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ABSTRACT 

Mixed Signal Circuits Optimized for Machine Learning 

 
 

Oluwaseyi Moronfoye 
Department of Electrical and Computer Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Samuel Palermo 
Department of Electrical and Computer Engineering 

Texas A&M University 
 
 

 The aim of this project is to develop customizable hardware that can perform Machine 

Learning tasks. Machine L earning is the science of leveraging advance statistics and data 

mining to "teach" computers how to recognize patterns and perform tasks without direct human 

instructions. Circuits optimized for machine learning using mixed-signal inputs will be able to 

act as a dedicated hardware for performing conventional computational tasks required in learning 

systems; improving both efficiency and power consumption. 

The hardware will be comprised of an array of neurons, an activation-function block at 

the output of every neuron, and a back propagation protocol for every layer. The use of both 

digital and analog inputs will provide us with a means for not only faster computations, but also 

more intuitive results. The project will focus on answering the question: If and how we can 

implement an efficient circuit that uses both analog and digital inputs to train a device to learn 

patterns from data. 

 

 

  



2 

NOMENCLATURE  

 

ANN  Artificial Neural Network 

A  Amperes  

GUI  Graphical User Interface 

Hz  Hertz 

kHz  Kilohertz (1,000 Hz) 

LED  Light-emitting Diode 

mA  Milliampere 

MHz  Megahertz (1,000,000 Hz) 

mW  Milliwatt 

PCB  Printed Circuit Board 

ReLU  Rectified Linear Unit 

V  Volts 

TP  True Positive 

TN  True Negative 

FP  False Positive 

FN  False Negative  
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CHAPTER I 

INTRODUCTION 

 

Overview 

The area of Machine Learning is now a substantial research area in this age of big data 

where humans are generating data with increasing frequency. However, the possibilities of 

integrating these machine learning capabilities into circuits are not as thoroughly researched. 

Embedded machine learning capabilities in mixed-signal circuits concentrate a majority of the 

computations to the sensor.  

Near signal processing is more desirable in many cases than the cloud-based approach. 

Cloud-based computation is an approach that requires sending large amounts of data to servers 

(the cloud) to be processed and then sent back. This extensive data movement poses certain 

apparent limitations when speed is essential. Moreover, “The high dimensionality of raw data 

makes processing and transmissions very costly in terms of computational resources” [1].  

This project aims to propose various circuit architectures that will support and improve 

embedded deep learning as well as the implementation of algorithms that support machine 

learning in the Analog signal domain. 
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CHAPTER II 

LITERATURE REVIEW 

 

This section will describe and discuss the past work done on integrated machine-learning 

systems. I will begin with a brief overview on the topic of machine learning specifically the 

learning model of an Artificial Neural Network, and then discuss past designs and 

implementations of hardware learning systems.   

Artificial Neural Networks 

 Neural networks are an extremely robust learning system that is desirable for many of 

their properties such as self-organization and fault tolerance. They are able to detect and 

characterize patterns where closed form solutions might be too complex or might not exist. There 

has been an explosion of research on the topic of neural networks from the different benefits of 

various architectures (number and positions of the neurons in a network), to deciphering the 

complex sets of data in an Artificial Neural Network, ANN, that is used to make the predictions.   

 This sub section will provide a brief overview and simplification of the topic of ANNs.  

As the name implies neural networks are made up of a collections of computation cells called 

neurons/perceptrons. These neurons perform an extremely simple computational task, they take 

in a set of inputs Î{𝑥#, 𝑥%,… , 𝑥'} and then multiply them by certain parameters called weights 

Î{𝜃#, 𝜃%, … , 𝜃'}, each of these products are then added together and this value is designated as 

“z”. This sum product is passed to a non-linear function called the activation function designated 

as g(z) and the value it produces is called “a” known as the activation. In a neural network there 

is a concept of layers. Neurons are considered to be in the same layer when no neuron in the 

layer gets its input from another neuron in the same layer. The process described above is 
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performed for all the neurons in the layer so 𝑥*
(,) and 𝑎*

(,) are the jth neuron and activation in   

layer l, 𝜃/*
(,)  is the weight between the ith neuron in layer l-1 and the jth neuron in layer l. At the 

inception an external signal is provided to the first layer l = 1 (input layer) and then through the 

sum product and activation process this signal is transformed and propagated to the last layer l = 

L. At the last layer, 𝑎*
(0)  is compared with what is known as the true value 𝑦*	which is produced 

by the primary inputs in the natural system we are trying to characterize. The difference between 

the value we predicted (𝑎*
(0)  ) and the true value (𝑦*	) is the error 𝛿*	

(0). This is very valuable 

information because it tells us exactly how much we were “off.” In order to make full use of this 

information we need to pass it back through to the other layers; enter back-propagation. It can be 

shown that the subsequent deltas are calculated by 𝛿/	
(,) = ∑ 𝜃/*	

(,)𝛿*
(,6#)𝑔′(𝑧/

(,))'
*:# , where “ g’ ” is 

the derivative of g.  Using a popular optimization method called gradient decent, the parameters 

are changed by updating them in the direction that brings the next prediction closer to the true 

value. Using a cost function that penalizes the parameters for being wrong we get the direction of 

that cost function’s derivative to be the proper direction of change,  ;<(=)
;>?@

(A) = 	∑ 𝑎/
(,)𝛿*

(,6#)'
*:#  , 

where 𝐽(Θ) is the cost function. All parameters are updated by  𝜃/*
(,) = 𝜃/*

(,) − 𝛼 ;<(=)

;>?@
(A)  , where 𝛼 is 

a small number called the learning rate, until no perceivable error reduction is observed or we 

exceed the maximum number of iterations. 

Hardware learning Implementations 

  In [1] Holeman et al.  they explore the various circuits that could be instrumental in the 

implementation of different hardware learning systems including bump-circuits and configurable 

distance calculators. However, their analysis of computation error is the primary interest of this 
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paper in regards to [1]. Holeman et al. discuss the obvious benefits that analog computations 

have in terms of power efficiency and speed but they also highlight the potential for error due to 

component differences and noise. However, due to the intrinsic feedback and self-organization in 

learning systems analog implementations become robust to these imperfections and are able to 

“learn” errors and optimize around them. Furthermore, their evaluation of an analog learning 

system compared to a digital one shows that analog systems are able to exhibit comparable 

accuracy to floating point computations while consuming significantly less power. 

 [3] explores the use of a dynamic method to perform parameter updates. In past 

implementations of analog learning systems, resistive networks or components were used to 

create static weights that could not easily be adjustable. Kawaguchi et al. explore the use of 

switch capacitor circuits as a way to dynamically change impedance and hence adjust weighs. 

Switched capacitors work by using an AC signal to move charge in a capacitor by fast switching, 

creating an electrically controlled resistance. Although, this is not the method of dynamic weight 

update employed in this paper, [3] was instrumental expounding on the necessities of having a 

dynamic system when performing learning tasks. 

 [6] was fundamental to the development of the system in this paper, Bibyk et al. propose 

a neuron architecture that permits dynamic parameter update and also has the benefit of being 

fully implantable with analog components. Using a four-quadrant vector multiplier [6] 

implements a neuron that can accept an arbitrary number of inputs and parameters which are 

represented as voltages. The proposed system is able to permit continuous-time signal processing 

in addition to performing vector multiplication to an incredibly high precision due to the 

operational amplifier operating in feedback. 
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 [11] was particularly helpful, not for any technical consideration but for the relatively 

distinctive idea of separating the activation function from the neuron. Most of the analog 

learning systems discussed in other papers either integrate a pseudo activation function with the 

neuron often involving a double-inverter buffer as was done in [6] or completely ignore the need 

for one as in [3]. In the ANN system of this paper the activation function was implemented as a 

distinct sub system from the individual neurons, which has benefits in both modularity and ease 

of debugging. 

 [12] presents a fascinating implementation of a dynamic parameter update system. Using 

floating-gate transistors (FGT) as a memory element, Borgstrom and Bibyk propose a method of 

both saving and updating parameters. When a voltage pulse is provided to the gate of a floating-

gate transistor, it changes the stored charge in its extra dielectric layer which increases or 

decreases the threshold voltage of the transistor. The gates of two FGTs are tied together and 

receive the same voltage pulse however their bodies are connected to different circuities that 

determine how the parameter update happens. The sources of both of these FGTs are connected 

to a current reference and the drains are connected to a current comparator which is responsible 

for generating the final parameter voltage. However, in this paper back propagation and 

parameter update is implemented digitally using a micro controller. [12] is extremely instructive 

for designing an extremely compact system that bypasses more of the digital overhead by taking 

advantage of analog options.  
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CHAPTER III 

METHODS 

 

In the process of designing this system many design architectures for the neural 

network’s computational engine were evaluated before the final design was chosen. This design 

was chosen to be able to be able to provide reconfigurability to the system allowing it to be 

trained on multiple different data sets. This section will provide a detailed overview of how the 

architecture and design of the system was developed as well as the methods used to find and 

finetune parameters. Figure 1 illustrates a block diagram representation of how the system will 

function. 

 

Figure 1.  Block Diagram of System 

The system can be divided into three main sub systems, although there are multiple 

instances of these subsystems occurring throughout the design. These sub systems include the 

Neurons, Activation function block and the Backpropagation. The neuron takes in either primary 

inputs or inputs from internal nodes and performs a sum-product function of the inputs and 

corresponding weights. The activation function block implements a non-linear transformation of 

the output of the neuron to produce a new value. The back-propagation algorithm relays error 

signals generated by the current layer to the previous layer of neurons. 
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Neuron Architecture 

The neuron is the smallest unit cell of a neural system. For simplicity proposes, it will 

support up to 3 inputs and produce a single output, implemented through analog components, 

namely, transistors and operational amplifiers. Each perceptron will function by accepting inputs 

in analog voltages and finding the dot product of those inputs with weights also represented by 

analog voltages. Multiple perceptrons will be combined together to produce the neural network. 

Architectural designs of the neuron were inspired by those of Steve Bibyk and 

Mohammed Ismail in [6]. A single neuron is designed by implementing a four-quadrant vector 

multiplier with NMOS transistors operating in the triode region and an operational amplifier. To 

provide inputs, which is a feature that the machine learning system will be trained on, this 

architecture will need 4 n-type or p-type transistors per input. Furthermore, an additional four 

transistors will be needed at the output of the operational amplifier to convert the source current 

of the input transistors to a voltage. In total one AD8607ARMZ-REEL low power operational 

amplifier and 16 transistors from MC14007BDR2G packages are used to realize one neuron. 

 Each transistor has a differential pair, so the voltage applied to the gate of a transistor is 

subtracted from the voltage applied to the gate of its pair.  This is desirable for two reasons, also 

acknowledged by Steve Bibyk et al, differential signals provide a way to obtain cleaner, more 

accurate signals simply because common mode variations that exist in both transistors are 

subtracted from each other, thereby canceled. Another benefit to this architecture is that it allows 

the dynamic weight update functionality it needed by a non-static machine learning system. 

Figure 2 illustrates the schematic of a neuron cell that has three inputs. The formula governing 

the function of a neuron is given by 

𝑉GHI =
1

𝑉K# − 𝑉K%
L𝑋/

'

/:#

𝑊/  
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Where n is the number inputs that the neuron can take. 𝑋/ is an input and 𝑊/  is its corresponding 

weight. 𝑉K# and 𝑉K% are calibration voltages that can be used to add an additional weighting to 

specific neurons. 

 

Figure 2.  Schematic of Neuron 

In this application each neuron will be neutral so 𝑉K# and 𝑉K% have values 5V and 4V 

respectively, this is implemented so no neuron can have a bias that isn’t created by the data under 

analysis. The, possibility of dynamically adjusting the values of 𝑉K# and 𝑉K% was shortly explored 

as an additional mechanism that the data analysis process can control, or as a way to factor out 

terms from the weights (W values) to allow a larger range. However, for the sake of system 

simplicity only fundamental functions of a neural network are implemented and tested in the 
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system. Refer to [6] for a more in-depth analysis of this neuron architecture. Two constraints 

(equation 1 and 2) that limit the range of operation of the system will be highlighted as it becomes 

important in analysis of how operational values such as 𝑉K#, 𝑉K%, and max	(𝑥/) were chosen. 

𝑉GHI	 ≤ min[𝑉K# − 𝑉IV, 𝑉K% − 𝑉IV]… (1) 

|𝑋/| ≤ |𝑉IV|… (2) 

Consequently, this architecture limits the maximum output voltage we can hope to 

reliably produce which explains why the largest possible values of 𝑉K# and 𝑉K% were chosen 

while still maintaining a 5 watt of power consumption, as well as neutral neuron weighting. In 

most transistors the thermal voltage (𝑉IV), an intrinsic parameter of the device, is in the range of 

380 mV to 500 mV [7,8]. Thus, this gives us an approximate output voltage range of 0 to 3.5V 

where the transistors do not become reverse biased.  Furthermore, the highest input voltage we 

can reliably hope to deliver to the neuron from any one input transistor must be less than 0.38V.  

To test the range of voltages that can be used for the weight values, I observed the results 

of performing a DC sweep of weights, on the simulated circuit, from -2V to 2V while leaving 

other voltage sources as constant. As can be observed from Figure 3, we experience very linear 

behavior in this range of voltages, with a minuscule error of -0.2mV due to the offset of the 

operational amplifier. Through further testing to optimize system parameters, the optimal 

weights where determined to take a value in the range from -1.2V to 1.2V, and the inputs from 

0V to 0.3V. Although, one weight can swing from -2V to 2V with no a problem and one input 

from 0 to 1V, all three weights and inputs are unable to do so at the same time without causing 

significant distortion at the output. These optimal weight values were also verified through the 

following calculations: 

𝑉GHIZ[\	 = 3.5𝑉, 	𝑋/`ab = 0.3𝑉 
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𝑉GHIZ[\	 ≤ 3𝑊/`ab𝑋/`ab 

𝑊/`ab ≤ 	1.296𝑉 

The 2.5V source, like the 4V source, is created with a TLV757 linear regulator IC to bias 

various transistors. The weights in the system will be operating relative to a voltage of 2.5V 

reference in order to realize “negative” voltages. i.e. the actual weight values are shifted up by 

2.5V. Each neuron in the overall system relays its output voltage to an activation function 

subsystem which converts the voltage by a nonlinear transformation. A maximum input value of 

0.3V volts was chosen in order not to reverse bias the transistors. Further probabilistic analysis in 

the backpropagation subsystem report will show that these are a sufficient range of values. 

 

Figure 3: DC sweep of Neuron Input 1 from 0V to 1V 

The neuron in the first layer will receive its inputs as DC voltage values from a PWM-DC 

converter. The PWM signals will be provided by an Arduino Microcontroller and has a 

resolution of 10bits. The input of every other neuron that is not in the first layer will receive its 

inputs from the neuron in the previous layer. The weights of the neuron are controlled by the 

Arduino PWM signals which will be adjusted through the back-propagation algorithm. Problems 

experienced with this system is the inability to provide negative input voltages due to the 
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architecture of the neuron. This problem will be solved by normalizing (setting the mean to 0 and 

the standard deviation to 1) the input values and shifting them above zero. Statistically, this way 

no information is lost because it is a linear transform. Furthermore, by normalizing our inputs, 

with range of values covered in enough standard deviations, we are able to represent a large 

proportion of inputs. This is guaranteed by Chebyshev’s inequality. Which states that the 

probability to observe a value in any distribution that is away from its mean value by k standard 

deviations (𝜎) is less than  #
gh

 . 

Activation Function System Architecture 

The activation function system will take the output of a perceptron and apply a non-linear 

function f(x), to map the input to a new value. This subsystem will be able to support switching 

between different functions such as the Rectified Linear Unit (ReLU), and Sigmoid activation 

functions. Inputs to each activation function block is the value produced by each neuron and the 

output is the nonlinear transformation computed by the system. A 74HC4052D 4:1 Multiplexer 

is used to select the desired activation function that is to be used. Two digital signals provided by 

the Arduino pins 22 and 24 indicate which one of the two activation functions to use. 

Sigmoid 

 The sigmoid function is a pseudo logistical function governed by equation (3): 

𝑓(𝑥) =
1

1 + 𝑒lb … (3) 

This function was produced with two CMOS chipsets, implemented as a buffer that was scaled to 

swing to a maximum value of 0.3V (instead of 1 as in Figure 4) when the input (the output of the 

neuron) reaches about 1.1V. This choice was taken to make sure that the voltage produced by the 

activation function subsystem is useable by the next neuron in the chain which can only accept a 

maximum input of 0.3 V. The value 1.1V was calculated by assuming that all three sets of 
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weights and input voltages for a neuron take their maximum value of 1.2V and 0.3V 

respectively. In this event the maximum output a single neuron can produce is 1.08V. The 

sigmoid function produces output voltages relative to a 2.5V reference, this way we are able to 

express “negative” voltages. The sigmoid was simulated and tested for its range of expected 

inputs and performs as expected, the system is able to take a range of inputs and then map them 

to a point on the sigmoidal curve, producing an output. Figure 5 and 6 illustrates the circuitry and 

its performance respectively. As can be observed from Figure 6 we experience a maximum 

output voltage of 0.3 V for an input of 1.08V and an output voltage of 0V for -1.08V. 

 
Figure 4: Sigmoid 

 

Figure 5: Circuit schematic for Sigmoid function   
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Figure 6: Transfer characteristics of buffer circuit  

Rectified Linear Unit (ReLU) 

The ReLU activation is a function that takes in an input and maps it to its self if the input 

following equation (4). 

𝑓(𝑥) = m𝑥, 𝑖𝑓		𝑥 ≥ 0
0, 𝑖𝑓	𝑥 < 0 … (4) 

 This is a choice activation function for a lot of machine learning applications because of 

its simplicity and intuitive mapping scheme. The ReLU system is implemented by a precision 

half wave rectifier using an AD8607ARMZ-REEL low power operational amplifier and a diode 

in what is commonly referred to as a “super-diode” as can be observed from the schematic 

shown in Figure 7. When the input (Vin) at the positive terminal of the operational amplifier is 

positive the negative terminal sees the same value because of a virtual short between them. The 

output is then equal to the input because the negative terminal and the output are connected. 

However, when there is a negative input at the positive terminal, the diode becomes revered 

biased and does not let current back into the diode. With nowhere for current to go (the high 

input resistance of an op-amp also resists the flow of current), there is now a virtual short 

between ground and the output, setting the output to 0V. This configuration does come with a 
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limitation: we begin to experience saturation for high input voltages (~4.6V). However, the 

inputs were designed to never reach that threshold. A voltage divider is also used to regulate the 

output magnitude of the ReLU function. Using the same rationale as that used in the sigmoid 

system, for a maximum input voltage a 1.1V we are expecting no more than a 0.3V output. The 

resistors in the voltage divider were sized appropriately to achieve this purpose. Also, similar to 

the sigmoid function all voltages used by the system is relative to a 2.5V reference. 

 

Figure 7: Circuit schematic for ReLU function   

As can be observed from Figure 8, the system acts according to (4). However, as 

mentioned previously the scaling is adjusted by roughly a 3:1 ratio so at a maximum possible 

input of 1.1V we see 0.3V at the output. 

 

Figure 8: Transfer characteristics of ReLU circuit  

Back Propagation System Architecture  
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The back-propagation system will be essential to the overall performance of the device. 

Back propagation allows the error detected at the output layer of the Neural Network to be sent 

backward through each layer so weights can be adjusted to provide a better prediction in the next 

learning round. This system will be implemented with an Arduino microcontroller which will 

also act as the host computer. Figure 9 below illustrates a simplified flow chart of how the back-

propagation algorithm works. For a more detailed analysis refer to [9,10]. This process 

iteratively compiles errors between the predicted value and the true value. And then adjusts the 

weights of each neuron by subtracting a delta value (which could be either negative or positive) 

when this process is done may times (epochs) for all the inputs, we converge to an optimal set of 

parameters that are able to accurately predict the output values when given a set of inputs. 

 

Figure 9.  Flow Chart of Back-Propagation Algorithm 
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This system is handled by the Arduino microcontroller and is written in C code. The 

Arduino provides 3 primary inputs and a bias term of “1” and the weights to the forward 

propagation system (neuron and activation function). After the input is provided by the Arduino 

in a 10bit PWM format, a LTC2645CMS PWM-DC converter converts this to a DC value, and 

feeds it into the first neuron which provides an output which gets propagated into the activation 

function system which then produces an output called the activation. Each of the three 

activations (output of the activation systems) named a1, a2, and a3 are inputs to both the next 

neuron as well as to the Arduino through analog input pins. These activation values are used in 

the calculation of the delta (error), which is aggregated for all the input training examples, and 

used to adjust each of the nine weights. After delta is determined the weights are adjusted and 

outputted to begin the process again for a predefined number of epochs. 

Due to the input value constraints created by the neuron architecture, PWM signals, and 

PWM-DC converter. We are forced to resort to a probabilistic guarantee that we can support a 

large enough range of values. We are able to account for up to 10 standard deviations, by setting 

30mV to represent one standard deviation (or unit), on either side of the mean of input values. 

By Chebyshev inequality, statistically, there is less than a 1% chance that we will not be able to 

accurately represent an input. With a 10bit PWM signal we can express voltages as small as 

5mV which gives us a resolution 6 times that of our unit. Furthermore, with maximum weight 

values of ±1.2 volts and a unit of 30mV we can represent weights that are the equivalent of 40 

units in magnitude. A weighting this large in a learning system is able to accurately convey the 

importance of an input. More so, the back-propagation algorithm will be using regularization. 

This will limit the values the weights can achieve further showing that a rage of ±40 units is an 

ample range. 
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CHAPTER IV 

RESULTS 

 

Initial simulations of the three subsystems were conducted using Multisim Circuit 

Simulator. As can be observed from Figures 3, 6 and 8 we experience very accurate results with 

the most deviation being in the neuron with an error of one-five thousandth of a volt. After a 

prototype was implemented on a Printed Circuit Board (PCB) further tests were done on the 

functionality of the whole system with the deferent subsystems integrated together. 

The input layer is able to take in 3 inputs and produce an activation value that is passed to 

the next layer which subsequently passes its own activation to the outermost layer. Each layer 

also receives a bias value of 1. Given the extremely simple architecture of the system, having 

three layers and one neuron per layer, it was given a very simple learning task as a proof of 

concept. For regression training dummy test data of three inputs was created. Three normal 

random variables 𝑋# = 𝑁(𝜇	 = 	3, 𝜎	 = 	1	), 𝑋% = 𝑁(	𝜇	 = 	5, 𝜎	 = 	1	), and  

𝑋t = 	𝑁(𝜇 = 	7, 𝜎	 = 	1	) was produced by a python script and the underlying function that the 

system will be trained to recognize is Y = 2(𝑋# + 𝑋%) + 𝑋t. For classification training the same 

inputs were used with classification criteria: 

𝑌 = w0									𝑖𝑓						𝑋# + 𝑋% + 𝑋t ≥ 15
1																																	𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

 

Only two classes are being predicted because with one output a simple neuron architecture can 

only reliably indicate a binary prediction. Figure 10 illustrates the plot of Y versus the different 

features where Figures a, b, and c are the inputs 𝑋#, 𝑋%	𝑎𝑛𝑑	𝑋t respectively. And Figure 11 

shows the class distribution for the classification task.  
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Figure 10. Plot of Features 𝑋#, 𝑋%	𝑎𝑛𝑑	𝑋t against Y 

 

Figure 11. Class distribution of for classification task 

 Fifty thousand examples split 80-20 were generated to train and test the neural network 

system. And the following sections illustrated the performance of the overall system according to 

different metrics. 

Training Speed 

The system was trained for 1 epoch for each training set. Figure 12 shows the function of 

training time for different training sizes. Both regression and classification exhibited similar 

responses. As can be observed from the graph the training time increases linearly as a function of 
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number training examples with a factor of 0.022, allowing the system to be trained on 45 inputs 

in 1 second. The analog computational hardware only takes roughly 318𝜇 seconds to perform 

the forward propagation and the remaining time per training example is a function of the 

microcontroller, host computer’s clock speed and the baud transfer speed between them.  

  

 

Figure 12. Plot of training time against number of test examples 

Prediction Speed 

 The system was used to make predictions on data that was held out during the training 

phase. Figure 13 illustrates the graph of prediction time versus number of examples. Both 

regression and classification exhibited similar responses. As in the case of prediction the graph 

increases linearly as a function of the number testing examples with a factor of 0.018, allowing 

the system to make 55 predictions in 1 second. Similar to the case of training, the analog 

computational only takes roughly 318𝜇 seconds to perform the forward propagation.  
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Figure 13. Plot of prediction time against number of test examples  

Peak Power Consumption 

 During the training period the power consumption of the system was being measured and 

the peak power consumption was determined to be 2.435W. A similar phenomenon was 

observed during testing/prediction, the system experienced a peak power consumption of 

2.422W.   

Prediction Accuracy  

Regression 

For the regression task the ReLU activation function was used because of its continuous 

nature. Figure 14 shows the error as a function of the number of epochs the system was being 

trained on. At roughly 120 epochs we stop seeing any reduction in the Mean Absolute Error 

(MAE). The lowest MAE was achieved was after training the system was 3.734. This poor 

performance is attributed to the type of transistors used to implement the neuron. The prototype 

was implemented with different transistors than was used in the simulation. As a result of this, 

the transistor is unable to stay in the linear region causing the operational amplifier to saturate for 

voltages above ~0.058V. However, the Figure 14 does show that the system is able to somewhat 

learn and reduce its error.  
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Figure 14. MAE against number of Training Epochs  

Classification 

In classification the sigmoid activation function was the natural choice because of its 

close resemblance to the logistic function. Figure 15 depict the receiver-operator characteristics 

curve (ROC curve) of the classifier’s performance. This curve is sufficient to illustrate the 

performance of a classifier on two classes [13,14]. The horizontal axis is the false positive rate 

(specificity) and the vertical axis is the true positive rate (recall). A classifier that produces an 

area under the ROC curve (auROC) of 0.5 is considered a random classifier and one that 

produced an area of 1 is considered a perfect classifier. The system attains a testing auROC of 

0.692. As explained in the regression section this performance can be significantly improved by 

using transistors that possess the desired characteristics.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
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Figure 15. Plot of recall against specificity for classification 

Figure 16 shows the simulation result of a neuron circuit using the transistors assembled on the 

board. The behavior in the simulation matches what is observed in. When the total sup-product 

of the voltage entering the operational amplifier exceeds 0.058V the output of the nueron 

saturates and rails to its 5V supply. Furthermore, the linear region before the operational 

amplifier rails is not usable because it produces a slope that is roughly 46 times what is expected. 

 

Figure 16. Simulation results using the transistors assembled on the PCB 
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CHAPTER V 

CONCLUSION 

 

With the advent of big data and the desire to produce analytical results from such data, 

we have run in to a bottleneck of resources. Firstly, the software and inherently serial machine 

learning techniques cannot be scaled sustainably to the required complexity of the future. 

Secondly, the transmission of data over the internet to the cloud for processing possess certain 

limitations when it comes to privacy and speed.  In this paper we have proposed a possible 

system that will be able to perform machine learning vis a vis a neural network. The use of 

analog components in implementing the basic building blocks of a neural network, neuron and 

activation function, allows this design to scale linearly only in the number of layers. 

Furthermore, the modular design of this system allows it to be expanded and modified very 

easily.  

The system is able to learn patterns to a precision of 0.69 in roughly 0.022 seconds per 

training example and able to make predictions in 0.018 seconds. However, the underwhelming 

performance of the system can be greatly attributed to the simplicity in the ANN architecture 

which was not sufficiently able to learn the patterns in the data. Also, the use of transistors with 

the wrong characteristics greatly contributed to the sub-par performance.  

Furthermore, there are many future directions to take this project. The most logical step is 

developing an integrated circuit. Due to the highly modular design of this system it’s 

components can be drastically miniaturized, allowing a great expansion of the ANN architecture 

to a much more complex one. Using current fabrication techniques, we can control the 

characteristics of the transistors to match the proper specifications, optimizing performance. 
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Also, by developing an IC, we will be able to take advantage of much shorter wirelengths and 

smaller components that are designed to specification. These optimizations will reduce the 

overhead to increase both the speed and power efficiency of the system. 

Although there is the inherent potential for error in analog computations the system is 

able to self-organize allowing it to be robust to most errors, thus preventing performance loss. 

The success of this system will be able to show that machine learning capabilities cannot only 

become faster but can also be more power efficient. The increased computational speed that we 

can gain from edge computing techniques will allow us to make technologies like autonomous 

vehicles, optimized traffic management, and other real-time artificial intelligence a possibility. 
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