates nets 1, 2 and 3 during or upon completion of writing the

textbook. Nets 1, 2 and 3 should not be modified for the current version of the

textbook. A modification of nets 1, 2 or 3 should be done to correct a dependency

mistake or to add or rewrite a unit or topic. These modifications may result in a

new edition of the textbook. These should be checked to see if all dependencies are

satisfied.

2. Nets 4a and 5a are automatically generated from nets 1, 2 and 3.

3. The editor specifies the desired ordering of the revised textbook by modifying net

4a to produce net 4b.

(a) During this process warnings are provided to the editor if any of their modifi-

cations in net 4b cause a dependency to not be met as defined in nets 1, 2 and

3.

17

4. Using nets 1, 2 and 3 as well as the user modified net 4b, net 5b is generated defining

the order of the assessments.

(a) The editor can preview each assessment and modify the order in which it ap-

pears.

(b) During this process, warnings may be provided to the user if any of their mod-

ifications in net 5b cause a dependency to not be met as defined in nets 1, 2, 3

and 4b.

5. The newly generated order in the form of nets 4b and 5b can then be utilized to

modify the text and links in the given textbook.

18

4. THE IMPLEMENTATION

4.1 The Textbook

For the implementation of the design, I have gone with a proof of concept model. By

applying this workflow to a portion of a single textbook for the purpose of working out

any workflow issues and testing the algorithm in a real world situation. The textbook

that will first be integrated is MYMath Apps Calculus by Dr. Yasskin and Dr. Meade.

The prototype used the first two parts of Calculus 2 on Techniques and Application of

Integration. During the time frame of this project, I was only able to implement nets 1, 2

and 4.

4.2 Textbook Build Process

The textbook is web based and as such, is developed to conform to web standards.

Each page is written in Hypertext Markup Language (HTML). In order to better clarify

as well as lighten the load on the author(s) of the textbook, a JavaScript object notation

(JSON) file defines the order of the textbook. This file is then used by an template engine

called Nunjucks. Nunjucks allows for portions of each HTML page that are not a part of

the content of a unit to be specified in a template. This includes headers and footers of

each page. Each actual unit of HTML is then written, one HTML page per unit. By using

the JSON file, Nunjucks is then able to combine them and produce the entire textbook.

The order of the JSON file is similar to net 4a as previously presented. From this ordering,

the textbook is then built and structured. When net 4a is modified to net 4b, the JSON file

is rewritten and the book may be recompiled.

19

4.3 The Tech Stack

4.3.1 Database

A graph database is utilized for storing the different nets. The particular database used

was Neo4j. This database allowed for a DAG to be stored in it’s entirety. It also allows for

the finding of a particular node by simply querying for information about the node. There

is also an graphical interface provided by this service that visually shows related nodes

and the related DAGs for a node found by the query as shown in Fig 1.2.

4.3.2 Server

The purpose of the server was to fetch and store data to the database and perform the

computational portions of the algorithm. This included identifying warning messages and

ensuring that all dependencies are met for each change or modification that a editor makes.

4.3.3 Client

The client utilized ReactJS. This is a front end library that has existing modules that

allows for easily modifying and reordering a JSON tree. This was not a simple implemen-

tation so it did require a good amount of tweaking in order for it to fit the necessary use

case.

4.4 Integration with Textbook

Full integration with the textbook involves two different parts. One is adding all the

textbook nets for use by the platform and the other is being able to export the necessary

data in order to actually modify the textbook. The prototype used had net 4a completed.

With some effort and additional mapping, nets 1 and 2 were also constructed.

20

4.4.1 Import Process

The import process requires the original author to upload all five nets. From there the

server is able to validate and identify if there are any possible dependency violations. If

there are, the author is then provided messages as to what dependencies are not met and

allows the author to modify them using the graphical user interface. This graphical user

interface is the same as the one the editor uses for reordering later on. The prototype had

no violations.

4.4.2 Reorder Process

This is the process where the editor has the control to modify the structure of the

units using the interface shown in Fig 1.3. After each modification or tweak, the new and

updated tree is sent to the server for verification. The server then verifies dependencies and

identifies if any have been violated. Depending on the order of the violation and where

in the tree the violation occurred, a message is generated to inform the editor of what the

violations are and possible suggestions as to how to fix the ordering.

After the editor has modified the ordering of the units, they are able to review these

changes. This review screen highlights changes, additions or deletions of units. This

screen allows the user to see all the changes they are attempting to do before they commit

them. Once the user approves these changes, this new ordering is then stored as the new

ordering for the particular editor.

4.4.3 Export Process

Due to the structure of the build process of the prototype in use, the export process

is rather trivial. It is simply an export of net 4a into the JSON format. This allows for

the existing build process to generate the new ordering of the textbook as specified by the

editor.

21

5. CONCLUSION

5.1 Challenges

One challenge encountered was the fact that the textbook was already written without

this design or thoughts about the algorithm. In order to get the textbook into a place where

it could be integrated with the algorithm required some slight modifications and additions.

In the algorithm’s current state, this is what most textbooks are required to do in order to

fully integrate into the platform. The prototype used did have a similar tree structure as net

4a (the ordering of units). With some modifications of this net, it became the same format

as required.

Another large problem encountered is related to the compounding complexity of the

project. Each chapter, section and page was treated simply as a unit. While for the pur-

poses of dependency mapping, this group was allowable, for the use of the author of the

textbook, each entity is different in both information they contain and how they may be

treated for the purpose of writing the textbook.

The final issue encountered had to do with the lack of time to be able to complete

the exercises mapping. A lot of components that was created for units can be adapted

to exercises but not everything. There are at times major differences in the content of

each exercise and how they are utilized by the textbook build process. Certain exercises

contained the problem, answer, solution (a complete workout of the problem to reach the

answer), hints and images that resulted in a general exercise not as flexible to be moved

around.

time to work on exercise

22

5.2 Broader Impact

The main focus of the thesis thus far has been with a single textbook, but a broader goal

is to allow any textbook to utilize this platform with the underlying algorithm. Allowing an

author to use this, especially during the initial design of the textbook, will allow seamless

reordering to the textbook in the event that an adopting institution or professor decides to

modify the original ordering of the textbook.

5.3 Future Plans

The integration portion of the platform and textbook has not been entirely completed.

There has been tweaking and modifications to the platform, the build ordering of the text-

book and easily converting them into to use by the platform. A goal is to have complete

integration with the textbook to the point that it can actually be tied into the build process.

As a build step, any modifications can be done using the platform and then immediately

carried out by producing a new version of the textbook with the appropriate modifications.

Finally, the integration of the exercises into the dynamic nature of the textbook is a

final major piece to complete the project in its entirety. For the prototype textbook, it

will require some changes and modifications as to how each exercises is stored. Instead

of being in an HTML page, some sort of JSON format will need to be utilize. Once in

this format, dependencies for each exercises will need to be added. This will be a time

consuming process but once completed, the exercises will be in a proper net 5a ordering

allowing for integration with the system.

23

REFERENCES

[1] “Reordering chapters in your top hat textbook.” Web, April 2017.

[2] P. Bille, “A survey on tree edit distance and related problems,” Theoretical Computer

Science, vol. 337, no. 1-3, pp. 217–239, 2005.

[3] D. Tsur, “Faster algorithms for guided tree edit distance,” Information Processing

Letters, vol. 108, no. 4, pp. 251–254, 2008.

[4] B. Vaughn, “Reconciliation.” Web, 2019.

24

