
COMPARING THE PERFORMANCE OF DIFFERENT

QUANTUM ERROR CORRECTING CODES

An Undergraduate Research Thesis

by

MARSHALL B. PICKETT

Submitted to the Engineering Honors program at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

ACE SCHOLAR

Approved by Research Advisor: Dr. Andreas Klappenecker

May 2019

Major: Computer Science

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 2

NOMENCLATURE . 3

LIST OF FIGURES . 4

1. INTRODUCTION . 5

1.1 Background . 6
1.2 Introduction to Error Correction . 9
1.3 Quantum Error Correction . 12

2. METHODS . 20

2.1 Alfred Quantum Simulator . 20
2.2 Types of Errors . 21
2.3 Error Syndrome Measurements . 21
2.4 Types of Error Channels . 22

3. EXPERIMENTS AND RESULTS . 24

3.1 Experiments . 24
3.2 Results . 29
3.3 Observations . 34

4. SUMMARY AND CONCLUSIONS . 36

4.1 Discussion of Results . 36
4.2 Improvements and Future Work . 37

REFERENCES . 39

ABSTRACT

Comparing the Performance of Different Quantum Error Correcting Codes

Marshall B. Pickett
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Andreas Klappenecker
Department of Computer Science

Texas A&M University

This thesis discusses Quantum Error Correction and why it is essential for the de-

velopment of quantum computation. The introduction will cover the basics of quantum

computing and classical error correction. In the second section we will show why Quan-

tum Error Correction is necessary and how different types of error correcting codes help

detect and prevent errors. The experiments section will compare the real world perfor-

mance of different types of quantum error correcting codes using a quantum simulator and

prevent the results of the experiments. The final section will discuss the conclusions our

the research.

1

ACKNOWLEDGMENTS

I’d like to thank Dr. Klappenecker for his guidance and reassurance on this project.

His suggestions, knowledge, and discussions helped me throughout the semester as I was

learning new material and trying to select a topic of research.

I would also like to thank Andrew Nemec for discussing with me and helping me

understand many unfamiliar topics prevalent in quantum error correction.

2

NOMENCLATURE

QC Qantum Computing

QEC Quantum Error Correction

EC Error Correction

CSS Calderbank, Shor, Steane

3

LIST OF FIGURES

FIGURE Page

1.1 Shannon-Weaver model of communication illistrating how messages are
sent over a noisy channel . 10

1.2 Simple example illustrating the principles of quantum error correction . . 14

1.3 Circuit diagram for the Shor Nine Qubit Code 16

1.4 Circuit diagram for the Steane Seven Qubit Code 18

3.1 Decoding and error correcting circuit of the Shor code 27

3.2 Steane encoding circuit . 28

3.3 Steane error syndrome circuit . 28

3.4 Full error correcting circuit for [[7,1,3]] Steane code 29

3.5 Success rate for [[9,1,3]] code in depolarizing channel 29

3.6 Success rate for [[9,1,3]] code in depoalizing channe with different type
and locations of errors . 30

3.7 Success rate for [[9,1,3]] code in dephasing channel 31

3.8 Success rate for [[9,1,3]] code in amplitude damping channel 31

3.9 Success rate for [[7,1,3]] code in depolarizing channel 32

3.10 Success rate for [[7,1,3]] code in depoalizing channe with different type
and locations of errors . 32

3.11 Success rate for [[7,1,3]] code in dephasing channel 33

3.12 Success rate for [[7,1,3]] code in amplitude damping channel 33

3.13 Success rate for [[7,1,3]] vs [[7,1,3]] v2 code in depolarizing channel . . . 34

4

1. INTRODUCTION

In this section we present the background information of quantum computing (QC) and

classical error correction necessary to understand the topic of Quantum Error Correction

(QEC).

Ever since the dawn of the Information Age, the speed and complexity of computer

has increased at an incredible pace. For the past 40+ years, Moore’s law has been shown

to be fairly accurate. It says the number of transistors in integrated circuit chips doubles

every two years. One of the main reasons the semiconductor industry has been able to

follow such a trend is because of their ability to make smaller and smaller transistors. This

allows more transistors to be packed into a relatively constant die size. However, there are

some problems that are beginning to surface with classical computer.

One problem is that electrical components cannot become smaller and smaller indefi-

nitely. At some point there is a physical limit to how small a transistor can become and still

preform reliably. When the size of the transistors become smaller enough to be measured

on the atomic scale, quantum effects start to interfere with the performance and function

of the transistors. We can see that the pace in which in transistor size has decreased has

slowed in the past decade. The physical limits of silicone as starting to be reached, which

is starting to limit the speed of the processors. To further increase the speed, there will

need to be other engineering solutions.

Another issue with classical computers is that there are entire classes of problems that

cannot be solved on classical computer no matter how fast or powerful the computer is.

There are problems with small inputs that would take today’s most powerful supercom-

puter longer than the age of the universe to solve. Even if the computer’s speed was

increased by a factor of 1000, these types of problems would still take too long to solve

5

on a classical computer. This is because of the fundamental architecture of a classical

computer.

To overcome these issues, there will need to be a paradigm shift in the way we view

and process information. This is where using quantum mechanics to process information

comes in. Richard Feynman made a conjecture in 1982 that a quantum computer which

used quantum mechanics inherently might be more powerful than a classical computer

[1]]. And indeed it has been shown that quantum computation provide a measureable

speed up over classical computation in certain applications. For example, an algorithm was

discovered by Peter Shor to factor numbers on a quantum computer in polynomial time

[2]. Also there is Grover’s algorithm, which can find an object in an unsorted database in

O(
√
N) time on a quantum computer.

With classical computation approaching its physical limit in terms of transistor speed

and size, it’s important to take advantage of quantum’s superiority to satisfy society’s ever

increasing computational needs. However there is a major challenge that must be over-

come before utilizing the full power of a quantum computer. Unlike classical computers,

which process information in a pretty reliable manner, current quantum computer are noisy

and there is a relativity high probability that errors are introduced into the quantum compu-

tation. Without some way to minimize the errors or combat the errors through correction,

we will not be able to reliably use quantum computation to produce any meaningful re-

sults. This is why quantum error correcting techniques are so important.

1.1 Background

Bits and Qubits

Even with the increase in speed and complexity, computers have been operating with

the same basic principle: manipulating and encoding bits of information into useful com-

putation results.

6

Before discussing quantum error correction, we first introduce the basics of quantum

information processing. The fundamental unit of information for classical computing is

the binary digit or bit. A bit can only have one of two values, typically represented as 0

or 1. The two values can be interpreted as logical values (true/false, yes/no, on/off). In

quantum computing, a qubit or quantum bit is the basic unit of quantum information. It

is analogous to the classical bit in that it can also be either a 0 or 1. However, because of

quantum mechanics, a qubit can also exist in a complex superposition of the two states.

Dirac notation is used to represent the two basis states, denoted as |0〉 and |1〉. The arbitrary

state of an individual qubit , |ψ〉, can be expressed as,

|ψ〉 = α |0〉+ β |1〉 (1.1)

where |0〉 and |1〉 are the two orthonormal basis states of the qubit and α and β are

complex numbers. We also have the condition,

α2 + β2 = 1 (1.2)

which corresponds to the probability of observing a 0 or 1 when measuring that qubit.

α2 is the probabilty of observing a 0 and β2 is the probability of observing a 1. The state

can also be represented more compactly as a column vector (αβ) [3].

Quantum Gates

From the principles of quantum mechanics, only linear operators describe evolutions

of closed quantum systems. These linear operators are quantum gates and they are used

to manipulate the state of a qubit. Quantum gate operations are represented by unitary

operations. To follow the laws physics, all operations on quantum states are reversible and

hence unitary. The unitary operation can be represented by a 2x2 matrix. Four important

7

gates are the Pauli operators, σx, σy, σz, and the identity operation, σi.

σi = I =

1 0

0 1

 , σx = X =

0 1

1 0

 , σy = Y =

0 −i

i 0

 , σz = Z =

1 0

0 −1

(1.3)

These operators are important because any single qubit operation, G, can be expressed

as the linear combination of these operators.

G = cIσI + cxσx + cyσy + czσz (1.4)

Another important gate, that has no classical analog is the Hadamard Gate, H.

H =
1√
2

1 1

1 −1

 (1.5)

The Hadamard Gate is very important because it is used to create entanglement be-

tween qubits, which is an essential property that gives quantum computation its power.

Another important gate is the controlled not or CNOT gate. The CNOT gate operates

on a quantum register consisting of 2 qubits. The CNOT gate flips the second qubit (the

target qubit) if and only if the first qubit (the control qubit is |1〉. The CNOT gate can be

represented by the matrix:

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(1.6)

8

Quantum Registers

Similar to classical registers, a quantum register is built by combining several qubits.

This is equivalent mathematically to the tensor product of two-dimensional vector spaces.

A quantum register of n qubits can represent any normalized complex linear combina-

tion of the 2n orthogonal basis states. These vector spaces with inner products are called

Hilbert spaces. We can describe them more compactly with a binary vector and the bra-ket

notation.

|b1〉 ⊗ · · · ⊗ |bn〉 = |b1 · · · bn〉 = |b〉where bi ∈ {0, 1}

The ⊗ operator is called the tensor product. The tensor product is a way of putting

together vector spaces to form larger vector spaces. What makes quantum registers dif-

ferent from classical registers, and what gives them the power over classical registers is

entanglement. Consider the state of a 2-qubit system that could be described as

|ψ〉 = 1√
2
(|00〉+ |11〉)

This is the famous Bell state in which two qubits are entangled. Both qubits are in

a superposition of |0〉 or |1〉, but are connected in a manner which cannot be directly

implemented classically. Because of entanglement, measurement of one qubit with result

in either a 0 or a 1 and will cause the other qubit to collapse and become the same value.

When measured, the qubits must be either 00 or 11. There is 0% probabilty that you will

observe 01 or 10.

1.2 Introduction to Error Correction

In classical error correction, we want to encode our information in a way that protects

against error that could occur within our communication channel. Many communication

channels are subject to noise, therefore errors may be introduced to a message transmitted

9

from the sender to the receiver. If we were to send a message over a noisy channel and an

error was introduced into our message (e.g. a bit somewhere was flipped 0->1), then we

want to be able to reconstruct the original message.

Review of Classical Error Correction

It was Richard Hamming in 1947 that is credited with the modern development of error

correction codes. The essential point of error correcting codes is to use a set of code words

from {0, 1}n that represent some meaningful information (i.e. codewords) is subset of the

entire {0, 1}n data space. Some form of redundancy is built into the message to form an

error correcting code. The redundancy allows the receiver to detect a limited number of

errors that may occur anywhere in the message, and often to correct these errors without

retransmission.

Below is a diagram of a classical communication channel model.

Figure 1.1: Shannon-Weaver model of communication illistrating how messages are sent
over a noisy channel

Three Bit repetition code

A simple example on an error correcting code is the three bit repetition code, denoted

as [3,1]. A triplet of zeros, 000, represents a logical 0, and a triplet of ones, 111, represents

10

a logical 1. The error correction works by taking a majority vote, so in this case the code

can correct up to 1 error that happens on any bit. For example, if 000 was sent, but 001

was received, then an error in the third bit has occurred. However, by majority vote, 001

is decoded back into 000, which was the original message.

Seven Bit Hamming code

A more non-trivial example is the 7-bit Hamming code which relies on encoding and

decoding matrices to detect and correct errors in a transmitted message. A successful

error correcting scheme utilizes the decoding portion to identify if and what type of error

occurred when a message passed through the noisy channel. The encoding portion can be

formalized as an n× r matrix G, that takes a message m of length r and converts it into a

codeword of length n, where the codewords make up the span of the columns of G. The

corresponding matrix for the 7-bit Hamming code is

G =

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

,

which encodes a 4-bit message as a 7-bit codeword. This code or encoding scheme

has a maximum distance, d, of 3 since each of the rows in G differ in at most 3 spots,

which means it can correct at most 1 error. The equation relating distance to the number

11

of correctable errors is

maximum number of correctable errors = b1
2
(d− 1)c (1.7)

Along with the encoding matrix G, we also define a parity check matrix H , so that

GHT = 0 (1.8)

In the case of the of 7-bit Hamming code, the H corresponding to G would be

H =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

H is used to check if any error has occurred in the codeword because if received mes-

sage, x = c+ e, where c is a codeword and e is a 1-bit error, then

xHT = (c+ e)HT = cHT + eHT = 0 + eHT = eHT (1.9)

eHT uniquely identifies the error and is known as the error syndrome [4].

1.3 Quantum Error Correction

Error correction is needed in quantum computation because today’s computers are

very noisy. Without protecting against errors, sustained computation would not be possible

because even after a short amount of time errors would be introduced into our computation

and propagate further making the output indistinguishable. Quantum Error correction is

essential for building a fault tolerant quantum computer. Although many techniques and

research from classical error correction can be applied to Quantum Error Correction, there

12

are several obstacles to formulating a theory of quantum error correction. One of the main

challenges is the no-cloning theorem, which says that it is impossible create an identical

copy of an arbitrary unknown quantum state. In this case, the repetition code cannot be

applied to a quantum code. Another major challenge is that errors are continuous. Unlike

classical errors in which the bit is either flipped or not, continuous errors can occur on a

qubit, in which a qubit is partially flipped or the phase is partially changed.

Many researchers did not believe quantum error correction would be possible, but

in 1995 Peter Shor discovered a method of storing the information of one qubit into an

entangled state of nine qubits, and published his nine qubit code [citation]. He showed

that there are ways to overcomes the challenges previously mentioned. As shown above,

any operation (including an error operation) on a single qubit can be represented by a

linear combination of the I,X, Y, and Z operators. Using this fact, you can correct any

arbitrary error that has occured with a σx gate and a σz gate.

Three Qubit Flip Code

In a similar way to the classical 3-bit repitition code discussed above, we use the same

strategy to help protect against quantum errors. While the classical repition code works

because classical bits can be measured and repeated, this stops being the case in the quan-

tum channel, due to the no-cloning theorem. It is no longer possible to repeat a single qubit

three times, so to overcome this, the three-qubit bit flip code is used, which uses entan-

glement and syndrome measurements. The encoding consists of the following mappings

|0〉 7→ |0L〉 ≡ |000〉 and |1〉 7→ |1L〉 ≡ |111〉. The state |ψ〉 will be mapped to

α |0〉+ β |1〉 7→ α |000〉+ β |111〉 (1.10)

This mapping can be realized for example using two CNOT gates, entangling the sys-

tem with two ancillary qubits initialized in the state |0〉. The encoded state is then passed

13

through the noisy channel. Here is the circuit diagram depicting the encoding, correcting,

and decoding of a three qubit code [5].

Figure 1.2: Simple example illustrating the principles of quantum error correction

After the message has passed through the channel, the correction phase uses ancilla

qubits to measure the parity of the encoded qubits. Conducting measurements on the

ancilla qubits is necessary because we don’t want to collapse the superposition of the en-

coded qubits by measuring the encoded qubits. This simple code will help protect against

a single bit flip errors that could occur on any of the three qubits. This makes it equivalent

to the original classical repetition code for error correction. If we assume that at most

one X error occured in the noisy channel, the detection phase will be able to detect apply

the correct σx gate to the qubit and reverse the error. As an example, assume an X error

happened on the 1st qubit in the noisy channel. Applying an X1 error to the encoded state

results in the mapping

α |000〉+ β |111〉 X1−→ α |100〉+ β |011〉.

In the correction phase, ancilla qubits, that are initiallized to |0〉, are used to measure

the parity of the three encoded qubits. There are four possible outcomes from the ancilla

measurements, also called the error syndrome measurement.

|00〉 signifies there is no error. No σx gate is needed.

14

|01〉 signifies there was an error 1st qubit, so a σx gate is applied to that qubit to fix the

error.

|10〉 signifies there was an error 2nd qubit, so a σx gate is applied to that qubit to fix

the error.

|11〉 signifies there was an error 3rd qubit, so a σx gate is applied to that qubit to fix the

error.

This encoding scheme can correct X error, but it cannot correct Z errors. To see that

this doesn’t work for phase errors, note that applying Z2 error results in the mapping

α |000〉+ β |111〉 Z2−→ α |000〉 − β |111〉.

This is a valid encoding of the state α |0〉 − β |1〉, so the error is undetectable. To

have an effective error correcting code, we also need to be able to correct the Z errors.

This is accomplished with the Hadamard gate, because of the property HX = ZH . This

shows that X and Z errors are orthogonal to each other. This means the Hadamard matrix

will change bases and turn bit errors into phase errors, and vice versa. Here is a simple

illustration to show that an X gate applied in the Hadamard basis is equal to the Z gate.

HX = ZH → HXH = Z (1.11)

σHx =
1√
2

1 1

1 −1

0 1

1 0

 1√
2

1 1

1 −1

 =

1 0

0 −1

 = σz (1.12)

The code that protects against phase errors is the follow mapping:

H |0〉 7→ H⊗3 |000〉

H |1〉 7→ H⊗3 |111〉

This expands to:

|0L〉 7→ 1√
8
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉)

|1L〉 7→ 1√
8
(|000〉 − |001〉 − |010〉+ |011〉 − |100〉+ |101〉+ |110〉 − |111〉)

15

Now we can combine both encoding schemes by concatenating our bit flip code with

our phase flip code to protect against both types of errors. This is the 9-qubit code that

Peter Shor wrote about in his 1995 paper [6].

Shor Nine Qubit Code

Peter Shor’s Code encodes one logical qubit into nine physical qubits. It can protect

against both bit flip errors and phase flip errors. The 9-qubit Shor code is given by the

following mapping:

|0〉 7→ |0〉L ≡
1√
8
(|000000000〉 + |000000111〉 + |000111000〉 + |000111111〉 +

|111000000〉+ |111000111〉+ |111111000〉+ |111111111〉)

|1〉 7→ |1〉L ≡
1√
8
(|000000000〉 − |000000111〉 − |000111000〉 + |000111111〉 −

|111000000〉+ |111000111〉+ |111111000〉 − |111111111〉)

Here is a circuit diagram of the Shor code

Figure 1.3: Circuit diagram for the Shor Nine Qubit Code

We showed that the code can correct bit flip errors (σx) and phase flip errors (σz), but

it can also correct σy errors (up to a global phase) because σy can be obtained from a

16

product of σx and σz. Therefore, this code can correct any arbitrary error on one qubit.

The quantum circuit works by splitting the qubits up into groups of three. Each group of

three is treated as one qubit (like the repetition example) to correct for bit flips. Within

each group of three, a control qubit goes through a Hadamard gate to change it’s basis into

the |+〉 , |−〉 basis. This will protect the each group of three from phase errors.

After Peter Shor released his code and showed it was possible to protect against errors,

this sparked interest to research other quantum errors codes. Many researchers started dis-

covered different classes or families of codes that had different properties. One important

class of codes are the Calderbank-Shor-Steane (CSS) codes. In 1996, Andrew Steane in-

troduced a new CSS quantum error correcting code that is based on the classical [7,4,3]

Hamming code.

Steane Seven Qubit Code

This section introduces the Steane 7-qubit code which uses seven physical qubits to

encode one logical qubit. It was first introduced in 1996 by Andrew Steane [7]. To un-

derstand this code, we revisit the example of the classical error correction. Recall that

in classical error, we have an encoding matrix G and a parity check matrix H satisfying

GHT = 0, with rank(G) + rank(H) = n. A message, m, is encoded to a codeword, c,

by mG = c. If there is an error, e, then are codeword becomes c + e. We can extract the

error syndrome by (c+ e)HT = eHT . With the error syndrome obtained we can apply the

corrective measure needed to change our codeback back to c.

For this quantum code, we will use the encoding matrix from our classical error cor-

rection example and we will devide the codewords into two sets, C1 and C ′1, given by

17

C1 =

0 0 0 1 1 1 1

1 0 1 0 1 0 1

0 1 1 0 0 1 1

and

C ′1 = C1 + 1111111.

The logical bits are defined as follows:

|0〉L = 1√
8

∑
v∈C1
|v〉

|1〉L = 1√
8

∑
w∈C′

1
|w〉

Note that this corrects bit flip errors. To correct for phase flip errors we can use the

Hadamard gate.

H⊗7 |0〉L = 1√
2
(|0〉L + |1〉L)

H⊗7 |1〉L = 1√
2
(|0〉L − |1〉L)

This Steane code is an example of a perfect CSS (Calderbank-Shor-Steane) code. It

uses the classical binary self-dual [7,4,3] Hamming code to correct for qubit flip errors (X

errors) and the dual of the Hamming code, the [7,3,3] code, to correct for phase flip errors

(Z errors). The Steane code is able to correct arbitrary single qubit errors.

Figure 1.4 is the circuit diagram for the Steane code.

Figure 1.4: Circuit diagram for the Steane Seven Qubit Code

18

The next chapter will discuss how these codes can be used in practice and will cover

different experiments that will measure their performance in real world scenarios.

19

2. METHODS

In this chapter we will present the environment used to simulate and test the different

quantum error correcting codes.

2.1 Alfred Quantum Simulator

The Alfred Quantum Simulator is a quantum simulator that is written in C that can

model the states of a quantum system. It keeps track of the state of a system using an array

containing the 2n complex coefficients of the basis states. Since there is not a native data

type for complex numbers, each complex number is defined by a struct, which contains

the real and imaginary parts.

There are several important functions within the simulator. One is the measurement

function. Once a qubit is measured, if it was in a super position of |0〉 and |1〉, it was

collapse down from the super position into either |0〉 or |1〉 based on the probabilities.

Recall from (1.1), the coefficients govern the probability of observing a |0〉 or |1〉. After

measurement, the quantum state is updated. Another important function is the apply gate

function. This function allows you to apply any quantum gate to a specified qubit. The

function also allows you to attach control points to other qubits. In that case the quantum

gate is only applied if the current quantum state meets the control conditions.

Experiments are written in a simplified scripting language to express the different ac-

tions that can be performed to a quantum system, such as defining and applying different

quantum gates and measuring different qubits. With this simulator, we can have precise

control over the type of errors and the location the errors are introduced into the system.

We will be able to model how errors are introduced and see how the state is corrected.

For our experiments, we will be analyzing the Shor [[9,1,3]] code and the Steane [[7,1,3]]

code.

20

2.2 Types of Errors

Before we discuss the results of the simulation experiments, let’s discuss the nature

of errors that occur in a quantum system and show how error correction can be effective.

Recall from equation (1.3) that any single qubit operation can be expressed as a linear

combination of the Pauli operations. Because an error on a qubit can be viewed as an

operation, any error can be described in terms of the Pauli operations. The types of errors

that can occur on a qubit are:

I - no error

X - bit flip error

Z - phase flip error

Y - bit and phase flip error

In actuality there are an infinite number of different errors that can occur on a qubit

because the error can be a continuous linear combination of the four errors described

above. Every general error E can be described as a superposition of this discrete set:

E = e1I + e2X + e3Z + e4Y (2.1)

Because there could be an infinite number of different errors, one might think we

would need to be able to correct each different error, which seems like an impossible task.

However, because of the equation above, we actually only need to be able to correct X, Y,

and Z errors. This is accomplished with syndrome measurements which are described in

the next section.

2.3 Error Syndrome Measurements

Syndrome measurements were briefly discussed in the Three Qubit Flip Code section,

however they are crucial for fault tolerant computing. Syndrome measurements use ancilla

21

qubits to perform a multi-qubit measurement that does not disturb the quantum information

in the encoded state but reveals information about any errors that could have occured. The

purpose of the error syndrome measurement is to take an arbitrary error (which maybe in

a super position of the basis errors) that occurred on a qubit and measure in the basis of the

discrete error set. The measurement then “forces” the error to collapse down into one of

the four basis errors. After the measurement, we know exactly which qubit was affected

and which error has occured so we can apply the correct Pauli operation to correct the

error. The syndrome measurement tells us information about the error that has happened,

but nothing about the value that is stored in the encoded qubits. Otherwise knowing the

value would collapse any quantum superposition of the logical qubit with any other qubits

in the quantum computer.

2.4 Types of Error Channels

Depolarization Channel

The depolarization channel is a model for noise in quantum systems. It can be de-

scribed as saying that, with probability p an error occurs, while with probabilty 1−p there

is no error. In the computational basis (|0〉 , |1〉), the error can be any one of the three Pauli

errors, X , Z, or Y . If an error occurs, each X , Z, or Y is equally likely to occur.

In this way we can simulate the noise in our experiements. During each quantum gate

operation, the gate will have a small probability of introducing an error on the qubit after

the gate has performed it’s operation. If an error occurs, then either an X , Z, or Y error

will occur on the qubit with equal probablity [8].

Dephasing Channel

The next type of channel is the dephasing channel, also called the phase-damping

channel. In this type of channel, the qubits have a small probability of interacting with

the environment and being kicked up into a higher energy level. Realistically, this might

22

be caused by some sort of heavy particle interacting with the system. Mathematically, we

can represent this by saying σZ is applied with probability p/2 and nothing happens with

probability (1− p/2) [8].

Amplitude Damping Channel

The amplitude damping channel models the dynamics of a system due to energy dis-

sipation. In some cases a qubit might spontaneously emit a photon, causing the qubit to

drop energy levels. We can represent this by saying with some probability p, a state of

|1〉 would get bumped down to a state |0〉, and with probability (1 − p) no change would

happen [8].

23

3. EXPERIMENTS AND RESULTS

In this chapter we will present the different experiments that were run on the Alfred

simulator and how each experiment was set up and configured in the simulator. At the end

of the section we will present the results and observations from the simulations.

3.1 Experiments

3.1.1 Alfred Simulator Setup

In this section, different experiments will be discusses to show the performance of

each error correcting code. To run experiments in the Alfred simulator, commands are

written out in a script file. The simulator runs through the script line by line and executes

each command. For the purpose of our experiments, each script file is broken down into

different sections.

The first section is where we set up the environment of the quantum system. In this

section we define our different quantum gates that we will be using, define how many

qubits are in our system, and what the starting state is for the system. After the starting

state has been defined we can now the gate function to execute different gates on qubits to

manipulate the system.

The following sections in the script file follow the typical communication procedures

when transmitting information over a noisy channel. There is the encoding section, where

1 logical qubit is encoded into several of the physical qubits. After that comes the trans-

mission section where we simulate tranmitting the information over a noisy channel. This

is the section where an error is most likely to be introduced into the system.

After the transmission section is the error detection and correction section. This is

where is we use extra ancilla qubits to make error syndrome measurements. With those

24

error syndrome measurements, we are apply to apply the appropriate corrective procedure

to reverse the effect of the error.

The final section, which is usually optional in real world scenarios, is the decoding

section. The encoded qubits are decoded back into the original starting state.

Most of the experiments will look at what sort of errors can occur in the transmission

section as well look into what happens when the gates themselves have some probability

to introduce an error.

3.1.2 Types of Experiements

The first experiment was simulating the depolarization channel. The probability, p, of

a gate introducing an error was varied from 0.02 to 0.005. Each run of the simulator was

categorized as a success or failure depending on if the logical bits of the corrected state

matched the initial state. To acquire an accurate success rate percentage, each experiment

was run 100 times.

In the next experiment, p was held constant at 0.005 while the type and location of the

error was changed. The purpose of this was to try and see if certain errors on certain qubits

affected the success rate more than others.

While comparing success rates between the [[9,1,3]] and [[7,1,3]] code, the results

did not match our intuiton, so a new [[7,1,3]] circuit was tested using double the amount

of ancilla qubits. Instead of four control nots per ancilla qubit, there are two to try and

minimize corrupted ancilla qubits. Then classical logic is used (gates that do not produce

any sort of error) to apply an X gate to the correct logical qubit.

The next couple of experiments will showcase a different type of channel. Simulating

a dephasing channel, with each gate, there is a small probability of introducing a phase

error. We can model this by applying the σZ operation or by applying a small rotation

25

gate, Rφ =

1 0

0 eiφ

, where φ is the phase shift. For each error that occured, φ could be

a random number between 0 and π/4.

The final type of experiments tried to simulate the amplitude damping channel.

3.1.3 Set up for Shor Nine Qubit Code

The Shor [[9,1,3]] code uses 9 physical qubits to encode 1 logical qubit and 8 ancilla

qubits to measure and correct any errors for a total of 17 qubits. The quantum gates that

are used in this experient are the Hadamard gate, the X gate, and the controlled not gate.

Qubit 8 is the initial state that will be encoded into 9 qubits. Qubits 0 through 8 are the

encoded qubits. Qubits 9 and 10 are the ancilla qubits used to correct Z errors that could

occur on qubits 0, 1, or 2. Qubits 11 and 12 are the ancilla qubits used to correct Z errors

that could occur on qubits 3, 4, or 5. Qubits 13 and 14 are the ancilla qubits used to correct

Z errors that could occur on qubits 6, 7, or 8. Qubits 15 and 16 are the ancilla qubits used

to correct X errors that could occur on any of the eight logical qubits.

Figure 3.1 shows a diagram of the decoding circuit of the Shor code. The logical and

ancilla qubits are labeled.

3.1.4 Set up for Steane Seven Qubit Code

The Steane [[7,1,3]] code uses 7 physical qubits to encode 1 logical qubit and 6 ancilla

qubits to measure and correct any errors for a total of 13 qubits. The quantum gates that

are used in this experient are the Hadamard gate, the X gate, and the controlled not gate.

Qubit 6 is the initial state that will be encoded into 7 qubits. Qubits label 0 through 6

are the encoded qubits. Qubits 8, 9, and 10 are ancilla qubits that protect againt X errors.

Qubits 11, 12, 13 are ancilla qubits that protect againt Z errors. Figure 3.2 is the diagram

for the encoding circuit with the qubits labeled.

To detect and correct errors, the three ancilla qubits are configured in such a way as to

26

Figure 3.1: Decoding and error correcting circuit of the Shor code

enumerate all possible positions where an error can occur. Figure 3.3 shows diagram for

the ancilla bits.

As explained before the Hadamard gate can change the basis of the state so that Z

errors can be detected and corrected. When in the Hadamard basis, Z errors act as X

errors, so we can use the same error correction circuit as shown in figure 3.3. Figure 3.4

shows the full error correction circuit.

As noted previously, during experimentation, it was noticed that the success rate of the

[[7,1,3]] code wasn’t outperforming the [[9,1,3]] code so a modified version of the [[7,1,3]]

27

Figure 3.2: Steane encoding circuit

Figure 3.3: Steane error syndrome circuit

circuit was used with double the amount ancilla qubits. The same set of experiments was

performed on this new circuit.

28

Figure 3.4: Full error correcting circuit for [[7,1,3]] Steane code

3.2 Results

3.2.1 Shor Nine Qubit Code

The results of the first experiment match our intuition where the success rate increases

with a decrease in probability, p. Figure 3.5 shows the success rate of a Z error on the 6th

qubit.

Figure 3.5: Success rate for [[9,1,3]] code in depolarizing channel

The results of the next experiment show the success rate of different type and location

29

of errors. From the simulations we did, it looks like X errors had a higher success rate than

the Z errors, with an average success rate for X errors at and an average success rate for Z

errors at.

Figure 3.6: Success rate for [[9,1,3]] code in depoalizing channe with different type and
locations of errors

The next couple of experiments show the success rate for the different types of chan-

nels. Figure 3.7 shows the success rate for a dephasing channel and 3.8 shows the success

rate for a amplitude damping channel.

3.2.2 Steane Seven Qubit Code

Similar to the results of the [[9,1,3]] code, we can see the success rate of the [[7,1,3]]

code increase when p is decreased. Figure 3.9 shows the results with an X error on the

5th qubit. Figure 3.10 shows the success rate for the [[7,1,3]] code for different types

and location of errors. The next two figures show the experiments simulating different

quantum channels. Figure 3.11 shows the dephasing channel and figure 3.12 shows the

30

Figure 3.7: Success rate for [[9,1,3]] code in dephasing channel

Figure 3.8: Success rate for [[9,1,3]] code in amplitude damping channel

amplitude damping channel. As discussed previously a second [[7,1,3]] circuit with

double the amount of ancilla qubits was tested to see if the success rates were changed.

31

Figure 3.9: Success rate for [[7,1,3]] code in depolarizing channel

Figure 3.10: Success rate for [[7,1,3]] code in depoalizing channe with different type and
locations of errors

Figure 3.13 compares the results between the two circuits.

32

Figure 3.11: Success rate for [[7,1,3]] code in dephasing channel

Figure 3.12: Success rate for [[7,1,3]] code in amplitude damping channel

33

Figure 3.13: Success rate for [[7,1,3]] vs [[7,1,3]] v2 code in depolarizing channel

3.3 Observations

Unsurprisingly, we see that in both codes the success rate increases as p decreases. The

relationship between the success rate and p seems to be nonlinear, probably logarithmic.

The success rate seems to increase linearly however the change in p is not linear, it is

halved each time.

For the [[9,1,3]] code it seemed like the type and position of the error did not have

a big effect on the success rate. Figure 3.6 shows that most of the errors are in the 80%

range. With the highest at 90%, the lowest at 81%, and the average at 85.4%, this gives a

range of about ± 5%, which is most likely within the margin of error for the simulations.

If the margin of error is smaller than ± 1%, then we can see there is a slight correlation

between the location and the success rate. It appears the success rate between location 6,

7, and 8 increases a couple percent for each location respectively. One possible reason that

location is the highest is because it has two separate syndrome measurements associated

with it. So perhaps each measurement will help increase the success rate.

34

Similar results are displayed in the [[7,1,3]] code. From figure 3.10, the location and

type of error do not seem to matter too much, as they are all around the upper 70%. The

lowest is 74%, the highest is 81%, and the average is 76.8%. This gives a range of about

± 3%, which is most likely within the margin of error for the simulations. The type of

error does not seem to matter because accounting for the location, the difference in success

rate for the type is only 1%. However, the location of the error could possibly affect the

success rate. We can see that at location 5, there is a higher success rate by about 6% (for

both errors) than compared to locations 0 and 2.

When analyzing the different quantum channels, we can see which channels provide

higher success rates for different p’s. Unsurprisingly, the depolarizing channel shows the

worst performance. For both the [[9,1,3]] code and the [[7,1,3]] code, the depolarizing

channel has the lowest success rate for all the values of p. This is to be expected according

to the theoretical results, because the depolarizing channel takes a quantum state to a

maximally mixed state. The next best performing channel according to our experiments

was the dephasing channel. This is most likely because there is only one type of error that

is occurring and often times a phase error will not affect the bit value of the qubit. The

best performing channel was the amplitude damping channel. This is most likely because

the error essentially only affects half the qubits, the qubits that are in the |1〉 state.

35

4. SUMMARY AND CONCLUSIONS

This chapter will summarize the results of this research and discuss the implications on

the field of quantum computing. Then we will discuss some improvements and the future

direction of this research.

4.1 Discussion of Results

In this research, we explored how error correcting codes can help a quantum system

mitigate the effects of errors. We exposed two different error correcting codes, the [[9,1,3]]

Shor code and the [[7,1,3]] Steane code, to different types of errors and documented the

changes in the quantum state. With the comparison between the [[9,1,3]] code and the

[[7,1,3]] code, we can get a better understanding of how and why these codes might be

implemented in a real quantum computer.

Overall most the results from the experiments line up with the theoretical results. I

believe the experiments produced interesting results that can give a little bit of insight

into how errors can affect a quantum state. One interesting result was the [[9,1,3]] code

seemed to offer better resistance to errors compared to the [[7,1,3]] code. This is most

likely attributed to using more ancilla qubits on the [[9,1,3]]. Each ancilla qubit interacts

with fewer qubits in the [[9,1,3]], which provides better protection on the ancillas by two

seperate methods. One, fewer interactions with the ancilla qubit bit reduce the probabilty

of corrupting the ancilla qubit itself and two, with fewer qubits governing the logic of the

ancilla qubit, there is a smaller probability of being a logical error. This suggests that it is

best to use ancilla qubits on small local areas. Another result that was interesting is that

even with gates that have a 0.5 % chance of introducing an error, the overall success rate is

only 80 %, and this is only with 1 logical qubit. I suspect with more qubits actually per-

forming some calculations would have a much lower success rate. The results suggest that

36

there will need to be considerable effort in making sure gate operations are near perfect.

4.2 Improvements and Future Work

There are several areas where we can make improvements to this research. One im-

provement I would make to the experiments is to modify the simulator scripts to be able to

run many and be able to read the results. As it stands each experiment runs the simulator

only once. So to gather the results for the each experiment, the simulator had to be run

manually 100 times and the results had to be manually tabulated. A much more efficient

method to gather the results would be to programmatically run the simulator 1000s of

times for the same experiment. This would also give a much more accurate success rate

for a given experiment.

Another area for improvement would be to conduct the experiments on an actual quan-

tum computer. There are real quantum computers that are open to the public to run ex-

periments on. One example is the IBM quantum devices. Today, IBM has several real

quantum devices and simulators available for use through the cloud. These devices are

accessed and used through Qiskit, and open source quantum software development kit,

and IBM Q Experience, which offers a virtual interface for coding a quantum computer.

Another area that needs improvement would be to build some circuits that actually

compute something meaningful, even if the computation is simple. These circuits would

need to incorporate more than one qubit to do so and there are a lot of challenges to

do so. Classical quantum simulators are limited to around 25-30 qubits because of the

computation and memory requirements for a large amount of qubits. Each qubit added

doubles the space required to store the state information. In order to protect against errors,

each logical qubit takes 7 – 9 physical qubits plus extra ancilla qubits. This limited number

of qubits would be hard to do computations with.

Because of the conclusion showing that the [[9,1,3]] code provides better protection

37

on the ancilla qubits, I believe our future work would focus on finding and testing Low

Density Parity Check codes. LDPC codes by definition have sparse parity check matrices.

This means that for each data qubit there are fewer ancilla check qubits. There have been

several publishings into construction techniques of quantum LDPC codes such as [9] and

[10], so further research looks promising.

38

REFERENCES

[1] R. P. Feynman, “Simulating physics with computers,” International journal of theo-

retical physics, vol. 21, no. 6, pp. 467–488, 1982.

[2] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factor-

ing,” in Proceedings 35th annual symposium on foundations of computer science,

pp. 124–134, Ieee, 1994.

[3] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,”

Reports on Progress in Physics, vol. 76, no. 7, p. 076001, 2013.

[4] A. Wei, “Peter shor on quantum error correction.”

https://windowsontheory.org/2018/12/07/quantum-error-correction/. Accessed:

2019-03-15.

[5] R. Baumann, “Quantum error correction (qec),” 2003.

[6] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys-

ical review A, vol. 52, no. 4, p. R2493, 1995.

[7] A. Steane, “Multiple-particle interference and quantum error correction,” Proceed-

ings of the Royal Society of London. Series A: Mathematical, Physical and Engineer-

ing Sciences, vol. 452, no. 1954, pp. 2551–2577, 1996.

[8] J. Preskill, “Quantum information chapter 3.” University Lecture Notes, October

2018. URL: http://www.theory.caltech.edu/people/preskill/ph219/chap3_15.pdf.

[9] M. S. Postol, “A proposed quantum low density parity check code,” arXiv preprint

quant-ph/0108131, 2001.

39

[10] T. Camara, H. Ollivier, and J.-P. Tillich, “Constructions and performance of classes

of quantum ldpc codes,” arXiv preprint quant-ph/0502086, 2005.

40

