47TH TURBOMACHINERY & 34TH PUMP SYMPOSIA HOUSTON, TEXAS | SEPTEMBER 17-20, 2018 GEORGE R. BROWN CONVENTION CENTER

Fundamentals of Medium Voltage Adjustable Speed Drives

Manish Verma TMEIC

TEXAS A&M

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Manish Verma bio

Senior Sales Application Engineer TMEIC

Manish Verma is a senior sales application engineer with TMEIC. He graduated in 2006 from Virginia Tech with BSEE. He began his career with TMEIC in 2006 while continuing his professional education. In 2009 he completed his MSEE with concentration in power. After a broad exposure and education in the various TMEIC business units, he joined the global drives division, with concentration on sales and application engineering. His responsibilities include providing solutions-based engineered adjustable speed drives and motors, reviewing specifications, and technical and sales training for a wide variety of industrial clients and channel partners. He is a senior member of IEEE and has authored and presented more than 20 technical papers and tutorials for several nationally recognized conferences and seminars.

Agenda

- Basic Electrical fundamentals & Mechanical Equivalents
- Starting strategies for large capacity motor / compressors
- What is an ASD, how does it work & its benefits for compression/pumping
- ASD application overview & installation considerations
- ASD cooling methods and standards

Applicable dimension of today's tutorial

Parameter	Description			
Service types	Rotating machinery such as pumps, compressors, extruders, fans, blowers, etc.			
Power Level (HP)	500HP – 130,000HP			
Voltage range(kV)	Medium Voltage, > 1.0 kV			
3				

Electrical Equivalents

Variable / Function	Electrical Element	Fluid Equivalent
Across Variable	Voltage (V)	Pressure (p)
Through Variable	Current (i)	Flow Rate (q _v)
Resistor	$V_{1} \xrightarrow{i} V_{2}$ R $V_{1} - V_{2} = iR$	$q_{v} \xrightarrow{p_{1}} p_{2} \qquad q_{v}$ R_{f} $p_{1} - p_{2} = q_{v} R_{f}$
Capacitor	$V_{2} \xrightarrow{i} V_{1}$ C $i = C \frac{dV_{21}}{dt}$	Fluid Reservoir Fluid height \mathbf{T} $\mathbf{p} = Gravity$ Fluid height \mathbf{T} $\mathbf{p} = Fluid density$ $\mathbf{p} = Pressure$ \mathbf{q}_{v} $\mathbf{c}_{i} = \frac{\mathbf{A}}{\mathbf{p}\mathbf{g}}$ $\mathbf{q}_{v} = C_{f} \mathbf{d}\mathbf{p}$
Inductor	$V_{2} \xrightarrow{i} V_{1}$ $V_{21} = L \frac{di}{dt}$	$q \xrightarrow{p_1} \underbrace{L}_{p_2} p_2 \qquad q \xrightarrow{p_1} q$ $p_{21} = \underbrace{L}_{dq} \frac{dq}{dt}$

1000hp = 746kW 1hp = 746 watts

Typical Motor Starting Characteristics

Motor starting strategies

Chemical Industry Conference, 2005. Industry Applications Society 52nd Annual , vol., no., pp.217,222, 12-14 Sept. 2005

Nevelsteen, J.; Aragon, H., "Starting of large motors-methods and economics," *Petroleum and Chemical Industry Conference, 1988, Record of Conference Papers., Industrial Applications Society 35th Annual*, vol., no., pp.91,96, 12-14 Sep 1988

Direct-on-line Starting

System Configuration

Motor Speed – Torque Curve

Reduced Voltage Starting

Method of operation (applicable to all RV starting methods):

- Motor voltage is reduced
- With reduced voltage
 - Motor current is reduced by a proportional factor
 - BUT, available motor torque is also reduced

Remember

 $(V_{motor})^2 \propto T_{motor}$

V_{motor}∝ I_{motor}

- For Eg:
 - At 80% Motor Voltage only 64% Torque is available ($0.8 \times 0.8 = 0.64$).
 - At 80% Motor Voltage 480% inrush amps (assume 600% Start Current).

Pony Motor Starting (Mech.)

System Configuration

Motor Speed – Torque Curve

• Dependent on starting conditions, mechanical configuration

Reduced Voltage Starting

System Configuration

Motor Speed – Torque Curve

General application considerations

- Evaluate load speed torque curve
- Process requirements and need for variable speed
- Based on power decide whether air or liquid cooled VFD
- Cost benefit analysis
- Review details with OEM, motor and VFD vendor

How are drives sized for starting duty?

- Virtually all VFDs have a short term (min 60 seconds) overload (OL) rating
- Common OL ratings are 110%, 115%, 150%, 200%, 300%
- Most variable loads require 110% or 115% OL rating
- Most constant torque loads require 150% OL rating

How are drives sized for starting duty?

Motor Sync-to-line video demonstration

Single VFD / single motor

Redundant Starter – Representative configuration

Redundant Starter – Representative configuration

Redundant Starter – with Tie Contactor

Representation starter – with tie breakers

Representation starter – with two starting bus

Motor protection guidance - Sync-transfer systems

- Primary protection for the motor is contained within the drive itself
- No need of Motor protection relays (MPR) for motor or ASD
- MPR protection may be added in addition for:-
 - Differential Current Protection
 - RTD

Considerations:-

- Check if MPR can work at all freq.
 - MPR protection is inhibited Typically very little added benefit & Philosophical decision

- Initial protection for the motor is contained within the drive itself
- MPR's needed for bypass circuit
- MPR operation is inhibited when motor is running on ASD
- Thermal Overload relay can also be used as inexpensive option

Procurement guidance

- VFD Vendor (minimum)
 - VFD
 - PLC Co-ordination
 - Switchgear specification guidance
- Others
 - Switchgear
 - Motors
 - Installation, etc

How to select motor starting strategy??

What is an ASD?

What is an ASD? – Other common terminology

What is an ASD?

- Typical air cooled ASD
- 4.16kV, 60 Hz
- ~2,200 HP

What is an ASD? A look inside

- Typical air cooled ASD
- 4.16kV, 60 Hz
- ~2,200 HP

What is an ASD?

What is an ASD?

- Large Water cooled ASD
- 7.2kV Output
- ~38,000 HP
- Outdoor Transformer and cooling apparatus not shown

Typical Range of ASDs

Historical Overview of power semiconductor devices

Time Line of Adjustable Speed Drives

DC Motor Drives		Synchronous Motor drives	Induction Motor Drives		Ind/Synch Motor Drives	
1955	1965	1975	1985	1995	2005	

Major ASD Topologies

Voltage Source Inverters (VSI)

 Energy storage/DC Link is Capacitor

- Maintains constant Voltage at DC Link
- Converter (AC/DC) is either Passive (using diodes) or Active (using PWM)

 Energy storage/DC Link is Inductor

- Maintains constant current at DC Link
- Converter (AC/DC) is Active (using phase control or PWM)

Major VFD Topologies

Voltage Source Inverter

Load Commutated Inverter

Drive Topologies: How does it matter??

- They affect:-
 - Efficiency & reliability of the VFD
 - Line-side voltage & current performance
 - Motor-side insulation and thermal rating
 - Cable sizing
 - Auxiliary equipment needed to support the VFD
 - · Safety
 - Total Cost of Ownership
- For drives with lots more parts, they must be very conservatively applied if reliability is to be achieved.
- In-service reliability is the best indicator of real reliability.

What does an ASD mean for the motor and the process?

ASD System Considerations

Must consider the whole system in which the ASD will work

- From Utility to finished product or process
- Consider environment
- Consider effects on utility
- · Consider the needs of the load
- Consider the effect of ASD on the motor and drive train

Electrical/Power Application Factors

- Continuous kW or HP & duty cycle
- Torque & Power Overload requirements
- Load factors: CT, VT, CHP, regenerative, non-regenerative.
- Drive and Motor Voltage
- Power system compatibility

Keep In Mind

Drives are sized & priced based on Motor Full Load Current, Operating Envelope & driven equipment Overload

Example:

- 7000 HP, 1800 rpm, 4000V, FLA 910A
 ASD Rating = 6300 kVA
- 7000 HP, 450 rpm, 4000V, FLA 1240A
 ASD Rating = 8600 kVA

~37 % difference in rating

4-4.16 kV [†] UL/CSA							
VFD Outline	Approximate Motor Shaft HP (kW) at 4.16 kV	Rated Output Current (A) I phase AC*	Inverter kVA output at 4.16 kV				
nn (102.4 in / 8.5 4)	536 (400)	69	500				
2.900 mm (114.2 in / 9.5 it)	1,085 (810)	138	1,000				
	1,500 (1,120)	191	1,380				
1,255 mm (140 is / 11.7 it) 3,555 mm (140 is / 11.7 it) (40.4 is / 4.1 it)	2,145 (1,600)	262	1,890				

Power system compatibility - Keep In Mind

- Always provide and electrical one-line diagram
- Some tips for ASD voltage level selection

	Motor Power	ASD Input Voltage	Motor Voltage
•	250HP – 5000HP	2.3, <mark>4.16, 3.3, 6.6</mark> , 10, 11, 13.8 kV	2.3, 4.16, 3.3, 6.6, 10, 11 kV
•	5000HP – 10,000HP	4.16, <mark>6.6, 10, 11, 13.8, 25, 34</mark> , 66 kV	Matched to ASD output voltage
•	>10,000HP	10, 11, 13.8, 25, 34, 66, 110, 138 kV	Matched to ASD output voltage

Note: if ASD is used for starting ONLY, then Motor Voltage = Utility Voltage (Max 13.8kV)

Medium Voltage versus Low Voltage – Which to use?

- MV drive \$ / HP decreases with HP
- Harmonic content can be important:
 - Installed cost must be considered
 - Reliability & cable cost
 - Cost of Special VFD rated cables
 - Additional cost for harmonic filters to meet IEEE 219 Requirements

Recent Trend:

Some users select MV >250 HP Many users select MV > 500 HP.

Power Line Harmonics IEEE 519-2014 Table 10.3 I_{TDD} Limits

Maximum Harmonic Curent Distortion in % of I-Load

Isc to I-load Ratio	h < 11	h = 11 to <17	h = 17 to <23	h = 23 to <35	h = 35 & up	TDD %
< 20	4.0	2.0	1.5	0.6	0.3	5.0
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

Notes: Even Harmonics limited to 25% of the harmonic level

TDD = Total Demand Disortion %, based on maximum demand current at the point of common coupling [PCC].

Isc = Maximum Short Circuit current or kVA at the PCC

I-load = Fundamental freqency load current or kVA at the PCC

Specifying a min. 24-Pulse VSI VFDs or Active Front End VFD is safest option for harmonic mitigation. Best to ask for V & I harmonic spectrum

Specifying ASDs to avoid harmonics nightmare

- ASD shall be IEEE 519 2014 compliant and the I(TDD) shall NOT Exceed 5%
- A minimum of 24-pulse or higher input converter shall be supplied
- Harmonic mitigation shall be accomplished <u>without</u> the use of external filters (active/passive)
- Vendor shall provide the harmonic spectrum and line side voltage and current waveform of the ASD
- Active front end ASDs shall be provided with an input transformer

Line Side Performance – Voltage & Current

Harmonic Test Data									
	100% Load / 100% Speed								
Harmonic Number n	Peak Input amps	RMS Input Amps	Peak Input Volts	RMS Input Volts	Peak Output amps	RMS Output Amps	Percent of Fund Amps	Peak Ouput Volts	RMS Output Volts
1	344.6	243.6	5655.4	3999.0	372.32	263.3	100.0%	5734.739	4055.1
2	1.69	1.197	15.18	10.732	2.33	1.646	0.6252%	16.320	11.540
3	2.62	1.852	16.50	11.664	2.80	1.978	0.7513%	22.136	15.653
4	0.59	0.417	2.44	1.727	0.30	0.210	0.0796%	2.693	1.904
5	2.07	1.46/	18.9/	13.416	3.29	2.325	0.8832%	28.597	20.221
6	0.23	0.164	1.06	0.748	0.21	0.148	0.0562%	1.//3	1.253
7	1.38	0.978	10.00	11./83	1.15	0.812	0.3083%	8.481	5.997
8	0.30	0.212	1.38	0.973	0.20	0.141	0.0535%	2,523	1.784
9	0.42	0.300	6.44	4.552	0.82	0.580	0.2204%	2.508	1.774
10	0.24	0.172	2.37	1.673	0.20	0.143	0.0544%	2.050	1.449
	2,03/ 0,44						ana		
87	0.09	0.066	1.21	0.855	0.19	0.131	0.0497%	8.973	6.345
88	0.13	0.092	3.43	2.425	0.27	0.188	0.0714%	32.180	22.755
89	0.12	0.082	0.88	0.623	0.13	0.091	0.0346%	5.303	3.750
90	0.08	0.057	1.00	0.705	0.09	0.062	0.0235%	8.792	6.217
91	0.10	0.069	1.39	0.980	0.14	0.096	0.0364%	7.551	5.340
92	0.11	0.075	3.40	2.407	0.67	0.4/1	0.1787%	81./31	57.792
93	0.14	0.102	0.79	0.558	0.13	0.094	0.0356%	13.492	9.540
94	0.11	0.080	3.83	2.706	0.88	0.623	0.2367%	109.613	77.508
95	0.12	0.083	3.22	2.275	0.08	0.057	0.0217%	6.714	4.748
96	0.17	0.122	3.71	2.623	0.13	0.089	0.0337%	6.122	4.329
97	0.09	0.065	4.01	2.837	0.10	0.070	0.0265%	10.564	7.470
98	0.10	0.073	2.58	1.826	0.76	0.536	0.2034%	110.552	78.172
99	0.10	0.069	1.07	0.756	0.10	0.072	0.0274%	4.104	2.902
100	0.14	0.000	2.28	1.615	0.70	0.493	0.1873%	84.358	59.650
Square Ro square	ot, Sum of Values	5.05		93.4		4.07			167.2
THD %, Fundame	RMS / ntal RMS	2.07%		2.34%		1.55%			4.12%
		Amps		Volts		Amps			Volts
	INPUT					001	TUPI		

Operator Control and Communication

- Interface with larger process
 - Controls for operator -
 - Simple start-stop contacts
 - More complex HMI
 - Process equipment controls system PLC
- LAN communication of drive status if/as needed to plant PLC or DCS
- Plan for remote diagnostics capability

Power System & Drive Efficiency

- Drive itself is typically 98% or more efficient
 - With all fans, transformers, pumps, efficiencies of 96-97% are common
 - · Efficiency impact of drive varies with speed
- Efficiency effect of the drive can be eliminated at full speed by synchronous bypass.

For Air-cooled vs. Water-cooled Overall system efficiency some tips:

92% for air-cooled (Includes VFD and E-house HVAC) 96% for water-cooled (Includes VFD and E-House HVAC)

Drive Installation

- Kept clean from dust, dirt & atmospheric contaminants
- Free from damaging moisture
- Operate within they rated ambient temperature & altitude ratings
- Properly connected & integrated into a reliable electrical system
- Integrated into the overall plant facility including proper site, equipment rooms, equipment handling
- Properly stored BEFORE being installed

Enclosures for VFDs

NEMA 1 (IP 20/21)

- Indoor Use
- Protect from contact & falling dust
- Force ventilated

Gasketed

NEMA 3R (IP 23/33)

- Outdoor use
- Protect from the elements
- Convection or passive cooling

NEMA 12 (IP 51/52)

- Indoor use
- Protect against dust & dripping liquids
- Non ventilated
- VFD control section typically hosted

Enclosures for VFDs

Enclosure

- NEMA 1 air-cooled VFD's MUST be placed in climate controlled E-houses
- Special attention MUST be paid:
 - Air-cooled VFD's in dusty environments like rubber & cement plants.
 - Water cooled might be better option >4000HP
 - Corrosive environments where H2S might be present like water / chemical plants
- Cost basis of NEMA 1: NEMA 3R = 1 : 2.5.
- Follow manufacturer guidelines for air quality control requirements

	Gas: Maximum concentration of corrosive gases at				
	50% relative humidity and 40°C				
	Sulfur Dioxide (SO ₂) 30 ppb				
Air Quality	Hydrogen Sulfide (H ₂ S)	10 ppb			
	Nitrous fumes (NO _x)	30 ppb			
UL Pollution Degree 2.	Chlorine (Cl ₂)	10 ppb			
	Hydrogen Fluoride (HF)	10 ppb			
And Meet or Exceed:	Ammonia (NH ₃)	500 ppb			
	Ozone (O ₃)	5 ppb			
EN50178:1994 Section					
A.6.1.4 Table A.2 (m)	Dust: Particle sizes from 10 - 100 microns for the				
	following materials				
IEC 529:1989-11 (IP20) (e)	Áluminum Oxide C	ement			
	Ink S	and/Dirt			
UL 508C	Lint S	teel Mill Oxides			
	Coal/Carbon dust P	aper			
	Soot				

Enclosure

Filtered, pressurized room, caulking, extra filters...

Extra filters with Velcro...

Enclosure

Dust!

Storage & running

Drip Shield – just in case!

Space heaters for storage

ASD Operational / Environmental limitations

- Altitude: De-rate current rating 2-3% per 1000 ft above 3000 feet. May have to de-rate voltage for very high altitudes.
- Temperature De-rate: 1.5% per degree C above base rating (usually 40C) up to max (usually 50 C).
- Drives put out heat must be removed or vented to outside
- ASDs are designed to be installed in a relatively clean, dry environment
 Operation
 - 0 to 40 or 50 C with a relative humidity of 95% maximum, non-condensing.

Storage

 Equipment is generally designed for a non-operating (storage) temperature range of –25 C to 70 C.

Specifying E-houses – Key to reliability

• Good standard to use is PIP ELSSG11, Electrical power center specification

E-house requirements

- Minimum requirements for ASD E-houses are:-
 - E-House NEMA rating, Typically 3R
 - Fire/Smoke detection
 - Note: Fire suppression is usually not provided and is optional (like FM200 waterless suppression)
 - N+1 HVAC based on ASD heat loss
 - 480V, 120V Panel boards for lights, control, ASD Aux
 - Bus Ducts or cable trays
 - PE stamp, certifications (if any), access restrictions
 - Local codes. Default is NEC
 - Location of E-house final destination For E-house estimating shipping splits

Sample E-house layouts

Sample E-house layouts

ASD Solutions

ICB / PCR for Starting Duty VFD Low Capacity ACU

ICB / PCR for 5000 HP VFD Redundant ACU

Temp. Controlled E-house versus ducting air out

- Many clients ask if they can duct-out hot air from the ASD to save on HVAC building
- YES, but:-
 - Make-up air must be provided: ~4500CFM to 17,000CFM
 - Air must be scrubbed off moisture content, fine dust, hazardous gases and other contaminants
 - Air must be heated if temperature gets to sub-zero. Big air heaters required
 - ASD might need to be de-rated for hot ambient conditions
 - Warranty might not be honored.
 - Installer / End user assumes all risk
 - Usually not suitable for very low/high ambient, high humidity, dusty or areas where gas might be present.

Cables From ASD to Motors

- Drives themselves are usually tolerant of most cable types & methods
- BUT, Cabling affects EMI radiation or motor.
- Cables > 500 meters need special attention [cable capacitance]

Cable Sample Recommendations

CABLE RECOMMENDATIONS FOR POWER CABLING RATED 2000VAC OR ABOVE.

SELECTION AND TERMINATION OF POWER CABLING IS CRITICAL TO THE SAFE AND RELIABLE OPERATION OF THIS SYSTEM. ISSUES WITH RADIATED ELECTRICAL NOISE, DISRUPTIVE GROUND CURRENTS AND SAFETY ALL HAVE RODTS IN POWER CABLING SELECTION AND TERMINATION. THESE RECOMMENDATIONS COMPLY WITH THE REGUIREMENTS OF THE NATIONAL ELECTRIC CODE OF THE USA. IT IS THE RESPONSIBILITY OF THE INSTALLER TO INSURE THAT LOCAL CODES ARE FOLLOWED WHERE THEY CONFLICT WITH THESE RECOMMENDATIONS.

SELECTION:

RECOMMENDED FOR INVERTER DUTPUT IS DKONITE DKOGUARD DKOSEAL TYPE MV-105 P/N 115-23-3816.

CONVERTER INPUT DOES NOT REQUIRE MC TYPE CABLE DR SYMMETRICAL GROUNDS. HOWEVER, SHIELDED POWER CABLE SHOLLD BE LOED PER NEC GUIDELINES. SEE FIGURE 2. CONVERTER CABLE INSULATION LEVEL SPECIFIED SHOULD BE EQUAL TO DR HIGHER THAN 8.2KV.

TERMINATION AT THE MOTOR OR TRANSFORMER:

WHERE MC CABLES ARE USED,FITTINGS SHOULD BE USED TO INSURE THAT THERE IS A 360 DEGREE ELECTRICAL CONNECTION BETWEEN THE ALUMINUM SHIELD AND THE JUNCTION BOX. ANY GROUND CONDUCTORS SHOULD BE TERMINATED TO THE EQUIPMENT GROUNDING LUG PROVIDED FOR THAT PORPOSE. INDIVIDUAL CONDUCTORS SHOULD BE CONNECTED USING COMPRESSION LUGS.

TERMINATION AT THE INVERTER OR CONVERTER:

IT IS NECESSARY TO REMOVE ENDUGH CABLE SHIELD AND PHASE CONDUCTOR SHIELD SO THAT INDIVIDUAL PHASE CONDUCTORS CAN REACH FROM THE POINT THE CABLE ENTERS THE EQUIPMENT CABINET, TO THE AC CONNECTION POINTS OF THE INVERTER OR CONVERTER. ONCE THE SHIELD HAS BEEN REMOVED, FITTINGS SHOULD BE USED, TO INSURE THAT THERE IS A 360 DEGREE ELECTRICAL CONNECTION BETWEEN THE ALUMINUM SHIELD AND THE CABINET GROUND (MC TYPE CABLE). GROUND CONDUCTORS SHOULD BE CONNECTED TO THE EI GROUND BUS PROVIDED FOR THAT PURPOSE. PHASE CONDUCTORS SHOULD BE CONNECTED ACCORDING TO THE CAUIPMENT DRAWINGS. ALL CONDUCTORS SHOULD BE TERMINATED WITH COMPRESSION LUGS.

SHIELDED CABLES MAY BE RUN IN CLOSE PROXIMITY TO DTHER SHIELDED POWER CABLES, SO FAR AS ELECTRICAL COUPLING IS CONCERNED. RULES REGARDING SPACING FOR THERMAL RESADNS MUST BE RESPECTED.

NOTE: CUSTOMER REQUIREMENT

ALL CABLES RATED AT OR ABOVE 2000V SHALL USE STRESS RELIEF CONES.

Cable Sample Recommendations

Motors application consideration – New Installs

- All ASDs inject harmonic currents on the Motor
- Harmonic Currents vary over speed range
 - Verify motor cooling can handle harmonic currents
- ASDs also produce common mode voltage,
 - Verify motor insulation is suitably designed
 - Output filters might be needed with standard motor

Motors application consideration – Retrofit Installs

ASD Cooling Systems

- Cools the power cells & auxiliary components
- Enhances the life of the ASD
- Allows the ASD to deliver rated power in smallest footprint

However,

- Poor design can lead to pre-mature failure
- Operation beyond thermal limits \rightarrow Safety hazard
- Poor choice of cooling type (Air vs. Water) can prove expensive
- Poor cooling materials (pipes, hoses, etc) can cause leaks and reduced reliability

Major Sources of Heat in an ASD System

How Air Cooling Works?

- The most basic form of cooling
- Uses industrial fans
- Cool air suction from front or bottom and exhaust hot air to top or back

Advantages of Air-cooling

- Air cooled drive is simpler -
 - No pumps, filters, deionizers
 - Only need to keep the air filters clean
- HVAC knowledgeable people are easy to find
- Redundancy can be designed into both the VFD fans and HVAC.
- HVAC is required for any Medium Voltage VFD
- Typical VFD (s) rated for 40 deg C
- Can be used for starting duty ONLY for large motors

Disadvantages of Air-cooling

- Air cooled drive has a much larger footprint
 - Will require much larger control room or E-house
- Higher noise level in control room (> 79 dB @ 1m)
- Must control level of dust in room to avoid frequent filter changes
- For higher reliability, redundancy will be required for both fans and air conditioning driving HVAC & life cycle costs up
- HVAC power levels can be 8-9 times higher than water cooled

How liquid cooling system works?

- Major components of ASD liquid cooling
 - Pumps
 - Coolant reservoir
 - Heat Exchanger
 - De-ionizer
 - Control system

- Coolant is pumped through the ASD power cells and heat is extracted
- Hot coolant is pumped through a heat exchanger to cool the liquid
- Continuous process

Types of liquid cooled system

Closed Loop

- Liquid-to-Air Exchanger
- No plant liquid needed
- Redundancy on pumps and exchanger fans

• Expensive, need extra space, design dependent on ambient temperature

Open Loop

- Liquid-to-Liquid exchanger
- Specific plant water temp. needed
- Redundant pumps
- Less expensive and space saving

• Note: VFD loop is always closed unless a stainless steel air cooled HEX is used

Typical Pump Panel for water cooled VFDs

Redundant Di Filter

Redundant Pumps rated for 100% capacity

Evaluating liquid cooling systems

- Main liquid supply systems
 - All stainless steel construction
 - Tight regulation on liquid conductivity, pressure, flow & temperature
 - Factory tested at full rating

Straub Coupling between the inverter panels

Water-cooled inverter unit

• Main Inverter/Converter Circuit

Quick Disconnect

Water Cooled inverter unit

• Main Inverter/Converter Circuit

Water-cooled related specifications - Keep in mind

Avoidance of dissimilar metals in the liquid cooling systems.

Redundant temp/pressure/conductivity sensors for critical services

Avoidance of condensation

100% Redundant Pumps w/Auto Switchover

Stainless Steel piping with Di-Water

Specify liquid quality, pressure, temperature (Liquid/Liquid ONLY)

Water-cooled related specifications - Keep in mind

Life Cycle Cost Comparison --

6000 HP ASD

	Comparision Parameter	Liquid-Cooled Drive (4.4MW)	Air-Cooled Drive (4.4MW)
1	Base Cost of the ASD	\$750,000	\$600,000
2	HVAC Unit Costs	\$4,000	\$60,000
3	HVAC Annual Operatin costs (\$0.04/kWh)	\$400	\$7,000
4	HVAC Life Cycle Cost (20 yr)	\$18,000	\$290,000
5	Spare Parts Cost	\$100,000	\$80,000
6	Annual Maintainence Cost	\$1,300	\$4,000
7	Training/Learning Cost	\$5,000	\$4,000
8	Downtime Costs (over 20 life) per year	\$1,000	\$5,000
9	Xfmr + Xchgr Installation cost	\$15,000	\$0
10	Commissioning Cost	\$20,000	\$10,000
11	Building cost (Per ASD sqft ONLY)	\$8,000	\$13,000
	GRAND TOTAL (Per VFD)	\$922,700	\$1,073,000

Good Reference: Verma, M.; Phares, D.; Grinbaum, II; Nanney, J., "Cooling systems of large capacity adjustable speed drive systems," *Petroleum and Chemical Industry Technical Conference (PCIC), 2013 Record of Conference Papers Industry Applications Society 60th Annual IEEE*, vol., no., pp.1,11, 23-25 Sept. 2013

Optimizing E-houses

- Proper selection of VFD cooling type: Air / Water
- Moving the transformer outdoors. Possible under limited cases. Eliminating transformer opens up other issues.
- Maintain temperatures up to 40 deg C. Less HVAC required.
- When using the VFDs for starting ONLY, HVAC can be sized for up to 25% of continuous duty application.
- No rear space requirement for TMEIC air-cooled VFDs
- Roof/Floor mounted HVACs instead of wall mounted.

ASD Cooling - Summary

- Specify cooling systems based on:-
 - Motor Power
 - Environment
- Evaluate cooling systems based on:-
 - Design for Safety
 - Cooling system design and redundancy
 - Data Sheets
 - Servicing intervals
 - Availability
 - Total Installed + Life cycle Cost

What are the VFD standards?

- There are North American and International ASD standards
- The two applicable standards are IEC 61800-4 and UL-347A
- These are design standards

Comparison of Standards

- UL 347A addresses only the medium voltage ASD
- IEC 61800-4 more broadly written to encompass the total medium voltage Power Drive System (PDS)

Table of Comparison

Standard Category	IEC 61800-4 Section reference	UL347-A Section reference
Scope	MV Adj speed AC drive systems including power conversion, control and motor	MV Adj speed AC drive systems including power conversion and control but excluding motors
Definitions/Glossary/Units	3	2, 3 ,4
Drive system Topology	4	Not addressed
Electrical Input/Service Conditions	5.1.1 Details given with level and acceptable range	5 Defines necessary parameters but no levels or ranges
Source Impedance	5.1.1.2	Not addressed
Climate Conditions	5.1.2.1 Defines accepable environment for drive	Not addressed
Mounting/Vibration	5.1.2.2 defines normal vibration requirements for stationary equipment	Not addressed
Transportation & Storage	5.2 and 5.3 Defines environmental, temperature and humidity ranges	Not addressed

Good Reference: Phares, D.; Verma, M.; Horvath, B.; Rodgers, N., "Comparing International standards to North American standards for large adjustable speed drives," *Cement Industry Technical Conference, 2012 IEEE-IAS/PCA 53rd*, vol., no., pp.1,10, 14-17 May 2012

IEEE 1566 – 2015 Standard

- Standard for Performance of Adjustable Speed AC Drives rated 375KW and Larger
- Created in about 2006
- Released in March 2015
- Includes a set of data sheets

IEEE STANDARDS ASSOCIATION

IEEE Standard for Performance of Adjustable-Speed AC Drives Rated 375 kW and Larger *♦IEEE*

IEEE Industry Applications Society

Sponsored by the Petroleum and Chemical Industry Committee

IEEE 1566 – 2015 Standard

	IFFF	lerved for use by:		Sheet 1 of 3	DOCUMENT NO.				
V									
⊢	IEEE 1966 - MEDIUM VULTAGE ADJUSTABLE SPEED DRIVES ELECTRICAL DATA SHEET								
JOB	NO.	ITEM/TAGNO.							
BED	ASPEC NO		•••••						
REV	ISION NO.	DATE BY	••••••						
	FORMUSER								
,									
3									
	A., F., M. T., O. D.		A. 1						
ן ו	NOTE O DATA SHEE		TOBECON	1PLETED					
5	STATUS		BYMANUR	ACTURER RE COMPLETED BY TH	FPURCHASER				
6	System of Un() SI	Siplur USstandard	3-10	Hermanics (6.2, 6.1	6):				
7		0		Impodance versus freque	ncy data supplied at PCC? O Yes O No				
*	Supply System Tal	taqs (6.1, 6.6):		Paint of common couplin	q (PCC): Voltage at PCC V				
10	0 24009 () 33009 ()) 4160V 6600V 6900V () 13	3800V	Required telephone influ Average Domand Curren	onco(I.T) at PCC:				
11	30 Short-Circuit Lovo			Other harmonic requirem	entr:				
12	Line Frequency: (0 60Hz 0 50Hz		Harmonic Compliance to	IEEE 519: Q Yor Q No				
13	30 Short-CircuitLovo	at drive		Harmanic Camplianco ta IEC 61000-3-6: O Yor O Na					
14 15	Line Frequency: (30 Symmetrical Short-(O KOME O SOME Circuit Lovol at Drivo Input for Arc Flar	rh Calculat	in No'to both of the abov	o,stato voltago IHD requirement at PCC:				
16	Maximum kA	Minimum kA Duration	m 7	System Grounding	(6.5):				
17				System Ground method:	🔾 Salid 🔿 Rezirtance a'A				
18	ASD Auxiliary Thra	00-Phare Pauer (6.1):		Genue désuit de la stine es					
20	50Hz: 0 400V 0 0)sharY		Gradier date absochant pr					
21				Rolovent Matiunal/Lucal Cudos (4.1):					
22	Centrel Peuer (7.1	D:							
23	Redundant Contro	al Paulor Supplied Vor O Na	-*						
25	UPS or Battory St	appliedby:() Vendor () Purchare	r i	Site Environment (1.3):				
26				Site Location:					
27	ASD Continuous Re ASD Continuous Rational	ASD Continuour Rating (6.3):		SoirmicZano: ONa OYor,Zano:					
29	O 100× O 110×	O Other X		Electrical Room Ambient Temperature: =C (Max) =C (Min)					
30	ASD Shart Torm Overlag	ASD Shart Torm Ovorland		Elovation:motror(ASL) Humidit:Xnon-condensing					
31	Magnitudo araporco	ntage of drive continuour rating		Contamination:	1				
33	Duration of short terr			Cabinet Space Heater (1	i): O No O Yor V				
34	60 secondr	O 04ho1		ASD to be mounted in a pr	o-fabricatodbuilding: 🛛 Yor 🔿 No				
35	Duty cyclo of short to	rm avorland		Building Reference Spec	ification:				
36	O 60 so candr	() Other	_	Electronic circuit boardr	havo conformal coating applied () Yor 🛛 🔿 No				
38	Lued/Application	Requirementr:		O Indeer, IP2	1 () Othor, Spocil				
39	Type of Load: 🔘 Fan	O Pump O Camprozzar		Incoming & Load Cable De	stailr				
40		« <u> </u>		Incoming F	awar Cabled Tap O Battam				
42	01			>12. Matar Cab	Inumber per r hard				
43	Goarbax Ratit	• () Nene		Siz	Number per Phare				
44	Motor Speed Range	min, rpm ta max, rpm		ControlCo	blad Tap Battam				
45 46	Max Load Power	.kWatrpm	6.6	Finith:	/ Manufacturing Std.) Ar Specified) Outride Calaur				
47	22 34 (Bi days Shood col	,		č) Inride Colour				
48				,					

Datasheets are available in Excel format and $\ensuremath{\mathsf{PDF}}$ –

- Three for Purchaser
- Three for Manufacturer

Additional reading material, Peer reviewed publications

- M. Verma, D. Parker, I. I. Grinbaum and J. Nanney, "Making the Leap to Electric Motors and Adjustable-Speed Drives: A Case Study of a 20,000-hp Gas Turbine-Driven Compressor," in IEEE Industry Applications Magazine, vol. 23, no. 6, pp. 29-38, Nov.-Dec. 2017.
- M. Verma, I. I. Grinbaum, J. Arnold and J. Nanney, "Preparing to Witness a Multi-Megawatt Motor and Adjustable Speed Drive Acceptance Test - The Basics," in *IEEE Transactions on Industry Applications*, vol. PP, no. 99, pp. 1-1
- Verma, M.; Phares, D.; Grinbaum, I.; Nanney, J., "Cooling Systems of Large-Capacity Adjustable-Speed Drive Systems," in *Industry Applications, IEEE Transactions on*, vol.51, no.1, pp.148-158, Jan.-Feb. 2015
- Phares, D.; Verma, M.; Horvath, B.; Rodgers, N., "Comparing International Standards to North American Standards for Large Adjustable-Speed Drives," in *Industry Applications, IEEE Transactions on*, vol.49, no.5, pp.1939-1945, Sept.-Oct. 2013
- Verma, M.; Dick, B.; Phares, D.; Bondy, S., "Bringing New Life to High-Capacity Systems: Modernization of Legacy Adjustable-Speed Drives," in *Industry Applications Magazine, IEEE*, vol.19, no.6, pp.66-74, Nov.-Dec. 2013
- Verma, Manish, "Powering gas compressors: Electric prime mover technologies." LNG Industry Editorial, May 2018.

Additional reading material, Peer reviewed publications

- M. Verma, N. Bhatia, S. Holdridge and T. O'Neal, "Isolation techniques for various topologies of medium voltage adjustable speed drives," 2017 Petroleum and Chemical Industry Technical Conference (PCIC), Calgary, AB, Canada, 2017, pp. 327-334. doi: 10.1109/PCICON.2017.8188752
- Bondy, S.; Phares, D.; Verma, M.; Horvath, B.; , "New advances in pulse width modulated slip power recovery drives for pumps," *Proceedings of the Forty-First Turbomachinery Symposium*, 24-27 Sept.2012
- Verma, Manish, and James T. Nanney. "Select the Right Starting Strategy for Large Motors." Pumps & Systems Magazine, 14 Nov. 2014.
- Verma, Manish, and James T. Nanney. "Adjustable Speed Drives, Motors for Electric Compression Cool Facts about Cooling Large Units." COMPRESSORtech2 May 2014.
- Phares, Douglas, Joshua Karpen and Jason Shores "Applying VFDs to existing Motors," Processing Magazine Feb 2017

Questions?

The Curse of Knowledge

