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ABSTRACT 

The objective of study 1 was to examine the associations between feeding behavior 

traits and performance and residual feed intake (RFI) in Brangus steers (N = 84). Steers 

with low-RFI phenotypes consumed 19% less (P < 0.01) DM intake while BW and ADG 

were similar compared to high-RFI steers. Steers with low RFI also spent 21% less time 

at the feed bunk, had 6% fewer (P < 0.05) bunk visit (BV) events, and tended (P = 0.08) 

to have 11% shorter meal durations per day than steers with high RFI. There were no 

differences in carcass quality or carcass income, therefore the reduction in feed cost of 

the low-RFI steers resulted in an increase (P < 0.05) in net revenue of $145 per animal 

compared to high-RFI steers. Time to bunk (TTB) was quantified on a daily basis as the 

interval length between feed truck delivery and the first BV event. Time to bunk was 

weakly correlated (P < 0.05) in a negative manner with ADG (-0.27) and positively 

correlated with exit velocity (0.25) and F:G ratio (0.25). Steers with low-TTB phenotypes 

gained 18% faster (P < 0.05), tended (P = 0.08) to have 11% more favorable F:G, and 

resulted in $88 more net revenue per animal (P < 0.05) than steers with high TTB. 

Results from this study demonstrated that animals with divergent phenotypes for RFI 

exhibited distinctive feeding behavior patterns, suggesting that feeding behavior traits 

could be useful as phenotypic biomarkers for RFI. The objective of study 2 was to 

characterize deviations in DM intake and feeding behaviors in bulls (N = 231) exhibiting 

clinical symptoms of bovine respiratory disease (BRD). The bulls were separated into 2 

cohort groups based on observed clinical illness (N = 30) or those treated 

metaphylactically Draxxin (N = 201). A 2-slope broken-line regression model was 

applied separately on a population basis to the clinically-ill and metaphylaxis-treated 

cohorts to identify inflection points in DM intake and feeding behavior traits. The model 
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detected inflection points for DM intake were 6.79 and 3.81 d prior to observed clinical 

illness or metaphylaxis treatment, respectively. Furthermore, the model detected 

inflection points for individual feeding behavior traits that (BV frequency and duration, 

Head down duration, maximum non-feeding interval, and non-feeding interval SD) 

ranged from 14.19 to 1.32 d prior to observed clinical illness, and from 12.59 to 3.79 d 

prior to metaphylaxis treatment. To further assess the value of monitoring deviations in 

feeding behavior traits as a method for pre-clinical detection of infectious disease 

individual CUSUM charts were constructed in a daily iterative manner to replicate real-

time data analysis. The CUSUM model based on DM intake yielded a high proportion of 

true positives (87%; model predicted animal as ill) and high model test efficiency (89%) 

in the clinically-ill cohort, whereas, in the metaphylaxis-treated cohort the proportion of 

true positives detected (71%) and test efficiency (84%) were slightly lower. While time 

of model detection prior to observed clinical illness based on DM intake was not 

different (0.9 d; P > 0.10), time of model detection prior to metaphylaxis treatment was 

different (3.0 d; P < 0.05).  Using BV duration, model times of detection were 2.7 (P < 

0.05) and 7.9 d (P < 0.05) prior to clinical observation or metaphylaxis treatment, 

respectively.  Results from study 2 demonstrated that use of statistical process control 

models to examine deviations in feeding behaviors were effective at predicting clinical 

symptoms of BRD, and that feeding behavior traits were more predictive than DM intake 

for pre-clinical detection of morbidity events in growing bulls.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

The use of feeding behavior traits as phenotypic biomarkers of growth efficiency 

and for pre-clinical detection of morbidity in beef cattle has the potential to improve 

profitability in the beef industry. With advancements in computer technology to quantify 

individual-animal feeding behavior traits in a cost-effective manner, the opportunity to 

monitor the health status of animals may well improve current feedlot management 

practices. In addition, use of these technologies may further influence the 

implementation of individual cattle management systems that segregate cattle based on 

predictive outcome groups, which would allow producers to improve the overall 

efficiency of production systems. 

Feed Efficiency 

One strategy to increase net returns for beef cattle production systems is to 

select for improved genetic merit for feed efficiency. Since feed cost is second only to 

purchase cost of animals in the variable costs of beef cattle production systems, 

increasing efficiency can play a large role in the net revenue generated. In addition, 

since approximately 70-75% of the energy requirements needed by the beef cow/calf 

sector of the beef industry can be attributed to the support of maintenance energy 

requirements, lowering overall energy requirements would also decrease the input costs 

of the breeding herd (Ferrell and Jenkins, 1985). If current performance standards can 

be maintained and individual-animal efficiency improved, the inputs to a beef production 

system could be reduced and net revenue increased proportionally (Arthur et al., 2001). 
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There are many different ways to evaluate feed efficiency in cattle, one of which 

is feed conversion ratio (FCR), which is the ratio of feed intake to body weight gain. 

Feed conversion ratio has been found to be moderately heritable in beef cattle (Bishop 

et al., 1991), and also is widely used to evaluate the quality of diets and the effects of 

management practices on the efficiency of production in the growing and finishing 

stages of the beef production cycle (Carstens and Tedeschi, 2006).  

There are, however, disadvantages to the use of FCR as a selection trait in beef 

cattle, as FCR is known to be negatively correlated with average daily gain (ADG) and 

body weight (BW). This indicates that favorable selection for FCR would result in an 

increase in mature cow size, which would lead to an increase in energy requirements 

and corresponding higher feed requirements (Arthur et al., 2001).  

Feed efficiency can also be evaluated using residual gain (RG), which is a 

measure of the efficiency of an animal to gain body weight. Residual gain is the 

difference between actual body weight gain and expected gain based on a regression of 

ADG on feed intake and mid-test BW0.75. As RG is positively correlated with growth 

traits, favorable selection for RG may also result in larger mature cow size.  

Another method of assessing feed efficiency is residual feed intake (RFI), which 

Arthur et al. (2001) concluded was the preferred selection trait for improvement of 

postweaning feed efficiency of beef cattle. Koch et al. (1963) first proposed RFI as a 

measure of feed efficiency that would be independent of growth traits, which is one way 

that RFI differs from FCR. An animal’s RFI is calculated by comparing that animal’s 

actual intake to the expected intake for its maintenance and growth based on individual 

body weight and performance characteristics (eg. growth, milk, or  pregnancy status).  
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Calculating RFI on an individual-animal basis requires the collection of individual 

intake records, which can be time consuming and expensive. There are multiple ways 

to collect individual intake records for beef cattle including use of Calan gate feeders, 

and electronic intake measurement system such as GrowSafe® System (Airdrie, AB, 

Canada). This feed intake measurement system uses radio frequency identification 

(RFID) to individually record animal feed intake and feeding behavior. The GrowSafe 

system only allows one animal at a time to access the feed bunk, which records the 

weight disappearance of feed to compute individual-animal intake. 

To calculate RFI, on an individual basis predicted intake calculated by the 

regression of feed intake on mid-test BW0.75 and ADG is subtracted from actual DM 

intake. Residual feed intake is a measure of the individual variation in feed intake not 

attributed to the animal’s maintenance requirement or growth rate (Archer et al., 1999). 

Similar to FCR, the heritability estimates of RFI in beef cattle range from 0.16 to 0.43 

(Herd et al., 2003). 

Selecting animals with favorable genetic merit for RFI can positively impact the 

net revenue of beef production systems. If for example, RFI were reduced by 1 kg/d, 

feed cost for feedlot steers on feed for 200 d at $0.30 per kg feed DM would result in a 

feed cotst savings of $60 per animal. Net returns for these animals would be increased 

proportionally as performance traits and carcass incomes would not be affected.  

Bovine Respiratory Disease 

Bovine respiratory disease (BRD) is a disease complex caused by a variety of 

bacterial or viral pathogens that can be brought on by placing animals in stressful 

situations due to transportation, handling, comingling, and adverse weather conditions. 

Bovine respiratory disease is the most prevalent and costly disease faced by the United 
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States feedlot industry (Smith, 1998), and accounts for approximately 75% of morbidity 

and 50-70% of mortality cases annually in feedlot cattle (Galyean et al., 1999).  

Animals experiencing morbidity have been shown to generate less revenue than 

healthy animals due to treatment costs, decreased performance, and lower carcass 

quality. Multiple studies have attempted to quantify the costs associated with respiratory 

illness in feedlot cattle. Smith (1998) concluded that the value of  morbid calves was 

$0.19 to $0.35 less per kilogram than for healthy calves because of decreased 

performance and increased medical expenses. It was also reported that of total 

morbidity, 65-80% occurred during the first 45 days of a feeding period with 67-82% of 

the total due to respiratory illness. Fulton et al. (2002), evaluated the economic impact 

by comparing cattle that were not treated for BRD (healthy) with cattle treated either 1, 

2, or 3 times. The animals treated 1x, 2x, and 3x or more treatments during the trial 

generated $40.64, $58.35, and $291.93 less net revenue, respectively, than the animals 

that were never treated. Snowder et al. (2006) conducted a study to characterize 

genetic, environmental, and economic factors related to BRD in a dataset representing 

18,112 calves. The study reported that steers were more likely to have BRD than 

heifers possibly due to the effect of castration before entering the feedlot. The study 

also reported that the economic cost of lower gains and treatment for BRD was 

estimated to be $13.90 per head for a 1,000 hd feedlots excluding the labor and 

handling costs. These studies demonstrate the substantial economic impact resulting 

from the treatment cost and loss of production due to respiratory disease in finishing 

cattle.  

Decreased performance is one of the largest expenses associated with 

subclinical and clinical cases of BRD. Snowder et al. (2006) reported that calves 
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experiencing a period of BRD had 0.04 kg/d lower ADG than animals that were healthy 

throughout the feeding period. They reported that infected animals could be expected to 

be 8 kg lighter than healthy animals at the end of a 200 day feeding period. Wittum et 

al. (1996) also reported lower gains (-0.08 kg/d) in animals that had lung lesions 

attributed to respiratory illness. In agreement with these results, Gardner et al. (1999) 

reported that animals with lung lesions present at harvest had lower (-0.15 kg/d) gains, 

lighter HCW (-13.3 kg), lower marbling scores, and higher Warner Bratzer shear force 

values than steers without lung lesions present at harvest.  

Another reason for reduced income is the cost of treating respiratory illnesses. 

Fulton et al. (2002) examined the impact of mortality across 24 herds totaling 417 

calves in an Oklahoma feedlot. The study reported a treatment cost per herd that 

ranged from $0.00-$20.70 per animal with the largest treatment costs incurred by the 

herds with the largest incidence of BRD. Snowder et al. (2006) estimated an average 

treatment cost of $15.57 per animal treated for BRD. These costs represent a 

significant reduction in profit for animals experiencing BRD related morbidity events. 

Subjective Visual Methods to Evaluate Animal Health 

For effective treatment, animals with BRD must be identified as early as possible 

in the disease process. This is often not the case given that current methods rely on 

subjective evaluation by trained pen riders to detect clinical symptoms such as 

depression or nasal discharge. Cattle, as prey animals, tend to mask overt clinical 

symptoms of illness to avoid drawing attention to themselves by predators. Clinical 

symptoms also tend to appear later in the disease process, which limits the 

effectiveness of drug therapy. The current method of subjective evaluation uses clinical 

scores to estimate the severity of illness. Typical clinical scores involve 4 components 
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including evaluations of respiratory insult, digestive insult, temperature score and 

lethargy. These factors are combined to represent an overall morbidity score that is 

used to determine if microbial therapy is required. Numerous studies have shown poor 

to fair relationships between animals treated for BRD and the presence of lung lesions 

at harvest. Wittum et al. (1996), examined the relationship between lung lesions at 

harvest, and treatment for BRD in 469 feedlot steers, and found that while 72% of the 

steers had lung lesions present at time of harvest only 35% had been previously treated 

for respiratory illness. Pulmonary lesions were observed in 68% of the untreated steers 

and 78% of the treated steers. Gardner et al. (1999) reported that only 48% of cattle 

treated for BRD had lung lesions, and that 37% of the cattle not treated also had lung 

lesions at harvest, indicating that current methods of BRD detection are not adequate to 

accurately detect sick cattle. 

Remote Sensing Technologies to Detect Morbidity in Animals 

Various remote sensing technologies have been developed to evaluate real-time 

measurement of core-body temperatures. Rectal temperature is often used as an 

indicator of illness but it can be difficult to obtain because it requires the removal of an 

animal from a pen to obtain measurements. For this reason, there has been recent 

interest in evaluating methods to remotely record internal temperature. Rose-Dye et al. 

(2011) evaluated the use of remote rumen temperature boluses to detect deviations in 

temperature in response to exposure to either bovine viral diarrhea or Mannheimia 

haemolytica. The experimental animals were fitted with rumen boluses that transmitted 

temperature data at minute intervals. They reported high correlations (r = 0.89) between 

rumen temperature and rectal temperature, and found that challenged animals had 

higher rumen temperatures than the control animals. Timsit et al. (2011) also evaluated 
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the use of rumen temperature boluses to detect changes to core-body temperature in 

24 bulls. Animals that experienced a period of reticulo-rumen hyperthermia (RH) were 

evaluated for symptoms of BRD. Of the 52 RH episodes, BRD was diagnosed 38 times 

resulting in a positive predictive value of 73%. The clinical detection of BRD occurred 

from 12 to 136 h after a RH episode. These results indicate that use of internal 

temperature may be effectively used for early pre-clinical detection of BRD. 

Another method that has been evaluated to detect changes in temperature is 

infrared thermography. Infrared thermography detects the infrared energy emitted from 

an object and displays the amount of energy in temperature. One advantage of infrared 

thermography is the ability to detect temperature at a distance compared with traditional 

rectal temperatures that requires animals to be restrained. Schaefer et al. (2004) 

conducted a study using infrared thermography to detect deviations in skin surface 

temperature in 15 heifers. The study compared temperature data from 10 calves 

infected with bovine viral diarrhea virus to 5 control animals that were housed 

separately to remove the risk of transmission from the infected animals. The study 

concluded that the infected animals had elevated temperatures from several days to as 

much as 1 week prior to when clinical symptoms were observed. In another study 

conducted by Schaefer et al. (2007), infrared thermography was used to assess 

morbidity in 133 weaned calves. They reported that positive predictive values were 10% 

greater, negative predictive values were 20% greater, and overall test efficiency was 

16% greater compared to the industry standard of clinical scoring. In addition, Schaefer 

et al. (2007) found that changes in temperature occurred from 4 to 6 d prior to the onset 

of observed clinical symptoms.  
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There has also been some interest in examining the relationships between 

physical activity and morbidity. Theurer et al. (2013b) examined the effects of 

pneumonia on the behavior and physiology responses of 18 beef heifers. The 

experimental animals were fitted with accelerometers, pedometers, and positioning 

devices for 9 d after 10 of the animals were challenged with Mannheimia haemolytica. 

All calves exposed to Mannheimia haemolytica had lung lesions at harvest indicating 

that all animals experienced pneumonia. The exposed calves spent less time at the hay 

and grain feeders and spent more time lying after exposure compared to control calves. 

There was also a significant interaction between the treatment group and trial day for 

the pedometer data, where exposed calves took fewer steps than healthy calves. These 

results indicate that changes in physical activity are also predictive of clinical symptoms 

associated with BRD. 

Feeding Behavior to Predict Morbidity 

Another method that may be useful in assessing the health status of animals 

involves monitoring of feeding and drinking behavior. Multiple studies have evaluated 

the relationship between feed efficiency and feeding behavior traits in healthy animals. 

McGee et al. (2014) reported significant correlations between RFI and bunk visit 

frequency and duration, feeding bout frequency and duration, and meal frequency in 

steers. Similar to these results, Nkrumah et al. (2006) reported strong correlations 

between bunk visit duration and RFI, DM intake, and feed conversion ratio in growing 

bulls. Another study by Hafla et al. (2013) reported that low RFI animals spent 26% less 

time at the feed bunk and cow RFI was strongly correlated (0.61) with bunk visit 

frequency and moderately correlated (0.35) with bunk visit duration. Kelly et al. (2010b) 

examined the repeatability of feeding behavior traits between growing and finishing 
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phases in beef heifers. The study reported repeatability estimates for feeding duration, 

feeding events, feed intake per feeding event, and eating rate of 0.65, 0.73, 0.76, and 

0.74, respectively, between the growing and finishing phases. These studies present 

evidence of moderate relationships between feeding behaviors and RFI in cattle. 

Moreover, feeding behavior traits are highly repeatable, and are positively associated 

with DM intake.  

Feeding behaviors could also be early indicators of BRD because appetite 

depression is one of the first clinical responses to BRD. Daniels et al. (2000) reported 

healthy calves spending 33% more time at the feed bunk and having more visits to the 

feed bunk than morbid calves. Sowell et al. (1999) examined the relationship between 

health and feeding behavior in two trials, with 108 and 143 animals, respectively. 

Animals were fitted with passive radio frequency identification (RFID) tags to record 

feeding and watering behavior. In the first trial, morbid animals spent less time at the 

feed bunk and had fewer feeding bouts than the healthy animals. Healthy animals spent 

an average of 60 min a day at the feed bunk compared to 46 min for the morbid 

animals. In the second trial, there was no difference in feeding duration, but the morbid 

animals had fewer feeding and drinking bouts than the healthy animals.  

Urton et al. (2005) examined feed bunk attendance in 26 dairy cows at risk for 

clinical metritis over a 3-wk trial period. During the trial period, 69% of the animals 

displayed clinical symptoms of metritis. On average, the metritic cattle spent 22 min a 

day less time at the feed bunk and for every 10 min decrease in average feeding 

duration animals were twice as likely to become metritic. Using a 75 min threshold for 

average daily feeding time, metritis could be detected with a sensitivity and specificity of 

89 and 62%, respectively.  Goldhawk et al. (2009) examined the differences in feeding 
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behavior traits between healthy cows, and cows with subclinical ketosis. Results 

showed that cows with subclinical ketosis consumed 20% less feed, and had 22% fewer 

feeding bouts and spent less time feeding than healthy cows. Similar to Urton et al. 

(2005) a 10 min decrease in feeding duration resulted in a 1.9 times higher likelihood of 

developing ketosis.  

One of the limitations to using feeding behavior to detect morbidity is that current 

available methods to record feeding behavior are cost prohibitive to use on a large 

scale basis. One of the more widely used systems is the GrowSafe system (Airdrie, AB, 

Canada), which allows for the recording of individual measurements of feeding intake 

and feeding behavior traits. One drawback to the GrowSafe system is the high input 

costs of the system due to the need for each feed bunk to include load bars to weigh 

feed. This system continuously records weight entering and leaving the trough that is 

then matched to an individual animal feeding record.  Due to the need for a cost 

effective method for feeding behavior detection, there has been some interest in the 

development of active RFID technology for this purpose.  

The Use of Statistical Process Control to Evaluate Feeding Behaviors 

Another limitation to the use of feeding behavior to detect morbidity is the lack of 

effective predictive algorithms to accurately detect morbidity. One of the methods being 

evaluated for this purpose involves the use of statistical process control (SPC). 

Statistical process control is a method that can be used to monitor, control, and improve 

production through statistical analysis (De Vries and Reneau, 2010). Statistical process 

control is a way to track changes over time in a manner that allows for the application of 

statistical procedures to indicate changes that are not due to the natural variation in the 

data stream. Statistical process control was founded by Walter Shewhart in the 1920 to 
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improve industrial manufacturing processes. The basic principles of SPC are derived 

from the study of variation, and the theory that there are two causes of variation, 

common and special. Common cause variation comes from the normal variability 

produced by any process. Special cause variation is the result of external factors acting 

on the process that significantly impacts the variance between outputs. The control 

chart is one way to analyze and visualize the variation within a process (Thor et al., 

2007). The simplest form of the control chart is the Shewhart chart, which plots the 

average of a set of samples against the time each set was taken. The values are then 

evaluated against control lines which are set at 3 SD for the entire data set. If a value 

exceeds the distance of 3 SD from the mean of the process, the system is deemed out 

of control. Another type of control chart is the cumulative summation (CUSUM) chart. A 

CUSUM chart is designed as the cumulative summations of the distance of each 

sample mean from the average of all the sample means. The values are then plotted 

against the control lines, which are set using the SD of the entire data set. The CUSUM 

chart is valuable for detecting relatively minor shifts in the overall mean value due to 

special-cause variation.  

There have been a small number of studies that have used some form of SPC to 

evaluate changes in animal behavior to detect morbidity. In one such study, Quimby et 

al. (2001) used SPC in a retrospective analysis to evaluate the effectiveness of feeding 

behavior to detect morbidity in newly received feedlot cattle. The study incorporated the 

use of passive RFID technology to collect feeding duration data for individual animals. 

The individual-animal records were analyzed using CUSUM charts to detect deviations 

in behaviors resulting from morbidity events, which were then compared to the date of 

clinical detection by experienced pen riders. Quimby et al. (2001) concluded that use of 
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SPC methods to monitor feeding behavior allowed for the detection of morbidity 

between 4.5 and 3.7 d earlier than observed by experienced pen riders. The results 

also showed a high accuracy for the detection of morbidity with a positive predictive 

value, negative predictive value, and a test efficiency of 87, 91, and 90% respectively. 

Lukas et al. (2008) used a combined CUSUM and Shewhart charting scheme to detect 

changes in water and DM intake of dairy cows. The study was designed to test whether 

there were differences in water and feed intake due to disease or estrus. The individual-

animal data were fit to a regression model to obtain residuals, and the residuals were 

then plotted to each chart type to detect shifts in behavior. This combined chart strategy 

allowed the researchers to correctly detect the incidence of disease even during the first 

week of lactation. 

 Researchers have evaluated the use of SPC in other animal species as well. 

Madsen and Kristensen (2005) examined deviations in water intake of growing pigs to 

detect disease. Continuous water intake was collected for each animal then split into 

one hour increments for evaluation. A dynamic linear model was used to model the data 

and then to predict the next time step of data, and the residuals between the predicted 

and actual data were charted using a CUSUM chart. This method allowed for the 

detection of morbidity events about one day prior to clinical signs of illness. Cornou et 

al. (2008) also used SPC to evaluate swine operations. The study focused on detecting 

estrus, lameness, and other health disorders. The method employed was the use of 

CUSUM charts on data collected from electronic sow feeders. The study reported a 

sensitivity of 39% for the detection of health disorders not related to lameness, which 

was significantly higher than by detection by observational methods alone. The 
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objectives of this study were to examine associations of feeding behavior traits with 

performance and feed efficiency and as pre-clinical detectors of morbidity in beef cattle. 
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CHAPTER II 

CHARACTERIZATION OF FEEDING BEHAVIOR AND TEMPERAMENT 

TRAITS AS PHENOTYPIC BIOMARKERS OF FEED EFFICIENCY AND 

PERFORMANCE IN BEEF CATTLE 

Introduction 

Managers of livestock production systems aim to generate long-term maximal 

profit by increasing productivity and(or) improving efficiency of feed utilization within the 

production cycle. Profit is the difference between the total costs of inputs and the value 

of revenue generated by the production system. One strategy to reduce the input costs 

of beef production is to select cattle with favorable genetic merit for feed efficiency.  

Improvements in feed efficiency in cattle will not only reduce the cost of 

producing beef, but will also mitigate the overall impact of cattle production systems on 

the environment. Sixty to 70% of the variable costs associated with the production of 

beef cattle can be attributed to feed costs. One drawback to selecting cattle for 

improved feed efficiency is the need for costly equipment to collect individual-animal 

feed intake data. Thus, there is a need for more cost-effective methods to collect 

individual-animal data that can be used to identify those cattle with favorable genetic 

merit for feed efficiency. Cattle that exhibit increased rates of gain have increased profit 

due to the increase in carcass revenue. The use of individual cattle management 

system that sort cattle into various outcome groups to enable management systems to 

be differentially applied to optimize performance efficiency offers considerable potential 

to improve overall system performance. The objective of this study is to identify feeding 
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behavior and temperament traits that are associated with inter-animal variation in feed 

efficiency and performance in beef cattle.  

Materials and Methods 

Animals and Experimental Design 

All animal care and use procedures were in accordance with the guidelines for 

use of Animals in Agricultural Teaching and Research as approved by the Texas A&M 

University Institutional Animal Care and Use Committee. 

Eighty-four Angus cross steers from the Circle X Ranch (Bryan, TX) were used 

in this study. The steers were housed at the Texas A&M University Beef Cattle Systems 

Research Center (College Station, TX). Upon arrival at the research facility, cattle were 

fitted with passive, half-duplex transponder ear tags (Allflex USA Inc., Dallas, TX), 

dewormed with Valbazen Drench (Pfizer Animal Health), placed in group pens (30’ x 

60’) and adapted to a high-energy diet using a series of step up diets during a 21-d 

period. After adaptation to the diet (Table 2.1), steers were moved into 4 pens (32’ x 

60’) equipped with electronic feed bunks (GrowSafe System LTD., Airdrie, AB, 

Canada). The steers were thereafter fed ad libitum for 98 d while being rotated between 

the GrowSafe and group pens (Table 2.2). Body weights were measured during the 

study as outlined in Table 2.2 and individual intake data was collected daily during the 

periods that the animals were housed in the GrowSafe pens.  

Upon completion of the individual feeding phase, the steers were transported to 

a commercial feed yard (Graham Land and Cattle Co., Gonzalez TX) and fed a high 

grain diet in group pens. The steers were weighed upon arrival at the feed yard and 

prior to transport for harvest. Steers were fed for a total of 250 d during the entire study 

period.  
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Table 2.1. Ingredient and chemical composition of the experimental diet. 

Item 

Ingredient As-fed basis % 

Corn 73.7 

Chopped hay 6.0 

Cottonseed hulls 6.0 

Cottonseed meal 6.0 

Molasses  5.0 

Mineral Premix1 2.5 

Urea 0.8 

Chemical Composition Dry matter basis 

Dry matter % 90.8 

CP, %DM 12.4 

NDF, %DM 20.1 

ME, Mcal/kg DM 3.0 

1Mineral Premix contained minimum 15.5% Ca, 2800 ppm Zn, 1200 ppm Mn, 12 
ppm Se, 14 ppm Co, 30 ppm I, 45.4 KIU/kg Vit-A, 2.3 KIU/kg Vit-D, 726 IU/kg Vit-
E, 1200 ppm Monensin, and 400 ppm Tylosin. 
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GrowSafe Data Collection 

The GrowSafe system (DAQ 6000E) used in this study consisted of feed bunks 

equipped with load bars to measure feed disappearance, and stanchions with neck bars 

to prevent more than one animal from eating from the feed bunk at a given time. 

Antenna within each feed bunk detected animal presence by recording the radio-

frequency identification tags upon entry to a feed bunk. Feed intake was allocated to 

each individual-animal based on continuous recordings of feed disappearance during 

Table 2.2. Experimental protocol for collection of BW, exit velocity, feed intake, 
and feeding behavior. 

Week of 
Study Period Location BW1 

Exit 
Velocity1

1 

Adaptation Group pens 

BW-initial 

2 

3 

4 

Period 1 

GrowSafe pens 

BW-day 0 EV-day 0 

5 

6 

7 
Group pens 

BW-day 21 

8 

9 

Period 2 

GrowSafe pens 
BW-day 35 

10 

11 
Group pens 

BW-day 49 

12 

13 

Period 3 
GrowSafe pens 

BW-day 63 

14 

15 Group pens BW-day 77 

16 
Period 4 

GrowSafe pens 

17 Group pens BW-day 91 

18 BW-day 98 EV-day 98 
1BW and exit velocity data collected at the start of the week. 
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each bunk visit (BV) event. Along with individual feed intake data, the system also 

recorded each BV, the EID number, scale number and time stamp, which was logged in 

the data-acquisition computer. The GrowSafe system used in this study has a scanning 

rate frequency of 1.5 s. 

A subroutine of the GrowSafe 6000E software, Process Feed Intakes was used to 

compute feed intake and BV data. All default settings as previously defined (GrowSafe, 

2009) were used in this study. For this study, the parameter setting of 100 s was used as 

recommended by Mendes et al. (2011). Feeding behavior and intake data were omitted 

from all analyses for 2 d due to system failure when the proportion of daily feed supply 

assigned to individual animals (average feed disappearance) was less than 95%. 

Average feed disappearance for the 51 d of good data was 98.56%. 

Diet samples were collected weekly and composited by weight at the end of the 

trial and moisture analysis was conducted by drying in a forced-air oven for 48 h at 

105°C. Chemical analysis was conducted by an independent laboratory (Cumberland 

Valley Analytical Services Inc., Hagerstown, MD). 

Feeding behavior data was based on in-to-out events to the feed bunk (bunk 

visit frequency and duration) recorded by the GrowSafe system. Bunk visit event data 

were clustered into meal events after meal criterion, defined as the longest non-feeding 

interval that is still part of a meal, was determined for each animal (Bailey et al., 2012). 

A Gaussian-Weibull distribution model was fitted to log-transformed non-feeding interval 

data, and the intercept of the two distributions used to define meal criterion (Yeates et 

al., 2001). Meal criterion was used to compute individual-animal meal data (meal 

frequency, meal duration, and meal size). 
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Exit velocity measurements were taken on days 0 and 98 of the trial. Exit 

velocity was measured as time in seconds for an animal to traverse 2.44 m after leaving 

a squeeze chute. Time to bunk was measured daily as the length of interval between 

feed truck delivery and the first BV event each day. 

Steers were harvested at Sam Kane Beef (Corpus Christi, TX). Animals were 

stunned via captive bolt pistol, exsanguinated, and individual carcass measurements 

obtained for hot carcass weight (HCW), 12th-13th rib fat thickness (BF);  longissimus 

muscle area (LMA); kidney, pelvic, hart fat (KPH), and marbling score (MS) were 

collected by trained university personnel after a 48 h chill at -4°C (data not presented). 

Carcass value ($ / kg HCW) was calculated from a grid formula with a base price of $245 

per 45.5 kg, with premiums and discounts applied for yield and quality grades. Individual 

carcass income was based on HCW multiplied by carcass value for each animal.   

Economic Analysis 

Net revenue was determined as carcass income minus costs for feeder calf, 

yardage ($0.25/hd/d), processing ($30/hd), interest, transportation ($38/hd), and feed 

costs ($0.31/kg DM). Feeder calf price was estimated using a 45.5 kg price slide 

calculated from the 3-yr mean price of feeder steers during the month that the steers 

were received for the individual feeding period from Circle X Land and Cattle Co. 

Interest was calculated at a 5% annual rate on feeder calf cost and 50% of feed costs. 

Feed intake was based on actual feed consumed during the feed-intake measurement 

period, and model-predicted intake adjusted for RFI. Model-predicted intakes were 

computed using the Cornell Value Discovery System (Tedeschi et al., 2004). The model 

accounts for individual-animal variation in predicted feed intake using individual-animal 

body weight, ADG, and carcass traits. The adjustment of model-predicted intakes 



20 

during the group-feeding periods was based on the assumption that relative rank for 

RFI determined during the 52 d feed-intake measurement period was maintained during 

the entire feeding period. Arthur et al. (2011) measured RFI in Charolais bulls fed a 

moderate energy diet starting at 9 months of age, and compared genetic variation and 

heritability estimates when RFI was measured for 6 and 10 months on feed while fed 

the same diet. The phenotypic and genetic correlations between RFI measured for 6 

and 10 months was 0.82 and 0.86, indicating that while some re-ranking of RFI 

occurred, RFI was fairly consistent regardless of length of the measurement period.  

Statistical Analysis 

 PROC GLM in SAS (SAS Institute Inc., Cary, NC) was used to calculate RFI as 

the difference between actual and expected DM intake from linear regression of DM 

intake, ADG and mid-test BW0.75 (Koch et al., 1963). Residual gain (RG) was calculated 

from linear regression of ADG on DM intake and mid-test BW0.75(Koch et al., 1963). 

A linear PROC MIXED model (SAS Institute Inc., Cary, NC) was used to 

examine the effects of RFI group (low, medium, and high based on ± 0.5 standard 

deviations from mean RFI of 0.0 ± 0.74) and TTB group (low, medium, and high based 

on ± 0.5 standard deviations from mean TTB of 54.2 ± 29.9) on performance, feed 

efficiency, feeding behavior, and carcass traits. The stepwise option of PROC REG 

(SAS Institute Inc., Cary, NC) was used to determine between-animal variation in net 

revenue attributed to carcass and performance traits. Both linear and quadratic terms 

were evaluated for performance and carcass measurements. The dependent variable 

was net revenue per steer. Correlations between performance, DM intake, and feeding 

behavior traits were calculated using the PROC CORR procedure (SAS Institute Inc., 

Cary, NC). 



21 

Results 

Performance, Feed Efficiency, and Temperament 

Six steers were identified as being morbid during the early part of the study, but 

all responded quickly to antimicrobial treatment and none were removed from the study. 

The DM intake and performance of the steers were within the expected range given 

their age and the experimental diet that was fed (Table 2.3). As expected, during the 

98-d trial period, ADG of the steers was 1.5 kg/d with a range of 0.74 to 2.1 kg/d. 

Similarly, DM intake and F:G were 9.58 and 6.57 kg/d respectively, which is within the 

previously reported range (Richardson et al., 2001; Kolath et al., 2006). Residual feed 

intake averaged 0.0 kg/d and ranged from -2.17 kg/d for the most efficient steer to 1.89 

kg/d for the least efficient.  Average daily gain was positively correlated (P < 0.001) with 

DM intake (0.52), residual gain (RG, 0.68), and negatively correlated with F:G (-0.82; 

Table 2.4). As expected, DM intake was positively correlated (P < 0.001) with initial BW 

(0.51) and RFI (0.71). Initial exit velocity was correlated (P < 0.05) with ADG and F:G 

and correlated (P = 0.05) with DM intake. Time to bunk (TTB) was negatively correlated 

(P < 0.01) with ADG (-0.27), and positively correlated with initial exit velocity (0.29), and 

F:G (0.25).  



22 

Table 2.3. Summary statistics of performance, feed intake, feed efficiency, exit 
velocity, and feeding behavior traits for Brangus steers. 

Item1 Mean SD Minimum Maximum 

Performance and Temperament: 

 Initial BW, kg 282 14.3 249 314 

 Final BW, kg 429 32.3 351 517 

 ADG, kg/d 1.5 0.28 0.74 2.1 

 Initial exit velocity, m/s 4.41 1.03 1.98 7.17 

 Final exit velocity, m/s 3.54 1.47 0.15 6.77 

 Time to bunk, min 54.2 29.9 14.5 189.7 

Feed efficiency: 

 DMI, kg/d  9.58 1.04 6.66 12.51 

 F:G ratio 6.57 1.27 4.55 11.4 

 Residual feed intake, kg/d 0 0.74 -2.17 1.89 

 Residual gain, kg/d 0 0.21 -0.53 0.57 

Bunk visit (BV) traits: 

 BV frequency, events/d 45.3 8.9 28.1 79.4 

  BV duration, min/d  93.2 19.4 60.8 149.5 

Non-feeding frequency, events/d 43.7 12.5 26.3 104.2 

   Non-feeding duration, min/d 1282 29 1200 1328 

Meal traits: 

 Meal frequency, events/d 11.1 2.3 6.2 18.4 

 Meal duration, min/d  141 24 94 204 

 Meal criterion, min  7.45 2.81 1.62 20.12 

 Meal length, min/event 14.3 4.2 7.5 26.5 

 Meal size, kg/event 1.13 0.27 0.67 1.93 

 Eating rate, g/min 69.4 12.6 43.6 111.4 

Intensity traits: 

 Head down duration (HD), min/d 62.8 22.3 22.3 121.1 

 HD:BV duration 0.66 0.13 0.33 0.87 

 HD:Meal duration 0.44 0.12 0.18 0.77 

Profit traits: 

 Feed cost, $/hd2 714.11 86.50 507.10 914.05 

 Carcass income, $/hd3 2099.0
0 

142.77 1723.00 2472.00 

 Net revenue, $/hd4 243.07 124.14 -55.64 544.47 
1
Feed intake and behavior data collected for 52 d; growth data for 98 d. 

2
Feed cost computed from actual feed intake collected during individual feeding phase and 

model predicted feed intake adjusted for RFI.  
3
Carcass income calculated from carcass measurements taken at time of harvest. 

4
Net revenue calculated from carcass income minus all expenses accrued during both the 

individual and group fed phases.
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Feeding Behavior Traits 

Summary statistics for feeding behaviors are presented in Table 2.3. Bunk visit 

duration and frequency were 93.2 min/d and 45.3 events/d, which is within the range of 

previously reported studies (Lancaster et al., 2009; Hafla et al., 2013). Average meal 

duration and frequency, based on individual-animal meal criterion, was 141 min/d and 

11.1 events/d, respectively, with an average meal criterion of 7.45 min. 

 Bunk visit duration, HD duration and meal duration were all positively correlated 

(P < 0.05) with DM intake and RFI (Table 2.5). Meal duration was also negatively 

correlated with initial exit velocity. Meal size and eating rate were positively correlated 

(P < 0.01) with DM intake with correlation coefficients of 0.39 and 0.35 respectively. In 

contrast, these 3 feeding behavior traits were not correlated with ADG or the 2 feed 

Table 2.4. Pearson correlations among performance, feed efficiency and 
temperament traits for Brangus steers. 

Trait1 ADG 
Initial exit 
velocity 

Time 
to 

bunk 
DM 

intake F:G 
Residual 

feed intake 
Residual 

gain 

Initial BW 0.09 -0.10 -0.07 0.51* 0.20 -0.01 -0.66* 

ADG -0.32* -0.27* 0.52* -0.82* 0.00 0.68* 
Initial exit 
velocity 

0.29* -0.21 0.22* -0.02 -0.15 

Time to bunk -0.12 0.25* 0.03 -0.14 

DM intake 0.00 0.71* 0.00 

F:G 0.41* -0.76* 
Residual 
feed intake 

-0.03 

1Feed intake data collected for 52 d; growth data for 98 d. 
*Correlations differ from zero at P < 0.05.
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efficiency traits (RG and F:G) that are strongly correlated with ADG. Initial exit velocity 

was negatively correlated with ADG (P < 0.01) and tended (P = 0.06) to be negatively 

correlated with DM intake. Initial exit velocity was also positively correlated (P = 0.04) 

with F:G. 

Table 2.5. Pearson correlations between performance and feeding behavior traits for 
Brangus steers. 

Trait1 ADG IEV TTB 
DM 

intake F:G RFI RG 

Bunk visit (BV) traits: 

BV frequency, events/d 0.15 -0.25* -0.27* 0.04 -0.11 0.10 0.16 

BV duration, min/d 0.20 -0.26* -0.20 0.45* 0.05 0.43* 0.01 
 Non-feeding event 
frequency, events/d 

0.06 -0.13 -0.15 -0.00 -0.07 0.05 0.07 

Non-feeding event 
duration, min/d 

-0.06 0.17 0.10 -0.27* -0.14 -0.26* 0.09 

Meal traits: 
Meal frequency, 
events/d 0.14 0.11 -0.27* 0.08 -0.13 0.02 0.09 

Meal duration, min/d 0.17 -0.34* -0.26* 0.28* 0.02 0.29* 0.07 

Meal criterion, min -0.09 -0.05 0.05 -0.09 0.10 -0.05 -0.04 

Meal length, min/event 0.00 -0.28* 0.09 0.12 0.11 0.14 -0.04 

Meal size, kg/event 0.16 -0.20 0.25* 0.39* 0.08 0.25* -0.06 

Eating rate, g/min 0.16 0.20 0.23* 0.35* -0.02 0.17 -0.03 

Intensity traits:
Head down duration 
(HD), min/d 0.20 -0.23* -0.18 0.39* 0.01 0.34* -0.02 

HD:BV duration 0.13 -0.15 -0.12 0.20 -0.03 0.12 -0.02 

HD:Meal duration 0.15 -0.09 -0.07 0.33* 0.01 0.25* -0.02 

Profit traits: 

Feed cost, $/hd 0.18 -0.09 -0.01 0.79* 0.30* 0.85* -0.02 

Carcass income, $/hd 0.61* -0.25* -0.20 0.55* -0.32* 0.15 0.25* 

Net revenue, $/hd 0.55* -0.21 -0.22* -0.01 -0.60* -0.42* 0.42* 
1Feed intake and behavior data collected for 52 d; growth data for 98 d. 
*Correlations differ from zero at P < 0.05.
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Divergent Phenotypes for RFI 

The effects of RFI classification (based on ± 0.50 SD from the mean RFI of 0.0 ± 

0.74) on performance, feed efficiency and feeding behavior traits are presented in Table 

2.6. Steers with high RFI consumed 19% more feed and had a 21% higher F:G than 

steers with low RFI. In addition, steers with high RFI also spent 21% more (P < 0.01) 

time at the bunk, had 28% more (P < 0.01) HD time, and 6% more (P < 0.01) visits to 

the feed bunk than the low-RFI steers. Meal duration tended (P = 0.06) to be longer for 

high-RFI steers, although the other meal traits did not differ between the RFI groups. As 

expected, steers with high RFI had higher (P < 0.001) feed costs ($800 vs. $637 per 

animal) compared to low-RFI steers because of greater DM intakes. Likewise, steers in 

the low-RFI group generated on average $145 per animal more net revenue than the 

high-RFI steers.  

Divergent Phenotypes for Time to Bunk 

The effects of TTB classification (based on ± 0.50 SD from mean TTB of 54.2 ± 

29.9) on performance, feed efficiency and feeding behavior traits are presented in Table 

2.7. Steers with low TTB had an 18% greater (P < 0.01) ADG than high-TTB steers. At 

the end of the trial, low-TTB steers weighed (P < 0.05) 27 kg less and tended (P = 0.07) 

to have a higher F:G ratio. Steers with high TTB had 5.8 fewer BV events and 1.8 fewer 

meal events per day than low-TTB steers. No differences were observed between the 

TTB groups for DM intake, RFI, or RG. As there was no difference in DM intake, 

differences in feed costs were not detected between TTB groups.  Steers in the low 

TTB group generated $119.98 higher carcass incomes and consequently yielded 

$88.28 more net revenue than the high-TTB steers. 
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Table 2.6. Comparison of performance, feed efficiency, and feeding behavior traits for 

steers with divergent phenotypes for RFI1 

Item
2

Low RFI

Medium 

RFI High RFI SE 

P- 

value 

No. of steers 28 33 23 -- -- 

Performance and Temperament: 

Initial BW, kg 281 283 282 3 0.89 

Final BW, kg 430 428 430 7 0.98 

ADG, kg/d 1.52 1.48 1.51 0.06 0.90 

Initial exit velocity, m/s 4.41 4.28 4.59 0.22 0.56 

Final exit velocity, m/s 3.65 3.24 3.87 0.31 0.28 

Time to bunk, min 50.3 56.2 56.2 6.3 0.70 

Feed efficiency: 

DM intake, kg/d 8.80 9.59 10.50 0.17 0.001 

F:G ratio 5.91 6.71 7.19 0.25 0.001 

RFI, kg/d -0.776 0.015 0.923 0.069 0.001 

RG, kg/d 0.021 -0.011 -0.009 0.040 0.78 

Bunk visit (BV) traits: 

BV frequency, events/d 45.8 42.5 48.7 1.8 0.05 

BV duration, min/d 86.0 91.4 104.4 3.8 0.01 

Non-feeding frequency, events/d 45.9 39.6 46.9 2.5 0.05 

Non-feeding duration, min/d 1288 1285 1271 5.93 0.08 

Meal traits: 

Meal frequency, events/d 10.9 11.0 11.5 0.5 0.64 

Meal duration, min/d 135 140 151 5 0.06 

Meal criterion, min 7.34 7.91 6.91 0.59 0.42 

Meal length, min/event 13.8 14.5 14.5 0.9 0.77 

Meal size, kg/event 1.07 1.16 1.18 0.06 0.27 

Eating rate, g/min 66.5 70.2 71.7 2.6 0.31 

Intensity traits: 

Head down duration (HD), min/d 57.5 59.6 73.9 4.5 0.05 

HD:BV duration 0.655 0.643 0.692 0.028 0.40 

HD:Meal duration  0.418 0.427 0.482 0.024 0.11 

Profit traits: 

Feed cost, $/hd
3

636.94 719.78 799.91 12.34 0.001 

Carcass income, $/hd
4

2078.17 2119.29 2093.76 29.90 0.52 

Net revenue, $/hd
5

301.66 253.44 156.89 23.27 0.001 
1
Low, medium, and high RFI phenotypes based on ± 0.50 SD from mean RFI of 0.00 (SD = .73). 

2
Feed intake and feeding behavioral data were collected for 52 d; growth data for 98 d. 

3
Feed cost computed from actual feed intake collected during individual feeding phase and model 

predicted intake adjusted for RFI. 
4
Carcass income calculated from carcass measurements taken at time of harvest. 

5
Net revenue calculated from carcass income minus all expenses accrued during both the individual and 

group fed phases.  
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Table 2.7. Comparison of performance, feed efficiency, and feeding behavior traits for steers with 
divergent phenotypes for TTB

1

Item
2

Low Medium High 

SE P- value TTB TTB TTB 

No. of steers 34 31 19 -- -- 

Performance and Temperament: 

   Initial BW, kg 283 283 280 3 0.69 

   Final BW, kg 436 434 409 7 0.008 

   ADG, kg/d 1.56 1.54 1.32 0.06 0.006 

   Initial exit velocity, m/s 4.15 4.36 4.96 0.23 0.019 

   Final exit velocity, m/s 3.14 3.5 4.31 0.33 0.021 

   Time to bunk, min 30.1 54.3 97.2 3.6 0.0001 

Feed efficiency: 

   DMI, kg/d 9.76 9.63 9.17 0.24 0.14 

   F:G ratio 6.43 6.37 7.16 0.29 0.07 

   RFI, kg/d 0.051 -0.031 -0.041 0.172 0.87 

   RG, kg/d 0.023 0.011 -0.06 0.044 0.29 

Bunk visit (BV) traits: 

   BV frequency, events/d 48.6 43.3 42.8 2 0.02 

   BV duration, min/d 94.7 96 85.9 4.4 0.17 

Non-feeding frequency,  events/d 46.5 41.4 42.5 2.9 0.24 

   Non-feeding duration, min/d 1284 1277 1286 7 0.48 

Meal traits: 

   Meal frequency, events/d 12 10.7 10.2 0.5 0.02 

   Meal duration, min/d 146 141 132 5 0.13 

   Meal criterion, min 7.23 7.64 7.52 0.65 0.83 

   Meal length, min/event 13.53 14.7 14.93 0.97 0.41 

   Meal size, kg/event 1057 1168 1217 61 0.08 

   Eating rate, g/min 67.66 69.87 71.61 2.89 0.53 

Intensity traits: 

   Head down (HD), min/d 64.2 65.7 55.5 5.1 0.26 

   HD:BV duration 0.665 0.672 0.635 0.031 0.63 

   HD:Meal duration  0.432 0.459 0.417 0.027 0.43 

Profit calculation: 

Feed cost, $/hd
3 

726.48 709.12 700.12 19.93 0.53 

Carcass Income, $/hd
4 

2138.10 2104.60 2018.10 31.37 0.011 

Net revenue, $/hd
5 

271.31 248.91 183.03 27.72 0.042 

1
Low, medium, and high phenotypes based on ± 0.50 SD from mean TTB of 54.23 (SD = 29.9). 

2
Feed intake and feeding behavioral data were collected for 52 d; growth data for 98 d. 

3
Feed cost computed from actual feed intake collected during individual feeding phase and model 

predicted intake adjusted for RFI. 
4
Carcass income calculated from carcass measurements taken at time of harvest. 

5
Net revenue calculated from carcass income minus all expenses accrued during both the individual and 

group fed phases. 
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Discussion 

With the recent developments of active RFID technology, the potential to 

measure individual-animal feeding behavior patterns on a large scale could become a 

reality. For such a system to be economically feasible, the economic benefits must 

outweigh the cost of implementing the technology. One potential application of such as 

system would be decision-support tools to identify animals with more favorable 

performance and feed efficiency. Individual-animal variation in feeding behavior and 

temperament traits may have value as indicator traits for economically relevant traits 

such as feed efficiency or performance and could potentially be collected using active 

RFID systems. With this in mind the objective of this trial is to characterize those 

feeding behavior and temperament traits that could be potential phenotypic biomarkers 

of economically relevant traits.  

The current study supports previous research demonstrating that feeding 

behavior traits in cattle have weak to moderate correlations with feed efficiency traits 

such as DM intake and RFI (Nkrumah et al., 2007; Kelly et al., 2010a; McGee et al., 

2014). The low to moderate correlations presented by Nkrumah et al. (2007) between 

feeding behavior traits, DM intake and RFI are comparable with those presented in the 

current study. Their study reported a positive correlation between BV duration and RFI 

of 0.49 which is similar to the correlation of 0.43 found in the current study.  

Analysis of the RFI group comparisons from the current study support those 

reported recently by McGee et al. (2014). Steers with low RFI spent less (P < 0.01) time 

at the feed bunk and had fewer BV events than steers with high RFI, which is similar to 

previous research (Nkrumah et al., 2007; McGee et al., 2014). In the current study, 

steers with more efficient RFI phenotypes ate less (P< 0.0001) while maintaining the 
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same eating rate and therefore spent less time at the bunk each day. Also, in 

agreement with previous research (Doventas et al., 2011), there was no difference in 

initial or final BW, or ADG between the divergent RFI groups, as RFI is independent of 

growth traits (Archer et al., 1999). As there was no difference in carcass weight (data 

not presented) or carcass income between the RFI groups, the average increase in net 

revenue ($145 per animal) observed by the low-RFI steers was the result of lower DM 

intakes.  

Steers classified as high TTB (> 0.5 SD above mean TTB of 54.2 ± 29.9) took 

an average of 67 min longer to consume their first meal each morning compared to 

steers classified as low TTB (< 0.5 SD below the mean TTB of 54.2 min). The steers 

with high TTB had 20% faster (P < 0.02) initial and 37% faster (P < 0.03) final exit 

velocities than steers with low TTB indicating that the high-TTB steers had more 

excitable temperaments than low-TTB steers. Although TTB classification did not affect 

initial BW, the high TTB steers had 27% lower final BW and 15% lessor ADG indicating 

that TTB may be more related to performance than feed efficiency. This is further 

supported by the fact that TTB was weakly correlated with ADG, but was not correlated 

with either DM intake or RFI. Steers in the high TTB group tended (P = 0.07) to have a 

higher F:G ratio than the steers in the low-TTB group, which was presumably due to 

difference in ADG.  

As steers in the low-TTB group had increased gains and therefore finished the 

study with higher carcass weights, they generated $88 more net revenue per animal 

than steers in the high-TTB groups.  Additionally, as there were no differences observed 

in adjusted back fat depth, longissimus muscle area, calculated yield grade, or Warner 
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Bratzer shear force values between the TTB groups (data not presented), carcass 

income was 6% greater (P < 0.02) and net revenue 48% greater for low-TTB steers. 

This study supports previous research that cattle with divergent phenotypes for 

RFI have distinctive feeding behavior patterns. This study also demonstrates the 

potential of using feeding behavior as an indicator of RFI to identify cattle with improved 

feed efficiency. Furthermore, the use of temperament traits to identify cattle with 

superior performance could prove useful in identifying cattle that are more profitable to 

produce.  Further research is warranted to more fully explore the possibilities of using 

feeding behavior and temperament traits as phenotypic biomarkers of feed efficiency 

and performance in beef cattle.  
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CHAPTER III 

CHANGES IN FEEDING BEHAVIOR PATTERNS AND DRY MATTER INTAKE 

PRIOR TO CLINICAL SYMPTOMS ASSOCIATED WITH BOVINE RESPIRATORY 

DISEASE IN GROWING BULLS  

Introduction 

Bovine respiratory disease (BRD) is the most prevalent and costly disease in 

U.S. feedlot cattle, accounting for approximately 75% of morbidity and 50-75% of 

mortality cases annually (Galyean et al., 1999). Although the costs of drug therapy and 

feedlot deaths associated with BRD are substantial, the true economic impact of this 

disease is even greater when reductions in animal productivity and carcass value are 

considered (Wittum et al., 1996; Smith, 1998; Fulton et al., 2002). Early detection and 

treatment of disease has been reported to improve the efficacy of antimicrobial therapy 

(Ferran et al., 2011). Current methods used to detect sick animals rely on subjective 

evaluations of clinical symptoms of illness by skilled pen riders. Prior research has 

shown the associations between animals treated for clinical signs of BRD and 

subsequent incidence of lung lesions postharvest to be moderate to low (Wittum et al., 

1996; Gardner et al., 1999). Thus, there is a critical need to develop more accurate 

animal-health monitoring systems to mitigate the economic impact of BRD. 

Changes in DM intake and behavioral patterns associated with feeding are 

among the earliest signs of clinical illness expressed in cattle. Furthermore, increases 

in core body temperature in response to infectious disease is known to be associated 

with reduced appetite (Hart, 1988). With the advancements in technology to record 

individual DM intake and feeding behaviors there is an opportunity to further 
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evaluate the behavioral responses to illness. Prior research has shown that steers with 

clinical symptoms of BRD spent 30% less time at the feed trough than healthy steers 

(Sowell et al., 1999). In addition heifers challenged with Mannheimia haemolytica spent 

less time at the feed bunk and less time in close proximity to the hay feeder than non-

challenged control heifers (Theurer et al., 2013b). Daniels et al. (2000) concluded that 

over the course of 3 21-d trials morbid calves spent on average 30 min/d less time at 

the feed bunk and had 3 fewer events/d than healthy calves. The morbid calves also 

had lower gains (P < 0.001; -0.03 kg/d) than healthy calves (0.78 kg/d ).  

To more accurately detect disease in cattle fed in confinement, specific 

behavioral responses need to be evaluated for their ability to predict morbidity events in 

cattle. The objective of this study was to identify and quantify DM intake and feeding 

behavior traits that change in response to an acute spontaneous outbreak of bovine 

respiratory disease.  

Materials and Methods 

Animals and Experimental Design 

All animal care and use procedures were in accordance with the guidelines for 

use of Animals in Agricultural Teaching and Research as approved by the Texas A&M 

University Institutional Animal Care and Use Committee. Growing purebred bulls (N = 

231) consigned from independent producers for the purpose of evaluating performance 

and feeding efficiency were used in this study. Although all bulls were previously 

vaccinated against viral and bacterial pathogens using variable vaccine products, all 

bulls were re-vaccinated upon arrival at the test facility for infectious bovine 

rhinotracheitis, parainfluenza-3 virus, bovine viral diarrhea, bovine respiratory syncytial 

virus (Pyramid 5, Boehringer Ingelheim), and Haemophilus somnus, Pasteurella 
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multocida, and clostridial diseases (Ultrabac7, Zoetis Animal Health), and treated for 

internal parasites (Valbazen, Zoetis Animal Health). In addition, bulls were fitted with 

passive, half-duplex transponder ear tags (Allflex USA Inc., Dallas, TX), and adapted to 

the test diet (Table 3.1) for 28 d prior to the start of a 70-d study.  

Table 3.1. Ingredient and chemical 
composition of the experimental diet. 

Item 

Ingredient As-fed basis % 

Steam-flaked corn 33.6 

Sorghum silage 20.0 

Roughage pellet 19.3 

Cottonseed hulls 14.4 

Cottonseed meal 5.2 

Premix 7.5 

Chemical Composition Dry matter basis 

Dry matter % 75.9 

CP, %DM 14.1 

NDF, %DM 34.5 

ME, Mcal/kg DM 2.40 

The bulls were housed in 1 of 9 pens each equipped with 4 electronic feed 

bunks (GrowSafe System Ltd., Airdrie, Alberta, Canada) to measure daily feed intake 

and feeding behavior traits. The GrowSafe system (DAQ 6000E) used in this study 

consisted of feed bunks equipped with load bars to measure feed disappearance, and 

antenna within each feed bunk to record animal presence by detection of radio-
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frequency identification tags during feeding events. Feed intake was allocated to 

individual animals based on continuous recordings of feed disappearance during 

feeding events, and a subroutine of the GrowSafe 6000E software (Process Feed 

Intakes) used to compute feed intake. In addition to collecting individual feed intake 

data, the system also recorded each bunk visit (BV) event, the EID number, scale 

number and time stamp, which was logged in the data-acquisition computer. In addition to 

the feeding behavior traits, time to bunk (TTB) was calculated using the statistical 

processing tool R and is defined as the length of the interval between delivery of feed 

via feed truck and an animal’s first feeding event. A description of the feeding 

behavior traits evaluated in this study is presented in Table 3.2. 

During the 70-d trial, bulls were evaluated twice daily for clinical signs of illness, 

and weighed at 14-d intervals. Diet samples were collected weekly and composited by 

weight at the end of the trial. Chemical analysis of the diet was conducted by an 

independent laboratory (Cumberland Valley Analytical Services Inc., Hagerstown, MD).  
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Experimental Cohorts. Within a 10-d period beginning on day 28 of the trial, 30 

bulls were treated for clinical symptoms associated with BRD. Thereafter, in response to 

reductions in DM intake (Figure 3.1), feedlot personnel administered metaphylaxis 

therapy (Tulathromycin; Draxxin®, Zoetis Animal Health) on day 38 of the trial to all 

remaining bulls (N = 201). Although diagnostic tests were not conducted to conclusively 

confirm presence of BRD, the decline in DM intake and observed clinical symptoms 

indicated the presence of acute respiratory illness.  

Table 3.2. Definition of feeding behavior traits analyzed in this study. 

Trait Definition 

Bunk visit (BV) duration, 
min/d 

Sum of the lengths of all BV events 
recorded each day  

BV frequency, events/d Number of BV events recorded each day 

Head down duration, min/d 

Number of EID recordings each day 
multiplied by the read rate of the GrowSafe 
system 

Time to bunk, min 
Length of interval between feed truck 
delivery and the first BV event each day 

Maximum non-feeding 
interval (NFI), min 

Length of the maximum interval between 2 
consecutive BV events each day 

NFI standard deviation, 
min 

SD of the lengths of all NFI recorded each 
day 

Eating rate, g/min 
Daily DM intake divided by daily BV 
duration  
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Figure 3.1. Average daily DM intake for the clinically-ill cohort (A) and the 

metaphylaxis-treated cohort (B). The 2-slope broken-line regression is plotted 

using data from day -36 to day clinical symptoms of illness were observed (A) 

and from day -36 to day of metaphylaxis treatment (B).  
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To examine deviations in DM intake and feeding behavior relative to onset of 

clinical symptoms of disease, the bulls in this study were separated into 2 cohorts. The 

clinically-ill cohort consisted of bulls that were identified as being morbid from day 28 to 

38 of the study by feedlot personnel based on observed clinical symptoms (N = 30). All 

bulls in this cohort exhibited variable clinical symptoms associated with BRD including 

nasal discharge, depression lethargy, and anorexia. Twenty seven of these bulls had 

elevated rectal temperatures (mean = 40.5oC, range = 39.7 to 42.1). All bulls in the 

clinically-ill cohort were administered antimicrobial therapy (Enrofloxacin; Baytril 100, 

Bayer Health Care LLC, Shawnee Mission, KS) and returned to their respective pens. 

The metaphylaxis-treated cohort consisted of the remaining bulls (N = 201) that were 

subsequently administered Tulathromycin on day 38 of the study. Clinical symptoms of 

illness were not observed in this cohort prior to metaphylaxis therapy, and diagnostic tests 

were not performed to confirm the presence of BRD. However, the observed decline in 

average DM intake prior to metaphylaxis therapy suggested that bulls in this cohort were 

experiencing some type of acute illness.  

Statistical Analysis 

Dry matter intake and feeding behavior traits were fit to a two-slope broken-line 

regression model using the PROC NLIN procedure of SAS (SAS Institute Inc., Cary, NC). 

Daily and 3-d rolling averages were computed for BV duration and frequency, head-down 

(HD) duration, TTB, maximum non–feeding interval (NFI), NFI standard deviation, eating 

rate, and DM intake relative to the day of individual-animal treatment for clinical illness in 

the clinically-ill cohort, and relative to day of Tulathromycin administration (day 38) in the 

metaphylaxis-treated cohort. The 3-d rolling average was defined as the sequential 

average of the day of trial and the day preceding and following each trial day. The 3-d 
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rolling average was evaluated to determine if the reduction in day-to-day variance would 

improve model fitness while retaining sufficient specificity to adequately represent the 

original trend of the data.  Prior to fitting regression models, the data was first plotted and 

the nadir or apex was visually identified. The model was fit to the interval between the 

beginning of the trial and the visually identified point, and the dependent variable 

evaluated for time-series deviations prior to detection of the morbidity event in the 

clinically-ill cohort, or prior to the day of Tulathromycin administration in the metaphylaxis-

treated cohort. The general model for the 2-slope broken-line regression as described by 

Coma et al. (1995) was:  

Y = L + U (R - XLR) + V (XGR - R)  

where L is the ordinate, R the abscissa of the inflection in the curve, U is the linear slope 

of the line for X < R, and V is the linear slope of the line for X > R. The inflection point (R; 

breakpoint) was considered as the day that DM intake or individual feeding behavior traits 

began to deviate.  
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Results 

Clinically-Ill Cohort 

Dry matter intake and performance of bulls were within the expected range 

given the age of the bulls and the experimental diet that was fed. Dry matter intakes 

averaged 9.3 kg/d during the first 38 days on study and ranged from 7.4 to 11.6 kg/d. 

Average daily gain for the bulls was 1.32 kg/d and ranged from 0.70 to 2.11 kg/d for the 

first 42 d on trial. Bunk visit duration and frequency were 90.0 min/d and 42.2 events/d, 

respectively, and were within the range previously reported (Lancaster et al., 2009; 

Hafla et al., 2013). Time to bunk averaged 84.4 min/d with a range of 32.9 to 217.3 

min/d. The maximum NFI and NFI SD averaged 416.7 and 96.9 min/d respectively. 

Results from the 2-slope broken-line regression analysis of the clinically-ill 

cohort are presented in Table 3.3 for the daily and 3-day rolling averages. Analysis of 

daily average data for DM intake revealed a breakpoint at 6.79 d (P < 0.0001) prior to 

when clinical illness was observed, with slopes for DM intake being 0.05 and -0.62 kg/d 

before and after the detected breakpoint, respectively. The R2 of the daily model for DM 

intake was 0.94 with a MSE of 0.15. For the clinically-ill cohort, DM intake decreased 

39.3% from the breakpoint until the day of clinical observation.  Eating rate was not as 

predictive as DM intake with the breakpoint being detected 1.32 d prior to clinical 

observation. The slopes for eating rate before and after the breakpoint were 0.7 and 

122.4 g/min, respectively. 
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Table 3.3. Estimation of breakpoints in DM intake and feeding behavior traits using 
2-slope broken-line regression models for the clinically-ill cohort (N = 30).  

2-slope broken-line 
regression model 

Regression model parameters1 

L R U V R2 MSE 

Daily average: 

 DM intake, kg/d 12.7 -6.79 0.05 -0.62 0.94 0.15 

 Eating rate, g/min 142.2 -1.32 0.66 122.40 0.96 36.4 
 Bunk visit (BV) duration, 

min/d 95.4 -7.24 -0.04 -4.45 0.82 32.0 

 BV frequency, events/d 48.6 -7.58 0.17 -2.89 0.67 9.9 

 Head down duration, min/d 71.1 -6.26 -0.10 -5.08 0.84 15.3 

 Time to bunk, min/d 82.3 -1.48 0.39 73.75 0.52 421.3 

Maximum non-feeding 
interval (NFI), min/d 

588.7 -39.49 5.26 1.61 0.19 1359 

    NFI SD, min/d 92.5 4.70 0.05 13.94 0.87 37.3 

3-day rolling average: 

 DM intake, kg/d 12.6 -6.71 0.04 -0.61 0.97 0.06 

 Eating rate, g/min 143.7 -2.88 0.69 80.15 0.91 26.2 
Bunk visit (BV) duration, 
min/d 

93.9 -5.34 -0.10 -7.59 0.92 10.0 

 BV frequency, events/d 53.6 -14.19 0.34 -1.18 0.69 9.5 

 Head down duration, min/d 71.6 -7.21 -0.08 -4.00 0.88 10.0 

 Time to bunk, min/d 78.1 -3.23 0.21 26.13 0.46 184.4 

 Maximum non-feeding 
interval 11(NFI), min/d 

433.0 16.13 1.08 30.27 0.18 617.7 

 NFI SD, min/d 97.1 -3.00 0.22 31.27 0.62 25.7 
1L = intercept; R = breakpoint; U = slope before breakpoint; V = slope after 
breakpoint. 

The detected breakpoints for BV duration and frequency were 7.24 and 7.58 d 

prior to clinical observation, with both breakpoints occurring prior to the detected 

breakpoint for DM intake by 0.45 and 0.79 d, respectively. The breakpoint for HD 

duration was 6.26 d prior to clinical observation, but occurred 0.53 d following the DM-
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intake breakpoint. For all 3 of these feeding behavior traits, the linear slopes were 

essentially zero before the respective breakpoints and decreased thereafter at a rate of 

4.4 min/d, 2.9 events/d and 5.1 min/d for BV duration, BV frequency and HD duration, 

respectively. A breakpoint for TTB was not detected until 1.48 d prior to clinical 

observation, with the slope for TTB increasing at a rate of 73.8 min/d after the 

breakpoint was detected. The model accuracy for maximum NFI (R2 = 0.19) was poor 

demonstrating that this feeding behavior trait was ineffective as a predictor of clinically 

illness. Although model accuracy for NFI SD was higher (R2 = 0.87), the detected 

breakpoint occurred 4.7 d after clinical detection of illness was observed.  

Results from the analysis of 3-d rolling average data for DM intake were similar 

to that found for daily average data. The breakpoint was detected at 6.71 d prior to 

clinical observation of illness, which was 0.08 d later compared to analysis of daily 

average data. Moreover, the slopes before and after the breakpoints were similar 

regardless whether daily or 3-d rolling average DM intakes were evaluated. The model 

accuracy was numerically improved (R2 0.97) when the 3-d rolling average compared to 

daily DM intake data were evaluated.  

Compared to analysis of daily average data for eating rate, use of the 3-d rolling 

average for eating rate increased the breakpoint by 1.56 d prior to clinical detection. 

The slope before the breakpoint was very similar but the slope after the break was 

decreased to 80.15 g/min. The eating rate model had the highest R2 for the daily 

average data. 

Analysis of 3-d rolling average data for feeding behavior data revealed different 

results. The breakpoint for BV duration decreased by 1.9 d to 5.34 d prior to clinical 

observation, while the breakpoint in BV frequency was detected at -14.2 d prior to 



42 

clinical observation, which was a 6.6 d increase in detection time. Head-down duration 

increased by 0.95 d to 7.21 d prior. The R2 these 3 feeding behavior traits were 

numerically higher compared to the respective models using daily average data.   

The breakpoint for TTB was increased in the rolling average model to 3.23 d 

prior to clinical observation although the R2 was lower (0.457). The slope after the 

breakpoint was decreased by 47.1 min/d to 26.1 min/d for the rolling average model. 

The models for maximum NFI and NFI SD were not improved by use of 3-d rolling 

average data. Furthermore, estimates of model accuracy were less when the 3-d rolling 

average data were evaluated compared to use of daily averages.  

Metaphylaxis-Treated Cohort 

The DM intakes and performance of bulls in the  metaphylaxis-treated cohort 

were within the expected range given their age and the experimental diet that was fed. 

DM intakes averaged 10.0 kg/d during the first 38 d on trial and ranged from 6.1 to 13.6 

kg/d. Average daily gain for the bulls was 1.64 kg/d with a range of 0.27 to 3.08 kg/d for 

the first 42 d on trial. BV frequency and duration were 44.0 events/d and 95.8 min/d and 

were within the previously reported range (Hafla et al., 2013; McGee et al., 2014) . Time 

to bunk averaged 73.6 min/d and ranged from 22.8 to 140.5 min/d. The maximum NFI 

averaged 397.2 min/d and the NFI SD averaged 89.0 min/d.  
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Table 3.4. Estimation of breakpoints in DM intake and feeding behavior traits using 2-
slope broken-line regression models for the metaphylactic-treated cohort1. 

2-slope broken-line 
regression model 

Regression model parameters2 

L R U V R2 MSE 

Daily average: 

 DM intake, kg/d 12.5 -3.81 0.02 -1.51 0.81 0.31 

 Eating rate, g/min 147.9 -8.20 0.81 31.20 0.90 15.7 
 Bunk visit (BV) duration, 

min/d 88.7 -0.09 -0.37 21.93 0.61 16.6 

 BV frequency, events/d 45.8 -8.19 0.04 -5.79 0.32 13.4 

 Head down duration, min/d 63.5 -8.31 -0.38 -6.92 0.69 9.5 

 Time to bunk, min/d 71.7 -3.79 0.11 16.93 0.36 377.5 

Maximum non-feeding 
interval (NFI), min/d 

393.7 -0.80 0.10 259.20 0.73 430.9 

    NFI SD, min/d 84.6 -11.58 -0.07 1.54 0.24 85.2 

3-day rolling average: 

 DM intake, kg/d 12.4 -2.59 0.02 -1.74 0.93 0.05 

 Eating rate, g/min 144.9 -11.46 0.71 5.15 0.93 6.0 
 Bunk visit (BV) duration, 

min/d 89.0 -5.91 -0.37 0.01 0.75 5.2 

 BV frequency, events/d 45.7 -7.89 0.03 -3.49 0.40 6.6 

 Head down duration, min/d 64.6 -10.00 -0.36 -1.78 0.84 3.8 

 Time to bunk, min/d 72.3 -3.00 0.13 21.76 0.16 98.3 

Maximum non-feeding 
interval (NFI), min/d 

392.3 -3.00 0.03 16.81 0.06 143.7 

 NFI SD, min/d 84.8 -12.59 -0.07 0.91 0.50 11.0 
1Tulathromycin (Draxxin®). 
2L = intercept; R = breakpoint; U = slope before breakpoint; V = slope after 
breakpoint. 

The results from the 2-slope broken-line regression models for the daily and 3-d 

rolling average data for the metaphylaxis-treated cohort are presented in Table 3.4. 

Analysis of daily average data for DM intake revealed a breakpoint at 3.81 d (P< 

0.0001) prior to metaphylaxis treatment, the slope before the breakpoint was essentially 

zero (0.02) and after the breakpoint was -1.51 kg/d. DM intake decreased 49.8% from 
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the breakpoint to the day of metaphylaxis therapy. Contrary to what was observed in the 

clinically-ill cohort, eating rate was one of the first traits to be detected prior to 

metaphylaxis treatment, with the breakpoint being detected 8.2 d prior to treatment. The 

rate of change in eating rate after the breakpoint was 31.2 min/d. 

Analysis of the daily averages model for BV frequency revealed a breakpoint 

8.19 d prior to metaphylaxis treatment, which was 4.38 d prior to the breakpoint for DM 

intake.  The breakpoint for HD duration was 8.31 d prior to metaphylaxis treatment and 

7.74 d prior to the breakpoint for DM intake.  The predicted slope after the breakpoint 

for HD duration was -5.79 min/d. For time to bunk, a breakpoint was detected 3.79 d 

prior to metaphylaxis treatment, with TTB increasing at a rate of 16.9 min from the 

breakpoint until metaphylaxis treatment. The breakpoints detected for BV duration and 

maximum NFI observed were 0.09 and 0.80 d, respectively, indicating that these traits 

were not predictive of clinical illness.  

The analysis of the 3-d rolling average revealed that the breakpoint for DM 

intake was 2.59 d prior to treatment, which was 1.22 d later compared to the analysis of 

the daily average data. Model accuracy of the 3-d rolling average DM intake (R2 = 0.93) 

was higher than that observed for the daily average data (R2 = 0.88). 

The breakpoint for eating rate based on the 3-d rolling average data was 

detected 11.5 d prior to metaphylaxis treatment. The rate of increase in eating rate after 

the breakpoint (5.15 g/min) was substantially less then what was detected based on the 

daily average data. Closeness of fit for eating rate was high for eating rate regardless of 

whether daily or 3-d rolling average data were analyzed.  

Although the 3-d rolling average model for BV duration yielded a breakpoint 5.91 

d prior to metaphylaxis treatment the predicted slope was essentially 0 and probably not 
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related to the BRD event. The rolling average model for BV frequency was very similar 

to the daily model with a 0.3 d later breakpoint and a 2.3 event/d reduction in the slope 

after the breakpoint. The rolling average increased the breakpoint for HD duration to 10 

d prior to intake and the slope after the break point was decreased to -1.78 min/d. All 3 

of these traits observed the highest model accuracy for the rolling average models over 

the daily average models.  

The 3-d rolling average of NFI SD yielded a somewhat higher model accuracy 

(R2= 0.50) and predicted the breakpoint to be 1.01 d sooner than the daily average (R2= 

0.24). Model accuracy for both TTB (R2 = 0.16) and maximum NFI (R2 = 0.06) was much 

lower for the 3-d rolling average than the daily average. 

Discussion 

The objective of this study was to characterize changes in DM intake and 

feeding behavior traits preceding the display of clinical symptoms of illness associated 

with BRD in growing bulls. This type of information could lead to the development of 

prediction algorithms to detect cattle experiencing morbidity. Identification of morbid 

cattle earlier in the disease process would potentially improve the efficacy of 

antimicrobial therapy (Ferran et al., 2011). Results from this study demonstrated that 

deviations in DM intake and feeding behavior traits occurred well before clinical 

symptoms were observed. Furthermore, the detected breakpoints for several of the 

feeding behavior traits occurred prior to the breakpoint for DM intake suggesting that 

deviations in behavioral patterns associated with feeding activities may be more 

sensitive for pre-clinical detection of morbidity than deviations in DM intake. 

Prior research has demonstrated that DM intake is reduced in cattle 

experiencing acute health challenges (Gonzalez et al., 2008; Lukas et al., 2008). This is 
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in part because of reduced appetite as the cattle are most likely experiencing a fever 

(Hart, 1988). In agreement with prior studies, the bulls in this study experienced a large 

reduction in DM intake prior to onset of observed clinical symptoms. The differences in 

the breakpoints experienced by the 2 cohort groups can partially be explained by the 

standardizing all for the animals in the clinically-ill cohort to the day of detection while 

the metaphylaxis-treated cohort were all compared to the same trial day. With the bulls 

in the metaphylaxis-treated cohort most likely being in variable stages of the disease 

process the later detection was not unexpected. Results presented by Wolfger et al. 

(2015) agree with the breakpoint detection of the clinically-ill cohort, as they reported a 

change in DM intake as soon as 7 d prior to observation of illness could increase the 

risk of developing BRD. Furthermore, results from Wolfger et al. (2015) also support the 

breakpoint in BV duration as they reported an increase in mean meal time up to 7 d 

prior to visual detection was associated with decreased risk for developing BRD.  

Other studies have reported on the feeding behavioral changes in feedlot cattle 

experiencing BRD-related morbidity events. In one such study, Sowell et al. (1999) 

concluded that animals experiencing a period of BRD had reduced time spent at the 

feed bunk. Furthermore they found that a smaller portion of the sick cattle were present 

at the feed bunk during the first morning feeding compared with healthy cattle. This is in 

agreement with the results of the current study where BV duration and frequency both 

observed breakpoints more than 7 d prior to clinical detection for the clinically-ill cohort. 

In another such study, Theurer et al. (2013b) used tri-axial triangulation devices to 

analyze behavioral changes in heifers challenged with Mannheimia haemolytica. 

Although individual-animal DM intakes were not recorded, the challenged calves spent 

less time near the grain and hay bunk in the days following the challenge. They also 
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concluded that calves in the challenged group spent more time lying down and took 

fewer steps during the days following challenge. Their findings support the results from 

the current study that feeding behavior traits tended to break prior to clinical observation 

of sickness. The findings further support the observed increase in slope for maximum 

NFI after the breakpoint as the animals were most likely engaging in reduced physical 

activity resulting in more time between BV events. Quimby et al. (2001) used statistical 

process control to detect BRD up to 4 d prior to observation of illness. They concluded 

that monitoring of feeding behaviors could offer an alternative method of morbidity 

detection that was more predictive than visual assessment. This is supported by the 

results of the clinically-ill cohort where, excluding the NFI traits, both DM intake and 

feeding behavior broke prior to clinical observation of morbidity.    

 It was interesting to note that eating rate increased 1 to 3 d prior to observed 

clinical detection of illness, and 8 to 11 d prior to metaphylaxis treatment. Because both 

DM intake and BV duration decreased prior to clinical illness, this finding suggests that 

the magnitude of the decline in BV duration must have exceeded that for DM intake. 

Perhaps the bulls were trying to reduce energy expenditures associated with ingestion 

of feed by consuming relatively large meals at faster rates while concurrently minimizing 

the physical activities associated with feed bunk attendance.  

The results from this study support previous research that has compared 

behavioral patterns associated with feeding activities between healthy and morbid 

cattle. Further, the results suggest that deviations in feeding behavior patterns 

preceding the display of clinical symptoms of illness in beef cattle may be useful in 

development of predictive algorithms for pre-clinical detection of BRD. Advancements in 

active RFID technology may facilitate development of animal health monitoring systems 
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based on deviations in feeding behavior. Further research is warranted to develop more 

accurate predictive algorithms based on deviations in feeding behavior for pre-clinical 

detection of infectious disease. 
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CHAPTER IV 

PRECLINICAL DEVIATIONS IN FEEDING BEHAVIOR AS AN EARLY INDICATOR 

OF BOVINE RESPIRATORY DISEASE 

Introduction 

Current methods of disease detection rely on the use of skilled pen riders to 

visually assess animals on a daily basis for clinical symptoms of illness. Since cattle are 

prey animals with inherent instincts to mask signs of illness it takes highly experienced 

individuals to make accurate and timely decisions regarding treatment of animals 

experiencing morbidity events. Animals with sub-clinical disease that do not display 

overt clinical symptoms are typically not treated. Moreover, previous research has 

shown the relationship between animals treated for clinical symptoms of BRD and the 

incidence of postharvest lung lesions indicative of respiratory tract disease to be 

moderate to low (Wittum et al., 1996; Gardner et al., 1999; Buhman et al., 2000). These 

results indicate the need for more accurate and objective methods to detect morbidity in 

beef cattle.  

Many studies have examined the use of remote sensing technologies for 

morbidity detection in livestock, including rumen and tympanic temperature sensors, 

accelerometers, infrared thermography, and feeding behavior (Mertens et al., 2010; 

Theurer et al., 2013a). These remote-sensor technologies have been evaluated based 

on their ability to provide more accurate pre-clinical detection for morbidity events 

associated with respiratory tract disease. Remote sensing technologies have been 

evaluated for practicality and accuracy of BRD detection in beef cattle. Schaefer et al. 

(2007) used infrared thermography to detect BRD in weaned calves fed in a group pen 
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setting, and reported that infrared thermography could detect incidence of BRD 4 to 6 d 

prior to observed clinical symptoms with a test efficiency of 71%, which was much 

higher than the 55% observed by the industry practice of clinical scoring. Rose-Dye et 

al. (2011) reported that the use rumen temperature sensors was effective in detecting 

BRD in beef cattle challenged with Mannheimia haemolytica and/or bovine viral 

diarrhea virus. Another use of remote sensing technologies is to collect feeding and 

watering behaviors. Feeding behavior traits have been shown to be highly repeatable 

during the growing and finishing periods (Kelly et al., 2010b) suggesting that deviations 

in feeding behavior may be useful pre-clinical indicators of infectious disease. One of 

the obstacles to the use of feeding behavior to detect morbidity events is the lack of 

objective evaluation techniques to determine health status. Few studies have evaluated 

methods to objectively detect deviations in behavioral patterns associated feeding 

activities associated with the onset of disease. In one such study, Quimby et al. (2001) 

applied statistical process control procedures to feeding behavior data collected by 

RFID technology to identify cattle with BRD. Individual-animals were fitted with RFID 

tags and sensors in fence line troughs were used to record time spent at the feed bunk 

and number of times animals visited the feed troughs during each trial day. At the end 

of the trial individual CUSUM charts for feed bunk attendance were constructed for each 

animal and the results compared to observed BRD cases identified by feedlot 

personnel. Quimby et al. (2001) reported that morbidity could be detected by the 

CUSUM charts 3 to 4 d prior to observational detection with an overall accuracy of 87%. 

In another such study, Madsen and Kristensen (2005) applied statistical process control 

procedures to a stochastic model for drinking behavior in piglets. In this study, hourly 

water intake was modeled and the residuals between the expected and actual water 
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intake was plotted using CUSUM charts. The authors concluded that deviations in water 

intake were effective in predicting illness up to 24 h before clinical symptoms of illness 

were observed in piglets.  

The objectives of the current study were to evaluate the use of statistical 

process control procedures to predict clinical illness based on deviations in DM intake 

and feeding behavior patterns, and to determine which feeding behavior traits were 

most the most effective for pre-clinical detection of respiratory disease in cattle.  

Materials and Methods 

Animals and Experimental Design 

All animal care and use procedures were in accordance with the guidelines for 

use of Animals in Agricultural Teaching and Research as approved by the Texas A&M 

University Institutional Animal Care and Use Committee. Growing purebred bulls (N = 

231) consigned from independent producers for the purpose of evaluating performance 

and feeding efficiency were used in this study. Although all bulls were previously 

vaccinated against viral and bacterial pathogens using variable vaccine products, all 

bulls were re-vaccinated upon arrival at the test facility for infectious bovine 

rhinotracheitis, parainfluenza-3 virus, bovine viral diarrhea, bovine respiratory syncytial 

virus (Pyramid 5, Boehringer Ingelheim), and Haemophilus somnus, Pasteurella 

multocida, and clostridial diseases (Ultrabac7, Zoetis Animal Health), and treated for 

internal parasites (Valbazen, Zoetis Animal Health). In addition, bulls were fitted with 

passive, half-duplex transponder ear tags (Allflex USA Inc., Dallas, TX), and adapted to 

the test diet (Table 3.1) for 28 d prior to the start of a 70-d study.  

The bulls were housed in 1 of 9 pens each equipped with 4 electronic feed 

bunks (GrowSafe System Ltd., Airdrie, Alberta, Canada) to measure daily feed intake 
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and feeding behavior traits. The GrowSafe system (DAQ 6000E) used in this study 

consisted of feed bunks equipped with load bars to measure feed disappearance, and 

antenna within each feed bunk to record animal presence by detection of radio-

frequency identification tags during feeding events. Feed intake was allocated to 

individual-animals based on continuous recordings of feed disappearance during 

feeding events, and a subroutine of the GrowSafe 6000E software (Process Feed 

Intakes) used to compute feed intake. In addition to collecting individual feed intake 

data, the system also recorded each bunk visit (BV) event, the EID number, scale 

number and time stamp, which was logged in the data-acquisition computer. In addition to 

the feeding behavior traits, time to bunk (TTB) was calculated using the statistical 

processing tool R and is defined as the length of the interval between delivery of feed 

via feed truck and an animal’s first feeding event. A description of the feeding 

behavior traits evaluated in this study is presented in Table 3.1.  

During the 70-d trial, bulls were evaluated twice daily for clinical signs of illness, 

and weighed at 14-d intervals. Diet samples were collected weekly and composited by 

weight at the end of the trial. Chemical analysis of the diet was conducted by an 

independent laboratory (Cumberland Valley Analytical Services Inc., Hagerstown, MD).  

Experimental Cohorts.  Within a 10-d period beginning on day 28 of the trial, 30 

bulls were treated for clinical symptoms associated with BRD. Thereafter, in response to 

reductions in DM intake, feedlot personnel administered metaphylaxis therapy 

(Tulathromycin; Draxxin®, Zoetis Animal Health) on day 38 of the trial to all remaining 

bulls (N = 201). Although diagnostic tests were not conducted to conclusively confirm 

presence of BRD, the decline in DM intake and observed clinical symptoms indicated the 

presence of acute respiratory illness.  
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To examine deviations in DM intake and feeding behavior relative to onset of 

clinical symptoms of disease, the bulls in this study were separated into 2 cohorts. The 

clinically-ill cohort consisted of bulls that were identified as being morbid from day 28 to 

38 of the study by feedlot personnel based on observed clinical symptoms (N = 30). All 

bulls in this cohort exhibited variable clinical symptoms associated with BRD including 

nasal discharge, depression lethargy, and anorexia. Twenty seven of these bulls had 

elevated rectal temperatures (mean = 40.5oC, range = 39.7 to 42.1). All bulls in the 

clinically-ill cohort were administered antimicrobial therapy (Enrofloxacin; Baytril 100, 

Bayer Health Care LLC, Shawnee Mission, KS) and returned to their respective pens. 

The metaphylaxis-treated cohort consisted of the remaining bulls (N = 201) that were 

subsequently administered Tulathromycin on day 38 of the study. Clinical symptoms of 

illness were not observed in this cohort prior to metaphylaxis therapy, and diagnostic tests 

were not performed to confirm the presence of BRD. However, the observed decline in 

average DM intakes prior to metaphylaxis therapy suggested that bulls in this cohort were 

experiencing some type of acute illness. 

Description of CUSUM Model  

Control charts are graphical displays used to determine if time series data is in a 

state of statistical control. The charts contain a centerline that represents either the mean 

or target value for the data when the process is in a controlled state. Upper and lower 

control lines are used to define when a process is in or out of statistical control, with the 

process being deemed out of control once the data exceeds either of the control lines. 

There are a variety of control charts that can be implemented to detect deviations in a 

process such as the Shewhart, CUSUM, and exponentially weighted moving average 

(EWMA) charts. Control charts have been used in a wide variety of applications ranging 
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from in-line monitoring of industrial manufacturing to healthcare (Roan and Hu, 1995; 

Woodall, 2006). Mertens et al. (2010) presented a review of the applications of control 

charts as a tool to support livestock production that focused on the opportunities 

associated with applying control charts to the increasing availability of data generated by 

real-time monitoring systems in livestock production systems. They concluded that 

implementing tools such as statistical process control procedures would be crucial for the 

implementation of these monitoring systems.  

 The CUSUM chart is designed to detect minor, persistent deviations in the 

process mean for a given variable of interest (Hawkins, 1992). The CUSUM chart is a 

cumulative summation of the differences between each successive data point and the 

target value or process mean. CUSUM charts can be either 1 or 2-sided depending on 

the type of change in the process to be detected and both have been used for detecting 

morbidity in livestock (Quimby et al., 2001; Lukas et al., 2008). For this study, a two-sided 

CUSUM chart was selected as it allows for the detection of changes in the mean in either 

the upward or downward direction independently. The CUSUM chart requires user-

specified parameters µ0, σ, ∆, K, and H. The process mean or target value, µ0, and 

standard deviation, σ, are computed from the original data. The magnitude of change 

required to be detected by the chart, ∆, and the magnitude of deviation of an observation 

from the mean, K, referred to as the reference value, are calculated in standard deviation 

units. H referred to as the decision interval and calculated in standard deviation units, are 

the distance away from the mean required to conclude the process is out of control. Once 

the user specifies ∆, then K and H are computed to optimize the detection of out of control 

events while keeping false positives to a minimum. Most applications of CUSUM charts 
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have found that using values of ∆/2 for K and 4σ or 5σ for H to work well in most 

applications.  

CUSUM Model Statistical Analysis 

Individual CUSUM charts were computed for each animal in a daily iterative 

manner for 2 trial periods; period 1 (day 0-38) for which all animals were considered 

clinically ill and period 2 (days 42-69) for which all animals were considered clinically 

healthy. The separation of the trial into 2 periods allowed for each animal to serve as a 

both a true positive and a true negative for evaluating the accuracy of CUSUM models. 

 When designing the CUSUM charts, the commonly used value of ∆/2 was used 

for the reference value K. The decision interval H was evaluated at three different levels; 

4, 3.5, and 3 sigma from the process mean. Sigma was tested across multiple settings to 

determine sensitivity of the models to changing parameter settings. Evaluating the models 

at these different parameter settings allowed for the optimization of the decision interval. 

The feeding behavior traits that were evaluated are defined in Table 3.2. Based on 

results from results from the 2-slope broken line models presented in Chapter III, day of 

pre-clinical detection of illness for DM intake, BV duration, BV frequency, and HD duration 

were based on the first point to cross the lower control limit as these traits displayed 

decrease in slope prior to observed clinical detection (Figure 4.1). Pre-clinical detection of 

illness based on eating rate, TTB, maximum NFI, and NFI standard deviation were based 

on the first point to cross the upper control limit as the previously reported rate of changes 

in these traits were positive prior to observed clinical detection.  

A 2-behaviorial trait model was also evaluated, which was designed as a 

confirmatory rule where a minimum of 2 behavior traits were required to go out of control 

before pre-clinical detection of illness was confirmed. For example, if the CUSUM models 
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for BV duration and frequency were individually detected at 3 and 4 d prior to observed 

clinical illness, the day of detection based on the 2-behavioral model would be 3 d prior to 

observed clinical illness.  

Figure 4.1. Cumulative sum chart of an individual animal identified as morbid during 

period 1 (A) and healthy during period 2 (B). Pre-clinical detection based on DM intake 

occurred when the lower CUSUM (open circles) crossed the lower control limit (dashed 

line).  
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In the clinically-ill cohort, the day of CUSUM model detection was evaluated 

relative to the day of individual-animal treatment for clinical illness, whereas, in the 

metaphylaxis-treated cohort day of CUSUM model detection was evaluated relative to 

day of Tulathromycin administration (day 38). A t-test was performed to determine if the 

difference between CUSUM model day of detection and observed clinical detection was 

significant at P < 0.05 

T-tests were also performed to examine if differences were present between the day of 

detection for feeding behavior traits and the day of detection for DM intake.  

The overall test efficiency of the CUSUM models for DM intake and each of the 

feeding behavior traits was determined as the total number of correct detections (True 

Positives + True Negatives) divided by the total number of observations.   

  Results 

Clinically-Ill Cohort 

Descriptive Statistics. The DM intakes and performance of the bulls were within 

the expected range given the age of the bulls and the experimental diet that was fed. 

Dry matter intake averaged 9.3 kg/d during period 1 and increased to 9.8 kg/d during 

period 2. Performance traits also increased from period 1 to period 2 with ADG 

increasing from 1.32 to 1.54 kg/d and G:F ratio increasing from 0.14 to 0.61.  

The means ± SD for BV frequency and duration in period 1 (42.2 ± 12.5, 90.0 ± 

21.3) were with the range previously reported in studies with growing steers and bulls 

(Buhman et al., 2000; Daniels et al., 2000; Hafla et al., 2013). Furthermore, the means 

± SD for BV frequency and duration were 40.1 and 93.9 during period 2, indicating that 

these 2 feeding behavior traits were consistent before and after clinical illness. 

Likewise, the means ± SD for maximum NFI and the SD of NFI were similar between 
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period 1 (416.7 ± 79.1, 96.9 ± 20.7) and period 2. In contrast, the average TTB was 

numerically higher during period 1 (84.4 ± 43.8 min) compared to period 2 (54.0 ± 35.8 

min).  As reported in chapter 2 in growing steers, TTB was weakly correlated with exit 

velocity in a positive manner, suggesting that steers with more excitable temperaments 

tended to wait longer before initiating the first BV event following feed truck delivery. 

The reduction in TTB from period 1 to 2 may indicate that bulls were becoming more 

acclimated to feedlot personnel and feed truck delivery as the study progressed.  

Effect of Sigma on CUSUM Model Results. Ideally, the CUSUM model would 

detect 100% of bulls observed to be clinically ill (True positive) during period 1 and 

detect 100% of bulls to be healthy (True negative) during period 2. To evaluate which 

sigma was optimal for detection of clinical illness in this retrospective study, model 

results were compared at 4, 3.5 and 3 sigma (Table 4.1). As expected, as sigma used 

in the CUSUM models was reduced from 4 to 3, the proportion of true positives (model 

predicted animal as ill) increased during period 1 and the proportion of true negatives 

(model predicted animal as healthy) during period 2 decreased for DM intake and all 

feeding behavior traits (data not shown). With the exception of eating rate, model test 

efficiencies were lower at 3 sigma compared to 4 sigma as the reduction in the 

proportion of true negatives was greater than the increase in true positives. The model 

test efficiencies were numerically highest for all traits at 3.5 sigma, except for eating 

rate. Thus, only the CUSUM model results using 3.5 sigma are presented below. 
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Table 4.1. Test efficiencies of process-control models (CUSUM method using 4, 

3.5, and 3 sigma control lines) of DM intake and feeding behavior traits for detection 

of clinical illness in the clinically-ill cohort (N = 30) of growing bulls.  

Process-control models 

Test efficiency 

(sigma = 4) 

Test efficiency 

(sigma = 3.5) 

Test efficiency 

(sigma = 3) 

Single-feed-intake trait models 

 DM intake, kg/d 0.88 0.89 0.75 

    Eating rate, g/min 0.75 0.77 0.80 

Single-behavior trait models 

 Bunk visit (BV) duration, 

11min/d 
0.85 0.87 0.73 

 BV frequency, events/d 0.79 0.80 0.72 

 Head down duration, min/d 0.85 0.89 0.80 

 Time to bunk, min/d 0.65 0.72 0.43 

 Maximum non-feeding     

11interval (NFI), min/d 
0.67 0.74 0.57 

    NFI SD, min/d 0.82 0.84 0.60 

Two-behavior trait model4 0.90 0.92 0.57 
1Test efficiency = (TP + TN) ÷ total number of animals. 

CUSUM Models to Detect BRD. Results from CUSUM model detections of 

clinical illness during periods 1 and 2 are presented in Table 4.2. The CUSUM model 

for DM intake yielded the highest proportion of true positives (87%) during period 1 of 

all the single-trait models, however, time of detection based on DM intake did not differ 

(P > 0.10) from day of observed clinically illness. During period 2, only 10% false 

positives (model predicted animal as ill) were detected by the CUSUM model based on 

DM intake. The CUSUM model for eating rate detected only 63% true positives during 

period 1, but yielded the earliest day of detection (P < 0.05) of all traits at 6.4 d prior to 

observed clinical illness. Interestingly, the CUSUM model for eating rate was the only 

feeding behavior based model where detection occurred prior to day of detection based 
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on DM intake. Day of detection based on eating rate occurred (P < 0.5) 5.1 d prior to 

detection based on DM intake.   

Analysis of the single-behavior trait models revealed that HD duration detected 

the greatest proportion of true positives during period 1 (80%), with day of detection 

being 3.0 d prior (P < 0.05) to observed clinical illness. Day of detection by the CUSUM 

model for BV duration, but not BV frequency was also significantly different from day of 

observed clinical illness (2.7 d). The test efficiencies for both BV and HD duration were 

high (87-89%). The CUSUM models based on TTB, maximum NFI, and NFI SD yielded 

less accurate test efficiencies, and the day of detection did not differ (P > 0.05) from day 

of clinical observation for these traits. 

The CUSUM model based on the 2-behavior trait rule yielded the highest test 

efficiency (0.92) of all the traits, with the average of detection being 2.5 d prior to clinical 

observation of illness. During period 1 the model detected 93% of the bulls as true 

positives and during period 2 only detected 10% of the bulls as false negatives.   
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Table 4.2. Evaluation of process-control models (CUSUM method using 3.5-sigma control lines) of DM intake and feeding 
behavior traits for detection of clinical illness in the clinically-ill cohort (N = 30) of growing bulls during periods 1 and 2. 

Period 1 (Days 0 to 38; 
Clinically ill) 

Period 2 (Days 42-69; Clinically 
healthy) 

Process-control model 
Time of 

detection1, d 
Time prior to 
treatment2, d 

Time prior 
to Intake3, d 

True 
positives, 

% 
Time of 

detection1, d 

True 
negatives, 

% 
Test 

efficiency 

Single-feed-intake trait 
models 

DM intake, kg/d 32.4 -0.9 -- 87% 63 90% 0.89 

Eating rate, g/min 27.6 -6.4* -5.1* 63% 67 90% 0.77 
Single-behavior trait 
models 

Bunk visit (BV) 
duration, min/d 

30.7 -2.7* -1.2 77% 44 97% 0.87 

BV frequency, events/d 31.0 -2.2 -1.6 70% 61 90% 0.80 
Head down duration, 
min/d 

30.4 -3.0* -1.2 80% 60 97% 0.89 

Time to bunk, min/d 32.2 -0.6 -0.6 60% 54 83% 0.72 

Maximum non-feeding   
interval (NFI), min/d 

32.5 -0.5 0.9 50% 66 97% 0.74 

NFI SD, min/d 32.1 -1.1 -0.5 77% 65 90% 0.84 
Two-behavior trait 
model4 30.8 -2.5* -1.7 93% 65 90% 0.92 
1Average time of detection that process-control models were deemed out of control for Periods 1 and 2. 
2Average difference between time of observed clinical detection and process-model detection (*Difference significant at P 
< 0.05).
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Metaphylaxis-Treated Cohort 

Descriptive Statistics. Bulls in the metaphylaxis-treated cohort exhibited DM 

intakes and performance traits within the expected range given their age and the 

experimental diet that was fed. During period 1 of the study DM intake averaged 10.0 

kg/d and increased to 10.7 kg/d during period 2. The bulls in the metaphylaxis-treated 

cohort gained 0.2 kg/d less in period 2 than in period 1 with an ADG of 1.64 and 1.44 

kg/d respectively. One of the bulls lost weight during period 2 which may have caused 

the reduction in ADG. Gain to feed ratio was also reduced to from 0.165 in period 1 to 

0.137 in period 2. Eating rate was greater during period 2 than during period 1 of the 

trial.  

The means ± SD for BV frequency and duration in period 1 (44.0 ± 11.6, 95.8 ± 

20.2) were within the range previously reported in studies with growing steers and bulls 

(Buhman et al., 2000; Daniels et al., 2000; Hafla et al., 2013). The means ± SD for BV 

frequency and duration decreased slightly to 42.5 ± 10.0 and 91.8 ± 18.9 for period 2 

indicating that these traits remained relatively steady throughout the trial. Likewise, the 

means ± SD for maximum NFI and the SD of NFI were similar between period 1 (397.2 

± 52.6, 89.0 ± 13.3) and period 2 (383.8 ± 50.0, 87.8 ± 12.9). In contrast, as seen in the 

clinically-ill cohort, the average TTB was decreased from period 1 (73.6 ± 39.1, 49.4 ± 

26.9) compared to period 2. As TTB is more indicative of temperament it is likely that as 

the trial progressed animals became acclimated to the feedlot personnel and feed truck 

delivery.  

Effect of Sigma on CUSUM Model Results. Similar to what was observed in 

the clinically-ill cohort, as sigma used in the CUSUM models was reduced from 4 to 

3, the proportion of true positives increased during period 1 and the proportion of true 
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negatives during period 2 decreased for DM intake and all feeding behavior traits (data 

not shown). As the proportion of true positives in period 1 increased to a greater degree 

than the proportion of false positives in period 2 the test efficiencies of all the models 

applied to the metaphylaxis-treated cohort were highest when the decision interval was 

set at 3 sigma (Table 4.3). Although the test efficiency was highest for the 3 sigma 

control lines, the proportion of false positives was deemed to be greater than was 

acceptable and the decision was made to use the control lines set at 3.5 sigma for this 

cohort.  

Table 4.3. Test efficiencies of process-control models (CUSUM method using 4, 3.5, 

and 3 sigma control lines) of DM intake and feeding behavior traits for detection of 

clinical illness associated with bovine respiratory disease (BRD) in the metaphylaxis-

treated cohort (N = 201) prior to metaphylactic treatment1 on day 38 of the trial. 

Process-control models 

Test efficiency 

(sigma = 4) 

Test efficiency 

(sigma = 3.5) 

Test efficiency 

(sigma = 3) 

Single-feed-intake trait models 

 DM intake, kg/d 0.77 0.84 0.89 

    Eating rate, g/min 0.76 0.66 0.81 

Single-behavior trait models 

 Bunk visit (BV) duration, 

11min/d 
0.62 0.69 0.76 

 BV frequency, events/d 0.60 0.61 0.63 

 Head down duration, min/d 0.68 0.74 0.79 

 Time to bunk, min/d 0.58 0.57 0.64 

 Maximum non-feeding     

11interval (NFI), min/d 
0.61 0.64 0.72 

    NFI SD, min/d 0.67 0.71 0.74 

Two-behavior trait model4 0.75 0.81 0.82 
1Tulathromycin (Draxxin®). 
2Test efficiency = (TP + TN) ÷ total number of animals. 
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CUSUM Model Detection of Clinical Illness.  Results from CUSUM model 

detection in the metaphylaxis-treated cohort during period 1 and 2 are presented in 

Table 4.4. The CUSUM model for DM intake yielded the highest test efficiency (0.84) of 

all the models evaluated with 71% true positives and 96% true negatives. The average 

detection for DM intake occurred on day 35 of the trial which was 3 d prior to 

administration of metaphylaxis therapy. The CUSUM model for eating rate was less 

accurate (Test efficiency = 0.66) but was very predictive of the morbidity event with the 

average detection occurring 10.6 d prior to treatment and 9.1 d prior to DM intake 

detection.  

Analysis of the single-behavior trait models revealed that all traits observed 

average detection significantly (P< 0.05) prior to treatment.  Average out of control 

detections were observed > 7 d prior to treatment for BV frequency, duration, HD 

duration, and TTB. Head down duration yielded the greatest test efficiency (0.74) and 

was the most predictive of the morbidity event with average detection occurring 9.6 d 

before metaphylaxis therapy and 7.1 d before DM intake. The NFI SD model observed 

the second highest test efficiency (0.71) and was able to detect out of control events 4.9 

d before treatment was administered. Although it was one of the earliest traits to signal 

BV frequency detected the smallest proportion of true positives at 30% resulting in a 

test efficiency of 0.61.  

In this cohort, the CUSUM model based on the 2-behavior trait rule observed the 

greatest test efficiency (0.81) of the feeding behaviors, with the average detection 

occurring 6.5 d before treatment. With average detection occurring 3.2 d before the DM 

intake model, the 2-trait model was not as predictive as several single-behavior models 

but the percentage of true positives was much higher. 
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Table 4.4. Evaluation of process-control models (CUSUM method using 3.5-sigma control lines) of DM intake and feeding 
behavior traits for detection of bovine respiratory disease (BRD) in the metaphylaxis-treated cohort (N = 201) prior to 
(Period 1) and following (Period 2) metaphylactic treatment1 on day 38 of the trial. 

Period 1 (Days 0-38; 201 animals administered 
metaphylactic treatment on day 38) 

Period 2 (Days 42-69; 197 
animals observed to be 

clinically healthy) 

Process-control model 
Time of 

detection, d 
Time prior to 
treatment2, d 

Time 
prior to 

Intake3, d 

True 
positives, 

% 
Time of 

detection, d 

True 
negatives, 

% 
Test 

Efficiency 

Single-feed intake trait 
models 

DM intake, kg/d 35.0 -3.0* -- 71% 55 96% 0.84 

Eating rate, g/min 27.3 -10.6* -9.1* 62% 59 69% 0.66 
Single-behavior trait 
models 45 

Bunk visit (BV) duration, 
min/d 

30.1 -7.9* -4.2* 39% 57 98% 0.69 

BV frequency, events/d 28.6 -9.5* -3.9* 30% 58 91% 0.61 
Head down duration, 
min/d 28.4 -9.6* -7.1* 49% 59 98% 0.74 

Time to bunk, min/d 31.7 -6.3* -3.5* 34% 63 80% 0.57 

Maximum non-feeding  
interval (NFI), min/d 

34.8 -3.2* 0.1 32% 62 96% 0.64 

NFI SD, min/d 33.1 -4.9* -1.8* 49% 62 93% 0.71 

Two-behavior trait model4 31.5 -6.5* -3.2* 68% 62 93% 0.81 
1Tulathromycin (Draxxin®). 

2Average time of detection that process-control models were deemed out of control for Periods 1 and 2
3Average difference between time of observed clinical detection and process-model detection (*Difference significant at P 
< 0.05).
4Average difference between time of process-model detection for DM intake and process-model detection for each feeding 
behavior trait (*Difference significant at P < 0.05).  
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Discussion 

While diagnostic tests were not conducted to confirm presence of bovine 

respiratory disease (BRD), bulls in the clinically-ill cohort displayed clinical symptoms 

associated with respiratory tract infection, and 28 of the 30 bulls had elevated rectal 

temperatures (> 39.7 oC) upon examination. Moreover, the reduction in DM intake prior 

to anti-microbial therapy (clinically-ill cohort) and metaphylaxis treatment 

(metaphylaxis-treated cohort), and rapid recovery in DM intake thereafter (Figure 4.2) 

strongly suggested that the majority of the bulls in this study had BRD. The acute and 

widespread nature of the apparent outbreak of respiratory tract disease in these bulls 

provided an opportunity to retrospectively examine deviations in DM intake and feeding 

behavior patterns relative to the onset of observed clinical symptoms or metaphylaxis 

treatment.  

It has been well documented that animals experiencing morbidity events have 

distinct changes in their behavioral patterns. Hart (1988) described the most common 

behavioral signs associated with illness including lethargy, depression, anorexia, and 

reduction in grooming, and hypothesized that morbid animals become less physically 

active and have lower appetites to conserve body heat and energy reserves. Based on a 

2-slope broken-line regression analysis (see Chapter III), DM intake declined by 39.3% 

in 6.79 d prior to observation of clinical illness (clinically-ill cohort), and by 40.2% in 3.81 

d prior to metaphylaxis treatment (metaphylaxis-treated cohort).  
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Figure 4.2. Average daily DM intake for the clinically-ill (A) and metaphylaxis-treated 

cohorts (B) during period 1 (all animals clinically-ill) and period 2 (all animals clinically 

healthy) of the study. 

Sowell et al. (1999) measured behavioral patterns associated with feeding and 

drinking activities in healthy and morbid (BRD) steers using a GrowSafe system 

designed to quantify frequency and duration of feed bunk and water trough attendance 

using passive RFID technology. Two 32-d studies were conducted with high-risk calves, 

4

6

8

10

12

14

16

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66

D
M

 i
n

ta
k
e

, 
k
g

/d
 

4

6

8

10

12

14

16

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66

D
M

 i
n

ta
k
e

, 
k
g

/d
 

Trial Day 

Period 2 Period 1 

Period 2 Period 1 

A 

B 



68 

with morbid steers spending less time at the feedbunk and visiting the feedbunk fewer 

times per day compared to the healthy steers. In the second study, there was no 

difference in BV duration, but morbid cattle had 38% fewer BV events than healthy 

animals. This is comparable to the detection of sustained reductions in BV frequency 

and duration by the CUSUM models in the current study. In a more recent study, 

Wolfger et al. (2015) demonstrated that as average meal intake and BV frequency 

increased the risk for developing BRD decreased. Moreover, they observed that 

changes in meal intakes and BV frequencies were detected as much as 7 d prior to 

clinical observation of morbidity. These results are supportive of results from the current 

study, with the behavior-based CUSUM models detecting illness in metaphylaxis-treated 

cohort 3 to 10 d prior to metaphylaxis treatment.  

 The accuracies of the CUSUM models based on the use of BV and HD duration, 

and the 2-trait rule (0.87, 0.89, 0.92) for the clinically-ill cohort were comparable to those 

reported by Quimby et al. (2001), who reported a test efficiency of 87% for CUSUM 

models based on feed bunk attendance. The corresponding accuracies of the CUSUM 

models for BV and HD duration, and the 2-trait rule in the metaphylaxis-treated cohort 

were lower (0.69, 0.74, 0.81). This may be partially explained by the fact that bulls in this 

cohort were likely in variable stages of the disease process when they were 

administered metaphylaxis treatment. Moreover, it is also likely that some of the bulls in 

this cohort were not clinically ill at the time treatment was administered.  

Quimby et al. (2001) also reported that the average day of detection was 3.7 to 

4.5 d prior to observed clinical illness by experienced pen riders, which is intermediate 

between the results found in the current study. Based on the CUSUM model using the 2-

trait rule, clinical illness was detected 2.5 d prior to observed clinical illness (clinically-ill 
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cohort) and 6.5 d prior to metaphylaxis treatment (metaphylaxis-treated cohort). Using 

infrared thermography (IRT) to measure changes in skin-surface temperature, Schaefer 

et al. (2007) was able to detect clinical illness 4 to 6 d prior to observed clinical 

symptoms of BRD, with a 71% test efficiency. Also among the technologies previously 

evaluated are (Timsit et al., 2011) the use of reticulo-rumen boluses equipped with 

temperature sensors, and found that rumen hyperthermic episodes occurred 12 to 136 h 

prior to observed clinical symptoms of disease, with a positive predictive value of 73%.  

The improvement in the CUSUM model accuracies based on the 2-behavior trait 

rule compared to the model accuracies based on use of single-behavioral traits in both 

cohorts suggests that a multivariate approach to the development of statistical process 

control models could further improve the accuracy and robustness of algorithms to 

predict BRD using feeding behavior traits. With recent developments in active RFID 

technology to remotely measure behavioral activities in cattle, the development of 

algorithms for pre-clinical detection of illness due to infectious disease will enable 

animals to be treated earlier in the disease process to improve efficacy of anti-microbial 

treatment and reduce the economic impact of BRD in the beef industry. With growing 

concern about antimicrobial resistant bacterial and the potential effect from antimicrobial 

use in livestock the need for accurate pre-clinical detection is increasing. Moreover, early 

detection of infectious disease has to potential to reduce the frequency and dose of 

antimicrobial medications administered (Ferran et al., 2011).  
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CHAPTER V 

SUMMARY 

Livestock production systems aim to generate long-term maximal profit 

by increasing animal production and efficiency within the production cycle. Profit is a 

balance between the costs of inputs and the value of revenue generated by the 

production system. Therefore, profit can be influenced by decreasing input costs 

and(or) increasing the value of outputs. The studies presented focus on 2 strategies to 

improve the profitability of the beef cattle industry; selection for cattle that have more 

favorable phenotypes for feed efficiency and development of methods for more 

accurate pre-clinical detection of infectious diseases in cattle. 

Results from study 1 demonstrated that steers with divergent phenotypes for 

RFI exhibited distinct behavioral traits that could be used to differentiate animals with 

more favorable feed efficiency. Steers identified with low RFI spent 21% less time at the 

feedbunk and had 6% fewer meals per day than steers with high RFI. Because the 

steers in the low RFI group had 19% lower DM intakes they produced $145 per animal 

more revenue than steers in the high RFI group. Furthermore, steers identified with 

high-TTB had 18% lower gains than steers with low-TTB. Steers in the low TTB group 

produced on average $88 per head more profit than high TTB steers. The results 

indicate that TTB was weakly associated with temperament, and that it was more 

correlated with performance traits than feed efficiency.  

Economic losses associated with the detection and treatment of BRD play a 

significant role in the overall profit of a beef production system. In study 2 bulls were 

shown to have distinct behavioral changes prior to observation of clinical symptoms 
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associated with BRD. Furthermore, these changes were shown to occur from 14.19 to 

1.32 d prior to observed clinical illness and from 12.59 to 3.79 d prior to metaphylaxis 

treatment. In general animals tended to spend less time at the feed bunk and have 

fewer bunk visits in the days leading up to a BRD event.  

Using these observations, statistical process control procedures were able to 

detect bulls between 0.9 and 3.0 d prior to observation of clinical symptoms or 

metaphylaxis treatment, respectively, using DM intake. Furthermore, detection using BV 

duration could identify bulls 2.7 and 7.9 d prior to observation of clinical symptoms or 

metaphylaxis treatment, respectively, and was therefore more predictive than DM intake 

at detecting pre-clinical symptoms of BRD. In addition, the improvement in test 

efficiency of the 2-trait behavioral rule base indicates that the development of a 

multivariate approach to detect morbidity animals could further improve the precision 

and accuracy of detection algorithms.  

Advancements in active RFID technology could provide a vehicle to collect 

individual-animal feeding behavior traits that could be used to detect disease and 

identify animals with more favorable phenotypes for RFI. Future research should be 

conducted to advance the development of these decision support tools for the beef 

cattle industry.  
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