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ABSTRACT 

 

The electricity distribution system is undergoing profound changes as the society 

moves towards more sustainable utilization of energy resources. A common challenge in 

both supply and demand sides is how to provide accurate near term (within a day) 

forecast of the uncertainties to enable the distribution grid operation to modernize their 

decision making and deliver clean, affordable, and reliable electricity services.  

This thesis focuses on the common challenge mentioned above, namely, how to 

improve the predictive capability for distribution system operators and load serving 

entities (LSEs). In particular, this thesis focuses on two of the major uncertain variables 

in future distribution grid: solar and electricity price forecast. Series of data-driven 

analysis are applied to develop efficient prediction models of these two variables. For 

the solar power generation prediction, the spatial temporal autoregressive model (ST 

ARX) is applied to the distribution system by including the neighboring data at nearby 

locations. Comparing to the benchmark models, the proposed model results in a better 

prediction accuracy and indicates the strong correlation between optimal neighboring 

distance and prediction time scale. As for the electricity price prediction, a 

comprehensive classification model based on decision tree algorithm is developed for 

the EnergyCoupon system. This algorithm is tested in Houston area with 10 customers 

and results in a good accuracy. 



 

iii 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

Part 1, faculty committee recognition 

This work was supervised by a thesis committee consisting of Professor Le Xie, 

Professor Tie Liu and Professor Robert Balog of the Department of Electrical and 

Computer Engineering and Professor Steven Puller of the Department of Economics. 

 

Part 2, student/collaborator contributions 

The related work depicted in Chapter I were conducted in part by EnergyCoupon 

Group of the Department of Electrical and Computer Engineering and were published in 

2017. 

  All other work conducted for the thesis was completed by the student 

independently.  

 

Funding Sources 

This work was made possible in part by National Science Foundation (NSF) 

under Grant Number ECCS-1546682 and CCF-1331863.  

 



iv 

TABLE OF CONTENTS 

Page 

ABSTRACT ...................................................................................................................... ii 

CONTRIBUTORS AND FUNDING SOURCES ............................................................  iii 

TABLE OF CONTENTS ..................................................................................................iv 

LIST OF FIGURES ...........................................................................................................vi 

LIST OF TABLES ...........................................................................................................vii 

CHAPTER I INTRODUCTION ........................................................................................ 1 

CHAPTER II ON-LINE ELECTRICITY PRICE PREDICTION ALGORITHM 

DESIGN FOR ENERGYCOUPON SYSTEM .................................................................. 2 

Introduction of EnergyCoupon System ....................................................................... 2 
Literature Review ........................................................................................................ 4 
Electricity Price Prediction Algorithm Design Process .............................................. 6 

A. Price Threshold Analysis ................................................................................... 7 

B. Feature Selection ................................................................................................ 8 
C. Cost Analysis.................................................................................................... 13 
D. Training and Validation ................................................................................... 14 

Conclusions ............................................................................................................... 16 

CHAPTER III SPATIO-TEMPORAL PREDICTION OF SOLAR IRRADIANCE 

FOR DISTRIBUTION GRID OPERATIONS ................................................................ 17 

Introduction of Solar Power Generation Prediction .................................................. 17 
Literature Review ...................................................................................................... 20 

Data Processing ......................................................................................................... 21 
A. Data Selection .................................................................................................. 21 
B. Cross Correlation Check .................................................................................. 24 

C. Benchmark Model Selection ............................................................................ 26 
Evaluation of ST ARX Model................................................................................... 28 

A. Prediction Model Formulation ......................................................................... 28 
B. Forecasting Metric............................................................................................ 29 



v 

C. Summary of Results ......................................................................................... 30 
Analysis of Spatial Neighboring Data Distance........................................................ 31 

A. Contribution Analysis for Multi-Time-Scale Prediction .................................. 31 
B. Discussion of Optimal Distance and Significant Feature Distance.................. 34 

Conclusions ............................................................................................................... 36 

CHAPTER IV SUMMARY ............................................................................................. 37 

REFERENCES ................................................................................................................. 38 

APPENDIX ...................................................................................................................... 45 



vi 

LIST OF FIGURES 

Page 

Figure 1. The architectural design of the EnergyCoupon system ...................................... 3 

Figure 2. The flowchart of price prediction algorithm design ........................................... 7 

Figure 3. Self-correlation of electricity price ..................................................................... 9 

Figure 4. Cross-correlation between electricity price and demand .................................. 11 

Figure 5. Cross-correlation between electricity price and humidity ................................ 11 

Figure 6. Cross-correlation between electricity price and temperature............................ 12 

Figure 7. Cross-correlation between electricity price and wind speed............................. 12 

Figure 8. Scatter plot of (minimal leaf size and penalty ratio) pairs on sensitivity vs 

cross-validation error ........................................................................................ 15 

Figure 9. Target location and its neighboring data set ..................................................... 22 

Figure 10. Solar irradiance data of target location in January 2014................................. 23 

Figure 11. Flowchart of solar irradiance prediction process ............................................ 24 

Figure 12. Solar irradiance cross-correlation between target location and averaged 

neighboring inputs ............................................................................................ 25 

Figure 13. ACF and PACF plots of target data set ........................................................... 27 

Figure 14. RMSE values of multi-time0scale prediction ................................................. 33 



 

vii 

LIST OF TABLES 

 

 Page 

 

 

Table 1 Daily Average High Price Appearance by Threshold ........................................... 8 

Table 2. Price Prediction Performance ............................................................................. 15 

Table 3. Time Series Model Identification ....................................................................... 27 

Table 4. Notations ............................................................................................................ 29 

Table 5. RMSE Values of 1-Hour-Ahead Prediction ....................................................... 30 

Table 6. Improvement Values of Multi-Time-Scale Prediction ....................................... 32 

Table 7. Cross-correlation Values of Target Data and Neighboring Inputs ..................... 34 

Table 8. Comparison of Optimal Distance and Significant Feature Distance.................. 35 

Table 9. Physical Location of Neighboring Data ............................................................. 45 

 

 

 



 

1 

CHAPTER I 

INTRODUCTION 

 

The electricity distribution system is undergoing profound changes as the society 

moves towards more sustainable utilization of energy resources. There are two major 

paradigm changes that are taking place. First, from the supply side, much of the new 

generation resources are directly integrated at distribution level, such as solar and wind. 

Second, from the consumption side, passive end users are being transformed and 

incentivized to become active decision maker in the energy balance ecosystem. A 

common challenge in both supply and demand sides is how to provide accurate near 

term (within a day) forecast of the uncertainties to enable the distribution grid operation 

to modernize their decision making and deliver clean, affordable, and reliable electricity 

services. In particular, this thesis focuses on two of the major uncertain variables in 

future distribution grid: solar and power price forecast. 

Enabled by advances in communication and computation technologies, enhanced 

forecast can be potentially obtained through more advanced statistical methods. For the 

power price forecast, an algorithm based on classification is proposed to predict the 

whole sale level electricity market prices. Such algorithm is an integral part of the larger 

context of engaging end users for demand response. As for the solar power generation 

forecast, an autoregressive model with exogenous input (ARX) model is proposed to 

improve the quality of forecast of distribution level solar generation. 
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CHAPTER II 

ON-LINE ELECTRICITY PRICE PREDICTION ALGORITHM DESIGN FOR 

ENERGYCOUPON SYSTEM* 

 

Introduction of EnergyCoupon System 

Integration of heterogeneous energy sources in the US, as well as in many other 

countries in the world, is achieved using a wholesale level electricity market. In this 

market, aggregators (such as load serving entities (LSEs)) and generating companies 

trade their demand and supply under the supervision of Independent System Operators 

(ISOs), which results in real-time electricity price changes that temporally follow the 

diurnal variations. In the Texas market, which is ruled by the Electric Reliability Council 

of Texas (ERCOT), electricity can be traded one day in advance based on predictions of 

demand and supply, or in near-real-time with the fine grain data available every fifteen 

minutes. Usually, market participants take advantage of both day-ahead and real-time 

market rates to balance their demand and supply, and to optimize their profits. 

The aggregators also participate in retail level markets to provide individual 

customers with different options of electricity services. An example of this is the retail 

market in several cities in Texas, in which over a hundred LSEs compete for residential 

customers via (slightly) different pricing plans. Retail customers typically pay a fixed or 

                                                 
* Chapter 2 includes parts of “EnergyCoupon: A Case Study on Incentive-based Demand Response in 

Smart Grid” which is under review for the Eighth International Conference on Future Energy Systems 

(ASM E-Energy) Hong Kong, 2017.
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tiered fee, which typically does not allow real-time variations with respect to the 

wholesale price of electricity. Consequently, LSEs would benefit from an energy 

consumption shift from high-wholesale-price hours to low-wholesale-price hours of end 

users.  

In order to induce savings for LSEs, we design and implement the 

EnergyCoupon system, which provides electricity usage targets to customers in real-

time, measures their responses, awards coupons accordingly, and conducts a periodic 

lottery to reward users. In addition, the system also encourages the users to make more 

efficient use of energy by providing direct feedback of their total consumptions [1-3]. 

Figure 1 illustrates the architecture of the system, which consists of five parts, including 

three classes of functionalities (shown using different colors/shades), an SQL Database, 

and an Android/iOS App that forms the user interface.  

 

Figure 1. The architectural design of the EnergyCoupon system 
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The ultimate goal of the EnergyCoupon system was to incentivize end-

consumers to shift loads from high-price hours to low-price hours in the wholesale 

market. The market clearing prices in the real-time market are only published in a real-

time fashion which is not sufficient for the end-consumers in our system to react. Hence, 

we decided that the system should be capable of accurately predicting the electricity 

price at the near future, i.e. two-hours ahead. In addition, our system has several slightly 

different requirements for price prediction. For this project, we were more interested in 

identifying the electricity prices as being either 'high' or 'low', rather than obtaining or 

providing an exact-value prediction. Based on our proposed scheme, whenever the end-

consumer shifted load from time period A to time period B, if the price in A was higher 

than it was have been in B, then it would yield extra savings for the LSE. From this 

perspective, we formulated the price-prediction issue in our system into a classification 

problem. We aimed to design a classifier that would determine the time periods in which 

the price is higher than at other times throughout the day. Since the price-prediction 

aspect of our system is an on-line algorithm that needed to run in real time, low-

complexity-computing was essential. One of the simplest and widely used classifiers that 

fit our situation was the decision tree. In the following subsections, we will show the 

process of how we built the tree structure and include a series of analyses that will verify 

the performance. 

Literature Review 

There are many studies of price prediction published in recent years. Time series 

models are often used to forecast the numerical values of price. In [4] and [5], a time 
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series analysis is used to build autoregressive integrated moving average (ARIMA) 

models for forecasting next-day prices. The wavelet transform process is employed to 

decompose historical price series in [6] and the ARIMA model with an inverse wavelet 

transform is applied to forecast day-ahead electricity prices. A hybrid model of time 

series analysis followed by an adaptive wavelet neural network is employed in [7] to 

forecast PJM day-ahead market prices. Two optimized time series models, based on 

weighted least squares residuals, are applied in [8] to forecast the spot market price and 

the impact of predictive load and wind power generation are considered. Univariate and 

multivariate time series models are applied in [9] to forecast short- and mid-term base 

load prices, and the accuracy of models is considered to evaluate the impact of electricity 

prices and demand. 

In addition to time series models, advanced machine-learning forecasting 

techniques are employed in the existing literature. The support vector machine (SVM) is 

employed in [10] to forecast the price values in Australia. In the work presented in [11], 

data series are separated by each trading interval and the genetic algorithm has been used 

to optimize parameters for the SVM based forecasting models. Two alternative SVM 

based models are proposed in [12] for classifying next-day electricity market prices in 

the market of Ontario and Alberta, Canada, according to pre-determined price 

thresholds. In order to optimize the SVM model parameters, a particle swarm technique 

is proposed in [13] to minimize a modified-prediction-intervals-based objective function. 

The support vector classification is applied in [14] to predict the occurrence of spike 
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price, followed by a forecast of the magnitude of the non-spike and spike prices in the 

Texas wholesale market by support vector regression.  

The neural network (NN) method is also a commonly used forecasting method. A 

cascaded NN model and a NN model with an extended Kalman filter are employed 

respectively in [15] and [16] to predict the market clearing price. Moreover, an NN 

model with an adaptive wavelet transform has been proposed in [17] to improve the 

prediction accuracy of market clearing price. The extreme learning machine based single 

hidden layer feed-forward NNs are applied in [18] to improve the training speed of 

forecasting electricity prices. And, in [19], a recurrent NN realized by the Elman 

network model is proposed to forecast the electricity prices in Spain and New York.  

Decision trees models are also useful data-mining tools designed to solve prediction 

problems. In [20], four decision tree models are employed to predict electricity prices for 

each submarket in the Brazilian market. In another study [21], decision trees are applied 

to classify future prices for the New York electricity market. In addition, regression tree 

models, including classification and regression trees, bagging, and random forests, are 

reported in [22] to predict prices in the Spanish market. 

Electricity Price Prediction Algorithm Design Process 

In this section, we introduce the design process for building the decision tree 

structure of price prediction for the EnergyCoupon system. Figure 2 shows the flowchart 

of the design process. Firstly, we conducted three data-driven analyses based on the 

historical market data, including a price threshold analyses, feature selection, and cost 

analyses in order to grow a decision tree model that meets the objectives of the 
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EnergyCoupon system and that will adapt well to the local market. Then, the price 

prediction model was trained using whole-year data, which was validated in the 

experiment. An analysis is provided at the end of this section to compare and evaluate 

the performance of the on-line price prediction model. 

 

Figure 2. The flowchart of price prediction algorithm design 

 

The historical data used for the data-driven analysis and model training is of the 

whole year of 2015 with a 15-minute resolution. For the model validation, we used the 

data from 1st July to 31st August in 2016. All the data were based on the Texas market in 

the Houston area. 

A. Price threshold analysis 

The price threshold analysis is aimed at finding a rational price boundary 

differencing the high price and low price and balancing the profits of both LSEs and 

household customers. A rigorous study of price threshold should involve an optimization 
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analysis of profits for both LSEs and individual customers, which requires some market 

data that was not available. Therefore, we have simplified the analysis by checking the 

average high price frequency in the summer days; the calculation formula is shown as 

follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑒𝑟 𝐷𝑎𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑖𝑔ℎ 𝑃𝑟𝑖𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑦𝑠
                   （1） 

Since the high price frequency is higher in the summer days than winter days due to the 

high electricity demand in the hot weather in Texas, the average high price frequency 

from May to October was used to estimate the coupon numbers received by the 

customers in the busy season. We used the real-time price data from May to October of 

2015 for the analysis, and the results are shown in the Table 1. In Table 1, it indicates 

that the high price appears many times a day with a threshold of below 40 and becomes 

very rare at a threshold above 50. Meanwhile, based on the observations in the training 

stage, a lower threshold gives a higher fitting error. Thus, we chose the high price 

threshold to be 50 in the following study.  

 

Table 1 Daily Average High Price Appearance by Threshold 

 

 

B. Feature selection 

Considering the possible impact of weather and changes in demand to the real-

time electricity price, it is necessary to include extra features to improve the accuracy of 

Price Threshold ($/MWh) 10 20 30 40 50 60 70 80 

Average High Price 94 57 13 4 3 2 2 1 
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price prediction. In this section, we check the cross-correlation of electricity price and 

four features (demand, temperature, humidity, and wind speed) to select the most 

significant features as the extra variables for the prediction algorithm. The analysis is 

based on the historical data from 2015. Since the data resolution is 15 minutes, one lag 

equals 15 minutes in the following plots. Figure 3 shows the self-correlation of real-time 

price data. The x-axis is the time lag from 0 to 96 corresponding to 0 to 24 hours. The y-

axis identifies the correlation values. It is worth mentioning that the first point on the 

plot is 𝑃𝑡−2ℎ, which indicates that the latest the price value can be included in the 

prediction is two hours prior to the predicted one. This is because the prediction time 

horizon is 2 hours ahead. The plot shows that the late values have stronger correlations 

to the predicted price than the early values. Therefore, in the price prediction algorithm, 

we include the last four features (𝑃𝑡−8 𝑙𝑎𝑔, 𝑃𝑡−9 𝑙𝑎𝑔, 𝑃𝑡−10 𝑙𝑎𝑔, 𝑃𝑡−11 𝑙𝑎𝑔) in the algorithm. 

 

Figure 3. Self-correlation of electricity price 
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Figure 4 to Figure 7 show the cross-correlation between price and other features. 

The highest cross-correlation values in Figure 4 (cross-correlation between price and 

demand) and Figure 5 (cross-correlation between price and humidity) are lower than 0.5 

and the correlations between price and temperature and wind speed features are even 

smaller. Although the correlations are not very strong between price and features, it is 

still reasonable to use them as extra variables in the prediction algorithm for two reasons. 

Firstly, the cross-correlations are calculated based on the values of the electricity price, 

while in the EnergyCoupon system the exact values of price prediction are not 

necessary. Thus, the relaxed prediction requirement makes the features significant to the 

price label prediction. Secondly, the prediction technique is pre-designed as a decision 

tree model, therefore the superfluous features added in the prediction algorithm will not 

affect the prediction results negatively, since they will not be selected as the nodes in the 

model training process. Based on the analysis above, we included the four most 

significant features of demand, temperature, humidity, and wind speed as the extra 

variables into the prediction algorithm. They are: 𝑄𝑡, 𝑄𝑡−1 𝑙𝑎𝑔, 𝑄𝑡−2 𝑙𝑎𝑔, 𝑄𝑡−3 𝑙𝑎𝑔, 𝑇𝑡, 

𝑇𝑡−1 𝑙𝑎𝑔, 𝑇𝑡−2 𝑙𝑎𝑔, 𝑇𝑡−3 𝑙𝑎𝑔, 𝐻𝑡−47 𝑙𝑎𝑔, 𝐻𝑡−48 𝑙𝑎𝑔, 𝐻𝑡−49 𝑙𝑎𝑔, 𝐻𝑡−50 𝑙𝑎𝑔, 𝑊𝑡−88 𝑙𝑎𝑔, 

𝑊𝑡−89 𝑙𝑎𝑔, 𝑊𝑡−90 𝑙𝑎𝑔, 𝑊𝑡−91 𝑙𝑎𝑔. 
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Figure 4. Cross-correlation between electricity price and demand 

 

Figure 5. Cross-correlation between electricity price and humidity 
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Figure 6. Cross-correlation between electricity price and temperature 

 

Figure 7. Cross-correlation between electricity price and wind speed 
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C. Cost analysis 

Given the selected feature set, we construct a training data set containing around 

30,000 data samples based on figures for 2015. Each sample is a 21-dimension vector 

including 20 features and one label. Before we trained the decision tree, two parameters, 

penalty ratio and minimal leaf size, needed to be determined. Penalty ratio is defined as 

the weight ratio of two kinds of errors: False Positive (FP) and False Negative (FN). In 

our EnergyCoupon system, FP error means the actual price is low but our prediction is 

high, and the FN error defines in the opposite way. Similarly, we define the terms True 

Positive (TP) and True Negative (TN) to capture the correct predictions respectively. 

The relationship between the four terms are as following: 

FP + FN = Total Prediction Errors 

TP + TN = Total Correct Predictions 

FP + TN = Total Negative (Low Price) Samples 

TP + FN = Total Positive (High Price) Samples 

FP errors cause more coupons to be issued, and the FN errors cause misses in 

detecting the high-price events, which may cause a loss for the LSEs. Due to the natural 

properties of a lottery scheme, issuing more coupons to customers hurts the system only 

in a minimal way. Thus, it appears that we should put more weight on FN errors in order 

to detect more high price events. However, as we increase the weight of FN errors, the 

total error rate resulting from the cross-validation, which is a classic fitting performance 

check, increases as well. Thus, the determination of a penalty ratio results in a trade-off 

between the overall fitting performance and sensitivity, which is defined by the ratio: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
                                               (2) 

When building decision trees, the minimal leaf size is a specific parameter that 

defines the minimal number of samples required for each leaf of the final tree. A larger 

minimal leaf size yields higher fitting errors. However, a smaller minimal leaf size has a 

higher risk of over-fitting. For example, an extreme case would be to build a tree that has 

the same number of leaves as the training data samples, which would give a zero fitting-

error but would only fit the training data. The determination of a minimal leaf size 

requires a trade-off between fitting errors and a risk of over fitting. 

In order to overcome the limitations described above, we wanted to choose a 

proper pair of the two parameters so that the sensitivity is high and the cross-validation 

error is low. Figure 8 illustrates the scatter plot of the pairs of parameters on sensitivity 

and cross-validation error plane. Each marker is a pair of the two parameters. We 

applied the filters in two dimensions: sensitivity ≥ 0.7 and cross-validation error ≤

0.12, then chose the largest minimal leaf size over the resulting set to finalize the two 

parameters to be 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑓 𝑠𝑖𝑧𝑒 = 70 and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 = 1: 8. 

D. Training and validation 

After a series analysis of the history market data, the decision tree model is 

trained by the history data and validated by the on-line test. Table 2 shows the overall 

performance statistics for price prediction in both the fitting stage and the experiment 

stage.  
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Figure 8. Scatter plot of (minimal leaf size and penalty ratio) pairs on sensitivity vs 

cross-validation error 

Table 2. Price Prediction Performance 

 TP TN FP FN Sensitivity Error 

Training 605 32,838 1,273 234 72.11% 4.31% 

Validation 126 4,809 472 71 63.96% 9.91% 

 

Note that in the training stage, there were approximately 30,000 samples, which covers 

the whole year of 2015, while in the testing stage, only approximately 5,000 samples 

were available, which cover the two-months period of the experiment. Observe that the 

error rate doubles in the testing stage and sensitivity decreases by about 8 %. Various 

issues could cause a performance drop of a classifier in testing. In our situation, one 

critical issue was that the electricity price could be affected by reasons other than the 

features we considered in our feature set, such as network congestions and gas price 
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drifts. Furthermore, we used the historical values of the features in the training stage, but 

used only the predicted values in the online testing, where the realizations are only 

revealed after the time had passed. The errors in the feature-value predictions are 

involved in the prediction errors as well. 

Conclusions 

In this chapter, we introduced the design process of our on-line price prediction 

algorithm based on a series data-driven analysis for the EnergyCoupon system, which is 

intended to incentivize the demand response of household users to shift their electricity 

usage from high price time periods to low price time periods. The designed price 

prediction algorithm was tested in the Houston area during the summer of 2016 with 

good performance.  

In a future study, the accuracy of the price prediction algorithm could be 

improved by importing more related features or updating the algorithm technique. 

Additionally, more price categories will be considered as our next goal in order to 

provide more coupon options for customers.  
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CHAPTER III 

SPATIO-TEMPORAL PREDICTION OF SOLAR IRRADIANCE FOR 

DISTRIBUTION GRID OPERATIONS* 

 

Introduction of Solar Power Generation Prediction 

Solar energy is one of the fast growing sources of renewable generation in the 

power system. In the United States, the cumulative photovoltaic (PV) installations 

surpassed 25GW by the end of 2015, due in part to continuing reduction in the 

installation cost [23]. However, integrating greater amounts of solar energy into the 

power system poses significant challenges due to its intermittent and variable nature. 

The integration of distributed solar energy such as rooftop PV in the distribution grid 

presents qualitatively different challenges compared to that at the transmission system 

level. In the transmission system, large scale solar power plants can be considered as 

non-controllable generation; while in the distribution system, the large number of 

rooftop PV installations impacts voltage management, protection coordination, 

transformer loading and other distribution system operations [24]. Recently, some 

sophisticated prediction models and methods have been proposed, which have a good 

prediction performance for large capacity solar power plants. However, rooftop PV 

power generation still cannot participate in the system planning and operations, due to 

the limited accuracy of the predictions of distributed PV power outputs. The power 

                                                 
*
 Chapter 3 is a slightly amended version of “Spatio-Temporal Prediction of Solar Irradiance for 

Distribution Grid Operations” which is under review for the IEEE Transactions on Power Systems. 
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generated by solar energy has a non-linear relation with the solar irradiance, temperature 

and some other weather factors, which have been widely utilized for both system models 

and prediction models [25-28]. However, at the distribution system level, since the 

change of weather factors is very small and predictable within a short time period and 

small geographical area, solar irradiance is the dominant factor for PV power generation, 

and thus an accurate solar irradiance prediction can contribute to a precise estimation of 

generated power. 

Most prediction models in the previous studies rely on the meteorological 

features only, while it is worth noting that neighboring locations at the transmission 

system level show significant spatial correlations in the solar irradiance patterns [29]. 

This correlation suggests a good prediction model with spatial neighboring inputs, 

named the Spatio-temporal (ST) ARX model, which improves the accuracy of PV 

generation prediction at the transmission system level. With increasing installations of 

distributed PV by utilities and residents [23], the good performance of the ST ARX 

model shown in [29] inspired us to apply this model to the solar irradiance prediction for 

distribution system. Compared to the transmission system, in the distribution system the 

distance between accessible spatial neighboring data, which is the critical feature added 

in the ST ARX model, and the target prediction location cannot be very large. Due to 

this characteristic the impact of weather on the solar power generation at different 

locations can be excluded, since the weather conditions usually remain consistent within 

a narrow geographical region. Thus, variation in irradiance becomes the major cause of 

variations in power generation between different locations, which simplifies the transfer 
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function between irradiance data and solar power generation. Thus, in the distribution 

system, the distance of included spatial neighboring inputs should be limited to a much 

smaller range to produce a good prediction performance. Another significant difference 

between distribution system and transmission system is the impact of the local 

environment. Unlike the large scale solar PV power plant, which is usually located in an 

isolated area, the irradiance received by roof-top PV is easily affected by surroundings 

(i.e. the shade of the trees in the yard). Therefore, the averaged spatial neighboring data 

of several individual locations is added in the ST ARX model in order to minimize the 

effects of the individual local patterns.  

In this chapter, I applied the spatial-temporal (ST ARX) prediction model 

proposed in [29-30] to solar irradiance prediction in distribution system with two 

improvements. Firstly, I assume that in the distribution system the farthest accessible 

distance of neighboring data is 30 km from the target location, which is about 0.7 times 

of the total distance from the northern-end to the southern-end of Austin area (location 

of our simulation data sets). Thus, spatial neighboring data included in the ST ARX 

model is limited within this distance. Secondly, the neighboring input in the prediction 

model is the averaged neighboring data from different directions, which may reduce the 

error caused by individual local irradiance pattern. I evaluated the prediction 

performance of the proposed ST ARX model by comparing it to a basic auto regression 

(AR) model, in order to verify the contribution of spatial neighboring data. In addition, a 

contribution analysis and discuss the optimal neighboring data distance for multi-time-

scale prediction is provided. In addition, I evaluated spatial neighboring data from six 
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distance ranges for multi-time-scale predictions to show the relation between optimal 

neighboring distance and prediction time scale, which can help with optimizing the 

prediction performance of the ST ARX model in the application. 

Literature Review 

A number of approaches of solar irradiance prediction based on different time 

scales and applications have been discussed in the published literatures [31]. In recent 

years, many statistical models have been proposed for irradiance prediction based on the 

deep learning of historical data. These statistical models include linear models (time 

series models) and some non-linear models, such as Artificial Neural Network (ANN) 

and Support Vector Machine (SVM). Due to the intermittent nature of solar irradiance, 

linear models are not capable of providing a good prediction performance [32]. 

Comparing to linear models, non-linear models are more powerful in predicting the 

stochastic process and hence are widely discussed in the publications [33-37]. The boom 

of public data availability provides a possibility of promising development of statistical 

models. Another type of model is based on the cloud imagery and satellite data, which 

are applied for the short term prediction up to 5-hours-ahead. Physical models applied to 

the Satellite data were very popular in past several decades [38-39]. However, its 

unsatisfactory performance under certain weather conditions makes it unreliable for 

practical applications. Although the Satellite physical models are seldom discussed in 

the recent publications, the satellite data are valuable for prediction and were widely 

used by some statistical models [40-41]. Numerical Weather Prediction (NWP) models 

usually are operationally used for system planning [42-43]. These models are based on 
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the reproduction of physical phenomenon which can be very complicated and requires a 

high level of knowledge about the local environment. 

Data Processing 

In this section, I present the selection criteria details of solar irradiance raw data 

sets and check the validity of using averaged neighboring inputs after processing. 

A. Data selection 

The solar irradiance data used in this paper are taken from the National Solar 

Radiation Data Base [44]. All collected data sets are from locations in the Austin area 

from January 1st to December 31st 2014, and are at a 30-minute resolution. The spatial 

relations between the target location and its neighboring locations are shown in Figure 9. 

The red dot indicates the target location, and the stars are spatial neighboring data sets. A 

total of 30 neighboring locations from within 30 km of the target location are selected. 

The radius of 30 km is evenly divided into 6 segments of 5 km each, and 5 locations are 

selected in each segment. The details of physical locations of each data set can be found 

in the Appendix Table 9. In order to minimize the error caused by individual 

neighboring data sets, I averaged all data sets in the same distance segment, and 

considered this averaged input as the spatial neighboring input in the ST ARX model. 
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Figure 9. Target location and its neighboring data set 

 

Because of the intermittent nature and impact of environmental factors, the solar 

irradiance data are not stationary, which makes it difficult to predict. Figure 10 shows 

the solar irradiance data from the target location in January 2014. The x-axis is the time 

stamp at 30-minute intervals and the y-axis is the Diffuse Horizontal Irradiance (DHI) 

values in W/m2. I observe that the “normal days”, during which solar irradiance data 

exhibit a good periodic pattern, can be modeled by time-series models. While the 

unexpected spikes on the “ramping days”, which have no strong periodic solar irradiance 

patterns, may require extra meteorological features and stochastic models to estimate. In 

this paper, our simulations only consider the data from normal days, due to their strong 

periodic pattern. Accordingly, I designate the normal days as those where no DHI value 

higher than 150 W/m2 occurs during the day which incidentally is about 1.1 times the 

averaged DHI value (130 W/m2) during the daytime in whole year 2014. 
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Figure 10. Solar irradiance data of target location in January 2014 

 

From the supporting study I found out that classification of normal and ramping 

days can be very accurate based on the weather features. So a complete irradiance 

prediction process is designed as shown in Figure 11. According to the resulting 

different identifications, different solar irradiance prediction models will be applied. In 

this paper, our contribution and analysis are mainly limited to the normal days, which is 

part 2 in Figure 11. 
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Figure 11. Flowchart of solar irradiance prediction process 

 

B. Cross correlation check 

The proposed ST ARX model is inspired by the strong cross correlation of solar 

irradiance data between neighboring locations, which is the critical condition to obtain 

good simulation results of the ST ARX model. Therefore, a cross correlation check of 

solar irradiance between averaged neighboring inputs from six distance ranges and target 

location are provided in Figure 12. The time lag in the figure is from 30 minutes to 2 

hours corresponding to our multi-time-scale prediction study in Section 5. And all cross 

correlation values shown in Figure 12 are higher than 0.80 (details can be found in Table 

7) which indicates strong correlations between our averaged neighboring inputs and 

target data. 
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Figure 12. Solar irradiance cross-correlation between target location and averaged 

neighboring inputs 
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C. Benchmark model selection 

In order to verify the contribution of spatial neighboring data to the prediction 

improvement and the superiority of the proposed ST ARX model, a basic time series 

model is chosen as the benchmark for the proposed model. Figure 13 shows the 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots of 

the data at target location and each time lag corresponds to a 30-minute interval. The 

ACF decays with the lags and shows a periodic pattern; while PACF values sharply 

decrease to a very small number after lag 1. Table 3 shows the identification of time 

series model including autoregressive model (AR), moving average models (MA), and 

mixed autoregressive-moving average model (ARMA). According to the Table 3, the 

gradual decay of the ACF combined with the distinct cutoff of the PACF suggests that 

the AR model might be an appropriate benchmark for this data set. The mathematical 

details of the benchmark model are shown in next section. 
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Figure 13. ACF and PACF plots of target data set 

 

Table 3. Time Series Model Identification 

 

 

 

 

Model ACF PACF 

AR (p) Decays Cutoff after lag p 

MA (q) Cutoff after lag q Decays 

ARMA (p,q) Decays Decays 
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Evaluation of ST ARX Model  

In this section, I introduce the ST ARX model for solar irradiance prediction and 

compare its performance to the basic AR model for 1-hour-ahead prediction. 

A. Prediction model formulation 

In order to show the contribution of neighboring data and the improvement of the 

prediction accuracy using ST ARX model, the basic AR model is used as the benchmark. 

1) Basic AR model (Benchmark) 

The basic AR model is a widely used prediction model with no spatial input 

features. Although it is easy to implement and has a good prediction performance for 

stationary data, it relies heavily on the latest historical data. The formulation of basic AR 

model is as follow: 

𝐼𝑡𝑎𝑟𝑔𝑒𝑡[𝑡] = ∑ 𝛼𝑛 ∙ 𝐼𝑡𝑎𝑟𝑔𝑒𝑡[𝑡 − 𝑛]𝑖
𝑛=1 + 𝜀                      (3) 

Notations are shown in Table 4. A moving window process is applied, which updates the 

coefficients in every step after receiving the latest data point. The parameter n may vary 

based on the prediction time horizon and data resolution. 

2) ST ARX model 

The ST ARX model is developed based on the basic AR model including spatial 

neighboring data as an extra input, which is inspired by the strong correlations of solar 

irradiance data between nearby locations. The formulation of the ST ARX model for 

distribution system is as follow: 

 𝐼𝑡𝑎𝑟𝑔𝑒𝑡[𝑡] = ∑ 𝛼𝑛 ∙ 𝐼𝑡𝑎𝑟𝑔𝑒𝑡[𝑡 − 𝑛]𝑖
𝑛=1 + ∑ 𝛽𝑚 ∙ 𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒[𝑡 − 𝑚]ℎ

𝑚=1 + 𝜀        (4) 
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Notations are shown in Table II. Further, I assume the time of sunrise and sunset can be 

known in advance, so I consider I ̂ equal to 0 W/m2 from sunset to sunrise. 

B. Forecasting metric 

To compare the performance of ST ARX model and basic AR model, I use Root 

Mean Square Error (RMSE). The RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = √∑ (𝐼[𝑡]−𝐼[𝑡])2𝑁
𝑡=1

𝑁
                                                 (5) 

where N is the total number of time steps of the time series data. The smaller values of 

RMSE indicate better prediction performance. Besides, the relative improvement is 

defined as: 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑅𝑀𝑆𝐸𝐴𝑅−𝑅𝑀𝑆𝐸𝑆𝑇

𝑅𝑀𝑆𝐸𝐴𝑅
%                                      (6) 

where 𝑅𝑀𝑆𝐸𝐴𝑅 is the RMSE value of the basic AR model simulation, and 𝑅𝑀𝑆𝐸𝑆𝑇 is the 

RMSE value of the ST ARX model simulation. I use the relative improvement value to 

show the advantages of ST ARX model in the following sections. 

 

Table 4. Notations 

 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 Solar irradiance at target location 

𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 Averaged neighboring Solar irradiance 

𝐼 Predicted solar irradiance 

𝑛 Index of historical solar irradiance at target location 

𝑚 Index of historical solar irradiance of averaged neighboring data 

𝛼 Coefficient of target variable 

𝛽 Coefficient of neighboring variable 

𝜀 White noise 



 

30 

C. Summary of results 

Table 5 shows the simulation results of 1-hour-ahead prediction using ST ARX 

model and basic AR model. I separately include the averaged neighboring inputs from 

six different distance ranges to show the robustness of the ST ARX model and verify the 

contribution of spatial neighboring inputs.  

The values in the table indicate that including the spatial neighboring inputs in 

the model helps to improve the accuracy of solar irradiance prediction relative to the 

basic AR model, regardless the distance of included neighboring inputs within the 30 km 

range. Compared to the basic AR model, the most significant improvement of ST ARX 

model is about 5.3% with neighboring data at the 25 km to 30 km segment. And even for 

the worst case, the improvement is 3.1% at neighboring distance segment of 5 km to 10 

km. The performance of the ST ARX model for solar irradiance prediction is much 

better than the AR model, which also verifies the significant contribution of spatial 

neighboring inputs. This conclusion can be extended to the 30-min-ahead and 2-hour-

ahead predictions. 

Table 5. RMSE Values of 1-Hour-Ahead Prediction 

AR ST ARX Model 

 Included Neighboring Input Distance (km) 

 <5 <10 <15 <20 <25 <30 

20.15 19.52 19.53 19.21 19.16 19.27 19.09 

Improve 3.1% 3.1% 4.7% 4.9% 4.4% 5.3% 
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Analysis of Spatial Neighboring Data Distance 

From the results of last section we know that although including spatial 

neighboring data can promise improvement of prediction accuracy, the neighboring data 

at different distances may have different contributions to the accuracy improvement. In 

this section, I provide an analysis of the contribution of neighboring data from 5 km to 

30 km for the 30-minute-ahead, 1-hour-ahead, and 2-hour-ahead prediction, and provide 

a general observation about optimal neighboring distance and prediction time scale. 

Besides, the difference between optimal distance and significant distance feature is 

discussed to stress the necessity of contribution analysis. 

A. Contribution analysis for multi-time-scale prediction 

In this section, the relation of prediction time-scale and distance of the 

neighboring inputs is investigated. 

1) Optimal neighboring distance of multi-time-scale prediction 

Table 6 shows the RMSE improvement of the ST ARX model for multi-time-scale 

prediction with six neighboring distance ranges. For 30-minute-prediction, the 

significant improvement is 2.1% with averaged spatial neighboring inputs at 15km to 20 

km. Figure 14 (a) plots the RMSE value changes with the increasing distance of 

neighboring inputs. This result suggests that the neighboring data at 15 km to 20 km 

contains the most valuable spatial information of solar irradiance for 30-minute-ahead 

prediction in Austin area.  

The improvement percentages in Table 6 indicate that the optimal distance of 

spatial neighboring data included in ST ARX model for 1-hour-ahead prediction is about 
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30 km, which is much longer compared to the 30-minute-ahead prediction. Figure14 (b) 

shows the RMSE changing by distance. The intuitive explanation of this result is based 

on cloud movement. The irradiance received by the solar panel is directly affected by the 

cloud behavior and this effect has geographical transitivity within a narrow area due to 

the cloud movement with wind. Therefore, for short time-scale prediction, the irradiance 

behavior at target location is similar to the nearby neighbors since the cloud at close 

distance moves to the target location after some time.  

From the Table 6 and Figure 14 (c) we know that the most significant distance of 

spatial neighboring data in ST ARX model for 2-hour-ahead prediction is also around 30 

km, which is the same to the 1-hour-ahead prediction. However, the relative 

improvement of 2-hour-ahead prediction with spatial neighboring data at significant 

distance is about 3.0% which is much lower than 1-hour-ahead prediction (5.3% in the 

Table 5). This result indicates that although the neighboring data at 30 km performs 

better than other close distance data, it might not be the optimal spatial inputs and the 

neighboring data at further distance may be more significant. Considering the service 

area of distribution system, I assume the longest accessible neighboring data distance is 

30 km, so the neighboring data at further distance are not tested. 

Table 6. Improvement Values of Multi-Time-Scale Prediction 

 ST ARX 

Time Scale Neighboring Input Distance (km) 

<5 <10 <15 <20 <25 <30 

0.5h 1.3% 0.9% 2.1% 2.0% 1.6% 1.8% 

1h 3.1% 3.1% 4.7% 4.9% 4.4% 5.3% 

2h 0.4% 1.7% 2.3% 2.2% 2.6% 3.0% 
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a. 30-minute-ahead prediction 

 
b. 1-hour-ahead prediction 

 
c. 2-hour-ahead prediction 

Figure 14. RMSE values of multi-time0scale prediction 
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2) Summary of results 

Based on the discussion above, we have a general conclusion that the optimal 

distance of spatial neighboring data included in the ST ARX model is relatively long 

corresponding to the long time-scale prediction. The absolute significant distance for 

multi-time-scale prediction is not constant and may change based on the target locations, 

weather conditions, and local conditions at neighboring locations. 

B. Discussion of optimal distance and significant feature distance 

I defined the significant feature distance as the distance where the spatial 

neighboring inputs have the highest correlation to the target data. In other words, the 

significant feature distance can be identified from the results of the cross correlation 

check described in Section 3. The correlation values for different time lags and 

neighboring input distances are listed in Table 7. From the table we know that, for the 

30-minutes time lag, the neighboring inputs at 5 km have the highest correlation to the 

target data, and for 1 hour and 2-hour time lag, the significant feature distance is 25 km. 

I find that the significant feature distance is not consistent with the optimal distance, and 

Table 8 compares these two distances for different time lags. 

Table 7. Cross-correlation Values of Target Data and Neighboring Inputs 

Time Lag Neighboring Input Distance (km) 

<5 <10 <15 <20 <25 <30 

0.5h 0.947 0.929 0.924 0.924 0.928 0.926 

1h 0.864 0.858 0.858 0.861 0.867 0.866 

2h 0.816 0.813 0.815 0.817 0.824 0.822 
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Table 8. Comparison of Optimal Distance and Significant Feature Distance 

Time Optimal Distance Significant Feature 

Distance 0.5h 15km 5km 

1h 30km 25km 

2h 30km 25km 

 

There are two possible reasons that cause this difference. Firstly, it is true that 

adding the most related feature in to the AR model may not result in the optimal 

prediction performance. To understand this, the calculation of coefficients in formula (4) 

should be clarified: 

𝛼𝑛 = 𝑐𝑜𝑟𝑟(𝐼𝑡𝑎𝑟𝑔𝑒𝑡[𝑡], 𝐼𝑡𝑎𝑟𝑔𝑒𝑡[𝑡 − 𝑛])                                  (7) 

𝛽𝑚 = 𝑐𝑜𝑟𝑟(𝐼𝑡𝑎𝑟𝑔𝑒𝑡[𝑡], 𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒[𝑡 − 𝑚])                               (8) 

Notations are shown in Table 4 and corr means correlation. From the formulas above we 

can know that the feature with strong correlation should have a heavy weight in the 

model, but cannot promise contribution to reducing the error. And the strong correlation 

can be caused by the collinearity of target data and neighboring inputs. The intuitive 

explanation is that the neighboring inputs at significant feature distance are too similar to 

the target data and cannot provide extra information to the prediction in order to improve 

the accuracy. According to this analysis, the optimal distance and significant feature 

distance are two different indicators. Secondly, the optimal distance is a data-driven 

result which is identified by prediction accuracy improvement. So the identification of 

optimal distance is easily affected by the quality and quantity of data set and difficult to 

be precise. 
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It is worth mentioning that both the optimal distance and significant feature 

distance verify the general conclusion that with increasing time scale the neighboring 

inputs at further distance are usually more preferable to be included in the prediction 

model. 

Conclusions 

In this chapter, I investigated the performance of the ST ARX model for solar 

irradiance prediction for distribution system operational planning. Our proposed model 

includes averaged spatial neighboring data within a narrowed distance range and 

provides a more accurate prediction when compared to the basic AR model. The analysis 

of neighboring data distance and contribution for multi-time-scale prediction concludes 

that longer time-scale prediction corresponds well with further optimal neighboring 

distance. And the optimal distance may not correspond to the distance of highest 

correlation.  

The proposed ST ARX model is validated by the historical solar irradiance data 

for normal days which are defined as days where solar irradiance follows a periodic 

pattern. While for the ramping days, solely relying on the ST ARX model may not yield 

an accurate prediction and stochastic process analysis is needed to have a good 

understanding of irradiance spikes. Our future work will focus on the prediction model 

and contribution analysis of spatial neighboring data for ramping days. 
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CHAPTER IV 

SUMMARY 

 

In this thesis, there are two prediction problems in the distribution system are 

investigated. Data-driven analysis is applied to the history dataset, which contributes to 

parameter designs for prediction models. As for the power price forecast, series analyses 

are applied based on the market data to develop an efficient price prediction model for 

the EnergyCoupon system which is an application to incentivize the demand response in 

the distribution system. The designed prediction algorithm is tested in the Houston are 

for three months and resulted in an acceptable accuracy. The second investigation is to 

predict the solar power generation from individual houses in Texas area. Based on the 

results of data-driven analysis, the spatial relations between neighboring houses are 

included into the prediction model to improve accuracy. Besides, the consistency of the 

optimal neighboring data distance prediction time scale verifies the effects of the cloud 

movement to the household solar power generation. 
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APPENDIX 

Table 9. Physical Location of Neighboring Data 

Customer Latitude Longitude Distance (km) 

Target 30.21 -97.74 0 

Distance < 5 km 

Customer 1 30.21 -97.70 4 

Customer 2 30.21 -97.78 4 

Customer 3 30.25 -97.74 3 

Distance < 10 km 

Customer 1 30.21 -97.66 8 

Customer 2 30.13 -97.74 9 

Customer 3 30.13 -97.78 10 

Customer 4 30.25 -97.82 9 

Customer 5 30.29 -97.74 10 

Distance < 15 km 

Customer 1 30.21 -97.58 15 

Customer 2 30.13 -97.62 15 

Customer 3 30.13 -97.82 12 

Customer 4 30.25 -97.86 12 

Customer 5 30.33 -97.70 14 

Distance < 20 km 

Customer 1 30.21 -97.54 19 

Customer 2 30.90 -97.58 20 

Customer 3 30.05 -97.82 19 

Customer 4 30.25 -97.90 16 

Customer 5 30.37 -97.70 18 

Distance < 25 km 

Customer 1 30.21 -97.50 23 

Customer 2 30.01 -97.86 25 

Customer 3 30.21 -97.98 23 

Customer 4 30.41 -97.66 24 

Customer 5 30.41 -97.78 23 

Distance < 30 km 

Customer 1 30.21 -97.42 30 

Customer 2 30.05 -97.54 26 

Customer 3 29.97 -97.86 29 

Customer 4 30.21 -98.02 27 

Customer 5 30.41 -97.54 29 

 

 




