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ABSTRACT

Reservoir simulation studies are the most detailed analysis that can be performed
in order to evaluate future performance and remaining reserves of a reservoir, given the
in-place volumes. This holds true both for conventional and unconventional reservoirs.
The two numbers, in-place volumes and long term deliverability of the reservoir, need to
be ascertained with fair amount of accuracy. This is central idea of this dissertation.

The overall objectives of the dissertation are outlined in the form of two simulation case
studies — one conventional and the other unconventional.

For the conventional reservoir, history matching and subsequent forecasting
work becomes a challenging task if limited supporting production data is available and
the reservoir is severely depleted. For an offshore, volatile—oil reservoir, added to this
challenge was an uncertainty in fluid PVT, where the data clearly suggested presence of
condensate, but with black oil properties. The permeability distribution from logs was
counterintuitive to the production data from the wells. The reservoir had a structural
relief in excess of 1000 ft., most likely having API gradient, but both the API and the
GOR data indicated that there were possible errors in measurement. There was
uncertainty associated with original oil-water contact also. The production data showed
the reservoir to follow primarily a classical solution gas-drive response, but simple
material balance analysis proved a weak aquifer effect as well.

The approach followed in simulation was the process of elimination. Pressure

match was first achieved, but questions remained about its robustness around the main



sealing fault. GOR was targeted next and several different condensates and one full
compositional fluid model of a nearby reservoir were unsuccessfully tested. For
matching the historical gas production, a new high condensate yield fluid PVT was used.
The idea of another oil-water contact (OWC) was tested in the saddle of the reservoir to
account for most likely early water breakthrough in a well there. The secondary gas cap
formation and its effects were crucial in achieving satisfactory history match.

The confidence in the history match, as having captured the physics of the flow,
led to forecasting scenarios which were not possible with a black oil model. Most of the
data was found not to be erroneous. What was needed was judicious data interpretation
to achieve satisfactory history match. To produce these kinds of depleted, faulted
reservoirs further, a strategy to better manage the evolution of secondary gas cap was of
utmost importance.

For the unconventional reservoirs the challenges are equally daunting. The
unconventional liquids-rich “shale” reservoirs are made up of shales, siltstones or
carbonates. Depending on fracture connectivity, these reservoirs may or may not
produce water from aquifers above/below them. Simulation modeling work to estimate
reserves for such reservoirs is often restricted to, a well based stimulated rock volume
(SRV). Aquifer effects, at the boundary, are often not taken into consideration as water
production is insignificant or in some cases non-existent. The in-place volume may not
pose as big a challenge for SRV, but the long term deliverability of the wells is affected
by the different boundary conditions, which constitutes the natural drive of these

reservoirs. Material balance analysis, used for analyzing production data, cannot be



applied here as it is difficult to measure the average reservoir pressure at the well as no
tank-like behavior is seen. Decline curve analysis (DCA) and Rate transient analysis
(RTA) have limited success for these liquids-rich plays. The former is limited by high
shrinkage of volatile oils, which liberate a lot of gas below the bubble point, that might
aid or impede long-term well performance. The latter analysis is known to give non-
unique solutions under transient conditions.

In order to overcome these limitations a new method is proposed which is based
on linear flow regime of these reservoirs. Unlike previous studies where either the
matrix alone or the aquifer alone are taken into consideration as source term in the
fracture equation, here we take both the matrix and the aquifer as two separate source

terms in the fracture equation with two separate interporosity flow parameters, each with
slab configuration. The overall performance of the well is dependent on the term, (%)

called as Dual Porosity Proppant Number. For the reservoir, this is defined as volume
weighted, dimensionless surface flux transferred from a unit area of matrix to the
fracture, per unit matrix volume. As a big picture, this number determines the amount of
successful stimulation achieved within the dual porosity reservoir. Based on flow
analysis from two different areas, it is possible to reduce the uncertainty associated with
RTA alone. One area estimates the aquifer drive and the other estimates the derivative of
dimensionless productivity index against time. This derivative of dimensionless
productivity index serves dual purpose. It acts as a pressure variable which gives
information about the rate of transient-area generation in the reservoir due to drawdown

at the well. Hence conventional RTA can be applied. The other purpose is to help

iv



evaluate the long-term well performance since it is part of productivity index. Below the
bubble point, the solution gas drive is handled with the help of equivalent Muskat’s
method for Volatile oil.

Having established the theoretical basis, we then illustrate the effects of various
reservoir drives on future performance of such unconventional reservoir. A synthetic
field-wide simulation case shows the application and results, which brings out its
significance, with and without the use of this method.

The last chapter covers the performance prediction of a horizontal well with
transverse fractures without the assumption of linear flow. No detailed analysis of the

work is presented.
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CHAPTER |

INTRODUCTION AND OVERVIEW

Introduction

Conventional and unconventional reservoirs are similar as far as the physics of
the fluid flow is concerned. What is vastly different between the two is the economic
approach to exploit those reservoirs. This is one of the major reasons which sets them
apart.

The general definition of an unconventional reservoir has to be stated first, for
the purpose of discussion. This is where we have to rely on the economic approach
rather than physics of the fluid flow approach. Unconventional reservoirs are those
reservoirs which are very low porosity and permeability and cannot produce
economically with the help of natural energy and/or using conventional means of
production. These three requirements; porosity, permeability and production with the
help of some means other than the natural drive should be present before unconventional
reservoir can exploited economically. From the economic standpoint, they could either
produce gas or oil, but the presence of hydraulic fracturing is absolutely important. On
the other hand, a conventional reservoir will produce without hydraulic fracturing, on
natural drive, but the role of hydraulic fracture in that reservoir is to better the economics
further. The point being made here is that hydraulic fracture will be used for
unconventional reservoir as an absolute must whereas it may or may not be used for

conventional reservoir.



The distinction between unconventional and conventional reservoirs gets fuzzy if
only the presence of hydraulic fracturing is used in the definition. From engineering
standpoint, we differentiate unconventional reservoirs further on the basis of porosity or
permeability. Both these parameters define the physics of fluid flow in any reservoir but
strict demarcation is not possible with this criterion alone. From geologic standpoint,
low permeability and porosity formations have been defined as shales, siltstones,
mudstones, etc. It is not important to go into the geological details, but the fuzziness in
differentiating these reservoirs gets mitigated to a large extent if we use these
engineering and geological terms in conjunction together with economic criteria. The
central focus of this thesis is oil production from both conventional and unconventional
reservoirs. Any discussion with respect to gas only reservoirs has not been taken up.

Thus liquids—rich unconventional reservoirs are grouped®, keeping in mind all the
above viewpoints, into:

1. Shale Oil Reservoirs — These are extremely low porosity and low permeability
reservoirs which have predominantly shales and with low sulfur content
conventional light oils which are extremely difficult when it comes to extraction.

2. Tight Oil Reservoirs — As compared to above, these reservoirs are slightly better
with respect to porosity and permeability but are not ideal reservoirs.
Geologically, these are composed of siltstones (mixture of quartz, calcite, etc.)
or mudstones (hardened clay) which are still low porosity and permeability.

From a mineral standpoint, the major difference between the above two types of

reservoirs is that, for the former, the main mineral (shale) is very fissile whereas the



latter is less brittle. This makes former to break into layers very easily and geologically
both the shale and fissures stretch hundreds and thousands of miles. Strictly speaking,
there is nothing called pure shale or pure mudstone/siltstone in nature. There is always
some shale content associated with any reservoir which could be 100% purity at places,
but on a large scale, shales are associated with other sediments. Keeping this geologic
limitation in mind, most tight formations, in as far as log data perspective, resemble
shale. For that purpose and throughout this thesis, we will refer to all unconventional
reservoirs as “shale” reservoirs. This definition is not to be confused with Oil-Shale
reservoirs which require the formation be heated and oil extracted out with the help of

heating. Generally, these are present at a shallower depth than Shale oil reservoirs.

Conventional versus Unconventional Reservoir

Long term deliverability of any reservoir, conventional or unconventional, boils
down to the fact how various forces, responsible for fluid flow, interact with each other.
It is important to understand these forces because it is not always possible to have
volumetric depletion only (mostly applicable for gas reservoirs). The objective of any
reservoir evaluation study and subsequent prediction comes down to assessment of

interactions of these natural forces or drive mechanisms. These are:
1. Volumetric Depletion — The fluids are produced because of induced drawdown
and without any other natural drive aiding in depletion. Expansion of original

fluids, oil or gas or both and/or interstitial water, occurs because of reduction in



pressure. At the same time contraction of reservoir rock skeleton occurs.
Generally gas reservoirs exhibit this kind of drive.

Solution Gas Drive — This is a fluid PVT driven drive where the liberation and
expansion of gas below bubble point results in increased production from the
reservoir, if effectively managed.

Gravitational Drive — Usually associated with the geology of reservoir and its
structure such as dip or net thickness of the reservoir being so great that the
lighter fluids separate and occupy upper parts of the reservoir whereas the
heavier fluids settle down to the bottom. This is often referred to as gravity
segregation.

Gas Cap Drive — Produced because of the relative volume of gas is bigger than
oil in the reservoir and typically associated with reservoirs having initial pressure
close to saturation pressure. A good example would be when the average
reservoir pressure goes below the bubble point early in the producing life of the
reservoir, the expansion energy of the gas is driving factor for production.
Aquifer Drive — Conventional oil reservoirs are rarely without water drive. Water
is always present in sedimentary deposits and aids in production (from kerogen)
and migration of oil in a marine setting. In cases where this drive is altogether
absent is the big reservoirs of Central Asia, which are carbonate in origin.
Although volumetrically carbonate reservoirs are bigger than their sedimentary

counterparts, the latter are more prolific in numbers.



The above are the principal natural drive mechanisms of the conventional reservoirs and
sometimes a combination of any two is generally referred to as a combination drive. In
this thesis we will take up the case of three simultaneous reservoir drive mechanisms.
Reservoir data interpretation, using material balance, forms the backbone of
understanding these drive mechanisms. Geologic models are built and are then calibrated
with the help of the available production and pressure data. This process is called
history-matching or model calibration. Since geological model represents the best guess
of how the reservoir looks like, it often needs to be modified on dynamic (engineering)
side to achieve a satisfactory history match. This is the reason multipliers are applied to
change largely the permeability field. The urge to apply multipliers to porosity field is
generally desisted because it affects the in-place volumes. This is the most common way
out. There are certain situations when any amount of changes of the permeability field
does not help in achieving history match. As a result, a simulation engineer has to
reassess the approach and play around not only with the rock properties, such as porosity
and permeabilities, but instead test various fluid properties such as PVT data, rock
compaction data, etc. as well. This makes it an advanced history matching exercise
because most of the times all operators, mitigate the uncertainty in PVT data, by strict
quality control methods during the initial life of the reservoir. Also the reservoir have
been cored enough to have an idea of compressibility of reservoir rocks. For this
dissertation, the conventional reservoir part is dedicated to history matching and
prediction performance of an offshore Nigerian reservoir which had very limited

pressure data and only basic PVT data.



Liquids—rich unconventional reservoirs will also exhibit all the above drive
mechanisms. The only restriction being the time of economic life of the reservoir being
evaluated since in unconventional reservoirs transient lasts very long. The length of
transient depends on magnitude of low permeability, which means for a particular
average permeability the transient does not reach the boundary. Also, since the
permeability is low, the amount of depletion achieved may not be enough to bring down
the pressure below the bubble point. Also we cannot rule out the presence of solution gas
drive altogether. But in order to study solution gas drive we have to put detailed PVT
information in our models, both above and below bubble point. This scenario is not
possible when dimensionless variables are used.

Gravity does play a part only in a limited sense, as for example, some of the
operators have tried producing horizontal wells with toe up rather than heel down with
encouraging results. This topic is not covered in the thesis.

This leaves us with aquifer drive mechanism for these reservoirs. We have to
state one obvious major assumption we have made in this thesis. Aquifer water does not
enter the reservoir. This assumption is valid since fluids do not move/invade that easily
in such low permeabilities. The fractures, both natural and hydraulic, provide good
connectivity throughout the reservoir. If single phase is assumed in the reservoir, the
obvious question is how any aquifer drive would affect these reservoirs? The short
answer is if we assume a small control volume (Stimulated Rock Volume — SRV)
around a hydraulically fractured well that is being depleted and subject to no flow

(pseudosteady state) boundaries or aquifer around it, then all interactions of these with



the reservoir determines long term well performance. Also, this aquifer can be in
pseudosteady state or transient condition and may be present above or below the
reservoir.

Before we turn away from this topic, it is necessary to put in a word of caution.
When we talk about transient aquifer boundary, the intuitive assumption is that the
boundary is moving, as it does in a conventional reservoir. The only problem here is this
cannot be achieved in an unconventional reservoir. The assumption which is made in
this thesis with regards to transient aquifer boundary condition is that the unconventional
reservoir is surrounded, above or below as the case maybe, with a conventional reservoir
which has good permeability. In order to achieve transient effect the water saturation
rapidly changes outside the lower or the upper boundary. This assumption leaves intact
the single phase oil within the SRV but at the same time takes into account realistically

the aquifer effect. It will be discussed in detail in subsequent chapter of this thesis.

Role of Hydraulic Fracturing in Unconventional Reservoirs — Problem Description

There are no direct references to reservoir drive mechanisms in the literature for
unconventional reservoirs. Part of the challenge is associated with this fact is that the
reporting of water production in the literature has been next to nothing. For liquids—rich
plays, Bakken, Eagleford and Permian are considered to be the biggest reservoirs' in US,

given in Table 1. It also gives their oil decline rates for initial five year period.



Table 1. Decline Rates of the Big Three U.S. Shale Oil Plays".

Play Year1 | Year2 | Year3 | Year4 | Year$5
Bakken-Three Forks | 43% 35% 30% 20% 20%
Eagle Ford 55% 40% 30% 20% 20%
Permian Basin 50% 40% 30% 20% 20%

NOTE: Year 1 decline is calculated as the average production during the 12th month of production vs. TP30 daily
production. Subsequent yearly decline rates are calculated against the last month of the previous year daily average
production. After Year 5, I assumed a flat 7 percent annual decline.

A general insight to the amount of water being produced by unconventional
reservoirs can be had from a few sources such as a SPE paper by Li Fan et al.?, IHS
report by Gay et al.>. Figure 1, from Gay et al., gives an idea of the percentage of water

being produced throughout the life of the well in unconventional reservoir.

Range of Water Production Throughout Well Operational Life
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Figure 1. Water Production Range for Typical Unconventional Well°.
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As is clear from the figure, approximately 40% of wastewater is produced in
0.5% of the well’s operational life. This is the result of fracture flowback. The remaining
60% is produced during the remaining 20 years of operation. It is this water which needs
to be evaluated from the perspective of drive mechanism, although it might be minimal,
but water-cut will be high. For the hydraulically fractured unconventional well, the
presence of water effects the long term deliverability. Figure 2 shows the shale basins*
and associated aquifers in US.

Sources, like company’s investor presentation®, suggest that Bakken horizontal
wells do produce water during its operational lifetime as shown in figure 3 and figure 4.
But for Eagleford reservoir, it becomes difficult to demonstrate any water production

because most operators do not see any water production in their wells.

Shale Basins and Saline Aquifer Locations in the U.S.

B saline Aquifers [l Current Plays
B easins Prospective Plays

Figure 2. Shale Gas Production Well®.
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Figure 5. Historical Gas and Water Production of Eagleford Well?.

In Eagleford reservoir there is no water production, which does not mean that
water is all together absent. Li Fan et al.?> do show history matching carried out for an
Eagleford well producing oil, gas and water as shown in figure 5. As pointed out
previously, there is nothing called ‘shale-only’ reservoir and in South Texas
predominantly marine shale are interlaid with, quartz and carbonates®. It is common to
expect Eagleford to be underlain by Woodbine sandstone in East Texas. As a result of
this, wells produce ‘produced water’. This is more common and may not be confused
with the flowback water produced just after of hydraulic fracturing operations. Bottom
line, the unconventional reservoir maybe underlain/overlain by formation(s) containing
predominantly water. This suggests water may be produced during the lifetime of these
hydraulically fractured wells. Also shale play may not be predominantly shale at all.
This is particularly common in Permian shale reservoirs, such as Cline shale play in

West Texas that ranks among these emerging plays. The Cline shale has been recognized
11



by some as the fourth leg of the Permian-aged Wolfcamp shale (Wolfcamp D). The
Wolfcamp is broken down into A, B, and C intervals based on variations in lithology
throughout the formation as shown in figure 6 from investor presentation given by
Schepel®. These are actually carbonate reservoirs.

Although shale gas reservoirs are not the focus of this thesis, Table 2 from

investor presentation given by Craft®, shows produced water from these gas plays.

Wolfcamp Oil Shale Play
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Scurce: Deven Energy Presentation April 2. 2012

Figure 6. Spatial Extent of West Texas Permian Shales’.

Table 2. Produced Water of Select U.S. Shale Gas Plays®.
PRODUCED WATER BY US SHALE PLAY

Shale Initial water production Long-term

(first 10 days) (gal/well) water production
Barnett 500,000-600,000 High (>1,000 gall MMcf)
Fayetteville 500,000-600,000 Moderate (200-1,000 gal/MMcf)
Marcellus 500,000-600,000 Low (<200 gal/ MMcf)
Haynesville 250,000 Moderate(200-1,000 gal/MMcf)

Source: Data from Chesapeake Energy.
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As a big picture of the problem, solutions as presented by Bello® when extended
to liquids—rich plays with aquifers, would not correctly predict long — term deliverability
of wells. This is because of more than one boundary conditions act on the reservoir

(reservoir drive mechanism) which determine the rate of average pressure decline.

Volatile Oil PVT - Its Uniqueness in Comparison to Black — Oil, Retrograde
Condensate and Wet Gas PVT
Volatile oil is a unique reservoir fluid as compared to all others. In order to point
out this difference, we have to state an important point, that both black oil and volatile
oil are liquids at reservoir temperature initially (bubble point system) whereas retrograde

condensate and wet gas are gas at initial temperature (dew point system). figure 7, that
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Figure 7. Phase Envelopes of Hydrocarbon Mixtures'®.
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is after Barrufet’®, shows phase envelopes with hydrocarbon mixtures with same
components but with different proportions. The implication of the different sizes is
apparent if we compare it with information in basic phase envelope, shown in figure 8.
Once the pressure decreases below the bubble point due to depletion in the reservoir, the
gradient of the percentage liquid lines are very sharp (due to high volatility) below the
bubble point line. This results in the volatile oils liberating a large amount of gas for a
very little pressure drop below the bubble point. Large amount of gas in the reservoir
supplies energy (solution gas/gas cap drive) to the liquids in the reservoir. If the

geological structure of the reservoir cannot

Cricondenbar ___Critical Point

Gas only

Pressure

| Cricondentherm

Temperature

Figure 8. Typical Phase Envelopes of Volatile Oils Showing Depletion Path.
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accommodate huge gas liberation then the gas cap drive becomes a good virtual gas
injection. The underlying assumption in this statement is that permeability is sufficiently
high (considering conventional reservoir) to allow fast depletion and drag the pressure
below the bubble point fast or alternatively, the production period is sufficiently large
that the reservoir is below bubble point for greater part of its productive life. In

unconventional reservoir, if we are

Table 3. Typical Compositional Mole Percentage of Fluids™.

Component Black QOil Volatile Oil Retrograde Wet Gas
Condensate

Ci 48.83 63.36 87.07 95.85
C, 2.75 7.52 4.39 2.67
Cs 1.93 4.74 2.29 0.34
Cq4 1.6 4.12 1.74 0.52
Cs 1.15 3.97 0.83 0.08
Cs 1.59 3.38 0.60 0.12
Cr+ 42.15 12.91 3.80 0.42
MW of C. 225 181 112 157
GOR (scf/sth) 625 2,000 18,200 105,000
°API 34.3 50.1 60.8 4.7
Color Greenish Black | Light Orange Light Straw Water White
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in nano-darcy range then the average reservoir pressure does not get depleted much
(especially below bubble point) and we will consider gas cap drive altogether absent for
them.

As opposed to this, gas condensate conventional reservoirs, have gas at initial
temperature or pressure. Here usually, when the reservoir pressure goes below the dew
point, ‘retrograde effect’ kicks in which results in liquid drop-off. If the dip of the
reservoir is sufficiently high or the geological structure is huge, it results in heavier
hydrocarbon components settling downdip of the structure. This results in setting up of
the API gradient.

The differentiation between volatile oil and retrograde condensate is very well
defined. C. fraction need to be greater than 12.5% for volatile oil. If it is below this
value then the hydrocarbon system behaves as condensate. This can be seen from Table
3. Such kind of strict demarcation is not present between black oil and volatile oil. For
the hydrocarbon system to be classified as black oil, as per McCain*!, the following
criteria must be met:

e Oil formation volume factor has to be less than 2.0 rb/stb (low shrinkage oil).
e Initial GOR should be less than 2,000 scf/stb.
e Cy. fraction should be greater than 30%.
e Density should be less than 45°.
Not all criteria are met when classifying black oil, hence it becomes difficult to identify

the hydrocarbon system in the absence of any reliable PVT data.
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Wet gas never forms liquids in the reservoir but some liquid drop off may occur
at separator. Initial GOR values in excess of 100,000 scf/stb are considered as wet gas.
As seen from figure 7, wet gas phase envelope is very small in comparison to others.
Table 4 gives the idea of the fluids gravities of three major unconventional reservoirs in

US (figure 9). No attempt is made to account for variation in PVT for small pore spaces.

Table 4. Typical Fluid Gravity of Major US Unconventional Plays®>’.
Plays °API

Bakken — Three Forks 40° — 45° (Mountrail County)

Eagle Ford (Qil to Condensate Window) | 31° —59°

Permian Basin (Wolfcamp) 38°—-42° (Cline Shale) / 40° — 43° (Rest)
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Figure 9. Typical Hydrocarbon Fluid Densities in Eagle Ford™.
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Objectives of Thesis

This thesis has the following objectives:

1. Study conventional volatile oil (light-oil) reservoir, such as Reservoir M in
offshore Nigeria, to evaluate long term deliverability based on study of reservoir
drive mechanisms.

2. To develop mathematical model of unconventional volatile oil (light-oil)
reservoir to evaluate long term deliverability based on reservoir drive
mechanisms and with constant fracture volume (Proppant Number) concept:

a. Assuming linear flow for multi-stage hydraulically fractured dual
porosity model.

b. Using superposition and radial flow solutions to arrive at multi-stage
hydraulically fractured dual porosity solution.

3. Verification of the linear flow for multi-stage hydraulically fractured dual

porosity model using synthetic case.

Organization of this Thesis
The proposed chapter wise outline of the thesis is:
e Chapter I — Introduction
o Conventional and Unconventional Reservoirs with emphasis on the
natural drive mechanisms which effect the long term deliverability.
0 Role of Hydraulic Fracturing in Unconventional Reservoirs to highlight

the importance of water production and hence aquifer support on long
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term performance of hydraulically fractured unconventional well. The
presence of water bearing formation outside the shale formation can
result in a different depletion of average reservoir pressure in comparison
to pure volumetric depletion (without aquifer support).

Role of PVT both in conventional and unconventional reservoirs without
going into the variation in PVT in small pore spaces. Since operators of
unconventional reservoirs go after NGLs, these wells are mostly have

light oil as reservoir fluids.

Chapter 11 — Insights from History Matching and Forecasting Work for a Steeply

— Dipping, Faulted Volatile Oil Conventional Reservoir, Offshore Nigeria.

o

Describes the history matching and forecasting work for conventional

Reservoir M in offshore Nigeria.

Chapter 11l — Simulation Study of Liquids — Rich, Volatile Oil Unconventional

Reservoir — Focus on Reservoir Drive Mechanisms.

(0]

Discusses the mathematical derivation of hydraulically fractured
horizontal well in presence of aquifer and linear flow dual porosity
reservoirs.

Extends the concept of Proppant Number to dual porosity.

Discusses Dimensionless Productivity Index.

Show the applicability of the method in a simulation model.
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Chapter IV — Simulation of Unconventional Reservoirs using Meshless Method:
Accurate Performance Prediction of Dual Porosity Reservoir with Transverse

Fractures.
o0 Discusses the use of method of images (principle of superposition) on
radial flow solution to derive the constant rate and constant pressure

solutions with following scenarios:

Fully penetrating, single infinite conductive fracture at the center
of square drainage area.

= Fully penetrating, single finite conductivity fracture using BEM.

= Partially penetrating, single finite conductive fracture.

= Partially penetrating, single transverse finite conductive fracture.

= Partially penetrating, multiple transverse finite conductivity

fracture in a horizontal well.

o Verify the results.

Chapter V — Results of unconventional reservoir study and Conclusions.
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CHAPTER II
INSIGHTS FROM HISTORY MATCHING AND FORECASTING WORK FOR A
STEEPLY-DIPPING, FAULTED VOLATILE OIL CONVENTIONAL RESERVOIR,

OFFSHORE NIGERIA®

Introduction

Reservoir M is the deeper producing reservoir of a field in offshore Nigeria
which has been continuously on production since Oct. 1980 (~33 yrs). The field is a
complexly faulted, collapsed rollover anticline and is saddle separated from one of the
biggest fields in Chevron’s portfolio in Nigeria. Its proximity to that big reservoir has
resulted in the pressure effects being felt in shallow sands suggesting that the regional
aquifer is common to both the reservoirs. The structure of this reservoir is having a dip
of around 1000 ft. from crest to the spill point. The crestal well of this reservoir has
produced for the largest period in the life of the reservoir. In all, nine fault blocks have
been identified and developed. Some faults are known to be leaky, resulting in fluid
communication.

Around the end of 2011, the asset decided to evaluate waterflood (WF)
opportunity for all mature fields. Based on decline curve analysis, Reservoir M was

identified as a possible WF candidate. The reservoir was already pressure depleted by

“ Reprinted with permission from “Insights From History Matching and Forecasting Work for a Steeply-
Dipping, Faulted Volatile Oil Conventional Reservoir, Offshore Nigeria” by Sandeep P. Kaul, Anil Kumar
Ambastha, Vincent Eme, Jefferson Louis Creek. 2013 ATCE Proceedings, SPE 166452, Copyright 2013,
Society of Petroleum Engineers.

21



67% from initial pressure and seemed to have no upside. As per good reservoir
management strategy, majority of fields are further developed, beyond primary Earth
model was constructed and history match undertaken to ascertain if there was a value in
further producing the reservoir under repressurization/waterflooding (WF).

At a high level, the objective of history-matching exercise is to better understand
the reservoir behavior. This is usually associated with taking a closer look at the drive
mechanisms of a given reservoir. Conventional wisdom does require performing a
classical material balance (MBAL) study, as shown by Dake™, Kabir et al.**, Pletcher'?,
Esor'®, etc. which gives a quick insight into the drive energies of the reservoir, but such
course is seldom taken. Part of the problem is the number of wells, which then becomes
large, making the MBAL model itself unwieldy. Coupled with this is the large data
management problem which discourages the practitioner to use this method. For these
huge cases (multi-million cell models), there are large number of papers in literature
highlighting the various approaches and techniques that can be used to solve the problem
such as that by Williams et al.’, Ambastha et al.'®, etc. to name a few. But the
underlying basis of all these deterministic approaches is that the simulation engineer is
provided with very reliable data inputs. A detailed model then captures the reservoir
performance.

Also since history matching has a non-unique solution; stochastic approaches
like Experimental Design together with Assisted History Matching (AHM) techniques
have been found to be very powerful tools. A few prominent papers which show the

application of these techniques are Hoffmann et al.’®, Emanuel and Milliken?, King et
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al.?, etc. These approaches try to capture complex reservoir performance by changing
input parameter ranges and going ahead with a suite of reservoir models to get to most
probable reservoir performance.

Majority of above history-matching techniques are centered on the modification
of static parameters such as porosity, permeability, transmissibilities,
compartmentalization, etc. Challenge and complexity in history matching comes from
understanding complex reservoir behaviors which are not easily apparent based on the
available data. As a result, various possible reservoir behaviors may not get investigated
within the current normal practice of using available softwares and therefore, associated
drives may or may not make it under the microscope of the simulation engineer. Bartlett
et al.?? describe the challenges associated with Atlantis, a reservoir in Gulf of Mexico,
which started with being simple but after development drilling and initial production
performance showed extensive faulting, baffles and presence of perched water.
Availability of drilling, seismic and other additional reliable data helped in a better
reservoir development plan. The restricted aquifer support was supplemented by water
injection for better reservoir management. An improved understanding of reservoir
connectivities was also achieved. Although the reservoir was geologically more
complex, there was no surprise in identifying the reservoir drive mechanisms which
determined the performance.

Surprises are often associated when there is interaction of multiple reservoir
drive mechanisms in a complex reservoir architecture aided by gravity. One of these

one-off approaches is modeling gravity segregation drive. Although it is possible to
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demonstrate it with the MBAL method, as done by Ambastha and Aziz?, it can elude
the engineer if sufficient attention is not paid. A full-field compositional simulation
study by Ypma** was performed on Statfjord reservoir to know the role of compositional
effects during secondary, gravity-stable nitrogen injection. The overall conclusions are
similar to this study as gas condensates formed near the top of the reservoir and volatile
oils got accumulated downdip of the structure. But what sets this work apart from
Statfjord study is the critical thinking associated with arriving at this gravity-segregation
scenario, without the aid of any commercial history-match tool or extensive phase-
behavior experiments performed before simulation. We did not have any fluid
characterization report to begin with. Alternatively, commercial material balance
software, like MBAL™Z model, may help in identifying these complex drive
interactions, but would require advanced model setup using equation of state option
and/or pore volume variation with depth. Also, initially we did not make a concerted
effort to identify this drive as all PVT models did not generate a big enough secondary
gas cap, the driving force behind gravity segregation drive in our model. Instead, water
from the main aquifer broke through in the wells producing a strong water drive. The
identification of three reservoir drives, which were present in this reservoir, became
apparent in the simulation model after improved PVT model was used. This is not to
suggest that we did not realize the huge dip making an impact, but all the initial results
were either inherently inconsistent or did not go along with what MBAL model was

predicting.
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Reservoir Model Description
The reservoir has five penetrations in all. Out of these five penetrations, three
wells have been active with one well, Well#1, producing for 28 years continuously
before being shut down for high GOR in 2008. Well#4 is still producing in the field at a
very low rate and Well#5 was shut down on account of high BS&W after five years of
production. Well#2 and Well#3 were not brought online because the intent was to

produce oil and these wells were suspected to produce gas and hence never perforated.

Earth Model
This reservoir represents reworked shoreface deposits located within the clastic
nearshore depositional environment. The stratigraphic section of the field is shown in
figure 10 with all the five penetrations. To put this in a better perspective, the gross
thickness map, figure 11, is also shown. It shows that thickness is increasing from
southwest, where it is the lowest, to northeast, where it is the highest. The other main
features of this earth model are highlighted in the following:
e Reservoir M is a reworked shoreface deposit formed via the winnowing of
deltaic deposit by wave and current action.
e Reworking is more prominent in NW as evidenced by serrated log character.

e |t consists of two stratigraphic lobes separated by ~5ft thick, shale interval.

Lower lobe is a thicker, overall coarsening upwards progradational sequence.

Upper Lobe is a thinner, overall fining upwards retrogradational sequence.
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Taking into account relevant G&G uncertainties, low, mid and high static models were
constructed. The original oil-in-place was an uncertainty and gave a wide range to
probabilistic volumetric estimates. The original static fluid contacts were by far the
biggest uncertainty. The final contact ranges are given in the Table 5. The main points
which need to be highlighted are:

e OGOC uncertainty was approximately 69 ft.

e OOWTC uncertainty was approximately 621 ft. Production data suggests OOWC
may be closer to the maximum closing contour.

e No additional data available to narrow the current band of uncertainty (No MDT
availability and low seismic data quality which needed re-processing. Amplitude
extractions were not definitive).

e Low and High case OGOC & OOWC scenarios used to generate probabilistic

volumetric estimates.

Table 5. Summary of Original Contacts.

Low Mid High
-6474’ss -6386’ss

OGOC I |Crest of Structure|
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Booked volumes to date were based on a previous Simulation Study (OOWC
sensitization done to achieve result). Additionally, the static parameters uncertainty
analysis, done on the original oil-in-place (OOIP), suggested that OOWC was the single
biggest hitter. This information was very important, as far as dynamic modeling is
concerned. It resulted in two different scenarios: first scenario having 3 different
OOWCs (Black Oil PVT used) and the second scenario with two different OOWCs
(Volatile Oil PVT used). At this stage, there was no consensus on which particular PVT
model could be used since there was no fluid characterization report available for the
reservoir. PVT model choice caused the original oil-in-place (OOIP) estimates of
dynamic model to be different from that of the static model. The structure has the least
impact and hence it was taken out of dynamic uncertainty analysis to reduce scenarios

for dynamic modeling.

Dynamic Model

Before upscaling, the fine-scale static model had cell size dimensions of 50 ft X
50 ft X 2 ft with total grid blocks of 100 X 100 X 72 having 373,104 active cells. It was
upscaled in X and Y directions only to cell size of 100 ft X 100 ft X 2 ft with total
blocks of 50 X 50 X 72 having 89,568 active cells.
For the purpose of identifying unique features of this reservoir, for discussion purposes
and from CPU run time stand point, the upscaled grid was divided into 5 different
regions as per the following:

e Region 1 - The saddle near Well#5 to account for OWC1
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e Region 2 — The fault block for Well#1.
e Region 3 — The fault block for Well#4 to account for OWC2.
e Region 4 — Aquifer Region (Deactivated).
e Region 5 — Aquifer Region (Deactivated).
Region 4 and Region 5 were deactivated to speed up the run time. The coarse scale

model with OWCs is shown in figure 12 and region numbers are shown in figure 13.

Saddle

000 025 050 075 1.00

Sealing

wellgs  Well#l Face

ReservoirDip > 1000’

Figure 12. Upscaled Simulation Model Showing OWCs.
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The model has an aquifer which is common to Region2 and Region3. Regionl
(saddle region) is in pressure communication with Region3 through the oil zone. The
motivation for having an oil-water contact in saddle was based on water cut production
data for Well#5 which showed a value greater than 50% from first month of production.
Also water showed up in Well#1 after Well#5 was shut down. Completions in Well#5
also came to be of questionable integrity, adding to the list of uncertainties in the
reservoir.

Another uncertainty was difference in pressures between Regionl, Region2 with
that of Region3. If the single well test value for Region 3 was to be believed, then there
was a pressure differential of ~600 psi. A lot of conclusions cannot be derived from a
single data point, but the fact remained that the fault was sealing in hydrocarbon area. If
the fault remained fully communicable, the gas movement became uncontrollable
between Regionl and Region 3. The data did not suggest pressure equalization and in
the presence of gas, sealing had to be present. Figure 13 also shows the possible fault

communication scenarios which were considered.
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Region1 Well#1

Figure 13. Upscaled Simulation Model Showing Equilibrium Regions & Possible
Communication between Fault Blocks.

Challenges Associated with Earth Modeling

The immediate challenge at the onset of history-match process was the inability

to have Well#1 produce at the required historical oil constraint. The basic history-

matching exercise was dictated by it. With the existing earth model parameters, the

reservoir pore volume around Well#1 had to be increased to ensure that historical oil rate

constraint was met. The pore volume multiplier of 1.5 was used, which was deemed to

be unacceptable. A closer look at the problem revealed that the reason for this was

associated with the porosity, which showed average porosity values around Well#1 to be
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depressed. This is also illustrated in figure 10 where this information is displayed as light
green color. The bright yellow color as seen in the figure represents higher porosity
values. The production data showed that this particular well, with varying oil rate, had
produced uninterrupted for 28 years. As the static information could not be verified from
seismic data, owing to its low quality, it was decided to change the geological setting in
the reservoir based on production data. Keeping the porosity-permeability transform
constant, the geological trend of the reservoir was revised so as to help meet the oil rate
constraint during history matching. The exact reason for going against the information
provided by logs could not be arrived at. The well in question was the first penetration in
the reservoir and the fact that the logging tools could have been of early 1980 era was
the only justification which seemed plausible. This resulted in two scenarios where,
more than likely, either the logging tools were unable to pick up correct porosity or the
tool may have had a calibration problem. In conclusion, the production data overrode the
information that was provided by the logs. Figure 14 shows the changes to the values of
porosity incorporated to the earth model as represented through the Kh sum maps

(keeping the same porosity-permeability transform).
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Well#1

Figure 14. Upscaled Simulation Model Showing OWCs.

Challenges Associated with Data Measurement Errors
The producing GOR and the API data were also analyzed and are shown in
figure 15 and figure 16, respectively. The data suggests that the R = 770 scf/STB
(initial GOR) remains constant for two years for Well#1, before the reservoir goes below
the bubble-point pressure and producing GOR starts to increase. Initial GOR value,
allowing for errors in measurement in the field, indicates that it is a black-oil system as
suggested by McCain''. Since gas measurements are the least accurate in the field, the

GOR measurement integrity also came to be questioned.
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Figure 15. Reservoir GOR Data.

Communication between fault blocks also needed revisiting. Well#4 was brought
on production after ~20 years of reservoir life and still saw Rs which was below the
1500 scf/STB line (black-oil limit). This reinforced the idea of fault being sealing in the
hydrocarbon area. Initially, this motivated us to try black-oil as the reservoir fluid. A
similar parallel can be drawn when API data was analyzed and shown in figure 16. The
API of the crestal well, Well#1, has remained constant at 42° API (volatile oil range),
whereas the other two wells have varying API. This is especially true for Well#4 which
was brought into production after ~20 years and produces at 32° API for the first 2 years
and API data for Well#5 had a range from 28° API to 46° API. The reservoir was clearly
having volatile oil, but at the same time exhibiting black-oil properties. As would have
been customary under the circumstances, there were two distinct lines of opinion; one

which suggested that there were huge measurement errors in APl data and the other
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suggesting caution so as not to miss any vital information which the reservoir data was

trying to suggest.
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Figure 16. Reservoir API Data.

35



Identification of Reservoir Drive Mechanisms

The production data analysis was carried out with material balance (MBAL
model) to understand the various drive mechanisms and the effect of aquifer. As
mentioned previously, the look at the pattern of GOR production led us to believe that
the reservoir was following the classical solution-gas drive. This was the first drive of
the reservoir and has been explained very well in Dake’s book®. The second drive
mechanism was the water influx and the results of this analysis are shown in figure 17.
The unique feature of this MBAL model output, which mathematically calculates drive
indices and shown in the figure, is that the water influx energy is decreasing in time.
Water influx usually follows a pattern of being ever increasing once breakthrough is
achieved in the reservoir. This is a sign of a weak water drive. Campbell®” plot also
supported this hypothesis. Also, the best fit Havlena-Odeh?® plot, given the error in the
fit, suggested no upward revision in the original oil-in-place.

Apart from the fact that there was a dip of around ~1000 ft from the crest to the
spill point in the reservoir, impact of a weak water drive was not very clear at this point

in time of the history-matching exercise.
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Figure 17. MBAL Model Output to Identify Drive Mechanisms.

Challenges Associated with PVT Fluid Modeling during History Matching
This was the biggest simulation challenge. The data indicated borderline black-
oil fluid, but in strict theoretical sense, it was Volatile oil. With Well#1 as the

benchmark, following scenarios were tried in history-match exercise:

1. Black Oil with single bubble point (no variation with depth)

2. Black Oil with variable bubble point with depth

3. Black Oil with single bubble point and k,/k;, Ratio = 0.3

4. Condensate (Analog Data) Option and Full Compositional Model

5. Final Condensate Model
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For brevity, this chapter carries detailed discussions about scenarios #1, #4 and
#5 only. The most important point to be noted was that for all the three black oil models,
the historical oil production constraint was only honored with OOIP which were more
than 20% higher than that proposed by MBAL model. Also, all these black oil models
had to have three OWCs to match water breakthrough at the wells and were repeatedly
giving strong water drive signature. In-house program was used to generate the relevant
black-oil PVT data. The base PVT with which simulation was attempted, to begin with,

is shown in Table 6.

Table 6. Summary of PVT Data

Reservoir
Properties
Initial Pressure 2,949 psia
Reservoir Temperature 218 °F
Datum 6775 ft TVDSS
Oil Properties
Oil API Gravity 42 Degree
Initial Solution GOR 770 scf/STB
Bubble Point Pressure 2,500 psia
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chosen in fault block of Well#1. The simulation result of this attempt is shown in figure
18. The GOR match for the whole history period, especially 1996-2002, for Well#1 was
very poor. The gas production, as shown, tracks historical values early in the life of the
well, but once the pressure goes below the bubble point, gas production is unable to keep

up and follows a flat profile. This is seen in the GOR figure. The pressure match is

Black Oil with Single Bubble Point (No Variation with Depth)

This was the first attempt in history matching. Initial GOR of 770 scf/STB was

shown in figure 19.

Gil Prod Rate i

- OPFR-MAL_HETORY

S 4000

<

O 3200

@

= I

@ 2400

2

& 1600

3 i

s 80

o] & ! i

76 1983 1992 2000 2008 2016
Date (YEARS)
Gas/Oil Rabo -

 GORMAL_HETCRY

o 16

i

G 12f —

m -

g L 4

s 0

: L

= B ¥ ..

5 i

© n = F—=. e -

O A7 1992 20 2016

Date (YEARS)

Gas Prod Rate -~
- GFR-MAL_HETORY
=
2 10000 -
g 3
('
& 8000
2 [
= 6000 -
‘a_)‘ +
(1]
& 4000
= L
2 2000 -
n- t
w
1] L &
& A7 1984 1992 2000 2008 2016
Date (YEARS)
Water Gut wr
®  VCTMAL_HETCRY
20
= L
=
w 16 -
o |
R
e |
2 8
o L
8 g |
@
g | & | - b
fo7s {58 Tasz 2000 ~ B8 - 2016
Date (YEARS)

Figure 18. Single Bubble Point Simulation Results for Well#1.

39



SWP SWP

Well#1 W s Well#4

3000 00

2000 - = 1 2008 |-
1500 (= . | 1500 |

1090 |- - | 1008 -

SWP (PSIA)
SWP (PSIA)

500 |- { 500 |-

. L L |
2008 0 .F.'E 1984 1992 2000 2008 e

1
Yo7e 1984 1992 ETT)
Date (YEARS) Date (YEARS)

Figure 19. Single Bubble Point Static Pressure Match for Well#1 and Well#4.

Condensate (Analog Data) Option and Full Compositional Model

In CHEARS®, Chevron’s in-house reservoir simulator, condensate option was
activated and an Analog PVT (Condensate Yield, R, of 35 STB/MMscf, API = 35°) was
used. This PVT model was attempted to see whether any further improvement in GOR
could be possible. A 4-component full compositional model was also attempted to see
whether that would help. Figure 19 and figure 20 shows the results of static well
pressure for both these analog condensate and full compositional models. The
condensate model gave a good pressure match, but the full compositional model died
after it ran for the first 5 years of history. GOR match (shown in figure 21 for condensate
model only) was somewhat better than the black-oil model. The biggest reservation for
using these two models was the OOIP, which was too optimistic than the runs with the

black-oil PVT. Both these options were eventually abandoned.

40



SWP

Well#l
Full Compositional {4 Comp.)
— . History _
i Condensate Option

4000 -
3000
o e o
e I e
a .
% 2000 B o TR

1000

| 1 A |
9075 1984 1992 2uJ'ua 2008 2016
Date (YEARS)
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Figure 21. Condensate Option Simulation Results for Well#1.
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Final Condensate Model

Since the GOR match had improved using analog condensate model, it was
decided to modify this existing PVT so that simulation could produce more gas. The
basis of change was API of 66° (volatile oil) measured at the facility. The modified PVT
was created out of analog data (R, of 35 STB/MMscf, APl = 35°) and was modified to
R of 75 STB/MMscf at 3000 psi dew-point pressure, APl = 62°.

To understand what was happening in the reservoir, it is important to turn to the
basics of PVT analysis. Figure 22 shows the phase envelope of various reservoir fluids.
Theoretically, volatile oils have the largest phase envelope. What this means is that a
condensate model may fit into a volatile oil envelope, but the possibility of black oil
fitting into volatile oil envelope was very slim. This is because the envelope for black oil
IS very constricted in comparison to volatile oil. This was the major reason why black-oil

models were failing to produce the required gas rate or match GOR.
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Figure 22. Typical Phase Envelopes.

What made the modified condensate model (extrapolated envelope) to work was
the gradient of the liquid lines which would have been similar to the actual volatile oil
envelope, had a fluid characterization report been available. This is shown in figure 23.
As a result of this, the history-match results obtained were very satisfactory as shown in
figure 24. The key message which needs highlighting is that all this was achieved

without the use of any permeability or PV multiplier.
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Figure 24. History Match Results using Modified PVT Data for Well#1.
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Identification of Third Reservoir Drive
It is worthwhile to pause here and go into the details of how the reservoir was
behaving. This was the main reason for the robustness of the history match process.
Gravity segregation played an important part in the overall performance of the reservoir.

Figure 25 illustrates the effect of this drive.

Well#5 Well#1

-Secondary Gas
Cap Expansion

Z (Depth)

WaterDrive

Figure 25. Gravity Segregation Effect in Reservoir M.

The saddle was the place where all the action was taking place as shown in figure
25. The crestal well, Well#1, was continuously stripping the reservoir of all the lighter
components. This resulted in the formation of secondary gas cap, formed in the
structurally higher parts of the reservoir and acted as a piston drive (similar to gravity-

stable gas injection). This drove both the oil and water closer to Well#1. But the water
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underrode the oil in the saddle and the gas overrode that same oil. This led to a churning
effect of the entire three-phase system in the saddle area. As a result, the API gravity
went from being a very light oil of 47° API to heavy fraction oil of 28° API (see figure
16 for API data). This gave us confidence in the history-match model as having captured
the physics of fluid flow. This scenario was not possible with the black-oil or analog
condensate PVT. Again, for both black-oil and condensate models, the main aquifer was
active instead of the aquifer in the saddle, resulting in a very strong water drive and

producing inadequate history match.

End of History Saturation and Best Case Prediction Scenario

As expected for a solution gas-drive reservoir with significant gravity
segregation, an analysis of all the layers of the simulation model revealed the oil
saturation to be concentrated on the downdip portion of the structure (see Figure 26). It
was just a matter of putting a well in this area which fetched additional reserves. Gas lift
had to be used to sustain production in the new development well. To have the best case
prediction scenario, it became apparent that the evolution of the secondary gas cap had
to be in a controlled manner. Also, the main aquifer was not the main drive in the
reservoir, which was in line with the MBAL model predicting a weak water drive. Thus
the water drive energy came from the fault leakage / water accumulation in the saddle.
Out of the many prediction scenarios being evaluated, none gave a better result than the

one in which Well#5, a producer, was converted to injector and was responsible for
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slowing the expansion of the secondary gas cap. This yielded an incremental reserve of

8 MMSTBO, while maintaining the same original oil-in-place as all the previous studies.
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Figure 26. End of History Saturations.

Conclusions and Recommendations
As a result, the following conclusions and recommendations were arrived at:
1. In a brown field development, with good judgment, most forms of data were
honored and to the maximum possible extent. It was a given that there were
errors in data measurement, but these errors could not be consistently wrong for a
long period of time. The drastic variation of API held a lot of information in the
end and proved this point.

2. Generally, two drive mechanisms can be present in any reservoir and are more
47



common. Sometimes these drives can be induced to efficiently produce the
reservoir. Alternatively, these drive mechanisms maybe apparent in commercial
tools, like MBAL™, model which have a theoretical basis of showing them.
What becomes more challenging is to identify the drives that are outside the
general scope of these commercial softwares. This requires more critical thinking
and forces one to study and understand the impact they create on reservoir
performance.

There was a very subtle difference between fault leakage and presence of small
aquifer. In this simulation study, we could not arrive at a definitive conclusion
early on. The only way the idea got implemented eventually in the simulation
model was by incorporating oil-water contact in the saddle area. All these
challenges encountered broke the myth that only large reservoirs are the ones
which are most complicated.

Repressurization during water flood in this reservoir would yield good results
only when each drive of the reservoir was identified and steps taken to mitigate
the downside associated with each one of them. For this reservoir, controlled
expansion of secondary gas cap was the only viable option, knowing that the
reservoir is severely pressure-depleted.

Team approach for such simulation studies is a given, but what makes it
successful is the iterative process amongst various disciplines during history
matching. This was seen in this study when use of production data was favored
over well log data.
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CHAPTER Il
SIMULATION STUDY OF LIQUIDS-RICH, VOLATILE OIL UNCONVENTIONAL

RESERVOIR - FOCUS ON RESERVOIR DRIVE MECHANISMS

Introduction and Stimulated Rock Volume Description
All unconventional reservoirs need to be stimulated so that they can produce at
economical rates. As a result of this stimulation of the unconventional reservoir, the

traditional bi-winged hydraulic fracture, may not be formed. Based on the micro-seismic

Figure 27. Unconventional Reservoir Having Natural and Transverse Fractures.

Figure 28. Dual Porosity Mathematical Idealization of Above.
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data and its mapping, as a result of the fracturing process, dendric fracture swarms are
formed instead and these are mathematically modeled best as dual porosity reservoirs.
This means that there is a matrix domain which feeds into the fracture domain. The
physical reservoir is as shown in the figure 27 whereas the idealized mathematical
version is shown in figure 28. Since the matrix is very low permeability, only the
stimulated part of the whole reservoir is taken into consideration. For the purpose of our
mathematical modeling, this extends upto the fracture half-length, as represented in the
figure above, and is called Stimulated Rock Volume (SRV). The fluid flow in these kind
of highly anisotropic reservoirs exhibit predominantly linear flow regime. For a dual
porosity system it is adequate to represent this regime with slab geometry as shown (1D
linear flow only). The horizontal well is assumed to be infinite conductivity, the SRV
length equal to the length of the horizontal well and with the convergence effect of the
fluid flow accounted for additionally.

The SRV also acts as a control volume which forms the basis of defining the bulk
properties. For a dual porosity system, the matrix and the fracture are not described by
their intrinsic properties. The bulk properties, such as porosity and permeability, are

obtained from intrinsic properties as:

Vrm

Pmp = <m) Pm e (3-1)
Vim

e o L T — (32)
rf+rm
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The dimensionless storativity, o, and interporosity flow parameter, A, are:

w= (L) ....................................... (3-3)

Prp CFt Pmb Cm

1= (M) ............................................... (3-4)
kfb

Where « is the matrix-fracture shape function which is dictated by the geometry of the
block. ¢; and c,, are the compressibilities of the fracture and matrix respectively. 4, is

based on area, A, rather than, r;2, for an unconventional reservoir with linear flow.

Matrix Fracture Fluid Exchange

(a) (b) (c)

Figure 29. Single and Various Dual Porosity Reservoir Comparison.
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The basic premise of dual porosity reservoir is that the oil is in the matrix
whereas the fracture system is present to connect it to the wellbore. Based on this fact,
natural fracture reservoirs, in comparison to single porosity (as shown in figure 29(a)),
are classified as:

(@) Dual Porosity — Matrix communicates with the wellbore through the
fracture only figure 29(b).
(b) Dual Permeability — Matrix communicates with the wellbore as well as
with others figure 29(c).
Simply stated the naturally fractured reservoirs have got two boundaries which have got
an important bearing as to how these reservoirs are going to produce. These are:
1. Boundary demarcating the matrix blocks.
2. Boundary demarcating the edge of the reservoir.

In Warren and Root model®®, the most common of the dual porosity
mathematical idealizations for naturally fractured reservoirs, first boundary goes into the
geometric term represented by as the shape function. The other, boundary of the SRV,
then sets the second boundary for an unconventional reservoir. This makes the study of
unconventional reservoir different from conventional reservoir as it is assumed that the
reservoir beyond the SRV does not contribute significantly for the whole production
period, assumed to be 20-30 years.

For the purpose of this research we will assume that an SRV behaves like a dual

porosity system rather than a dual permeability system. This is based on the fact that the
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size and the magnitude of permeability of the matrix block is not big enough for dual

permeability effect to make a significant contribution.

Matrix Material Balance

In order to solve for a dual porosity, the ideal way would be to discretize the
fracture and the matrix separately with a computational mesh. This is not possible in
practice because the level of detailed information required for building such a mesh is
not always available. Though it is possible to discretize the matrix with average
parameters, as is done using MINC* method, the most common method used is the
lumped-parameter model. Warren and Root model is based on this method where the
underlying assumption is that the matrix is treated as a source/sink in the fracture
discretized element. The strength of the source/sink is proportional to the potential
difference between the local fracture and the average matrix pressure. At this point it is
sufficient to say that average matrix pressure can be evaluated keeping in mind the first
boundary, which is the matrix block boundary itself, as mentioned earlier. The resultant
conditions are:

(a) Pseudosteady state — Warren and Root theory is based on this assumption.

(b) Transient — the pressure transient has not felt the effect of the boundary.

The general representation of diffusivity equation for the fracture takes the form:

ky p,.
Ve (7f Vprf) = ((prfcrf) a_tf +o.mt Ogq  weeeeenneennnnns (3'5)
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where the last two terms in the above equation are referred to as the source terms and are
included in the fracture equation only in dual porosity formulation. The gravitational

term is neglected in the above equation.
(a) Pseudosteady state Matrix: Warren and Root (lumped-parameter approach)
model assumes that, the pressure gradient of the fluid within the matrix varies

linearly rather than a parabolic (typical) profile, shown in figure 30 as:

APrm _ p (Prm=prs) B}
A e (3-6)

Here f =3 represents the lumped parameter equation constant for the slab

geometry drained from a single face of the slab.

Slab . Df T T T u

b

Figure 30. Pseudosteady State Matrix Showing Idealization of the Pressure.

Thus the flux (surface flow per unit area of the matrix fracture interface) at the

surface is:

u= kr_mdprm — 6 Krm (m_l’rf) (3_7)
u o dz lz=p,.,./2 Hu hrm
o4



In order to preserve the linearity of the fracture equation, eqn.(3-5), the total flow

rate is expressed in terms of the flow per unit matrix volume as:

Area 2 d
Orm = ( ) u= ( ) &
Vol. hym dz

o = ( 2 ) (2 % 3) kym (Prm=Prs) _ (i) "TTm (Brm = Drg) e (3-9)

hrm u hrm h12ﬂm

z=hym/2

krm ya—
Orm = @= = (prm — prf) ................................. (3-10a)
Urmf = O-T‘mACW = Armf(pr_m - prf) ............... (3'10b)
Where a= (h122 ) ................................................. (3-11a)
And, Amy = @ (%)ACW .......................................... (3-11b)

Here a is the shape factor for the slab and converts the flow rate to flow per unit
matrix volume and A,,r is the interporosity flow parameter after algebraic
rearrangement of fracture equation is done to make it dimensionless. Also, o, ¢

is the source term (after algebraic manipulation of fracture equation) assuming

single phase flow. For matchstick (cylinder, n = 2) and cube (sphere, n = 3) is:

__4n (n+2)

2
hTm
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(b) Transient Matrix: The underlying assumption of pseudosteady state Warren and
Root model is not true under transient state. The solution of transient matrix was
first put forth by deSwan®! and by Kazemi® (slab). Similar to Warren and Root
model, Kazemi’s model allows for all the flow regimes, transient, late transient
and pseudosteady state.

For the slab matrix, the diffusivity equation is:

Krm 0Py
Ve ( p Vprm) = ((prmcrm PRI (3-13)

b

Figure 31. Matrix Pressure Transient as it Travels fromt=0tot=t.

The initial and boundary conditions are:

Initial Condition: Prm(z, t =0) = p;
Inner Boundary Condition: %Prm =0 forallt
0z lz=¢
Outer Boundary Condition: prmlzzh_m =p, forallt
2
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Again, the flux (surface flow per unit area of the matrix fracture interface, figure

31) at the surface of the slab is given by:

u= =ImdPml (3-14)

interface U dz lz=p, /2

|

and in order to preserve the linearity of the fracture equation the total flow rate is

expressed in terms of the flow per unit matrix volume as:

Area 2\d
om = (o) © = () 2
Vol. hy/ dz

For the transient solution this is solved in such a way that the formulation of a

and A is common to both pseudosteady state and transient (refer Appendices).

Aquifer Fracture Fluid Exchange

Although the above section relates the transfer of fluid between the matrix and

the fracture, a similar method can be used for two phase aquifer (matrix) and the

reservoir (fracture) flow. Hence the name Dual Porosity (Fracture-Aquifer), Dual

Mobility (Oil-Water) Model. As the aquifer is not in communication with the well it is a

limiting form of this Dual Permeability Model (two layer model). For all purposes, this

is a limited aquifer which means its size is comparable to that of the reservoir. It acts like

matrix. This method is similar to one proposed by Ehlig-Economides and Ayoub® (dual
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permeability case — two layer commingled production, single perforated layer, figure

32(a)) based on radial diffusivity equation. This model is based on linear flow with

Reservoir

wOoC

Lumped Parameter Permeable Barrier

Aquifer — Bottom Water Support

(@)

=
&

WOC

(b)

Figure 32. Linear Flow Model for Reservoir and Aquifer.
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aquifer at the bottom layer and production happening from top layer (flow is
unidirectional for aquifer and bidirectional for oil in case of slab formulation). The
direction of the linear flow is described in the figure 32(b). The notation and outline of
this section is similar to that used by Stewart®*,

As it is a dual porosity (limiting dual permeability) model the fluid flow occurs
in the fracture (top layer) and eqn.(3-5) is the governing differential equation. Both the
matrix and the aquifer are treated as source terms which are represented in that equation
with the underlying assumption that water-oil contact (WOC) does not move. This is a
fair assumption for unconventional reservoir.

The main difference is the way matrix source term is accounted for in the
fracture equation (as elaborated in the previous section). Here the lumped parameter
effective (permeable) barrier is introduced, between the reservoir and the aquifer. This

approach helps is in quantifying the crossflow in terms of barrier and aquifer properties.

Prr
! WOC
1
Fracture | 4
Lumped PaMNier (Aquifer) hu, kn

Aquifer (Matrix)

kaq (vertical)

Figure 33. The Lumped Parameter Permeable Barrier between Aquifer and Reservoir.
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The implied meaning of the barrier is that the reservoir (fracture), as shown in figure 33,
can be in pseudosteady state or transient with aquifer, which itself either could be in
pseudosteady state or transient. Simply stated, the reservoir (fracture) flow regime can
be different from the flow regime of the aquifer. Since only reservoir (fracture) is
perforated, both of these act as a single unit and most parameters are combination of
variables. Also this barrier has negligible storage capacity and, again, the fluid exchange

only happens through top face of aquifer.
(a) Pseudosteady state Aquifer: As stated earlier, this means WOC does not move.
The crossflow flux between the barrier and the aquifer (for simplicity assume

single phase flow) is given by:

_ kp (Pag=Prf) _ , kaq (Pag=Paq) (3-15)
Uagq hp Haq L2

For two phase flow, see Appendix. Eliminating p,, from the above equation we

get:
U= 1(paq+_ prf)l _ (”ZZ Zsz (% _ m) — M(@ — m)....(3-16)
< kp > ( B kagq > (ﬁkaq hb) Haq
Haq hp Uaq haq

Where,
(=)
(To)efs = kbbhaq [ . ] [ e ] ..................... (3-17)
1+(3kaq hp ﬁkaq Tb ﬁkaq
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Here g = 3 and Ti is called the lumped parameter barrier resistance which can
b

now be assumed very small (as compared to the second term in denominator). In
order to preserve the linearity of the fracture equation, egn.(3-5), the total flow
rate for the aquifer is expressed in terms of the flow per unit aquifer volume and

is similar to eqn.(3-10), as:

Kag) f—— ——
O, =a ( M—;) (e V) (3-19a)

Oaq = OaAcw = Aagr (@ - prf) --------------------- (3-19b)

Here, a, is the aquifer-fracture shape function. From egn.(3-16) and egn.(3-19):

a= T e (3-20)
= kaq
And, Aagr = & (Z;:Z) Aoy = ((TZi;ff> YR TRIT (3-21)

(b) Transient Aquifer: By definition transient aquifer means that the WOC is
moving. The dual mobility model, which forms the basis of this reservoir-aquifer
model, is not designed to handle relative permeability effects due to change in
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saturation in the oil (reservoir) zone. The assumption being made here is the
aquifer will move only the distance equal to the thickness of lumped parameter
effective (permeable) barrier for the life of the well. This assumption is being
made to as realistically capture the effect of bottom water as possible. Again, the
barrier has negligible storage capacity and zero resistance (it is incorporated
mathematically in the transient model through egn.(3-23b)).

We start with the diffusivity equation, for the slab matrix, as:

kq 0pa
Ve ( s Vpaq) = ((paqcaq) % ----------------------- (3-22)

Haq

The gravitational term is neglected. The initial and boundary conditions are:

Initial Condition: Daq(z,t = 0) = p;
Inner Boundary Condition: Paq =0 forall t
0z lz=¢
Outer Boundary Condition: paq|z_h =pr forall t
=hag

Again, the flux (surface flow per unit area of the matrix fracture interface) at the
surface of the slab is given by (for simplicity we are not accounting for two phase

flow between matrix and aquifer here):




Here:

Kag = LBathn) (p S5 Ry, ky 3 kg ) eeeeeeeeeeeeeeeeeeeeeneenenenenen (3-23b)

~— (h
<_b+h_a)
kp " ka

and in order to preserve the linearity of the fracture equation the total flow rate is
expressed in terms of the flow per unit matrix volume (with flow from one

surface only) as:

For the transient solution the governing differential equation is solved in such a
way that it results in a that is common to pseudosteady state formulation (refer
Appendices for details of single phase and two phase flow). The final form for

single phase flow is:

_ (1 kaq Acw 0PagD Aaq\ 9Paqp _
Oaq = (h,zn) kfp 0zp zp=1 (12) dzp =1 (3 25)
12 \ kaq Acw
I (3-26)
1
s G [ —— (3-27)
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Concept of Proppant Number — Single Porosity versus Dual Porosity

Effectiveness of any stimulation operation is judged by the amount of stimulation
achieved. The implied meaning here is achieve an optimal propped volume in the
reservoir. This propped volume is directly responsible for the performance of the well in
the reservoir. It will be discussed next and how the idea is extended to dual porosity

taken thereafter.

Single Porosity Reservoir

For these kind of reservoirs, the well performance using constant propped
volume concept, has been extensively documented by Oligney et al*®, Valko®, Amini*,
etc. to name a few. This section describes the jist of that constant propped volume
concept.

Any fracture formed in the reservoir has got two competing dimensions fighting
for the same resource if the volume of the reservoir is fixed. The best way to formulate
the problem (maximize the deliverability of the reservoir) is to make the formulation in
the form of dimensionless variables. Two important parameters are, the penetration ratio,

1., and the dimensionless fracture conductivity, Csp.

Le = S (3-28)
krw
R — (3-29)
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Having a fixed volume of reservoir (permeability, k) and with fixed amount of
proppant (which fixes the propped volume) together with the knowledge of proppant
properties (e.g proppant permeability, kf), this concept states that there only one way of
maximizing production for the well. This is based on knowing the dimensionless

Proppant Number, NP|5<p’ for a given Crp. Specifically it states there is only one value of
dimensionless fracture conductivity, Csp, for a given Proppant Number, Np|5(p, which

will give maximum dimensionless productivity, J,. The Proppant Number is defined as
the permeability weighted fraction of the volume of fracture, V¢, with the volume of the

reservoir, V, and is defined as:

= (32 (2 _
Nplg(p_(k )(V) """""""""""""""""""" (330)
Also expressed as:
4kfo wo
blsp = Thap = RCrD wrrirr (3-31)

To simplify the process of selecting the optimum fracture Romero® has constructed

graphs of Jj, versus Cyp, for different Np|5(p values.

If we were to analyze what eqn.(3-31) essentially does, we have to start with
approximate solution of linear flow of a finite conductivity hydraulically fractured well

at the center of the fracture as given by Raghavan®. The reservoir width is 2x¢ and

65



extends to infinity in the direction perpendicular to the fracture surface and the

governing differential equation of fluid flow in Laplace domain is:

where s is the Laplace space variable and 7¢, is the dimensionless diffusivity ratio as:

_Nf _ ¥rcrk
Nfp = o P Ty (3-33)

It is important to realize that apart from this differential equation, eqn.(3-31),
being subjected to a boundary condition and initial condition, it is also subjected to the
outer boundary condition that the reservoir is bound at y, — . For a low or very low
permeability reservoir this implies that the pressure away from the fracture in the
reservoir would be approaching initial pressure at some finite distance y, # oo.

Assuming that distance to be y and on rearranging eqn.(3-32) we get:
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As this equation is one dimensional and independent of y, and % acts as constant, yields:

and is of the form:

where,

25— Np| -
ddzlg)D -2 (cﬂl)\/E + Const. I;JZCW) SPrp = 0uveveeeiei (3-34)
L S (SY75 = Ouvvvvsvsssrnrn (3-35)
*D
1 NP'S(p
f(s) =2 -~ F CONSE—7 | covveeinnnnen s (3-36)

is the fracture function. This implies eqgn.(3-36), together with eqn.(3-31), forms a

constant (one variable) coefficient linear differential equation inside the Laplace domain.

This shows Proppant Number essentially a variable of the differential equation, the

solution of which gives the value of J,. Alternatively, eqn.(3-36) can be expressed in

terms of the dimensionless reservoir fracture fluid exchange term, the dimensionless

fracture conductivity Cp. This idea will now be useful in describing Proppant Number

in dual porosity well performance and will be helpful in extending to it.
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Dual Porosity Reservoir
For dual porosity reservoir, under transient and hydraulically fractured horizontal
well in a low permeability reservoir, the governing differential equation for linear flow is
given by Bello. The pseudosteady version, in the Laplace domain, is given as (See

Appendix for details):

0%p7p _
e (O T R —— (3-37)
Where,
F(S) = A eeeeeeeeeeeeseeeeeneeeeeneneeees (3-38)

(1-w)s+A

is called fracture function and is same to Warren and Root model. Eqn.(3-38) is be

rearranged as:

1+s (3) -s(3)
f(s) =—%; e (3-39)
+2(3)-5(3)
Here A is the dimensionless interporosity flow parameter (pseudosteady state),
kmp
A= @Ay =2 s (3-40)
kfb
And w is the dimensionless storativity coefficient,
U (3-41)

T (@ cOmas
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Here A.,, is the area of cross-section of the reservoir at the horizontal well, «, is
the pseudosteady state shape function which is a geometric term and takes into account
the surface area responsible for the fluid exchange to occur between the matrix and the

fracture, k.,p, kfp, are the bulk volume adjusted permeabilities of the matrix and fracture
block, @5, ¢, are the bulk volume adjusted pore volumes.

Just as in eqn.(3-35), f(s), the fracture function depends on a single parameter
(%) Again just as in single porosity, this f(s) term is essentially based mainly on

interporosity fluid exchange term, A, which captures the physics of the flow between
matrix and the fracture. In comparison, w, is a pure number which gives the ratio of the
volume of fracture to the total volume. But when it is combined with A it becomes a
permeability weighted ratio of volume of fracture to the total volume of the reservoir,
which is Proppant Number for dual porosity reservoirs. In order to have direct
proportionality (rather than inverse proportionality) with interporosity flow parameter,

we define it as:

This Dual Porosity Proppant Number is defined as volume weighted, dimensionless
surface flux transferred from a unit area of matrix to the fracture, per unit matrix volume.

It is used for pseudosteady state and transient models in the present form (although A has
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different formulations for transient, by many authors). As it is not the same as its single
porosity counterpart, there are two important points which need to be mentioned here:

1. This formulation has the permeability of the matrix block as well as the shape
factor which specifies the surface area needed for the fluid exchange to occur.
The shape factor can be constant/vary and the permeability of matrix block can
remain constant/vary and the resultant Proppant Number can be the same.
Throughout this entire study we are assuming shape factor for slab which
corresponds to linear flow between the matrix and fracture.

2. If we are drawing a parallel with single porosity scenario, one cannot exclusively
define dimensionless fracture conductivity Csp in a dual porosity case. Firstly,
there are natural fractures present which means ideally we will have to define
Cyp for both natural and hydraulic fractures. This is not practical or even
possible. Secondly here, for the SRV, the length of the fracture(s) generated is
always equal to the width of the reservoir which means I, = 1. If we were to
generalize this means, 4, has the essential elements of Cgp, both for natural as
well as hydraulic, when it comes to dual porosity reservoirs. But in a strict sense,
eqgn.(3-31) cannot be used as a definition of Proppant Number for dual porosity

models.
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Reservoir Drive Mechanisms in Unconventional Reservoir and its Impact

Based on the previous sections we can know that there are essentially two kinds
of boundary conditions — pseudosteady state and transient. If we assume that the
reservoir (the SRV in this case) is not subjected to any other boundary condition then the
reservoir is under volumetric depletion. For the SRV if there is an aquifer underlying it,
then we can have various combinations of these boundary conditions, the interactions of
which lead to different reservoir performance that are classified as drive of the reservoir.
The idea here is that, unlike conventional reservoirs where water-oil contact (WOC) can
be present within the reservoir, for unconventional reservoir no such WOC is envisaged.
The unconventional reservoir thickness is small and it is being supported by a limited
aquifer. Since shales are supposed to be source rocks of conventional reservoirs, the
simplest of the mathematical models which can be constructed is the one where it lies
over a formation that has water. The big picture scenario is that the long term
deliverability of these reservoirs (SRVSs) changes from that of pure volumetric depletion.
If all other rock and fluid parameters, such as permeability, viscosity, etc., are known
then the measure of long term deliverability is the variation of Dimensionless
Productivity Index, Jp, with time. Thus the volumetric depletion case forms one of the
limiting cases where the aquifer is assumed to be zero. The presence of ‘Botttom Water ’

drive, which can either be pseudosteady state or transient, has its own effect which can

be classified as ‘weak’ or ‘strong’ depending on mobility, <"‘Z’ﬂ> value of the aquifer.
aq
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Hence we have:
1. Volumetric Depletion — Underlying aquifer is altogether absent.

2. Weak Bottom Water Drive — If p,r < uq, then mobility of the oil in the

.. - . kyrhy
reservoir is greater than the mobility of water in the fracture, (%) >
rf

<kaqhaq

p ) then the bottom water has a weak water drive. The aquifer can be
aq

pseudosteady state or transient.

3. Strong Bottom Water Drive — If p,. > ug, then mobility of the oil in the

L. . . krrhy kagha
reservoir is less than the mobility of water in the fracture, ( ;f f) < ( : q>,
rf aq

then the bottom water has a strong water drive. Again, the aquifer can be

pseudosteady state or transient.

4. Infinite (Steady State) Aquifer — If (krlf};rf ) & (k‘;fh‘“’> that happens if h,f <
T aq

hqq and implies k; — 0. This is not covered as a topic as it is the limiting case of

strong water drive.

The important point to be noted here is that the magnitude of kh will also
determine whether a strong or a weak water drive is present. This is where it impacts the
long term deliverability of the reservoir. The presence of water may not appear
significant at first or the fractured horizontal well may not produce water at all but it will
make its presence felt during the productive life of the well. Thus, in the end it can be

said the aquifer (bottom water), can be in pseudosteady state or transient, which has to
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be combined with the rock (k) or (h) parameters and the fluid parameter (i), to know

the drive of the reservoir. Pictorially this is shown in figure 32(b), and in Table 7 as:

Table 7. Various Possible Aquifer Drive Mechanisms for Fractured Horizontal Well.
Boundary Condition Pseudosteady State Transient

Reservoir

Weak vV Strong v Weak vV Strong v

Strong V' Weak vV Strong V' Weak vV

Based on Table 7 we have four different models to incorporate these boundary
conditions and the reservoir drive mechanisms, which are incorporated with the help of
the parameters in eqn.(3-43) and eqn.(3-44) and their relative magnitude with each other.
An important point which needs to be discussed here are the two areas, A.,, and, A.
The former is responsible for the dimensionless pressure response whereas the latter is
responsible for dimensionless productivity index calculations, to be discussed in

subsequent section.
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Figure 34. Mathematical Idealization of SRV with Aquifer Support 4., (green) and
A (red).
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The other various parameters are defined as:

w — Prm hrm =1
f Prf hrf"' Orm hrm
w _ Paq hag
raq Prf hrf"' Ormhrm
kfp h k
fb b | kaqhaq) .
Hfp Haq
tD =

(‘be hfp+@aq haq) CrAcw

Again, an important point to be noted here is that the governing differential

equation of fluid flow in Laplace domain is based on the vertical area of flow, 4., into

the horizontal well and the associated dimensionless time is, t,, whereas for the

dimensionless productivity index calculations are based on the horizontal area, A4, as in

figure 34, and the corresponding time is, tp4, (mathematically defined in a later section).

All analytical solutions are derived under the following assumptions:

a) Both the reservoir and matrix together with reservoir and aquifer have linear

flow. The shape of the matrix is slab (linear) and not matchstick (cylindrical) or

cube (sphere).

b)

Both the horizontal well and the transverse fractures are fully penetrating in a

closed rectangular reservoir producing at constant rate. Both natural fractures as

well as hydraulic fractures are present.
The hydraulic fractures do not drain beyond the

reservoir.
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d) Flow is towards the center of the rectangular reservoir (SRV).

e) The linear model is modified to incorporate the convergence skin for the fluid
draining into the horizontal well.

f) Each medium (reservoir and aquifer) is assumed to be homogeneous and
isotropic and fluid from aquifer does not mix with that of the fracture.

g) The average pressure of the reservoir (SRV) deos not go below the bubble-point.

It is possible that some gas might get liberated around the fractures which can be

considered to be minimal.

The complete derivations of Laplace domain solutions are given in Appendix C
(pseudosteady state) and Appendix D (Transient). The real domain solutions can be
obtained by inverting using GWR algorithm®. The Warren & Root (pseudosteady state)
model for linear flow is presented in Appendix A whereas Bello (linear transient flow)
model is presented in Appendix B. No explanation is given in either of the topics as

relevant literature is assumed to be familiar with the reference material.

Full Pseudosteady State Fractured Dual Permeability Dual Mobility Model

As mentioned earlier in this chapter, we have used dual permeability (two-layer
model with cross-flow) and no perforation (horizontal well is in the upper layer) in the
bottom layer. Since we are dealing with two different fluids hence it is a dual mobility
model.

As shown in figure 34, (with fracture block outlined), the reservoir part itself is

dual porosity model which has got its own shape function, a, and interporosity flow
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parameter, A.,r. The aquifer is connected with the fracture block only with a different

shape factor, , and its own interporosity flow parameter, A,,,. Mathematically they are:

= (hlzfn ) .................................................. (3-11a)

And, Armp = @ (%1) Ay eoeeeeomeeseeeese e (3-11b)
a= (T,fi:ff .................................................. (3-20)

And, Aagr = @ (i_ff) A, = (%) Ay oo (3-21)

The fracture function for this case (see Appendix E) is given by:

o= (22 a (<20 o) (e )| o

e (1—0))(A)<,Z_:)S+A Kr ) \(1-@aq)s+Aaq

The constant rate and constant pressure solutions are attributed to El-Bambi*!, are

reproduced here:

2ncosh(xpey/sFG) ) am  1+exp(-2ypeysFG) )

Puwrfp = s/sf(s) Sinh(xDe Sf(S)) s/sf@® 1—9XP(_23’Dem) ...... (3-49)
_ m sinh(xDﬂ/sf(s)) _ \/% 1—exp(—2yDew/sf(s)) (3_50)

qufD - 27T S COSh(XDem) oIS 1+exp(—2yDe\/m) ..........

The solution is then obtained by inverting into the real domain using GWR algorithm*.
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Dimensionless Productivity Index
Productivity index is defined as the total liquid flow rate produced for a unit

pressure drawdown. For single phase flow, productivity index is given by:

J = (5_‘;”) ........................................................... (3-51)

where q is the flowrate, p is the average reservoir pressure and p,,, is the bottomhole
flowing pressure. This value should be constant for a well producing at constant rate and
under pseudosteady state condition. The more important implied meaning of this
equation is that the boundaries of the reservoir are clearly defined for constant
productivity index. Conversely, if the well is flowing under boundary dominated flow,
the flowrate is variable, but productivity index is constant. Again, constant productivity
index for the boundary dominated flow will only happen in presence of boundaries of
the reservoir.

But in both cases, there is a preceding flow period, during which time there is
transient flow. Strictly speaking there is no productivity index defined in conventional
reservoirs for this flow period as it is variable. The transient period is sufficient small in
comparison to either pseudosteady state flow or the boundary dominated flow. In
unconventional reservoirs, the transient regime might be the only flow regime in the
reservoir. If the conventional reservoir is under pseudosteady state or boundary
dominated state then any decline in productivity index is attributed to damage to

completion or non-reservoir related mechanical problems. Conversely, the productivity
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index during transient and in an unconventional reservoir is still defined by eqgn.(3-51),
but its value depends on the time. The time associated with when the bottomhole
measurement was made (for pseudosteady state case) or the time associated with the rate
measurement was carried out (for boundary dominated case) determines the value of
productivity index.

Dimensionless productivity index, Jj,, is the geometric part (drainage area) of the

productivity index and is defined in terms of that productivity index as:

For a single phase the radial flow well deliverability equation, in terms of productivity

index, transforms to:

Assuming there is no damage or stimulation the skin, s = 0, vanishes and then the

remaining terms are dependent on the geometry of the reservoir only.
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It is not always possible to get a closed form solution of dimensionless
productivity index, Jp, for all scenarios. This is especially true for a horizontal well with
transverse hydraulic fractures (as described in this thesis). In order to calculate average
reservoir pressure and hence calculate J, on the basis of constant compressibility, we
make an assumption that the average reservoir pressure never goes below bubble point.
This is a valid assumption in most of the liquids-rich unconventional reservoirs, both
under volumetric depletion (assigned life of 20 — 30 yrs.). The derivation is in Appendix

(The equivalent Muskat method, takes into account variable compressibility is covered

later).
_t(__maeBp  \_1 qBp ]
Let, b = 37 <k\/m&7i—pwf)> T oom [(0.001127) Kk JAcw (Pi—pwr)] T (3-55)

0.00633 k't 5.615 (0.001127) k t
tp = = 5615 Q00UZDKE (3-56)
P UCtAcw @ UctAcw

Combining the above two equations we have:

fo= qBu ] ( 5.615 (0.001127) k t) _ 5615 [ qBt
D = 27 |0:001127) k ey (Bi-Dwy) @ uce Acw 2 | ot AcwJAcw (Pi—Pwr)
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Hence,

5.615 qBt 0.8936 Ny B

NpD = o tD - 2n @ ct AcwAcw (pi_pwf) - @ ct AcwAcw (pi_pwf) ...... (3-57)
Also, equation of compressibility is given by:
1 Ap
e (] e —— (3-58)
Here:
V=¢A A
Ap = pi = Pav
Which when applied to the above compressibility equation results in:
1 _ (bp )
TrA TS (AV ) ..................................... (3-59)
But,
AV = N, B (bbls)
_ AV __ [ 5615N, B
Ap = (q) - m) _ (q) — Jﬂ) .................... (3-60)
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Constant Rate Case
Since Eqn.(3-51) is valid for both pseudosteady state and boundary dominated

flow cases, we can also write it as:

— 1 -
s By — (3-61)

( s )] = . (3-62)
2mAon)”  (iEan)e, p, ) - (EEar) )
— 1 -
R (3-63)
Where,
_ 2_7T k\JAcw (pi_pwf)
R ) [ (364
_ 2_” kAcw (pi—Pav)
Pavp = ol qBr
We know,
_ AV _ [ 5615N, B ]
Ap_((PCtA\/E)_((PCtA\/m> """""""""""""" (3-65)

Or, multiplying both sides, we have:

2_n[km (p.—ﬁ ] _ 2n [k Ao (5.615 th)]

a1 | qBu ar| qBu \@ctAJAw
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5615 k t
e e LR (3-66)

PavD = 2TEpgeciiiisiiiii e, (3-67)
Where,
5.615 kt 0.00633k t
toa = 22 (WCtA)_ S (3-68)
Substituting back in dimensionless productivity equation:
Jb = (3-69)
D -_ (pD— ZntDA) ......................................................
Constant Pressure Case
For this case, dimensionless rate is defined as:
1_m ["“‘CW (i=puy )] ....................................... (3-70)
ap aBu
Again,
_ 5.615 Np B i
Nop =50 [wct Acw JAcw (i- pwf)] """""""""""""" (3-71)
This can be rearranged as:
2w N
N, B = :61’;[’ @ ¢t AcwJAcw (Pi = Dws)weveerverenenens (3-72)
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Combining the two equations:

@ ct AJAcw 2w Nyp
(i;eT) Ap=——E@ct AcwAcw (Di = Puws) oeevens (3-73)

2w N
= (AZAPD (pl pr)

Ap = % G 0 O (3-74)

Multiplying both sides:

e ) = 2 G )] 079

qBu

1 2T NpD i _
qdAvD a ( Ap ) qp T (3 76)
Here,
1 21 |k /Acw JE—
qavD al[ qBu @i = Pav ] """"""""""""""" (3-77)
Substituting this back:
] = VTR (3-78)

(pi- Pwr) — @i~ Pav)
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( 2 )1 _ e, (3-79)
21 k \[Ay (%)(m— Pwr) = (Z’T“f—”’;"’)(pi—m

Convergence Skin for Horizontal Well
We start with the method outlined by Bello®. He has proposed the distortion of
linear to radial around the horizontal wellbore given by Lichtenberger*? and reproduced

here as:

s, =—In [(”TW) (1 + \/%) sin (”:)] ........................ (3-82)

where, d,, is the nearest horizontal boundary, h, is the height of the reservoir and k,, and

k,, are the vertical and horizontal permeabilities. In terms of linear values it is:
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where, L, is the length of the horizontal well. Inside the Laplace domain, the above
equation is treated as an additional pressure drop according to the following relation

(constant rate case):

And for constant pressure case as:

CI_DS = SZ—P_DS ......................................................... (3-85)
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Summary of Solutions

Table 8. Fracture Functions for Solution with Aquifer Support in Linear Dual Porosity.

Model Fracture function, f(s)
Full Pseudostead A Kfb
' f(s) <‘*’aq> + (6) S <?)
S) =
State Matrix and K 1-w Kfp A
A\ (ﬁ) s+ (%)
Aquifer Fractured
A 1—w,
Dual Permeability + <—q> < (1= @aq) )
Kf (1 — waq)s + g

Model (Appendix E)

Transient Matrix
fGs)=w <

L)+ (D)) 58 o ()

Permeability Model X tanh (]35 (1 ;“’) o) <"f_b> %) )]

Ky

Fractured Dual

(Appendix F)

K (1 - waq)s + Agq
Transient Aquifer f(s)

Fractured Dual } l(waq) +< (@) a-ow (D) )
( )

)\ @)+ 8

Permeability Model

pomnine) (i) [ e[|

Full Transient Matrix | /()

and Aquifer Fractured | = o l(:’;f ) + (%) (%) jss (1_7‘”) w (%”) (3)

Dual Permeability

1-w Kpp | (@
Model (Appendix H) Xtanh(\/gs( @ )(A)<K_f)(’1)>l

() [ o [ (52))

87



Table 9. Fracture Functions of Radial/Linear (Aquifer) Dual Porosity Solution.

Warren and Root Dual
Porosity Pseudosteady

State Model (Appendix A)

s (8) -0 (3

fs) =
1

2@ -3

Bello Transient Dual
Porosity Linear Flow

Model (Appendix B)

fG)=w

) 5@ o5

Equivalent Linear Ehlig-
Economides and Ayoub
Pseudosteady State Aquifer

(Appendix C)

Equivalent Linear
Bourdet Transient Aquifer

(Appendix D)
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Treatment for Solution Gas Drive — Material Balance Method for Volatile Oil
Reservoir with Variable Fluid Compressibility

This method involves combined use of Muskat*® material balance method (MBE)
method and Walsh** formulation for volatized oil-gas ratio in these reservoirs. The
difference between having an aquifer drive reservoir as opposed to solution gas drive or
gas cap drive reservoir is that, for the former, boundary conditions need to be changed in
order to arrive at a solution whereas, in the latter other drive reservoirs, we have to solve
a non-linear partial differential equation. This is because by changing PVT properties we
are changing these pressure dependent variables. To keep the linear form of the equation,
we have to calculate these inputs prior to solving (implicit calculation) the equation.
Since, our assumption is that the water does not invade the reservoir, converting results
of aquifer drive solution to solution gas drive solution amounts to applying a correction.
Again, the dimensionless productivity index equations for constant rate and constant

pressure, for our reference, are:

1

JD = oy s (3-63)
. ST T TR (3-79)
=)
These are dependent on following dimensionless variables, for constant rate case:
2m |k JAcw (Di—DPw
O e [ (3-64)
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_ 2m|kyJAcw (pi—Pav)
Pavo = |— %,

|

a qBu
_2m (5.615 k t)
Pavp air \ eucgAJ T
DavD = 2TTED fuveeeeiiiiiiieniiiiieeiiinneens
Where,
_ 5.615 kt _ 0.00633 k t
tpa = =
a; \QucA QuctA

For constant pressure case, they are.

N [k—vAvv(P-ow)]
4ap ay aBu |
2 [ e Acw VAo ipur)
Also,
;_z_ﬂ[kw/ACW( __]
qdAvD a;| qBu bi Pav) | eeee

These variables, u, B are pressure dependent for each phase and c;, which is also

saturation dependent and have to be known in advance (implicit

variables). Also, since

we are solving a multiphase problem, the oil and gas in the reservoir (water exists only

in residual form) have to be handled independently, especially bel
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Based on Perrine and Martin® diffusivity equation for multiphase flow, we define the

following for this multiphase flow:

Sg 4 So 4 Swe = 1o (3-86)

— _ kg ko | w -
lt—/lg+/10+/1w—ug+uo+uw --------------------------------- (3-87)
Ct = SgCq+ S5Co F+ SewCw F Crovvnnnniiiiiiic, (3-88)

Below the bubble point, we have:
1 (dB, dRso
c, _B_O(E - Bg) ............................................. (3-892)
— _ 1 (9 ]

Cg = = (o) (3-89b)

We modified the Muskat*® material balance method to account for the effect of
volatilized oil-gas ratio. This follows from generalized material balance equation of
Walsh®. For simplicity, the underlying assumption for the method outlined here, is
either the volatile oil reservoir is above the bubble point or is right at it at the start of
depletion (reservoir initial gas cap calculations are more involved). Let, V;,, be the pore

volume. Then the stock tank barrels of remaining oil, N,., in the reservoir is:



Differentiating with respect to pressure gives:

dp

dNy <1 dS, SodB, , RydSy RySgdBg Sy dR,,) (3-91)

P\B, dp B2 dp By dp B dp  Bg dp

The gas remaining in the reservoir, G, free and dissolved, is:

G, =V, (RSOSO + “‘S"‘SWC)) 2 (3-92)

B, Bg

Differentiating with respect to pressure gives:

dp

dGy Rgo dSo So AR Rg0So dBg 1 dS, (1-So—Swc) ng
B, dp B, dp B dp By dp B dp
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Substituting egn.(3-91) and eqn.(3-93) into eqn.(3-94), we get:

RsodSo , SodRso RsoSodBo 1 dSp (1-So—Swc)4Bg
R Bo dp Bo dp BZ dp Bgdp B dp 3-95
AT R T LT T E— (3-95)
dp 'Bgdp

Bodp B%dp Bgdp B2

Producing gas-oil ratio is also expressed as:

kq/ o
R, = Ry + (;T‘jgl’j—g) (SCF/STB) oo (3-96)

Combining eqgn.(3-95) and eqn.(3-96) we have:

as, (o () (ol () o (o (20) 2)) [
@ v (e7e)
o/lo

[reo ) G (oo s )

o
ko/uo

It is clear from eqn.(3-97) that the saturation of oil depends on the change in the

saturation of the gas as well, since oil drops out of volatile oil. If that volatilized oil-gas

ratio is considered to be zero, R, = 0, then the equation reduces to Muskat’s eqn. given

by:

asy _ Coet) [Sse] (s 3o) e =252 [
dp - 1+ (kg/yg) ...........

ko/to
93




as, S0 X®)+5, () Y@)~(1-50=Se) Z(0)

ap kg/”g) """""""""""""""
1+ (ko/uo

(3-98b)

Where for Muskat’s equation, these terms primarily depend on PVT properties, are:

X(P) = (G2) [Fo2] o (3-992)
R O [ ———— (3-990)
R O A P ——— (3-990)

For eqn.(3-97) these terms are defined as:

X(p) = (i—g) [‘%] ................................................................ (3-100a)
) = () (52220) [22] oo (31000
() = (%) [1 _R, <Rso + (gt (g))] ) (3-100¢)

- -3, [1 _R, (RSO + (fele) (g_g))] [d(ld/p Bg)] .............. (3-100c)
O L 1009
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Thus eqgn.(3-97) reduces to a simplified form:

ns, S0 X(®)+S0 YB)~(1-So=Swe) 2)+w®)(Ro| 12| +55[ 4]
E = kg e (3-101)
1+ (ko/#o)

Here is the step by step outline of proposed method for a reservoir at bubble-point:

Step 1. Select a future reservoir pressure p, below the initial (current) reservoir
pressure p; (p, can be obtained from Laplace space solution after inversion)
and obtain the necessary PVT data. Assume that the cumulative oil production
has increased to N,,. G, are set equal to zero at the initial reservoir pressure,
i.e., bubble-point pressure.

Step 2. Plot k,, and k., versus gas saturation. Plot Rg,, R,, B, and (1/Bg) Versus

dB, dR dR d(1/B
o so 2%v and ( g).

pressure and determine the derivatives o ' dp D o

Step 3. Calculate the cumulative gas production G, by the MBE:

Byi—Bo By
sz = N (RSl - RS) - Bg ] - sz [5 - RS] .................. (3'102)

Step 4. Calculate the oil and gas saturation (no attempt is made to quantify volatilized

oil drop-out) at the assumed cumulative oil production N,,, using the equations:

So = (1= Syc) [1 - %] <g;;)

Sg=1=S,=Syc
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Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Calculate the pressure and saturation dependent variables X(p), Y (p), Z(p) and
W (p).

Solve the eqn.(3-101) for AA—Sp" with saturation S,; and Sy; at p,, with Ap being

the difference with initial pressure.

Determine the oil and gas saturation, S,, and Sg,, at p, from:

ASO)
Ap

So02 = So1 — (P1 — P2) (
ng =1-552—Swec

Recalculate AA—“;;’ using S,z and Sy, at p,.

Calculate the average value (%) for the two pressures p; and p,.

avg

Recalculate (Sy;)qvg at p, from:

ASO>

(Soz)avg =So1— (p1 —p2) (AP

avg
Sg2 =1 —=S02 — Swe

This value of S, and S, becomes the input for next time step.

Solve for cumulative oil production using egn.(3-103) and cumulative gas

production using eqn.(3-102). Repeat step 5 to step 10 with pressure drops

from Laplace space solution after inversion.

Ny, =N [1 - (g—g) (1_5;WC)] ...................................... (3-103)

Thus in the end, for constant rate case, p,,p can be recalculated for each time step as

will the values for qp, and N,,p,, for constant pressure case, in calculating /.
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CHAPTER IV
SIMULATION OF UNCONVENTIONAL RESERVOIRS USING MESHLESS
METHOD: ACCURATE PERFORMANCE PREDICTION OF DUAL POROSITY

RESERVOIRS WITH TRANSVERSE FRACTURES

Introduction and Objectives of Mathematical Modeling

Closed form solution of a single finite conductivity hydraulic fracture for
boundary dominated flow is a challenging problem. The usual coarse available is to
solve this problem numerically in a simulator which has got limitations on how finely
gridded the fracture cells can be to arrive at an accurate solution. Apart from the
challenge of assigning the number of possible grid blocks which can slow the solution
process down drastically, the contrast in permeability between the fracture and the
reservoir lead to convergence errors that are significant enough under multiphase flow
(present in single phase flow as well) and have the potential of bringing the execution
process to a very slow pace. The big picture is that even if we allow sufficient time for
the problem to be executed numerically the accuracy of the solution is always in doubt.

The way around it is to use semi-analytical solutions. As a research tool, they are
better suited than their numerical counterparts because of high degree of accuracy of
closed form solutions available inside the Laplace domain, although these also suffer
from slow speed of execution as a real domain solution is sought.

The objective of this chapter is to numerically combine the simple semi-

analytical Laplace domain solution(s) using superposition method based on the idea of
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Matthew, Bronze & Haselbrok®® and then obtain the real domain solution by (again)
numerical inversion. Helmy & Wattenbager*’ applied this method to determine shape
factors for various reservoir shapes flowing under boundary dominated flow. We will
use this method to find solutions for complex well geometries like a horizontal well with

several transverse fractures.

The Constant Pressure, Finite Wellbore, Solution of Single Well Centered in
Square Drainage Area — Superposition Method Using Transient Constant Rate
Radial Solution (Helmy Model)

This section describes the details of process of superposition using method of
images in Laplace domain to obtain solution of a single well under transient and
boundary dominated flow. Consider a single radial well. We start with the constant rate
solution. With the help of superposition we create reservoir boundaries (for square
drainage area) and using Van Everdingen & Hurst*® methodology we generate the
constant pressure solution as an end result of superposition of all the constant rate
solutions. The starting point is the constant rate transient, finite wellbore, solution for a

single well in Laplace domain as:
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Using method of images, so as to insert boundaries around the producing well, the
solution of superposition problem is carried out in Laplace domain space. The final
result can be had after reverting back to real domain. Figure 35 gives the methodology
used to arrive at the solution in the Laplace domain space and the previous section
outline the mathematics behind it. Theoretically, we need an infinite number of image
wells to arrive at a solution, but practically this is not possible and the solution is
generated with finite number of image wells, with the assumption that the error between

the two solutions is negligible.

o o o o o o o o
o o o o o o o o A <—L
o o o o o o o o o
o o o o C ) o o o a ®
-0 ® 'y o—
o o o o C o o o o < b >
o o o o o o o o
o o o o C o o o o
o o o o ? o o o o

Figure 35. The Infinite Distribution of Image Wells Required to Simulate the No-flow
Condition across the Boundary of a Square Reservoir with Well is Located
in the Center.
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Mathematically, as stated earlier, for a well centered in a square drainage are we

have:

where the summation term take the following form:

Here both m and n are not simultaneously zero. From figure 35 we have:

J(2ma)? + (2nb)’

[ = T e (4-4a)

My == s (4-4b)
r-W

D3 — \/(Zma)z +r_(2(n il ﬂ)b)z ....................................... (4-4c)

Moy = \/(Z(m " 5)a)2r+ (Z(I‘] * 'B)b)z ............................... (4-4d)
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The final real domain solution for boundary dominated flow is obtained by inversion

using GWR subroutine® as per the method outlined by van-Everdingen and Hurst* as:

The Constant Pressure Solution of Single Infinite Conductivity Fracture, Centered
in Square Drainage Area — Superposition Method Using Transient Constant Rate
Radial Solution

This section describes the details of process of superposition using method of
images in generating an infinite conductivity fracture as a series of off-centered wells.
The method is split into three step process:

1. Helmy’s method as a template to describe a well at the center of square drainage
area to get constant rate and constant pressure solutions.

2. With the constant rate solution, repeat the step by moving the well off—center
along the length of the fracture in the square drainage area and then superposing
them on the earlier model generated in step 1. This is the infinite conductivity
fracture solution. It is inverted to real domain solution.

3. Use boundary element method (similar to Romero’s®® method) for the solution

for finite conductivity fracture using solution from step 2. Repeat the process

with constant pressure solution.
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Figure 36. The Infinite Distribution of Image Wells Required to Simulate the No-flow
Condition across the Boundary of a Square Reservoir and a Fracture.

The way we have to set up the superposition algorithm is to generate a specific
number of off center wells (source wells, theoretically, nw — o) which will be placed
along the full fracture length, figure 36, and the whole process gets repeated for each off
centered well. Like the previous expression, only the interwell distances change in

magnitude as:

J(2ma)? + (2nb)’
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oy = L ——— (4-5b)
For n<0
2ma) +(2 2
- _l(ema) +£ (eppf s
For n>0
2ma)’ +(2 2
L, —em) +£ oepy s
For n<0
Mosi = J(CGE §)a)2r+ COLAOF o (4-5e)
For n>0

{i[Kz(rDj,\/ﬁ)ﬂ {Z (Ko(rm, 5) Kolto®) Kol Kl @)J ................. (4-6)
TR | A i o o BT My VT Y R N | RO
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Thus the Laplace domain solution of pressure drop at a well operating at constant rate is:

4p KZ(rD—Jm ..................... (4-7)
< W) [Pleek, ()

— K rD,\/U)

pD(rD’u)= g
2

u
n, — o

The constant pressure solution was then derived as per the method outlined earlier using

van-Everdingen and Hurst* approach as:

— 1
9= Zpp (ry,u) TTmm———" “8)
— 1
N — — -
P U pp (ry,u) T “9)

This gives the rate and cumulative production of an infinitely conductive fracture under
boundary dominated flow condition which is at the center in a square drainage area. The

real domain solution is obtained by numerically inversion using GWR subroutine®.

Fully Penetrating, Single Finite Conductivity Fracture Solution for Vertical Well

Using Boundary Element Method — Numerical Generation of Influence Functions
This method is similar to Romero’s method but differs in formulation used to
generate influence function. Conventionally, influence function is generated from closed
form solutions in boundary element method. Instead of using Ozkan’s*® pseudosteady
state formulation, superposition of radial solutions in Laplace domain is carried out to
imitating a bounded infinite fracture which then generate the required influence

functions. After inversion, boundary element method is used to arrive at a solution.
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We divide the full fracture wing of length, 2X; , into n,, segments of equal length

as shown in figure 37. The source well is placed at the center of each segment and is
represented by the solid line in figure 37 and we place observation wells at the end of the
other segments represented by the dashed line in the figure. Thus the distance between
the two source points, represented by subscript w, is double the distance between a
source point and an observation point, represented by the subscript o.

AX

> y Quarter Drainage Area

Figure 37. Source and Observation Wells for the Generation of Influence Functions.
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Constant Rate Case
Consider only quarter of the drainage area as shown. Although the figure shows

only two source wells (not counting the well w, itself) & 2 observation wells on the

right hand side of the fracture, assume that there are 4 source and 4 observation wells.
When the observation points are 1 — 2 & the influence of source wells at point 2, 3, and 4
on them within the half of the fracture length is:

— 20,u B

Apf,l—Z =p - pw,l—Z = m[qz(xoz - X01)+ qs(xoz - Xol)+ q4(on - Xol)] ------------------- (4'9)
f

Using Darcy law the above can also be expressed as pressure drops, called influence
functions, within the reservoir with respect to average reservoir pressure for the same

observation points 1 — 2 and the source wells at 2, 3 and 4 as:

..... (4-10)
Apm,z _ B _ pw‘yz _ 2011/; i qlL,1 Z Kc(';nq(;m'\/a)}_'_qzl_l z KO(;DQ(H)? '\/E) +q3L’1 z KO(;DQ(H)J\/H) +q4|:1 Z KD(;DQM)U\/H)
e uzKl(\/E) uZKl(\/E) uzKl(«/a) uzKl(\/ﬁ)

where I, represents the distance between given two observation well for different
positions of the source wells and q, is production from each of those source wells.

Since the fluid flows from the reservoir into the fracture, the pressure drop in the

reservoir is equal to the pressure drop in the fracture, at the fracture face, as:



Or equating egn.(4-9) and eqgn.(4-10), we have:

20[1:‘; i ql'-{z Ko(raDq(Hn ’\/U)] + qui[z KO(I;Dq(l,z.z ’\/a)] + q3L1[Z KO(ZDq(lz)z’\/a)J + Q4L1[Z KO(ZDQ(H)A’\/U)J —
T Ky UEKI(\/U)

UEKl(\/U) UEKl(‘/G) UEKl(‘/U)

20,1 B

K-hw [qz(xoz - X01)+ qa(xoz - X01)+ q4(X02 - Xol)]
f

On rearranging:

qlu{z Ko(gmw,l,m}qz“[z Ko(rfqm,z,m)}qsv[z Ko(rfww)}%u[i KO(ZDMW)H_

uEKl(\/U) UEKl(‘/G) uEKl(\/U)

4 k

= W[qz(xoz - Xol)+ q3(xoz - X01)+ q, (on — X1 )] ----- (4-11)
f

On multiplying with x:

L Z KO(Zun,m ’\/U)J + qu{z KO(rSDq(m—m ’\/U)}+ QSLl[Z KO(rqu(lz)a‘\/a)J + q4L1[z KO(ZDQ(H)A ’\/U)J] _

-1

v
UEKl(‘/a) UEKl(‘/a) UEKl(‘/E) UEKl(‘/E)
A
= C. x [qz(xoz - Xol)+ qs(xoz - Xol)+ Q4(on = Xo1 )] --------- (4'12)
DAf

But penetration ratio is given by:

Dimensionless fracture conductivity, C, , is given by:
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And dimensionless production rate, q , is given by:

L p-p)

qD:27rkh P — Pus

Thus the final equation for solution at observation point 1 — 2 with source wells at 2, 3,

and 4 is:
qDlLl[ZKo(qu““’mj
W) ) (4-14)
0 \' D ’\/7
+Qp, L Z « (2 o U) - C4ﬂ| qDZ(on - xol)
UE Kl(\/a) ! x "
+0ps Lil Z KO(ZDQ(HH Y\/a) - C4ﬂ| Ubs (on - Xul)
UEKl(\/H) !
+ qDAI:1 z K° (ZDQUJM Y\/a) - C4”| qDA (on - Xol)
UEKl(\/U) I«
Similarly, for observation points 1 — 3 and 1 — 4, the resulting equations are:
qu'l[ZWJ
vile) ) (4-15)
+0p, L Z KO(ZDq(H)Z ’\/a) - C47TI U, (on - Xol)
UEKl(\/U) ! x "
+0ps Lil z KO(ZD%—z)a Y\/a) - C4ﬂ| qDS(XOS - Xol)
UE Kl(\/a) D' x
+0ps Lil Z KO(ZDq(HM Y\/a) - C4”| Ups (X03 - Xol)
UEKI(\/U) o x
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el
T ) I K (4-16)
‘*'QDZI:1 2 KO(ZD% = Y\/a) - ad qu(on - Xol)
UEKl(\/E) Cily S
e Z KO(ZD% = Y\/a) - il U (Xos = Xar)
UEKl(\/G) Coly
+0py Lil Z KO(I;D% = Y\/a) - C47T| U4 (Xoa - Xol)
I uiK W) ) e ]

To complete the system of linear equations, we equate these systems of equation for unit

pressure drop at the well:

QoL ZM +0p, L7 ZM + 5L ZM L Z
2 (JJ) uEKl(\/a) UEK1(\E)

K0<quu ,)u‘m) 1
uzK,
The first term in the above equation is measured with respect to wellbore radius since
KO(qu(l_l)l,\/ﬂ) — 0 as Tpg-1)1 — 0. The complete system of equations can be

expressed in matrix form as:

AX=0 e, (4-18)
Where, A, is a matrix given by:
...(4-19
@ @) (©) @) 1 ( )
. Ll{z o Ll[z Knofwm} Ll[z Kn@ww)} Ll[z Koﬁfwm]
uZKl(\/U) UZK,(«/U u?Ki(«/ﬁ u?Kl(\/ﬁ)
@ u[z il ) L{z ol B L{z K°(r§’“‘“"mJ§’ﬂ( %) u{z K"(r?“”’“m]g " (o)
uZKl(\/U) uzKl(x/a) © uzKl(\/ﬁ) © uzKl(\/E) i
(3) Ll{z Kn(riﬂmxrm'\/a) Ll[ Ko(r;q( m'\/a)JC‘VTI ( - 01) Ll[ Ku(rti an'\/a)JC‘l”I ( 5 Xl) Ll[z KO(I';)QMW\/E)}C“”' ( 037)(01)
uzKl(\/U) uZKl(\/E) © uzKl(\/a) © uzKl(\/a) ®
() Ll[z Ku(r;q“ ) (o Ku(r;% m'ﬁ)}éﬁ (X %) L7 Kn(rgm Mﬁ)}c‘l”l (%5 = %) '—1{ K[,(r;q(, W’IU)JCM: (4 =%,1)
uZKl(JU) uZKl(JU) © uZKl(JU) © uZKl(«/U) ©




X, IS a vector given by:

o1
X | 02 | (4-20)
O3
Ubs
d, is a vector given by:
1
0
=] | e 4-21
0 (4-21)
0

Constant Pressure Case
Repeating the same process in the previous section, the Darcy law based
derivation for the fracture for the observation points at 1 — 2 with the influence of source

wells at point 2, 3, and 4 on them along the fracture half-length is:

— 20,4 B
A p f_CPress1-2 — klw [qZ_CPress (XOZ - X01)+ q3_CPress (XOZ - Xol)+ q4_CPress (XOZ — Xo1 )] """" (4-23)
f
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Since the fracture is producing at constant pressure we can also be expressed as pressure
drops in the reservoir, called influence functions, for the same observation points 1 — 2
and the source wells at 2, 3 and 4 as:

a,u B

ApR_CPress.l—Z = 27 k.h |:q1_CPress Ll[z
f

1 ~ 1 ~ 1 ~ 1
= qZ_CPressL ' 27 + qB_CPressL ! 27 + qA_CPressL ! 27
quO 2> _CPress qu(, 25 CPress qu“ 24_cpress

q D), _CPress

And using eqn.(4-8) we convert this inverse Laplace rate (reciprocal) variables in the

above equation to inverse Laplace pressure variables as:

. (4-24)

B Ko I, ,\/a Ko, Au Ko, ,x/a K, lr, ,\/U
APR,CP sssss 12 = 9’1/[: h s _cpress L? Z O(zDQ(HN ) +d2_cpress L Z D(aunrm ) +d3_cpress LY z D(aunrzlz ) +Us_cpress L Z D(gD%rw )
27k uEK](x/U) uZK](x/U)

UZK](\/E)

uzK](x/U)

It is important to note that the inverse Laplace constant pressure variable above is
the same as that the inverse Laplace constant rate variable. Here, again, I, represents
the distance between given two observation well for different positions of the source
wells and 0 cpess is production from each of those source wells at constant pressure.

Since the fluid flows from the reservoir into the fracture, the pressure drop in the

reservoir is equal to the pressure drop in the fracture, at the fracture face, as:

APt chress = APR Cress vvvererseremsreireniieniiresiieeiinns (4-25)
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Going according to the same lines as the previous section we have:

U1_chress L Z o (ZDq(]iz)l ‘\/E) + 05 cpress L Z o (ZD%’Z)Z '\/a) +03_cpress Lt z i (ZDQ(H)K ’\/G> +q4_cpress Lt Z i (ZDQKHM ‘\/E) =
UEKl(‘/U) UEKl(‘/E) UEKl(‘/U)

UZK1<‘/U)

_47rk

= W [QZ_CPress (on - X01)+ Q3_CPress (on - Xul)+ q4_CPress (on —Xa )]
f

On multiplying with x:

qlfCPrESS Ll{z KO(ZD% 2! \/a)j + qucpress Ll[z KO (I;D% 2 '\/U)J + %,cpress Ll[z KO(ZD% - \/a)] + q47Cpress Ll[z KO (rqu“ S \/a)]:l =

UEKl(\/a) UEKl(\/U) UEKl(‘/E) “EKl(\/a)
4
= CLX [qz_CPress (on - X01)+ qS_CPress (on - X01)+ q4_CPress (XDZ —Xu )] """""""""""" (4-27)
DM f

To complete the system of linear equations, we equate the summation of pressure drops
at the real well at the end of fracture due to source wells being at various points to a unit

pressure drop at that real well (definition of productivity index):

....... 4-28
B S S| R (0 S| R (o | N (o | I (4-28)
_CPress ugKl(\/E) _CPress . Kl(\/a) _ CPress % _CPress 3

The complete system of equations can again be expressed in matrix form as:
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Here, A, is a matrix which is exactly same for constant rate case and is given by:

Xcpress » 1S @ solution vector. It is multiplied and divided by the corresponding constant

rate values from eqn.(4-21) and is:

qDl_CPress

q D2 _CPress

CPress

X

qD3_CPress

_q D4 _CPress |

d IS a vector given by:

CPress '

d

CPress

i
(
(
(
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(1) LY z KO(I;)% m'\/a) LY Z KO(";% ,)z'ﬁ) LY Z KU(;D% m’\/a)
7K, (V) wK,(Va) ueK, (V)

0 o] g o] g oln)| e ) f ol e
U2K1(‘/a) UzKl(‘/a) o UzK:(‘/a) °

(3) LY Z KD(;DWHH'\/E) LY Z KD(;D%VW'\/E) _;Ll(xuz _X01) L’l Z KO(r;Elurm'\/a) _ C47Z| (X 3—X01) LY
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The problem get reduced to a constant rate one with the exception of scaling of

the constant pressure dimensionless well rates. The dimensionless productivity index for

total reservoir is derived from, X ., vector as:

Jo cores = 42(%'(]”’““3} o T (4-30)

Partially Penetrating, Single Finite Conductivity Fracture Solution for Vertical
Well Using, Partially Penetrating, Finite Wellbore Radial Solution and Boundary
Element Method

We start by using, for a vertical well, pressure drop given by continuous point
source solution (forming an equivalent line source solution) for a well in infinite

reservoir, as given by Ozkan*

— quh
Ap (rD,U):mKO(rD,'\/U) .................................. (4'31)
D

Where the point source flow rate, g, is summed up to give the line source term (STB)
as:

q=qhB
sand u are the Laplace space variables and,
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h |k

°LY\Kk,

If converted to dimensionless form, this solution will transform into well-known line

source solution as:

If wellbore radius is also taken into consideration then the equivalent finite wellbore

(cylindrical source) solution, given in the text (and is repeated here), is:

(e u)= Kg(fm\/a | (4-33)
uEKl(ﬁ)

For a partially penetrating vertical well, pressure drop given by continuous point source

solution (forming an equivalent line source solution) in an infinite reservoir, is:

I LA A N iKl]Ko(rogn)sin [ :hj [ hj [ éj}....(4-34)

T2k Lhys 7%k Lhs&|\n

Where, once again, the point source flow rate, @, is summed up to give the line source

term (STB) as:
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sand u are the Laplace space variables and various other variable are:

h, = hL : ....................................................... (4-36)
n’z’

£, = JUA = e (4-37)
hD

Z,and z are the variables in the z-direction, where the integration is carried out from

ZW—?W to ZW+?W, and hw is the open interval. If hW =h, it implies fully

penetrating vertical line source well. By analogy, the dimensionless form for line source

solution, is:

Pyt u)= % Ko(rD, Ju )+ (ij(:wj(iji Hino(rDsn)sin (n T 2;) cos (n n Zhw) cos (n T ﬁﬂ """""" (4-38)

If wellbore radius is also taken into consideration then, by analogy, the equivalent finite

wellbore (cylindrical source) solution will be:

- feet) ()[;]zz{()[m] (15 Jous (22 )ous ;)}
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The second summation aggregates the solution along the cylindrical source in the
vertical direction. This solution is then used in the superposition process, with

everything else remaining same from the radial solution discussed previously, as:

“lu

Z{M} i ﬂg[popp+K0<rm,w>+K0<rm,m+Kz<rm,mﬂ (40)
1 2K1(\/a 0 e = o

~——

Thus the Laplace domain solution of dimensionless pressure for a constant rate is:

Pol(rp )= M nhy K‘;(rf’—”/a) ......... (4-41)
UEKl(‘/U) " “EK1<\/U)

n, — o

The way it is implement in the algorithm is shown in the figure 38 below.

Figure 38. Mathematical Treatment of Central Well.
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The full penetration radial solution (brown wells — all other except central one)
are still used to form the boundaries but the partial penetrating well solution (central red
well), in Laplace domain and given by eqn.(4-41), is used as the basis of superposition to
arrive at the solution of partially penetrating fracture. This is the solution of infinitely
conductive, partially penetrating fracture. The process of generation of influence
function for boundary element method is repeated to generate the solution of finite
conductivity partially penetrating fracture. Both constant rate and constant pressure

solution can be evaluated. Use of earlier method is envisaged.

Evaluation of Convergence Pressure Drop of Single Transverse Fracture in a
Horizontal Well Using Boundary Element Method
This section gives the big picture of boundary element method (BEM) using
constant boundary elements. Refer to Katsikadelis®® for an exhaustive explanation. We

start with the divergence theorem of Gauss as:

[[VeudQ=[uends i (4-42)

This converts the domain integral (represented on the LHS of the equation) on a domain

() to a line integral (represented on the RHS of the equation) at the boundary I'.

Specifically, for BEM, we use Green’s second identity that is more suited for

numerical implementation. This is given by:
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fﬂ(v Viu-u Vzv)dQ:jr(vgrlj—ug\r:j ds e (4-43)

Here in this case uis the unknown variable and v is a known variable. In order
for vto be known, the solution needs to be twice differentiable (This condition also
applies to u). For this reason we chose Dirac delta function which has a density at any

point Q(¢&, ), with the source present at P(x, y), mathematically expressed as:

F(Q)=F(Q=P) srvrrrrereiriensen s (4-44)

Thus, v satisfies the Laplace equation:

The fundamental solution of this equation, used in BEM method in terms of polar

coordinates, is given by:

For the unknown variable u, we derive the solution of the Laplace equation:
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for the general boundary conditions:

U=U ONT, o (4-48)
T SR (4-49)
on

as proposed below. By applying Green’s second identity for the functions uand v that

satisfy the above Laplace equation as:

ou @) (q)av (g.P) s, (4-50)

u(P)=fu(@) 6(Q-P)d,=-[|v(q,P) U Q) s,

q q
Here the points inside the domain are expressed as upper case letters whereas the
points on the boundary are expressed as lower case letters. The above equation for a

smooth boundary is given by:

Ly )= v @p ¥ g

on

q a

The discretized form of this equation, for N constant elements, is given by:

_ N 0 N ov (p;,
;u. :_;‘Ir,-v (p.,q) ;n(qq)ds“ +;L]“ (@) (g:q q)dsq ........................ (4-52)

Rearranging and rewriting in terms of influence coefficients, we have:
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2

which can be expressed in a general form:

STHLUT = Y G,UL v (4-54)
[HHU} = (810, ) o (4-55)

{U}1 and {Un }2 are the known variables and {Un}land {U }2 are the unknown variables.

If we were to rearrange the above matrix so that all the knowns are on the RHS and all

the unknowns are on the LHS, we will have:
{ H.] - [6.] } {{{;Jn}}zl}:[ C L+ [eulu) } ........ (4-57)

YRR = I — (4-58)

which can be solved for the unknown vector, X, which is the solution. Important point to
consider here is that both for the known vector, B, and the unknown vector, X, we need

the value of either the principal variable or its derivative at the boundary.
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Input Boundary Conditions — Knowns and Unknowns
The key to numerically solving this problem is to account for the known
boundary conditions. To evaluate these, we rely on the method proposed by Brown®* and
reproduced here. We start by considering the flow from the tip of the fracture to the
wellbore at the end of the same fracture. We have from the Darcy’s law (assuming the

flow is in x-direction):

This volumetric velocity is calculated at the end of the fracture, x_ =0, having the

dimensions equal to the width, w, and height, h. The flow rate is computed using the
surface integral of the above equation and the flow rate is equal to quarter of total flow

into the fracture being modeled and that the fracture is bi-winged.

"5 k, \'2%( op,
o= %

0

Which results in:

g2, e

Converting the above equation into dimensionless form we have:
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But,

Figure 39. Source Wells and Observation Wells in the Generation.

Thus the eqn.(4-63) in terms of reservoir barrels is:

[Apfo J z_[ 7 J .................................................. (4-64)
AXy ) Co

In this equation the solution at the wellbore represents the flow entering the fracture at

AXD =1. Atthe boundary, the flow is subjected to the following constraint:
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which means that the dimensionless pressure drop just inside and the outside (reservoir)
of the fracture should be equal. This pressure continuity, at the boundary, is important.

Combining these two equations, we arrive at the overall constraint which, all known
pressure values at the boundary are subjected to, and is given by eqn.(4-58). The
majority of the known pressure values are along the top of the quarter section of the
fracture as in figure 39 and the pressures generated by the superposition process are then
multiplied by egn.(4-64) to give the known boundary values. The derivatives of all

boundary terms on the fracture are given by:

Py L e (4-66)
oX

D

Figure 39 shows the way the boundary conditions are entered in the BEM solution. It is
quarter of the whole transverse fracture with the horizontal well being represented by a
square at the bottom left corner. The dimension of square is equal to that of the well
which means the diagonal of the square is equal to radius of the well. The no flow
condition, for the left side and the bottom boundary, is created by having the derivative
on the two sides to be equal to zero which comes out of symmetry. The top and the right
boundary are subjected to the known primary variable which is pressure in this case but

subject to constraint outlined by eqn.(4-61).
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Partially Penetrating, Multiple Transverse Finite Conductivity Fracture Solution
Using, Partially Penetrating, Finite Wellbore Radial Dual Porosity Solution and
Boundary Element Method

The method is outlined in five steps:

1. Use the previous Helmy’s method to describe a well at the center of square
drainage area to get constant rate and constant pressure solutions.

2. With the constant rate solution, repeat the step by moving the well off—center
along the length of the fracture in the square drainage area. This is the infinite
conductivity fracture solution. Invert it into real domain solution.

3. Use boundary element method (similar to Romero’s® method) for the solution

for finite conductivity fracture using solution from step 2.

4. Calculate the convergence pressure drop using BEM outlined previously.

5. Repeat step 3 for each transverse fracture treated independently, figure 40.

@] @] @] @] @] @] (@] @]

@] @] (@] @] @] @] (@] @]
|

@] @] @] @] | ] o (@] @] (@]
B

@] (@] @] @] o @] @] @]

@] @] @] @] I @] @] (@] @]

@] @] @] @] @] @] (@] @]

@] @] @] @] @] @] @] (@]

O O O @] O O O O

Figure 40. The Infinite Distribution of Image Wells Required to Simulate the No-flow
Condition across the Boundary of a Square Reservoir and Multiple Fracture.
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Mathematically, it means solving independently the matrices and adding the result as:

Ax=d Fracture 1
+

Ax=d Fracture 2
et

Ax=d Fracture n

Dual porosity effect is incorporated using egn.(3-38) in the radial solution.
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CHAPTER V
ANALYSIS, RESULTS AND CONCLUSIONS OF FULL TRANSIENT MATRIX

AND AQUIFER UNCONVENTIONAL RESERVOIR MODEL

Although all four solutions are outlined in the Appendices E through H, the
emphasis is on the full transient model only given by Appendix H. This model has the
capability of reproducing results of early transient, late transient and pseudosteady state

conditions both for the matrix and the aquifer.
Basis for Long Term Deliverability of a Well — The Derivative Analysis
The dimensionless productivity index as outlined in earlier chapters, for both

constant rate case and constant pressure cases, are given by:

Constant Rate Case:

1
b = ooy (3-63)
1
Y e T (3-69)
Constant Pressure Case:
1
]D = (L_ 1 ) """""""""""""""""""""""""""" (3-80)
a4p 4dAvD
. LT (3-81)
(522
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The above equations, for further understanding, are rewritten as:

Constant Rate Case:

(i) = Pp — 2ALpg i (5-1)
Constant Pressure Case:
()= 21 (2 -

Taking the logarithmic derivative of both sides of the above equations, we have:

Constant Rate Case:

d A\__49» _ ,_ _dlpa B}
dantD)(]D)_dantD) 20 S0 (5-3)

Constant Pressure Case:

d(I: t) (i) - d(I: t) (i) - (%)M%m)(%) ....... (5-4)

Here,

0.00633 k't 5.615 (0.001127) k t
tpac =tp = = 3-56
DAc D @ UctAcw P UCtAcw ( )

_ 5.615( Kkt ) _0.00633k t

t =
ba a; \oucA puctA

128



Combining the two eqn.(3-56) and eqn.(3-68) gives:

tpa = (%) ------------------------------------------------------------ (5-5)
And we know,

Npp = Gplp e, (5-6a)

Ap = A‘:W ............................................................... (5-6b)

Hence for both cases and from egn.(5-5) and eqn.(5-6), we have:

Constant Rate Case:

d__(1)_ _dpp _ (2m)_dip i
d(lntp)(]D)_dantD) (AD)d(lntD) ...................... (5-7)
Constant Pressure Case:
4 (L) _d4 (1)_(2m)_db i
(D)= (L) () (5-9)

which reduces to and is written as an equation of straight line (log-log plot) for linear
model (bilinear or linear flow only):

Constant Rate Case:

da: tp) (i) - d(%)[,) B (,24—7;) Ep e (5-9)
Constant Pressure Case:
dﬂ:fn) (i) - d(l:tD) (i) B (1_1;) 7, R PII (5-10)
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There is an important point which needs attention here. The area, Ap, is known
(Ap =1 for all cases in this thesis). Also since the flow is bilinear or linear (for the
former it will be quarter slope whereas for the latter it will be half slope on a log-log
plot), then overall solution in time is an equation of line with two slopes. The eqn.(5-9)
and egn.(5-10) have been deliberately left in this form in order to exploit the constant

slope values which are only possible with the logarithmic derivative.

Proppant Number and Concept of Constant VVolume Induced Fracture

As per definition, the source terms are given by volumetric average as:

- Ym ) _ (k) 9Pm -
Omf = O (Vf+m) =a(k )mb o T —— (5-11)
Where a similar volumetric averaging is done on permeability as:
k km (Vm ) o *m (g _ _
() = Tm<vf+m) g (L7 @) s (5-12)
Hence,
Kop = k(1 — @) oo (5-13)

Here the permeability is the parameter which gets averaged and not the fluid viscosity.

Also, by definition we have:
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Pmb = ( e )¢m ..................................................... (5-14)

Vf+m

=G ~( - ) 5-15
@ ¢fbcf+¢)mbcm Vf+m """"""""""""""""""""""""""" ( )

recalling the interporosity flow parameter is given by:

kmn
Drmg = 2= @ (£22) Ay v (3-11)

Analyzing the above equations, for a dual porosity unconventional reservoir, the
effect of hydraulic fracturing results in increasing the propped part of the fracture as
opposed to the non-proppant propped part (including the natural fractures). Increasing
the propped part increases w and there is simultaneous decrease of average reservoir

permeability, k., based on eqn.(5-13), which in turn decreases A,.,,s. As a result there is

a net change of the dual porosity proppant number (%) This is based on slab

configuration assumption. The value of the dual porosity proppant number can be further
changed by changing two components within A, ¢:
1. Changing the shape factor, keeping the permeability unchanged. The various
shape factors are given in Table 10.
2. Changing the permeability, keeping shape factor unchanged. There is a limit to

this increase for any A, .
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Table 10. Shape Factors based on Warren & Root Theory**

Flow Element Number of Value of PSS Surface Area | Warren & Root
Model Fracture Planes Lumped to Volume Shape Factors
(n) Parameter (8) ratio (2_") (0)
hm
2
Linear (Slab) 1 6 2/hm 12/hin
Cylindrical 2 8 4/h,, 32/h2,
(Matchstick)
Spherical
3 10 6/hy, 60/hZ,
(Cube)

Here h,, is the characteristic length. A constant volume fracture having a same

area/volume ratio, (surface area of matrix to the matrix volume, refer figure 41) but

different matrix configuration (characteristic length) that are in the proportion 1:2:3

(1-D, 2-D and 3-D respectively), will exhibit the same transient response. This is Case 1

and constant volume refers to the same volume of proppant pumped across different

configurations but also refers to exactly the same area/volume ratio as well. To state this

differently, in a dual porosity reservoir if the induced hydraulic fracture, for Case 1 only,

creates matrix blocks of 1D, 2D or 3D configuration so that they have the same

area/volume ratio, then all these three different hydraulic fractures will exhibit the same

transient response.
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Figure 41. Matrix Orthogonal Geometries (with different size of matrix blocks but same
fracture permeability).

Conversely, a constant volume fracture with exactly the same dimension
(characteristic length) but across different configurations, 1D, 2D and 3D as referred in
figure 42, which have different area/volume ratio but the ratio of matrix to fracture
permeability values are such that their product with shape factor are in the proportion
1:2:3, (1-D, 2-D and 3-D respectively), will also exhibit the same transient response.
This is Case 2. It is only when the boundary effects (boundary dominated or
pseudosteady state flow) makes their presence felt that the solutions depart from each
other in both these cases. The results are shown by Bello® in his dissertation and are
reproduced in figure 43 and the results of dimensionless productivity index are shown in
figure 44 and figure 45. For both Case 1 and Case 2, results are the same. The data set is

shown in Table 11.
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Figure 42. Matrix Orthogonal Geometries (with same size of matrix blocks but different
fracture permeability).
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Figure 43. Results of Dimensionless Rate with Single Phase Transient Model for
yep = 0.559 and for Different Matrix Geometries as per Bello®.

An important point that needs mentioning here is the relation between the two areas A

and A.,,. All through, we are sticking with, A, = 1 and y., = 1 in this thesis. This
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Figure 44. Results of Dimensionless Productivity Index with Single Phase Transient
Model for y.p = 0.559 and for Case 1.
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Figure 45. Results of Dimensionless Productivity Index with Single Phase Transient
Model for y.p = 0.559 and for Case 2.
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Table 11. Shape Factors Calculation Dataset as per Bello®.

Case 1 Case 2
Slab Cyl. Sphere
Xe 2000 ft 2000 ft 2000 ft 2000 ft
Ve 500 ft 500 ft 500 ft 500 ft
h 200 ft 200 ft 200 ft 200 ft
L (Slab) 50 ft 50 ft
D (Cyl.) 100 ft 50 ft
D (Sphere) 150 ft 50 ft
ks 100 md 100 md 400 md 901.41 md
Ko 10°md 10° md 10°md 10° md
® 102 10 102 10
Computed Values
YeD 0.559 0.559 0.559 0.559
o 0.0048 ft* | 0.0048 ft* | 0.0128 ft* | 0.024 ft?
Aac(Slab) 3.84X10* | 0.000384
Anc(Cyl.) 2.56 X 10" 0.000256
Aac(Sphere) 2.13x10* 0.000213
A= 2Xeh 8.0X 10°ft* | 8.0X 10°ft? | 1.6 X 10" ft* | 4.0 X 10°ft3
Aen= RILOTAIL 19 63 10762 | 1.6 X 107FC | 32X 107 | 4.8 X 1071
or 6/L) V¢

Ven= Acwe 40X 10°ft® | 40X 10°ft> | 4.0 X 10°t> | 4.0 X 10°ft°
A = 2XYe 2.0X 10°ft* | 2.0 X 10°ft* | 2.0 X 10°ft* | 2.0 X 10°ft*

Dual Porosity Proppant Number
Al o (Slab) 0.384 0.384
Alw (Cyl.) 0.256 0.256
Al o (Sphere) 0.213 0.213

implies that y, gets translated to drainage area, A. For y,p # 1, the condition, Ap = 1,

still holds if we incorporates, y,, according to following formulation:
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\/ACW \/ACW
Ap=-—=1=N ”D=1< yeD:l)l...(5-16a)
Acw VAcw VAcw

w
YeD # 1 YeD # 1

Ye 1 Yeyep »1
Vep = —— = — <—> ........................... (5-16b)
VA W\VAcw,
[Acwlyop o1 = N [Acwly oy oo, (5-16¢)
A= [Acwlypo e, (5-16d)

where N is the multiplier on area, [A.y]y,,_,- FOr y.p =1, N =1 this simplifies to

eqn.(5-16d). It is imperative we maintain the relation between y, and A and A, = 1.

Validation of the Full Transient Model
For the purpose of validation we used the solution of single phase model of Bello®
and compared it with our solution, as in Table 12. The difference is we have assumed

that aquifer is equal to size of reservoir, implying x; = 0.99, in the fracture function.
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Figure 46. Validation of Full Transient Model with Bello’s Transient Model (Constant
Rate Case).

Table 12. Full Transient Model

Full Transient Matrix f(s)

and Aquifer Fractured = [( “";‘? \/% ';f”) (%)
W Kg f
Dual Permeability Model
xtanh<\/ <L> — )l
(Appendix H) E

(o) [ o (22
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Figure 47. Validation of Full Transient Model (dotted) with Bello’s Transient Model
(Constant Pressure Case).

Figure 46 and figure 47 shows the comparison for each case with Bello’s model.
The values of various other parameters are: wgq = w = 1073, 15 = 1071, Kkpp, =1,
A =1 and y,p, = 1. The solution departs from Bello’s model when the interporosity
transfer function, A, is large (see bottom of figure 47) and as seen for dual porosity
proppant number, Np|D¢ =1 (NplD(p = 10° in figure 47). This happens because under
these conditions the model behaves like a linear composite two layer model. Just like its

single porosity two layer radial two layer counterpart, this model also has the initial

response of layerl, a transition region and then the total system response of layerl and
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layer2 together. Theoretically, every model will show these three responses but the final

solution depends on the values of parameters, the ranges of dimensionless time used.

Derivative Analysis Using Single Phase Flow Model
This analysis is carried out entirely with the help of Bello’s model. The aim is to
derive the value of A,.,,,; and w. All analysis is done using constant bottomhole pressure

dqp NLD . .
Ante) Versus = with changing A, from

constraint. Figure 48 and figure 49 shows

1073 to 1077 and keeping = 1073 constant. This gives the range of dual porosity

proppant number, NplD(p’ from 1 to 10~*. As pointed out earlier, the amount of

successful stimulation archived is dependent on correctly predicting this dual porosity
proppant number. This boils down to evaluating two unknowns, w and A,.,,r, which the
stimulation changes as it introduces fracture volume over and above the existing natural

fracvture volume.
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Figure 48. Results with Single Phase Transient Model for y,p = 1 as per Bello®.
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Figure 49. Results with Single Phase Model for y,p, = 100 as per Bello®.
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As can be seen in figure 48 and figure 49, the early part represents fracture only
flow and hence is half-slope. For the value of y,, = 100 (as seen in figure 49) we see
that there is a definite development of bilinear quarter slope after the initial half-slope. It
can be concluded that the matrix recharge has kept pace with depletion in the fracture
system. However the ability of matrix to recharge fracture (magnitude of A decides this
recharge) is reduced, the bilinear flow period starts to get shorter and shorter till the time
it becomes insignificantly small. This is the dual porosity behavior where the pressure
depletion at the well (matrix does not directly communicate with the well) is just about
being felt by all the matrix blocks through the fracture system (matrix depletes because
of pressure difference between inside and outside of the matrix block). For the matrix

blocks which are further away from the well the pressure depletion remains in effect for
a very short duration of time (seen as a blip of bilinear flow for Np|D(p = (%) =107

figure 49). The matrix-fracture system continues to deplete (system flow) till the time it
goes into boundary dominated flow (unit slope).

If the pore volume of the fracture is not sufficient enough, as is the case with
v.p = 1 (and seen in figure 48), the matrix lags so far behind in recharging the fracture,
that it results in the fracture boundary dominated flow (unit slope) first followed by
matrix linear flow (half-slope flow and no bilinear flow is possible because fracture is
already in boundary dominated flow). This is followed by the system flow which goes
into boundary dominated flow, and at this stage both the fracture and matrix are in

boundary dominated flow (unit slope). Thus it can be concluded if sufficient pore
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volume is not present then the fracture will go into boundary dominated flow first before

the matrix recharge kicks in and reverts it back to linear flow.

qap
d(ln tp )

Figure 50 shows gqp versust, and versus tp using instantaneous

solutions in the same graph. Figure 51 compares the derivatives calculated from constant
rate case (using numerical Laplace domain solution) and the derivative calculated from
constant pressure case (using real domain solution) and using material balance time. The
constant rate derivative is slightly higher than the constant pressure derivative but both

are in good agreement.
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Figure 50. Reproduction of Rate (solid line) and the Derivative (dotted line) with Single
Phase Transient Model for y,p = 1 Calculated from Laplace Inversion.
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Figure 51. Reproduction of Constant Rate Derivative from Laplace Solution (solid line)
and Constant Pressure Derivative (dotted line) using Material Balance Time
with Single Phase Transient Model for y,p = 1.
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The focus of this chapter is y.p = 1. Using eqgn.(5-9) and eqn.(5-10) we arrive at

the following plots shown in figure 52 and figure 53. These are plots which shows

dJjp
d(ln tp )

versus tpA. With the help of this analysis we convert from area A.,, = 2x,h to

area A which is horizontal spread (drainage area). The following empirical relation for
two layered reservoirs, put forward by Ehlig-Economides and Ayoub®, for convergence

of solution then applies:

tDAA = tDAC/l R L (5'17)

This is seen in figure 53 where the convergence of all fracture boundary dominated flow
and matrix transient flow occurs into a single curve as the above relation applies. Also,
based on area A, the time to reach pseudosteady state/boundary dominated flow is given

by yet another empirical relation which is:

The combined effect of these two empirical relations gives the dimensionless time to
boundary dominated flow for dual porosity as seen in figure 54 and figure 55. The slopes
of dimensionless productivity index are zero or they are all constant (horizontal) during

boundary dominated flow after the value tp A = tpyscd = 1.
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Figure 52. Single Phase Derivative Analysis for y,, = 1and A = A,
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Figure 53. Single Phase Derivative Analysis for y,, =1and A = A,
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For both figure 52 and figure 53 Euler constant correction is applied to
dimensionless time (X-Axis). The combined effect of these two empirical relations is
also evident from J, versus tp,., figure 54 and figure 55, which are in pseudosteady
state after tp,A4 > 1. Also evident from figure 53 and figure 55 is that all matrix
transient flows superpose on each other and thus a single (system linear flow) curve can
be used to describe the entire performance. The assumption we are making here is that
the early fracture flow is of no interest to us. The explanation put forward for eqn.(5-17),
from Stewart®*, is that for this particular value of dimensionless time the matrix and
fracture system come to equilibrium, nearly at the same local pressure, and behave as a

joint total system. For:

tDAA S tDAC/l < 1 .................................................. (5'19)
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Figure 54. Single Phase Transient Model J, Results for y.p, = 1 and A = A,,, (Both
for Constant Rate and Constant Bottomhole Pressure Case are Shown).
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Figure 55. Single Phase Transient Model ]7” Results for y,p = 1 and A = A,,, (Both for
Constant Rate and Constant Bottomhole Pressure Case are Shown).
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the matrix pressure lags behind the fracture pressure. Also, figure 53 and figure 55
cannot be applied initially because A is unknown parameter to begin with. So as a first
step for analysis, it is suggested, we use figure 52 and figure 54. Subsequent verification
can be done with figure 53 and figure 55.

The analysis, which is iterative, consists of calculating productivity index first.

Productivity index is a function of dimensionless productivity index according to:

Since time is a known quantity, we can use figure 52 and figure 54 to know, for the

linear region, what the value of A = A,.,,¢ is going to be for a given dual porosity

proppant number. The dual porosity proppant number points towards the value of w.

Derivative Analysis Using Two Phase Flow (Aquifer) Model

Here the aim of this analysis is to derive five unknown parameters, A, ¢, dqq, @,
wgaq and xg. As in the previous section, for the purpose of this thesis, we assume
wgq = w and that k < 1. It is imperative that the height of reservoir and the aquifer be
known. This leaves three unknowns in all but two, A, and A,, are unique parameters

whereas w is an assumed (dependent on dual porosity proppant number value)

parameter. Once again the process is iterative.
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Figure 56. Two Phase Derivative Analysis for y.p = 1 and 4 = A, with 444.
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Figure 57. Two Phase Derivative Analysis for y.p, = 1 and 4 = A, without 4,,.
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Step 1. Assume the value of A,,. Eqn.(3-21) is a good starting point. Go to figure 56 and
try to determine the value of A,.,,; as per previous section.

Step 2. Repeat the process of step 1 now using figure 57. This makes the solution
independent of variations in 1 = A,.,¢.

Step 3. Calculate the ratio of two values on the Y-Axis which then gives 1,,. Compare
with the assumed value in step 1. Here the value of 1,, = 107° is used in the
model.

Step 4. If difference cannot be reduced then we take the effect of aquifer into account by
changing kg, figure 60. A = 4.,y and w are then arrived at after couple of 1,4
iterations. It is imperative that kh values of both the reservoir and the aquifer are
known ahead in time so as to reduce the uncertainty in x, value.

Similar to the previous section, figure 58 and figure 59 show the results of variation of

dimensionless productivity index with time for both cases. A major point to be noted

here is that in the previous case all matrix linear flow collapsed into one curve with half-
slope, here those half-slope lines are parallel. Once again, if aquifer is absent, then these

all parallel half-slope lines will collapse into one which is shown in figure 53. Figure 56

and figure 57 are generated with the value of x, = 0.99. The aquifer has nearly the same

flow capacity as the reservoir. It’s the value of kg, the aquifer effect, which sets them
apart and appears as family of curves (figure 58 and figure 59 shows [, versus t,A for

constant rate and constant pressure cases). The entire variation for different value of

da . . .
for —22 versus tpA is shown in figure 60.
d(ln tD)
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Figure 59. Two Phase Transient Model ]7" Results for y,p = 1 and A = A,,, (Both for
Constant Rate and Constant Bottomhole Pressure Case are Shown).
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Figure 60. Derivative Analysis for k; = 0.1,0.16,0.25,0.4 and 0.63,and y.p = 1
and A = A,
Application to Sample Synthetic Field Model

In order to further demonstrate the theory of dimensionless productivity index
derivative analysis, a field scale synthetic model was used. For this purpose the Brugge®?
simulation model was run on INTERSECT®®. Two major changes were made to the
dataset. The PVT was changed to live oil having a very low GOR (250 scf/STB) so that
no gas gets liberated in the model (INTERSECT needs 3-phase data as input) and the
permeability and porosity fields were modified using multipliers so as to make their
magnitude suitable for unconventional (microdarcy) range. The other major change
incorporated was that the whole model was converted into dual porosity model with no

peripheral injectors. Figure 61 and figure 62 gives the input data used in simulation.
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REPORT oOptional properties (not required, but used if supplied):
+

0.981029
0.0920515 fr3/fr3
0.0016 1/ft2

0
0.0548 1
0.1347 fr3/ft3

0.0016 1/ft2

NET_TO_GROS5_RATIO
POROSITY
MATRIX_FRACTURE_COUPLING

0.04 fr3/fr3
0.0016 1/ft2

| Property | Minimum | Maximum | Average
e — e m e e e M e e e e e mmememmemmemmemmmmmm—————
PERM_I 0 mD 0.0519 mD | 0.00278804 mD
PERM_J 0 mD 0.0519 mD | 0.00278804 mD
PERM_K | 0.000277525 mD
| 0.5
|
|
|

| I |
| I |
| | 0 mo | 0.0052 mD
| SATURATION_FUNCTION_DRAINAGE_TABLE_NO | | 1
| I I
| I I
I I I

N —- Sy—_

Figure 61. INTERSECT Output of Major Parameters Used in Simulation Model.

Description Value
Number of properties:
In this folder: 46
Includes sub folders: 70
Grid cells {nl x nd x nGridLayers) 139x 48x 9
Total number of grid cells: 60048
Total number of cells in fitered area: 58555
Unit: mD
MName Type Min Max Delta
KIPERMXIO] Cont. 00000 00519 00519
K;PERMYID] Cont. 00000 00519 00519
ki PERMZIO) Cont. 00000 00052 00052
% PERM_T... Cont. 0.00 0.05 0.05
(%) TRANX[O] Cont. 0.00 0.00 0.00
@R TRANY[D] Cont. 0.00 0.00 0.00
EBL TRANZID] Cont. 0.00 0.03 0.03
<% TRANSM... Cont. 0.00 0.03 0.03
VpPORVID]  Cont. 0 184297 184297
& DXI0) Cort. 17355 52933 35578
% DYI0) Cort. 1978 72304 60326
Gl DZI0) Cort. 1219 3437 218
TrMULTX[0]  Cont. 100 100 0.00
TrMULTY[D] Cont. 1.00 1.00 0.00
TrMULTZIO]  Cont. 1.00 1.00 0.00
& POROIN  Cort. 00400 01347  0.0947

Figure 62. PETREL Input of Major Parameters Used in Simulation Model.

Three wells, BR-P-1, BR-P-11 and BR-P-18 were converted into horizontal wells

and were surrounded by LGR. This was essential in order to capture linear flow and the
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convergence skin of the horizontal well. The LGR forces the flow to become
predominantly linear around the well even though the matrix shape is for a cube. The
value of shape function (matrix fracture coupling in figure 61) was derived assuming
hydraulic fracture spacing is around 200 ft. Figure 63 shows the overall simulation

model with oil and water saturations. The wells flowed at a constant BHP of 1000 psi.

QOcean

DevelopariUniversity License

Figure 63. Unconventional Synthetic Simulation Model in PETREL Showing LGR.

For the three horizontal wells the average hydraulic fracture half-length came to
be the following magnitude; 1040 ft (BR-P-1), 1040 ft (BR-P-11) and 1455 ft (BR-P-18)

and the corresponding horizontal well lengths are: 1,714 ft, 1,744 ft and 3,470 ft.

155



Analysis of the Results
Two scenarios were run using this model:
1. Infinite-acting LGR Boundary (INTERSECT Flux Boundary Condition) run for
10,957 days (~30 years).
a. Awverage fracture permeability same as the matrix permeability.
b. Average fracture permeability 10X that of the matrix permeability.
2. Pseudosteady State LGR Boundary (INTERSECT No Flow Boundary Condition)
run for 2,585,970 days (~7085 years).

a. Awverage fracture permeability same as the matrix permeability.
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Analysis for Scenario 1:

Well# BR-P-18

For this well, as shown in the figure 64, by changing the fracture permeability to

BR-P-18
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Figure 64. Derivative Response in an Infinite Acting Reservoir Showing Radial and
Pseudosteady State Flow in the Same Well by Changing Fracture
Permeabilities Ten Times.

ten times to that of matrix permeability, converts the predominantly flat derivative curve
(radial flow) to a pseudosteady state one (derivative slope is 1). This is dictated by the
permeability field around the well. The take away from this figure is that depending on
the fracture permeability and time for production, the matrix may not get to drain out at
all and the fracture may go into pseudosteady state. Conversely, both the fractures and

the matrix could also be in pseudosteady state, a scenario difficult to attain in an infinite-
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acting reservoir. It confirms what we see in figure 50 through figure 55 where, under
transient conditions, a unit slope precedes the linear slope.

Well# BR-P-11

For this well, from figure 65, the flow converts from bilinear flow to linear flow.

BR-P-11
1
[ | | ® K=km
| Linear kf =km
01 kf = 10km
’ Linear kf = 10km
o
= 0.01
w
]
] oI e
0.001 ¢ Gettm——
0.0001
100 1000 10000 100000 1000000
Time (Days)

Figure 65. Derivative Response in an Infinite Acting Reservoir Showing Bilinear
Converts to Linear Flow in the Same Well by Changing Fracture
Permeabilities Ten Times.

This figure clearly shows that the production is predominantly coming from the
fractures (bilinear flow period is only possible if the fractures are predominantly
draining with the matrix). Since the reservoir is infinite-acting, matrix support is totally
masked by the fractures. We need to confirm this by making no flow boundary and

allowing excessive time for production. This is the motivation for Scenario 2.
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Well# BR-P-1

As can be seen from figure 66, in both the examples, the flow is linear.

BR-P-1
1 I T TTTII I I I T T 11
B kf = km
0.1 Linear kf =km
kf = 10km
0.01 Linear kf = 10km
o
= 0.001
o
= LL L]
0.0001 g || Bf|le * oo I
-
0.00001
0.00000 1
100 1000 10000 100000
Time (Days)

Figure 66. Derivative Response in an Infinite Acting Reservoir Showing No Effect on

Linear Flow in the Same Well by Changing Fracture Permeabilities Ten
Times.

It is not clear from the above figure if in both examples the flow is linear in fracture

only or it is system (fracture and matrix) linear flow. In Scenario 2 this difference will be

more clear.
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Analysis for Scenario 2:

Since a lot of unconventional (horizontal/multilateral) wells are located in tight
spacing, it is more than likely that the SRV is bound by no flow boundary. The
underlying assumption of this statement is that the production has proceeded for
sufficiently long time and the pressure boundaries make their presence felt. Also, to
show the system (matrix + fracture) effect, we have run the simulation for considerable
amount of time. In all the simulation runs there was no water production.

Well# BR-P-18

For this well, as seen in figure 67, for the entire period of time there is linear flow.

BR-P-18

0.1
o

= 0.01
w
o

0.001

100 1,000 10,000 100,000 1,000,000 10,000,000
Time (Days)

Figure 67. Derivative Response of a Well With No Flow Boundary Showing
Predominantly Linear Flow.
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Figure 68. Productivity Index of above Well from INTERSECT.

The corresponding productivity index, from the simulator, is shown in figure 68.
As compared to the Case 1 runs and for fracture permeability equal to matrix
permeability, figure 67 clearly shows that, under bounded reservoir conditions, both
matrix and fracture drain together and the system response is linear (there is no radial
flow). Also seen in the figure are boundary effects (twice the derivative becomes

constant).
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Well# BR-P-11

From the figure 69, for bounded conditions, the well response is linear.

BR-P-11

0.1
o

o 0.01
w
O
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100 1,000 10,000 100,000 1,000,000 10,000,000
Time (Days)

Figure 69. Derivative Response of a Well with No Flow Boundary Showing
Predominantly Linear Flow and Boundary Effects.

As compared to the previous well, this well shows stronger aquifer. The derivative
of dimensionless productivity index is pointing downward and can be seen to behave
similar to steady state pressure derivative, which suggests steady state aquifer support.
Referring back to the productivity equation, eqn.(3-52), for a steady state reservoir the
denominator remains constant but eventually the numerator tends to zero. Everything

remaining constant, we can conclude from eqn.(3-52) that for steady state condition, the
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tendency of dimensionless productivity index (and hence its derivative) would be to fall
to zero in a similar fashion as the derivative of dimensionless pressure.
Well# BR-P-1

From figure 70, we can see that fracture dominates the performance. After linear

BR-P-1
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Figure 70. Derivative Response of a Well With No Flow Boundary Showing Fracture
Linear Flow Followed by Matrix Linear Flow.

flow, the fracture goes into pseudosteady state which is then followed by a linear matrix
response. Another important point to be noted is that the curve is very smooth suggesting
that the boundary effects do not have a significant role to play. This could be because
this well is near to the crest and is most detached from the aquifer as the previous two

wells are. They are nearer to the oil water contact, refer figure 63.
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Conclusions

The following conclusions can be derived from this work:

1. An unconventional reservoir, as represented by Stimulated Rock Volume, is
subjected to multiple boundary conditions other than simple depletion
corresponding to all boundaries at pseudosteady state condition. These variable
and multiple boundary conditions constitute the various drive mechanisms that
affect long term deliverability of these reservoirs and a method is demonstrated
to quantify them. Only transient linear flow reservoirs were considered.

2. If linear flow is the predominant regime of production for these reservoirs, it is a
known fact that the pressure derivative will have only one value, called the half-
slope. Strictly speaking this is only possible for constant rate case. If we make
use of the derivative of dimensionless productivity index, then this drawdown
area generation parameter helps in quantifying the time to reach boundary
dominated flow, for dual porosity reservoirs and constant pressure case, based on
the empirical relation tpy,A~ 1 and tp, =~ 0.1. Thus the entire production
performance of linear flow unconventional reservoir is subjected to two limiting
factors; half-slope and time to reach boundary dominated flow. This eliminates
multiple production scenarios that are possible with conventional rate transient

analysis. These all derivative curves collapse into a single curve for a given Dual

d/p
d(In tp )

Porosity Proppant Number, (%) if versus tpA is plotted and if no

aquifer is present. It is for this reason this plot also helps to quantify the aquifer

effect.
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3. The concept of constant volume fracture is introduced. For a given Dual Porosity
Proppant Number, under transient linear flow conditions, if either the
area/volume ratios is kept constant, using 1D, 2D or 3D matrix geometry
(characteristic length) or the area/volume ratios are variable but the ratio of
matrix to fracture permeabilities vary in such a way that its product with shape
factor (constant characteristic lengths) are in the ratio 1:2:3, then the transient
linear response is same for all these fracture configurations (provided no
boundary effects are reached). As the derivative of dimensionless productivity
index has a fixed value for this transient linear response, long term production
performance of a horizontal fractured well in a dual porosity reservoir, can
theoretically be derived without regard to fracture configuration (matrix

geometry).
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NOMENCLATURE
CHAPTER Il
GOR = Gas oil ratio, SCF/STB.
k./kn = Vertical to horizontal permeability ratio.
MBAL = Material balance.
OWC = Oil-Water contact.
OOWC = Original oil-water contact.
OGOC = Original gas-oil contact.
OOIP = Original Oil-in-Place, STB.
PV = Pore volume, ft*.
R; = Initial gas oil ratio, SCF/STB.
R, = Condensate yield, STB/MMSCEF.

WF = Waterflood.

CHAPTER Il / CHAPTER V

k; = Fracture permeability (single porosity), md.
k¢, = Fracture block bulk permeability, md.

k.., = Matrix block bulk permeability, md.

k.q = Aquifer block bulk permeability, md.

k, = Aquifer block permeability, md.

k, = Lumped parameter barrier permeability, md.

p; = Initial pressure, psi.
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ps = Fracture pressure, psi.

Pm = Matrix pressure, psi.

Pa = Aquifer pressure, psi.

psp = Fracture block pressure, psi.

Pmp = Matrix block pressure, psi.

Paq = Aquifer block pressure, psi.

pcn = Characteristic pressure, psi.

p = Average reservoir pressure, psi.

pws = Wellbore flowing pressure, psi.

¢ = Reservoir bulk porosity, fraction.

@sp = Fracture block bulk porosity, fraction.
@mp = Matrix block bulk porosity, fraction.
®aq = Aquifer block bulk porosity, fraction.
¢, = Aquifer block porosity, fraction.

¢, = Total reservoir compressibility, psi™.

¢y = Fracture block compressibility / Formation compressibility, psi™t.
¢ = Matrix block compressibility, psi™.

¢, = Aquifer block compressibility, psi™.

¢, = Oil compressibility, psi™.

¢, = Gas compressibility, psi™.

¢,, = Water compressibility, psi™.
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S, = Saturation of oil, fraction.

S4 = Saturation of gas, fraction.

S.w = Connate water saturation, fraction.

R, = Gas oil ratio, SCF/STB.

R, = Producing gas oil ratio, SCF/STB.

R, = Volatilized oil gas ratio, STB/SCF.

oy = Matrix Fracture bulk source term, ft/D/ft’.
o, = Matrix Fracture source term, ft*/D/ft’.

a = Matrix shape function for matrix-fracture, ft 2.
a = Matrix shape function for aquifer-fracture, ft 2,
a, = 141.2 (2m) conversion constant, field units.
B = Lumping parameter, dimensionless.

V = Reservoir volume, ft*,

V¢ = Fracture block volume (dual porosity) / Fracture volume (single porosity), ft°.
V,, = Matrix block volume, ft*,

Vg = Aquifer block volume, ft’.

x = Linear dimension, ft.

y = Linear dimension (perpendicular to x), ft.

z = Linear vertical dimension, ft.

A,,, = x,h, Area of cross-section of reservoir, ft2.

A = x,y,, Horizontal (Lateral) Area of reservoir, ft°.
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B = Formation volume factor, RB/STB.

B, = Oil formation volume factor, RB/STB.

B, = Gas formation volume factor, RB/SCF.

x. = Length of horizontal well (dual porosity) / Lateral dimension (single porosity), ft.
xy = Fracture half-length (single porosity), ft.

v, = Lateral extent, fracture half-length (dual porosity), ft.

1, = Wellbore radius, ft.

1, = External radius of reservoir, ft.

w = Width of fracture (single porosity), ft.

h = Height of reservoir, ft.

h,, = Linear dimension of matrix, ft.

hs = Linear dimension of fracture, ft.

h, = Linear dimension of aquifer, ft.

h;,, = Linear dimension of lumped parameter barrier, ft.

h,.n» = Linear dimension of matrix block (fracture spacing), ft.
h,s = Linear dimension of fracture block, ft.

h,,, = Linear dimension of matrix block, ft.

hs, = Linear dimension of fracture block, ft.

hqq = Linear dimension of aquifer block, ft.

u = Viscosity of matrix fluid, cp.

U, = Viscosity of aquifer fluid, cp.
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Uaq = Viscosity of aquifer block fluid, cp.

urp = Viscosity of fracture block fluid, cp.

urg = Viscosity of fracture block fluid, cp.

Ump = Viscosity of matrix block fluid, cp.

U, = Viscosity of ail, cp.

ng = Viscosity of gas, cp.

wu,, = Viscosity of water, cp.

A, = Total mobility, md/cp.

4, = Mobility of oil, md/cp.

Ay = Mobility of gas, md/cp.

Aw = Mobility of water, md/cp.

n = Reservoir diffusivity, ft*/hr.

ny = Fracture diffusivity, ft’/hr.

T, = Lumped parameter transmissibility, md-ft.
(Tp) s = Effective lumped parameter transmissibility, md-ft.
J = Productivity index, STB/D/psi.

s = Skin, dimensionless / Laplace space operator.
sy, = Convergence skin, dimensionless.

Spew = Linear convergence skin, dimensionless.
u = Laplace space operator.

q = Flow rate, STB/D.
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N,, = Cumulative production, STB.

d, = Distance to nearest horizontal boundary, ft.

L,, = Length of horizontal well, ft.

w = Dimensionless storativity matrix-fracture, dimensionless.

waq = Dimensionless storativity aquifer-fracture, dimensionless.

A = Dimensionless interporosity flow parameter matrix-fracture, dimensionless.
Aqq = Dimensionless interporosity flow parameter aquifer-fracture, dimensionless.
nyp = Dimensionless diffusivity ratio, dimensionless.

omrp = Matrix Fracture bulk source term, dimensionless.

Ap = Dimensionless area, dimensionless.

C¢p = Dimensionless fracture conductivity, dimensionless.

L, = Penetration ratio, dimensionless.

pp = Dimensionless pressure, dimensionless.

p;jp = Dimensionless pressure, dimensionless.

psp = Dimensionless fracture pressure aquifer-fracture, dimensionless.

prpp = Dimensionless fracture pressure matrix-fracture, dimensionless.

Pmp = Dimensionless matrix pressure, dimensionless.

Pmpp = Dimensionless matrix block pressure matrix-fracture, dimensionless.
Pagp = Dimensionless aquifer block pressure aquifer-fracture, dimensionless.
pwsp = Dimensionless well (fracture) pressure, dimensionless.

Payp = Dimensionless average reservoir pressure, dimensionless.
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qp = Dimensionless rate, dimensionless.
qwrp = Dimensionless well (fracture) flow rate, dimensionless.

qavp = Dimensionless rate based on average reservoir pressure, dimensionless.

N,,p = Dimensionless cumulative production, dimensionless.
NP|5<p = Single porosity proppant number, dimensionless.
Np|D(p = Dual porosity proppant number, dimensionless.

xp = Dimensionless linear dimension, dimensionless.
yp = Dimensionless linear dimension (perpendicular to xp), dimensionless.

zp = Dimensionless vertical linear dimension, dimensionless.

Xpe = Dimensionless outer boundary linear dimension, dimensionless.

Ype = Xpe Dimensionless outer boundary linear dimension, dimensionless.

tp = tpa. Dimensionless time based on area, A.,,, dimensionless.

tpa = Dimensionless time based on area, A, dimensionless.

ks = Dimensionless transmissibility-mobility aquifer-fracture, dimensionless.
k¢, = Dimensionless transmissibility-mobility matrix-fracture, dimensionless.
Knp = Dimensionless transmissibility-mobility matrix-fracture, dimensionless.
Kqq = Dimensionless transmissibility-mobility aquifer-fracture, dimensionless.
Jp = Dimensionless productivity index, dimensionless.

& = Ratio of linear matrix dimension to linear aquifer dimension, dimensionless.
A = Ratio of dimensionless storativity (matrix-fracture) to dimensionless storativity

(aquifer-fracture), dimensionless.
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CHAPTER IV
pp = Laplace domain dimensionless pressure, dimensionless.

Pp pp = Laplace domain dimensionless pressure partial penetration case, dimensionless.

qp = Laplace domain dimensionless rate, dimensionless.

Np,p = Laplace domain dimensionless cumulative production, dimensionless.

K, = Bessel function of the second kind, order zero.

K; = Bessel function of the second kind, order one.

rp = Dimensionless radius, dimensionless.

rp; = Dimensionless radius for single well scenario, dimensionless.

rp, = Dimensionless radius for single well scenario, dimensionless.

rp3 = Dimensionless radius for single well scenario, dimensionless.

rps = Dimensionless radius for single well scenario, dimensionless.

f = Relative well location for single well scenario, fraction.

6 = Relative well location for single well scenario, fraction.

a = Drainage area width, ft.

b = Drainage area length, ft.

m = Summation counter.

n = Summation counter.

rp3; = Dimensionless radius for multi well scenario forming fracture, dimensionless.
rp3j = Dimensionless radius for multi well scenario forming fracture, dimensionless.

Tpa; = Dimensionless radius for multi well scenario forming fracture, dimensionless.
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paj = Dimensionless radius for multi well scenario forming fracture, dimensionless.

B; = Relative well location for multi well scenario forming fracture, fraction.

B; = Relative well location for multi well scenario forming fracture, fraction.

§; = Relative well location for multi well scenario forming fracture, fraction.

6; = Relative well location for multi well scenario forming fracture, fraction.

n,, = Well number counter for multi well scenario forming fracture.

X, = Location of observation well for boundary element method.

x,, = Location of source well for boundary element method.

py = Pressure drop between two observation wells in fracture for constant rate case.

pr = Pressure drop between two observation wells in reservoir for constant rate case.

rpq = Distance between two observation wells for boundary element method.

qp = Dimensionless rate generated between two observation wells for constant rate
case.

Dr cpress = Pressure drop between two observation wells in fracture for constant
pressure case.

Dr_cpress = Pressure drop between two observation wells in reservoir for constant
pressure case.

dp_cpress = Dimensionless rate generated between two observation wells for constant
pressure case.

g = Point source flow rate, STB/D.

L = h Total length of the point source / height of reservoir, ft.
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o ., 98 .
V—£l+£] Vector.

22 92
Vi= a2t a2 Laplace operator.

V e u = Divergence of vector field u over the domain Q.

u e n = Flux of vector field u at a point on the boundary T.
u=ui+vj Vector field, dimensioned.

n = Normal vector, dimensioned.

Q = Domain of a function, dimensioned.

' = Boundary of domain, dimensioned.

6 = Dirac delta function.

P(x,y) = Point source placed at a point inside the domain Q.
Q(&,n) = Point on a circular boundary at a distance r.

p = Point at the boundary T.

q = Point at the boundary T

r=|Q—-P|= \/(5 —x)? + (n — y)? Distance of point source at the center of circular
domain to any point away from the center.

dQ, = Subscript of differential inside the domain (.

dsg = Subscript of differential at the boundary T'.

[H] = Square matrix of influence coefficients.

[G] = Square matrix of influence coefficients.

{u},; = Matrix (Vector) of principal variable of the domain Q having boundary T;.

{u,}; = Matrix (Vector) of the flux of principal variable at the boundary T7;.
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{u}, = Matrix (Vector) of principal variable of the domain Q having boundary T,.

{u,}, = Matrix (Vector) of the flux of principal variable at the boundary T,.
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APPENDIX A: PSEUDOSTEADY STATE DUAL POROSITY MODEL -
FORMULATION AND LAPLACE DOMAIN SOLUTION (WARREN & ROOT

MODEL)

The governing differential equation for linear fluid flow in matrix and fracture is given

by:

km
Fracture: —V pr = fﬂbefa—tf — (P = Df) e (A-1a)
Matrix: 0 = @, Lm at +alb(pm 173 I (A-1b)

The second term in eqn.(A-1a) is referred to as the source term, o,,. During
pseudosteady state the pressure (average pressure) change inside the matrix is constant.

Also, all properties need to be put as bulk properties:

Vi
Ky = Koy (Vf+m) ......................................... (A-22)
kep = ki (=2 (A-2b)
fb — f Vf+m """""""""""""""""""""

182



Similarly, the matrix fracture bulk source term, a,,, is expressed as:

Omf = Om (V—m) = akj’"(%) ('pm — pf) ............ (A-3)

Vf+m

where «, is the shape function:

an(n+2)

a= pL s (A-4)
If we define dimensionless variables as:
X
xD = \/m ................................................. (A'5a)

__ bi—p __ 2mkh
Pip= —— =

Dch aquupi _pj|j=fb or mb or aq

The derivatives of the above entities will be:

O(toAo) = 0x  0(tonAan)(0(toy/Aem)} = 0% o (As2)

d(PpPch — Pi) = Pch0pp = — Op Pen0%Pp = 02D e, (A-6b)

Substituting xp in eqn.(A-1a) and egn.(A-1b), we have:

] krp azpf _ opy Kmb
Fracture: T oxh PrpCricw T Acw —': (Pm - Pf)
. _ 0Pm kmp
Matrix: 0 = @mpCmAcw ot +a Ay p (pm - pf)
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Substituting pp, in eqn.(A-1a) and egn.(A-1b), we have:

.k 62p 0(10 Pc —Pi) km
Fracture: ~2pe, 522 = 0p 6oy =50 = @ Acy 2 {PmoPen = P) = (Propen = 1)}
Tv- d(pm ch— i) kem,
Matrix: 0 = @upcmdey, =278 + @ Ay 2 {(pmoPen = Pi) = (ProPen = Pi)}

On cancellation of common terms, results in:

. azpr Prp U CFAcw apr kmp
Fracture: oxd . kpp 50— @ Acw T {Pmp — Pso}
- _ Pmb U CmAcw OPmpD kmb _
Matrix: 0 = o 5 T @ Acw K {me pr}

We also have the following:

— _ Py
(@ ct)mb+rb
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Substituting w in egn.(A-7a) and eqn.(A-7b) and assuming compressibility is constant,

we have:
) ’pfp (@ cdmaf U Acw OPfD kmb
Fracture: o =@ o L —a Acwk—fb{me — Pfp} e (A-9a)
- _ . (o Ct)m+f U Acw 0PmpD kib _ _
Matrix: 0 =(1-w) o 22+ a Any o {pmp — P} - (A-9D)

Here expression for dimensionless time and dimensionless interporosity flow parameter

are as:

_ kep t -
R S Ty B (A-10)
kmb
A= @ Apy T e, (A-11)

Then the final form of the dimensionless form of the governing equations are:

Fracture: Vipip = w 6apth —MPmp — Do} s (A-12a)
D

Matrix: 0 = (1= )2 4 Appp = Pro} oo (A-12b)
D
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The Laplace transform of the above equations is:

Fracture: 62? = WSPrp — AM{Pmp — Prp}  coeevereerinnnn (A-13a)
Matrix: 0 =(1— @)sPmp + MPmp — Prp} woovveeee (A-13b)

Solving egn.(A-13b) for p,,p:
P = G D s (A-14)

Substituting this in egn.(A-13a) we have:

0*p;p . _ (A-(1-w)s-2
ax3 WSPfp A Prp { (1-w)s+2 }

=0+ ol

w(1l-w)s+A]
- (1—w)s+,1]Spr
0’85 —
S22 = SF ()P = 0 v (A-15)
D
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Where,

w(1l-w)s+A
(1-w)s+A

f(s) =

f(sy = 22 G)=se () (A-16b)

)

Eqgn.(A-15) is a homogeneous partial differential equation with the following general

solution:

Prp = A cosh(xp+/sf(s) ) + B sinh(xp/sf(s) )evvererrennnn. (A-17)

For a closed linear reservoir, the initial and boundary conditions are:

Initial Condition: Prp (XD, S) = O, (A-18a)

Inner Boundary Condition: LI e (A-18b)
dxp xp=0 s

Outer Boundary Condition: 9P7p = 0 e (A-18c)
0%p lxp=xp,
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Differentiating with respect to x,, and using the inner boundary condition, we have:

4Prp = _25_71 = ./sf(s) A sinh (xm/sf(s) ) ++/sf(s) B cosh (xm/sf(s) )

dxp xp=0

Since sinh xp[,,—o = 0, implies:

Using outer boundary condition and substituting eqn.(A-18c) in egn.(A-17) we have:

dm
dxp

=0 =+/sf(s) A sinh (xDew/sf(s) ) - 2?ncosh (xDew/sf(s) )

XD=XDe

_ an cosh(xpeysf() )
= T @)

Hence the particular solution for constant rate of eqn.(A-17) in Laplace domain is:

g3

_ 27T cosh(xDe sf(s
PID = TS5 sinh(xpeys7 ) ) COSh(xDVSf () - f( Slnh(xm/Sf(s )...(A-21)

188



The particular solution at the well for constant rate is given by:

2 cosh(xpesF ) )

PwfD = ST5F®) smh(xpedor@ ) T

am 1+exp(—2xpey/sf(S) )

Pwsp = Sm 1—exp(—2xpe sf(s)) ...............

The particular solution at the well for constant pressure is given by:

_sf(®) sinh(xDe\/ sf(s)

T 2ms cosh(xDe sf(s)

qwa

~— I —

_sf(s) 1—exp(—2xDe\/sf(s))

Awfp = rs 1+exp(~2xpey/sf(5) )

Where f(s) is given by eqn.(A-16) and s is the Laplace space variable.
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APPENDIX B: TRANSIENT DUAL POROSITY MODEL - FORMULATION AND

LAPLACE DOMAIN SOLUTION (BELLO MODEL)

The governing differential equation for linear fluid flow in matrix and fracture is given

by:

: kv g2y, = Opf _ _kmp_ 9Pm )
Fracture: p Vepr = @ppcy Ot Whm/2 0z |y T (B-1a)
Matrix: %Vzpm = <pmbcm‘%" ................................................... (B-1b)

The second term in eqn.(B-1a) is referred to as the source term, a,,. Here the following

symbols for matrix/fracture permeability stands for bulk property:

kyp = k (V}f'fm) ....................................... (B-2a)
_ Vr
N ) B (B-2b)
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For a matrix block, the initial and boundary conditions are:

Initial Condition: Pmp(z,t =0) =p;

........................................... (B-3a)
Inner Boundary Condition: % o = 0 forallt .., (B-3b)
Outer Boundary Condition: pmblzthm =pr forallt ... (B-3c)
For a fracture block, the initial and boundary conditions are:
Initial Condition: Prp (X6 =0) = Pjoveeiiiiiii, (B-4a)
Inner Boundary Condition: g = — (kf%) %L:O for all t and const. rate .. (B-4b)

Outer Boundary Condition m| =0 forallt ..o (B-4c)
ox Iy = Xe
If we define dimensionless variables as:
Xp = :;CW for all fracture .......coocvvvvevens (B-5a)

Zp =

Z .
for all matrix
hyrm/?2

_ pi-p _ 2mkh
Pp

o = wann (Di = D) e (B-5¢)
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The derivatives of the above entities will be:

d(xpy[Acw) = 0x d(xpy/Acw){0(xp/Acw)} = 8%x ... (B-6a)

9(zp hymn/2) = 0z 0(zp hym/2){0(2p hym/2)} = 0%z ... (B-6D)

0(PpPcn — Pi) = Pendpp = — Op Pen0%pp = 0°p e, (B-6¢)

Substituting xp, in eqn.(B-1a) and eqn.(B-1b), we have:

Fracture: krp 0%pr QrpCrA 95 _ kmbAcw 9Pm

: u 0x3 foeffew 54 Whm/2 0% |y, /2
Matrix: Kmb 9%pm _ o 1 opm

' u 0zh mbtm -, 5y

Substituting pp, in eqn.(B-1a) and eqn.(B-1b), we have:

. ks azpr _ a(prpch_pi) kmpAcw 0(OmpPch—Di)
Fracture:  —=pcn axd  Prp Crhcw ot )2 92 -
Matrix: kmp 9%pmp % O(PmpPch—Di)

= C
P Pch azg PmbCm 4 ot
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On cancellation of common terms and putting in additional terms, results in:

92 cFAcy 0 kmbAcw 0
Fracture: P/p _ P REyTew /D ZmbAew ZPmpf (B-7a)
6XD kfb at kfbhm/z 0z Z=hp/2
. 92 kfp Acy h#, 0
Matrix: Pmb _ Pmb P om Zjb Zow Zm TPMD || eeevesvensrsninsis (B-7b)
aZD kmp kfb Acyw 4 at
We also have the following:
c
T L Y (B-8)

(@ cOmb+rb

Substituting w in eqn.(B-7a) and eqgn.(B-7b) and assuming compressibility is constant,

we have:
0%p (o cp) WAcw 0D Kmp Acw O
Fracture: ID — g Llmif B low FP/D _ ZmbZew OPmbf (B-9a)
6XD kfb at kfbhm/4 dzp zp=1
. 92 (¢ cr) ukep Acy h3, 0
Matrix: CPmb - (1 — @) A B fb Cow T TPmD e, (B-9b)
dzp Kmb kfp Acw 4 Ot
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Here expression for dimensionless time and dimensionless interporosity flow parameter

are as:

_ krpt -
tD B (o Ct)m+f PAgy T (B 10)

Then the final form of the dimensionless form of the governing equations are:

Fracture: Viprp = w Ofp A 0Pmpl (B-12a)

dtp 3 0zp zp=1

Matrix: V2pp = 3(1;(”)657"‘” ......................................... (B-12b)
D

Taking Laplace transform of the above equations:

0%Prp - A 0Dmp
Fracture: axg) = w{sPrp — Prp (xp, 0)} —3 ;’TDD T (B-13a)
=
. 0°Pmp 3(1— _
Matrix: 6251) = (Aw) IRy e sl G201 1) § SO (B-13b)
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Matrix Equation

Let us find the solution of eqn.(B-13b) for p,, first. For a matrix block and in Laplace

domain, the initial and boundary conditions are:

Initial Condition: PmpXp =1,5 2 0) =0 ecveverieeee (B-14a)

Inner Boundary Condition: 9%mp =0 (B-14b)
aZD ZD=O

Outer Boundary Condition:  Prmplzp=1 S Dfp coveveevveieiiieeieesice, (B-14c)

Applying initial condition, we have:

’Pmp 3(1-w)
;;2)” — A“’ Ry | B (B-15)

The above is a homogeneous partial differential equation with the following general

solution:

Pmp = A cosh <ZD /s 3(1;“)) > + B sinh (zD /s 3(1;“’) ) ,,,,,,,,,,,,, (B-16)
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Differentiating with respect to z, and using the inner boundary condition, we have:

dPmbD
dzp

=0=

zZp=0

3(1—w) . 3(1—w) 3(1-w) 3(1-w)
/STA Sth(ZDJS ) )-I—\/STB cosh(zD /s ) )

Since sinh zp |, - = 0, implies:

Using outer boundary condition and substituting egn.(B-14c) in eqn.(B-16) we have:

- 3(1—w)
Prp = A cosh <ZD ’s 7 >

zZp=1

_ Pfp -
A= — ( 53(1_w)> ....................................................... (B-18)
A

Hence the particular solution for constant rate of eqn.(B-15) in Laplace domain is:

A

- PfD 3(1-w) )
Pmp = ( 3(1_w)> cosh <ZDJS 2 ) """""""" (B-19)
cosh( [s————
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Fracture Equation

To find the solution of fracture eqn.(B-13a) for p;,, we need to convert the initial and

boundary conditions in egn.(B-4) to dimensionless form in Laplace domain as:

Initial Condition: Prp(xp = 1,5 9 00) =0 e,
Inner Boundary Condition: DrD = e
0xp Xp=0 s
. dp7D
Outer Boundary Condition ~ =2£2 =0 e
9%p lxp=xep
Applying initial condition, we have:
d pr - A ame

But from eqn.(B-19) we have
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This derivative will change sign when expressed in terms of p;5, which inserted into

eqn.(B-21) gives:

3°Drp A S e 3(1-w)
Pfp __ -— A A : —w —_
03 w Sprp + 3 —< 3(1_w)> smh< S——— ) Drp
cosh ,ST

=spf—D{w +% ’3(1;—(‘))5 tanh( /S@)} .......... (B-23)

This is of the form:

3°Drp _
(O T R — (B-24)

Where,

f(s)=w+ % 3(1;(‘))5 tanh( S 3(1;‘)) ) .............. (B-25a)

r© =01+ @) @) 35 Q) mn( 5559 @) )| - @250

Again, egn.(B-24) is a homogeneous partial differential equation which is the same as

eqn.(A-17). Refer to Appendix A for the rest of the derivation.
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APPENDIX C: PSEUDOSTEADY STATE AQUIFER DUAL POROSITY MODEL -
FORMULATION AND LAPLACE DOMAIN SOLUTION (LINEAR EQUIVALENT

EHLIG-ECONOMIDES AND AYOUB MODEL)

The governing differential equation for linear fluid flow in matrix and fracture is given

by:

_ kh _ opy kq
Fracture: (T)f V2pr = @rcrhy Era (pa — pf) .................. (C-1a)
Matrix (Aquifer): 0 = @ycghg % + g% (T IR (C-1b)

The second term in eqn.(C-1a) is referred to as the source term, g,. During pseudosteady
state the pressure (average pressure) change inside the matrix is constant. Also, all
properties need to be put as bulk properties:

kaq haq

kh _ kaghg [ Vag _ Haq
(=) = —(V— =\ o, taghag | e (C-29)
u aq Ua f+aq = J- = i
Hfp Haq
kh _ kfhf Vf _ Hfp
() = _(V_ = Tl | (C-2b)
B/ rp Uf \Vftaq —Jo Jb a4 "aq
Hfb Haq
Vaq Paq hagq
((ph)aq = (V ) = ( h ST BRI (C-2¢)
f+aq Prphrpt@Paq hagq
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= Vf = (prfhrf ) -
@ = () = (5] i (C-2d)

Similarly, the matrix fracture bulk source term, g, is expressed as:

_ Va \ _ ka( Va _ krphyp Kag ha k
O'aq = 0,4 (Vf+a) =a z(m) (paq - pfb) =a (l‘-—fb + Z—aqq> (;)aq (paq - pfb) ............. (C'S)
where a, is the shape function:
_ (Tplefy )
a= Teaq s (C-4a)
kq (Tple
And, Aaqs = g<k_j§) A, = <%)ACW .............. (C-4b)

In terms of bulk properties the governing equations can be recast into:

. (ksphsb | kaqhaq) (kh 2 — 9psp _
Fracture: ( i + iaq ) (u )fb Vepep = (‘be hep + @aq haq)(‘l’h)fb f "o

kephep | Kaghaq) (K B ]
Q( Kfb + Uaq )(”)aq (paq pfb) ----------- (C-53)

) . g kep b
Matrix (Aquifer): 0 = (@rp hep + Pag hag) (@R aq Ca th +a (% +

m) (E)aq (Pag = Pro)  ovrveeersssesssnesssnesn (C-5b)

Haq H
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If we assume x is the linear dimension and define dimensionless variables as:

xD:

Tan
Di—D 2T (kfb hfb kaq haq
Pjp Pch  @1qB\ pgp Hagq (p‘ p])|1=fb or aq

The derivatives of the above entities will be:

d(xpy[Acw) = 0x d(xp /A ){0(xp\Acw)} = 8%x

O(PpPen — Pi) = Pendpp = — 0p Pen0%pp = 02D e,

Substituting xp, in eqn.(C-1a) and eqn.(C-1b), we have:

(% hsp | Kaghaq) (kh) 9%pf _
Fracture: ( i + ™ ) (M )fb axk ((pfb hip + Qaq haq)(fph)fb Cr

i
ACW ot

op

EACW <kfbhfb + kaq’hﬂ) (E) (paq _pfb)
aq

Hfp Haq H
Matrix (Aquifer):

0 =
apaq
(¢fb hfb + ¢aq haq)(¢h)aqcancw 7 +

kfph kag ha k
a Ay ( fobfb + oL q) (;)aq (Pag — Py)
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Substituting pp in eqn.(C-1a) and eqn.(C-1b), we have:

. (Rrbhsp kaqhaq\ (kh 62pr
Fracture: ( f + ) (_) 9°prp _ b 4+ on ho) X
Hfb Haq kfp Pen 5,2 ((pfb fb T Paq aq)

d(pfppch—pi) kep hrp kaq ha k
((ph)fb CfAcw - ot a Acw ( Wfb + Zaq . (;)aq {(apanpCh - pi) -

(PfD'Pch - 'Pi)}

at +

Matrix  (Aquifer): 0 = (@fp hep + Pag hag) (@R agCagAcw

ke h Kaq ha
aAcw ( et T ") (ﬁ)aq X {(9pagppen = pi) = (ProPen — Pi)}

On cancellation of common terms, results in:

. kh azpr _ (‘be hept+@aq Raq) crAcw 9D fp k _
Fracture: (T)fb = @h)ps <kfb o T haq) D g A, (;)aq {Pagp — Pyp} v (C-82)
Il-fb Haq

H H . _ (‘be hfp+@aq haq) Caq Acw ODagD k _ _
Matrix (Aquifer): 0 = (ph)q, (ku ' g haq) 99 4 g A, (M)aq {Pagp — Ps0) (C-8D)
b aq

Reapplying eqgn.(C-2) to the above we get:
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keb hyp

) Bfb *psp (@b hfp+Paqhaq) cf Acw 0DfD _
Fracture: Kibhrb | kaghaq | oxj (@h)sp krbhrb | kaqhaq at
Hfp Haq KUfp Haq
kaq_
Haq
QACW m {pan - pr} .............. (C-9a)
Hfb + Haq
Matrix (Aquifer):
0 =
( h) ((be hfp+@aq haq) Caq Acw OPagD +
¢ aq kfb hfb +kaq haq at
Hfb Haq
kaq_
___Haqg — -
aAcqy KfbPsb | kaghagq {pan pr} ------------------ (C-9b)
Kb Haq
We also have the following:
QfpC
Wag = =L, (C-10)

B (@ ctdag+rb

Substituting w in egn.(C-9a) and egn.(C-9b) and assuming compressibility is constant,

we have:
. *prp pfp
Fracture: Kib 533 = Pag 5y~ Aag{Pagp = Dyp}wveveee (C-11a)
Matrix (Aquifer): 0=(1- waq)"’%ﬂ’ + Aag{Pagp — Psp} .- (C-11b)
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Here expression for dimensionless time and dimensionless interporosity flow parameter,

are as:

kep h
( bl
H'fb

kaq haq) ¢
b= ((be hfp+@aq haq) CrAcw

Haq

Where: a= Toders

Where:

and: T, = (—)

kep Rep

— kaq haq Pi—Paq
pan = 27'[( + 4B

Hfb Haq

kfb hrp n

Hfb

kaghaq\ Pi—Pr
qB

Pfp = 27T<

Haq
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Then the final form of the dimensionless governing equations is:

0
Fracture: bevzpr = Wgqq % - /1aq {pan - pr} ------------- (C-13a)
. . 0Pq
Matrix (Aquifer): 0 =(1— waq) atZD + Aag{Pagp — Prp} e (C-13b)

Applying the initial condition of aquifer to the Laplace transform equations results in:

%775 - .
Fracture: Kfb %g) = WaqSPsp — Aaq {Pagp — Prp} - (C-14a)
Matrix (Aquifer): 0 = (1 — Waq)SPagp + Aaq{Pagp — Do} oo (C-14b)

Solving eqn.(C-14b) for pqp:

_ Aa _
Pagp = m Pfp e (C-15)
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Substituting this in egn.(C-14a) we have:

azm: Wagq SPos — Lﬂ — Aaq_(l_waq)s_/‘laq
ax3 Kfb Prp Kfb Prp (1-waq)s+iaq

= () lowe + gl oo

= < 1 ) [“’aq(l—waq)s+/‘1aq

*sb (1-wagq)s + Aaq

|77

22p7p _
azg) = Sf(SPp =0 e (C-16)

Where,

_ waq(1-waq)s + Aq
f( ) - bef(l—a)aqq)s+laqq]

If both the matrix (aquifer) and the fracture (reservoir) have the same fluid then k¢, = 1.

Eqgn.(C-16) is a homogeneous partial differential equation which is the same as

eqn.(A-17). Refer to Appendix A for the rest of the derivation.
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APPENDIX D: TRANSIENT AQUIFER DUAL POROSITY MODEL -
FORMULATION AND LAPLACE DOMAIN SOLUTION (LINEAR EQUIVALENT

BOURDET MODEL)

The governing differential equation for linear fluid flow in matrix and fracture is given

by:

: krY vz, = 9pr _ (_ka \ 9pa i
Fracture: (M )f Vepr = @rpcrhy o (Ma ha) 0z |yp, (D-1a)
Matrix (Aquifer): (%) Vip, = (paca% ................................... (D-1b)

a

The second term in eqn.(D-1a) is referred to as the source term, a,. Here all properties

need to be put as bulk properties:

kaq hagq
ﬂ _ kqhg Va |l __ Hag _
(M )aq T U (Vf+a) | Kptrb | kaghag | (D-22)
Hfp Haq
Kb e
kh _ kfhf Vf _ Hfb
(_) - _<V_ | ®sphrb | kaghaq | 0 T (D-2b)
K/ fp ufr f+a ZJbjb  Taq 7aq
Kb Haq
V Paqha
Pag = (725 ) = (o) D-2c
((p )aq Vftaq @b hip+@aq haq ( )
14 @rf hrr
W = () = () D-2d
((p )fb Vftaq @b hfp+@aq haq ( )
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In terms of bulk properties the governing equations can be recast into:

. (Rspheb | kaghaq) (KR 2 _ oprp _
Fracture: ( e )(M )fb Vpsy = (@10 Mo + Pag hag) (PR ¢r =

Kfbhsp Kaq haq) kh 1Y) 9pa )
(At 4 faatea) (2 ), G2 3., - 03
. . . (krphsp kag ha kh _
Matrix (Aquifer): ( i + zaq ") (I)aq V2, = (@rp by + Pag hag) X
0pa
((ph)aq Ca atq ------------- (D'3b)
For an aquifer block, the initial and boundary conditions are:
Initial Condition: Pag(Zt = 0) = Djeeieiccec (D-4a)
Inner Boundary Condition: ap_zq =0 forallt . (D-4b)
z=0
Outer Boundary Condition: paq|z_h =pr forallt ... (D-4c)
=haq
For a fracture block, the initial and boundary conditions are:
Initial Condition: Pt =0) = Pj e, (D-5a)
Inner Boundary Condition: q = — (kf ACW) a3 for all t and const. rate .. (D-5b)
K Ox lx=0
Outer Boundary Condition 9y =0 forallt ..o, (D-5c¢)
X=Xe¢

208



If we assume x is the linear dimension and define dimensionless variables as:

Xp = = for all fracture ................. (D-6a)
zp = hiq for all aquifer — ...ocoocvvvvenee, (D-6b)

_ pi-p _ 2m [(kgphgp kaq haq . -
Pjp = DPch N 011113( Ufb + Hagq )(pl p])|j=fboraq """""" (D 6C)

The derivatives of the above entities will be:

d(xpy[Acw) = 0x d(xp A ){0(xp/Acw)} = 8%x . (D-7a)
a(ZDhaq) = 0z a(ZDhaq){a(ZDhaq)} = 0%Z (D-7b)

0(PpPcn — Pi) = PenOpp = — Ip Pen0%Pp = 02D e (D-7c)

Substituting x, in eqn.(D-1a) and egn.(D-1b), we have:

. (ksphsp | kaqhagq (ﬂ) vy _ 95 _
Fracture.( o + oy ) ) axd (fﬂfb hfb + Paq haq)(fph)fb Cr Ay ot

(e + Fere) () (i) (5) e
Hfb Haq K7 aq hZ ha oz

z=hg

. e N keph Kaqhaq (kh\ 9°Pa
Matrix (Aquifer): ( fszfb + Z : ") (7) azgq = (@sp hep + Pag hag) X
a aq

0pa
(@h)aqCaq (h2) =
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Substituting pp, in eqn.(D-1a) and egn.(D-1b), we have:

(krphsp | Kaghag) (kR ’prp _
Fracture: ( . + iog ) (M )fb Deh ke ((pfb hep + @aq haq)((ph)fb X

A d(pfppcn—ri) kfp hyp kaqhaq\ (kh 1\ (Acw\ 2(PagpPch—Dpi)
Cf cw ot - + - - -

H'fb Haq u aq h_%l ha oz Zzha
) o (kephpp kaqhaq\ (kh\ 9%Pagp
Matrix Aquifer): ( L + (—) = Rep 4 ©gp Ry ) X
( q ) Kb laq P aq 6212) ((pfb fb (paq aq)
9(PagpPch—Di)
((ph)aq Caq (hzzz) %
On cancellation of common terms results in:
kh 92
Fracture:(—) 2P
t/rp 0xp
((be hfp+@aq haq) crAcw _ ODfD kh Acw\ 9Paqp
h x 22rD (—) ( )— ........... C-8a
((p )fb (kfsff;fb+kazahqaq> ot 1/ aq h3, dzp zp=1 ( )
Matrix (Aql,“fer) (ﬂ) 9%psp :( h) (@rb hyp+Paqhaq) Caq(hi) IPagp (C'8b)
), 23 PN)aq KfbRfb  Kaq hag g
Hfp Haq
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Reapplying egn.(D-2) and putting in additional terms to the above we get:

kfb hfb
; Bfb %*psp h (@b hfp+Paqhaq) cf Acw 0D fD
Fracture: | 77 L Faghag | ox3 (oh) fp 0 7o, Fag hag o
Hfb Haq KUfp Haq
kaq haq
Haq (Acw) OPaqD
rbhfb | kaghaq [\ 'hg /) ozp |, _,
Hfb Haq
kaq haq

Matrix (Aquifer): rad 9%Pagd _ (o (915 hyb+Paq haq) cag (h) IPagp

"\ Kphyb | kaghaq | 8z} PMaq Kfbhsb | kag hag at

Kb Haq Efb Haq
The above equations simplify to:
Fracture:
Hfb %ppp
kfbhb | kaghaq | oxf
Hfp Haq
hp+Pag hag) € Acw O
((ph)fb (¢fb fbt®Paq aq) fAcw OPfD
kep hyp +kaq haq Jat
Kfb Haq
kfb h’fb
Kfb
Kaq haq kephrp +kaq haq 5
Hlaq (Aﬂ) Hfb Haq PagD D-9a
e o | (G2 B 7 (D-9a)
Ufb Haq Hfb
Krbhfb | kaqhag
Hfp Haq
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Matrix (Aquifer):

kaq haq )
Kagq 0"Pagp _
krohyb | kaghag | 0z
Hfp Haq

krb kaq
Ufp Ufp
kep hsp kaq haq kep hsp kaq hagq
) Lfb Haq Efb Haq 0PagD (D-9b)

(¢fb hfp+@aq haq) Caq (hé) (Aﬂ
kfb kaq at

h
((p )aq kfb h’fb + kaq h,aq Acw
Hfb Haq

_ HBfp M
FbPrp  kaghaq | \ FroPb | kaqhaq
Hfb Haq Hfp Haq

We also have the following:

— _%rpr -
Waq = Cmqepy T (D-10)

Substituting w in eqn.(C-9a) and eqgn.(C-9b) and assuming compressibility is constant,

we have:
. azpr apr (Aaq) 0PaqD
Fracture: Kb oxz ~ Paage T \12) Taz 2p=1
i i 92 _ 12(1-wgqq) @
Matrix (Aquifer): (1 be) Pan _ 12(1-waq) 3Pagp

Aag atp
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Here expression for dimensionless time and dimensionless interporosity flow parameter

are as:

krbhrb | kaghaq),
Hfb Haq

f) = T D-11
b ((be hep+@aq haq) CrAcw ( )
kaq
Haq
Krbhrb |, kaq hag
12 u Ha
Aag = 77 Acw b o s (D-12)
" Afb
Krbhtb | kaq haq
Hfp Haq
Then the final form of the dimensionless governing equations is:
. 2 apr /‘laq apan _
Fracture: K VDD = Waq—— 3t (12) “onp oot (D-13a)
. e\ _ 2 _12(1-w) OPagD i
Matrix (Aquifer): (1= Kkpp)V?Pagp = T oty (D-13b)
Taking Laplace transform of the above equations:
. azm _ —_— = _ M apan
Fracture: Krb Ak a)aq{spr prp (xp, O)} (12 )—azD -

12(1 waq){ pan (xD; 0)}

Matrix (Aquifer): (1 — rcfb) il p“‘”’
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Matrix (Aquifer) Equation

Let us find the solution of eqn.(D-13b) for p,,p first. For a matrix block and in Laplace

domain, the initial and boundary conditions are:

Initial Condition: Pagp(Zp = 1,8 > 00) = 0ecvrcrci, (D-14a)

Inner Boundary Condition: % o =0 (D-14b)
Outer Boundary Condition:  pgqp P DFD  ceerereereeiee s (D-14c¢)

Applying initial condition, we have:
PPagp _ 1207000) (5 s (D-15)

az3 Aag

The above is a homogeneous partial differential equation with the following general

solution:

Dagp = A cosh (zD ’s@) + B sinh (zD /sM) .............. (D-16)
aq aq
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Differentiating with respect to z, and using the inner boundary condition, we have:

dDaqD
dZD

:0:

Zp=0

¢ 207%aa) 4 oy <ZD\/5—12(1_waq) > + JS 20-0w) p coeh (ZD 5—12(1—waq)>
Aaq Aag Aag N

Since sinh zp |, ,—o = 0, implies:

Using outer boundary condition and substituting eqn.(D-14c) in eqn.(D-16) we have:

Prp = A cosh <ZD ’512(%:)“")>

Zp=1

A= PID e (D-18)
cosh( s 12(%2‘“”)

Hence the particular solution for constant rate of eqn.(D-15) in Laplace domain is:

Aaq

pan = PfD cosh <ZD SM)(D{LQ)
< 12(1—waq)> N Aag
cosh| [s ———=
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Fracture Equation

To find the solution of fracture eqn.(D-13a) for psp, we need to convert the initial and

boundary conditions in egn.(D-4) to dimensionless form in Laplace domain as:

Initial Condition: Prp(xp = 1,5 2 00) =0, (D-20a)
Inner Boundary Condition: P/D = e (D-20b)
0xp Xp=0 s
Outer Boundary Condition % =0 (D-20c)
9%p lxp=xep
Applying initial condition, we have:
0%p Aaq\ 9PaqD
Py Waq SPfD (E) 92p g (D-21)

But from eqn.(D-19) we have

= sinh( s A—)m ...(D-22)
zp=1 cosh( < 12(1-waq) ) aq



This derivative will change sign when expressed in terms of p;5, which inserted into

eqn.(D-21) gives:

= sm{waq +% /s 12(+.:'“’) tanh( s 12(%?“‘”)} ............ (D-23)

This is of the form:

62—
azg) = Sf(S)Pp =0 e (D-24)
Where,
Aa 12(1-wq 12(1-wq
) = g + 2 [s ZEe v ([ 22l ) 2s)

Again, eqgn.(D-24) is a homogeneous partial differential equation which is the same as

eqn.(A-17). Refer to Appendix A for the rest of the derivation.
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APPENDIX E: FULL PSEUDOSTEADY STATE MATRIX AND AQUIFER
FRACTURED DUAL PERMEABILITY DUAL MOBILITY MODEL -

FORMULATION AND LAPLACE DOMAIN SOLUTION

The governing differential equation for linear fluid flow in limited aquifer (matrix block)

and the fractured reservoir (reservoir fracture block and reservoir matrix block) is given

by:

Fracture: (%)f Vipr = @scrhy % — g% (pa —pf) —a (S)m (pm — py) --(E-1)
Matrix (Aquifen):  (57)  7°Pag = Gacaha G2+ a () (pa=pp) wovvvnin (E-1b)
Matrix (Reservoir): (%)m V2P = @mCmhim 65—:‘ +a (S)m (Pm = D) werereerre (E-1c)

Since the aquifer is limited, the aquifer height is related to the linear dimension of
reservoir (y is lateral dimension of fractured reservoir and y,, is vertical dimension of
aquifer) by:

Yag = hag = €Y v, (E-1d)
The second and third terms in eqgn.(E-1a) is referred to as the source terms, g, and o,,.

During pseudosteady state the pressure (average pressure) change inside the matrix is
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constant. This means that LHS of eqn.(E-1b) and eqn.(E-1c) are both zero (to be done

later). Also, all properties need to be put as bulk properties:

Aquifer:
kaq haq
kh kaha [ Va Haq E-2
— = =] i -zad
( u )aq Ua (Vf+a) kb hrp + kag haq ( )
Hfb Haq
kh kehe( Vs Kfb
—) = LX) = ———F"—-— . E-2b
(”)f us (Vf+a kb hrb +kaq haq ( )
Hfb Haq
V Paq ha
h =<‘“’)=< Mg ) .......................... E-2¢
(@h)aq Vitaq @fbhfp+Paq haq ( )
74 h
_ f _ Prb b
(o = () = ( | J— (E-24)
f+aq @rp hptPaq haq
Reservoir:
Kh X kmb hmp
_ km Vm _ Hmb E-2
— == =l T | i -Z€
( u )mb Hm (Vf+m> “rblrb + Fanb Mnb ( )
Hfb Hmb
Kfb b
kh kf Vf Hfb
= =L|—L )=———L2—— | E-2f
( u )fb ur (Vf+m> Wi207) + Kmb b ( )
Bfb Bmb
7 Pmb Rmb
e = (22) = ) »
((,0 )mb Vi+m @b hfpt @mb hmb (E-20)
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(@h) o =< i ):( OrbRpo ) ......................... (E-2h)

Verm @rbhfp+ @mb hmp

Similarly, the aquifer and matrix fracture bulk source terms are, o,q, and opf,is

expressed as:

anzaa( L ): “ﬁ< . )(paq_pfb)z

Vita — ta \Vfta
kfb hfb kaq haq) (kh) (1)
a + X (— = Db ) e E-3a
a (Lo 4 feten)x () (5), (baa —ppo) (E-32)

Vim km ( Vim ) <kfb hfb kmp hmb)
0, = 0 = q— — =« + X
mf = om (Vf+m> 1 \Viem (Pmo = Pro) Kib Hmb

(%)mb (). (o= Pp) - (E-3D)

where q, is the shape function:

o = Lo (E-4a)
- L
ka (T )e
And, Aagr = & (;j) Aoy = ( zrfff) Acyy oo (E-4b)
1
(Tb)eff -_ 1 haq ................................... (E'4C)
Tp * 3kaq
k
Ty = h—l; .......................................... (E-4d)
And where a, is the shape function:
4n(n+2)
”h’; .................................... (E-4e)
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In terms of bulk properties the governing equations can be recast into:

Fracture:

<kfb hfp n kaq haq) (Q) %psp _
Kfb Uaq w/pp 0¥?

apfb krp hyp kaq hafI) kh
Rep + Qg h Wepcr——— a ( + (_) X
(Qofb b T Paq aQ)(go )rb ¢ ot =\ s Haq K7 aq

(), (oo =ps) = a (552 + 22) () ),,, (s = p70)- 50

Matrix (Aquifer):

2
(i) <kfb hep n kaq haq) (ﬂ) q aaz;zq — ((pfb hfb + Pag haq)((ph)aq cy az:q +

&2 Ufb Kagq w/g
kfb hfb ka ha kh 1
a (L 4 ren) () (), Paa=Pp) o (E-5b)

Matrix (Reservoir):

kKepRep | Kmp Rmp | (kR %0mp 0P
( Hfb + Hmb ) (I)mb 9z2 ((pfb hfb + Pmb hmb)((ph)mb Cm ot +
kephep | kb hmb) kh 1
+ — = P T E-5¢c
( Kfb Hmb (u )mb (h)mb (Pmo be) (E-5¢)
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If we assume v is the overall linear dimension and define dimensionless variables as:

yp = == forall fracture ........
ACW
eyp, = == forall aquifer ...
ACW
zp = ——  for all matrix
D \/m ---------
pi—p 2 <kfb hsp kaq haq)
Pjp Deh aiqB \ fp laq (pl p’)|1=f or aq
pi—Dp 21 (kfb b | kmb hmb)
Pip Dch a1qB\ Ufp Hmb (p‘ Pj )l j=fb or mb

The derivatives of the above entities will be:

a(VD\/E) = 0y a(YD\/E){a(yD\/E)} = 0%y ..
ooTa) = 02 (oA (0o Aew)} = 0% o

ed(yovAcw) = 0y €2 0(yp/Au){0(yp/Acw)} = 0%y

O0(PpPch — D) = PenOPp = —0p  perd’pp =0%p ...
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Solution of Matrix (Aquifer)

Substituting yp, in eqn.(E-5b), we have:

l kfp hep kaq hagq @ 62paq _ 0Pagq
(82)< Kfb + Hag ) (M )aq ayg - ((pfb hfb + (paq haq)((ph)aq Ca Acw ot +

kKephep . Kag haq> (kh) (1)
al + — - -
= dew < Kb lagq u aq h aq (paq pfb)

Substituting pp in above, we have:

(l) <kfb hfb + kaq haq> (@) p az(panPch_Pi) —
g2 rb Haq v/ aq ch 0yp

d a ch™Pi
(‘be hep + Paq haq) (@h)aq Ca Acw v qDai e +

keph Kag ha
a Aoy ( el ") (%)aq (%)aq {(0PagoPen = i) = (ProPen — i)}

On cancellation of common terms, results in:
(&) (%) e -
e2)\u aq ay3

(¢£b hyb+@aq haq) dPagp kh 1
(kfb hep + kaZ ha,j) ((ph)aq Ca Acw atq + QACW (7) (Z)aq (pan - pr) -------- (E'8)

aq
Hfp Haq
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Reapplying egn.(E-2) to the above we get:

kaq haq

(i) Uaq azpan _
e2) \ krphsb | kaghaq | 8y}
Hfb Haq

(955 hfb+Paq haq) Pagp
((ph)aq kfb hfb N kaq haq Ca cw ot +
Hfb Haq

kaq haq
Haq

aAcy T Pfb  kaghag (%)aq (Pag — Pfp)  coeeeereeeerereiseneisseeiesenens (E-9)

Hfb Haq

We also have the following:

— PrbCr -
Waq = (@ cdaqpp T (E-10)

Substituting w,q in eqn.(E-9) and assuming compressibility is constant, we have:

2
(Eiz) (1- Kf)a:T‘%‘w = (1 - wyq) 35:;11) + Aaq(Pagp — Psp) - (E-11)

Dimensionless time and dimensionless interporosity flow parameter, are given by:

krbhrb | kaqhaq),
Hfb Haq

) = T E-12a
b ((be hep+@aq haq) CrAcw ( )

kaq

— Haq
Rag = & Ay | iy gy | o (E-12b)

Hfb Haq
kfb h’fb
KUfb
Kf Rrp Rl Faghag | (E'lZC)
Hfb Haq



Where: a= L (E-12d)

Kaq
1
Where: (Tb)eff = <i+—hﬂ> ............................... (E-12e)
Tp 3kaq
: — (ko -
and: T, = (hb) ............................................. (E-12f)
_ ke hep | Kag haq) Pi—Pagq ]
pan B 27-[( Hfb + Haq g T (E 129)
— kfb Rsp kaq haq) pi—Df )
Pro 2n< bl featu) POBL (E-12h)
The final form of the above equation, since the LHS is zero, is:
1-wqq\ 0Pa Aa
0 =¢? (1-_K;>TZD + ¢&? (1_,Zf> (Pagp = Pfp) cerereee (E-13)

Applying the initial condition of aquifer to the Laplace transform equations results in:

1-waq) Aa
0 = ¢? ( ° q)span+ g2 (

q
1—Kf 1—Kf

)(m ) P (E-14)

Solving eqn.(E-14) for pgqp:

Aa _
Pagp = — DD e, (E-15)

- (1-waq)s+2aq
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Solution of Matrix (Reservoir)

Substituting zj, in egn.(E-5b), we have:

OPm
= ((pfb hfb + Omp hmb)((ph)mb Cm Acw I;tb +

<kfb hep +kmb hmb) (ﬂ) 0*Pmb
Krb Hmb w)mp 925

kfp hrp kmp hm kh 1
a ACW ( Wfb + ‘an b) (T)mb (Z)mb (pmb - pfb)

Substituting pp, in above, we have:

<kfb hrp + kmp hmb) (&) Den 0*Pmp —
Lfb Hmb w) gyt 0zh

m
(0rp ey + Pomp ) X

( m ch™ L')
(@M b Cm Acyy TREEZAEE

kfph mb Pm
a Acw ( fszfb + £ Ifn:lb b) (%)mb (%)mb {(apmepch - pi) - (prpch - pi)}

On cancellation of common terms, results in:

w/mp 92D Bfb b | Fnp Panp at b
Kfb Hmb

(ﬂ) Srmop _ (pp) —(()fb ot Pmb hmb)) Com Ay 2222 4 o A, (%) (%)mb (Pmvp = Pon) -+ (E-16)
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Reapplying egn.(E-2) and converting this equation into aquifer-fracture domain we get:

kmb hmp 2
Hmb 0“PmbD —
krbPrb | kmphmp | 0z}
Hfb Hmb
("fb "fb | kag haq)
(oh) (@fb hep+ Pmb hmp) \ Hrb taq ) (@rphfp+Paqhag) c ODmbp |
mb ((be hep+@aq haq) (kfb hep + kmb hmb) (kfb hep N kaq haq) miew 5,
Hfb Hmb Hfb Haq
kmb hmp
Hmb 1 _ _
@ Ao | T e (h)mb e (E-17)
Hfb Hmb
We also have the following:
QfpC
W= L e, (E-18a)
(@ c)mb+£b
A= Laa (@b b+ @mb hinb) (E-18b)
w ((be hfp+®aq haq) ''''''''''''''''''''''''

Substituting w and A in egn.(E-17) and assuming compressibility is constant, we have:

(1 =) 222 = (1 - ) () (*22) 2222 4 A(prusy — pyo) - (EV19)
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Here dimensionless time and dimensionless interporosity flow parameter and others, are

as:

(kfb hfb+kmb hmb>t
Hfb Emb _ [ Kf 1

top = -<—)(—)t ..(E-20a
bD (@b hfp+ @mbhmb) Cf Acw Kfp) \A p - )

kmb
— Hmb _
/1 - g ACW kfb h’fb + kmb hmb """"""""""""""" (E 20b)
Hfp Hmb

_ Hfb -
Kb = | Trpip gy | (E-20c)
Kfb Hmb

kfphsp + kmb hmb) Pi—Pmb (E-20d)

=2n ( ............
Pmbp Ufb Hmb qB

keph —
oy kmbhmb> Pi=Psb (E-208)

= 27r( ............
pfbD Hfb HUmb qB

The final form of the above equation, since the LHS is zero for pseudosteady state, is:

0 = ( 1-0 )(A) (ﬂ) a;;,:;m N (1_1}%) (P = P e (E-21)

l—be Kf

Applying the initial condition of aquifer to the Laplace transform equations results in:

0 = (1= )W) (L) s o + A P = Byo) v (E-22)

Solving egn.(E-22) the Laplace domain solution, p,,,p, IS:

2
(1—w)(A)(Y—fb>s+/‘l

Pmbp = Dfpp e, (E-23)

228



Solution of Fracture

There are two different dimensionless pressures. The dimensionless pressure which is
reservoir matrix-fracture domain based and dimensionless pressure which is aquifer-
fracture domain based. We know dimensionless time measurement is based on latter and
this is the reason for normalizing everything on that domain. We have the two equations

as:

Aq _
Dagd = 7———— DD oo (E-15)

- (1-waq)s+2aq

A
(1—w)(A)<Y—fb>s+/‘l

Pmpp = DFpD  weeeereeneenes (E-23)

We also know fracture domains are the same:

PfbD _ DfD
(kfb b Kmb hmb> (kfb "fb  kaq haq)
Kb Hmb Kb Haq
ﬁ) E-24
Pfbp (be DD eeeeeeemiiiiiiiis ( )

Again, for the fracture we have:

<kfb hfp n kaq haq) (Q) %psp _
Ufb Kaq w/pp 0¥?

3
(@5 hep + Pag hag) (@R fp Zib —

kfb hfb kaq haq> (kh) (1)
o + O NE — ) -
—< Kfb tag ) \ 1/ gq \n/aq (Pag = pps)

kfp hrp kmp hm kh 1
s L I ) IR TRl )9 — (E-52)
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Substituting yp in eqn.(E-5a), we have:

kfb hfb kaq haq> (kh) 62pfb _ 6pfb
+ = = (@b Py + Paq hag ) (@R) pp Cf Agyy L2 —
( Wfb laq P P aylz) ((pfb fb (paq aq)((p )fb f “Few ot

a Ay <kfb i + Laq haq) (’;—h) (%)aq (paq - pfb) -

be y’llq aq

a Aoy <ku b 4 Kb hmb) (%)mb (%)mb (Pmb — Psb)

fb Hmb

Substituting pp in eqn.(E-5a), we have:

(kfb hfp + Kaq haq> (@) 0*(PrpPch=Pi) _
Hfb Haq K7 ¢ ayg

O(PfpPch—Di
(‘be hep + @aq haq)(‘ph)fb Cr Acw ( fDath -

(%)aq (%)aq {(panpch — Pi) — (prpch — Pi)} _

keph mb hm
aAcw ( fszfb + £ :n:lb b) (%)mb (%)mb {(pmepch —pi) — ('beDPch - Pi)}
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Rearranging and canceling common terms results in:

(), 5=

wley 0yh
(@fb hyptPaqhaq) psp kh 1
((ph)fb K hrp  Fag hag Cr Acw ot & dew (7) (H)aq (pan - pr) -
Hfb Haq

(kfb "fb Kb hmb>

@Ay St S (1)
Kb Haq

Substituting back egns. (E-2a) to eqn.(E-2h) into the above eqgn. we get:

Kfb *prp @b hsp (@b hfp+Paq hag) ovfp
kfbhrb 4+ Kaqhaq | ayj Pfbhrp+Paqhaq/) (Krbhsb | kaqhaq foew e
Hfb Baq Hfp Haq
kaq hagq
—__Hag (1 _ _
Hfb Haq
(kfb "fb  Jnb hmb) Komb hon
Lfb Hmb Lmb (1)
a A = —
Efp Uaq Efpb Hmbp

231



Introducing some additional terms and we know, hgj, = hypyy, -

kfb hfb
Efb %*pfp @rphsp (@b hfp+Paq haq) dvfp
kephyp +kaq haq ayg ©rb hfp+Paq haq kep hfp +kaq haq f “ew at
Hfp Haq Efb Haq
kaq haq
—__Hag (1 _ _
Hfb Haq
(ku heb km: hmb> ku hfb kb hmb )
b mb b Emb
aA (—) -
cw kfb hfb N kaq haq kfb h’fb kfb h'fb + Kmb hmp h mb (pme pfbD)
Kfb Kagq Kfb Kfb Hmb

The resultant form of the governing differential equations are:

22 0
Kf azg) = Wagq % ~ Aaq(Pagn = Prp) = (A %) (Pmo — Pron)

The final form of the governing differential equations is:

Wag\ 0P Aa
Vzpr = (K_fq)% - (K_fq) (Pan - pr) -1 (Pme - beD) ... (E-25)

Taking Laplace transform of the above equation:

d%prp a . Aa _
pg) = (wk_;) {Spr — DPsp p, 0)} - (K_fq) Pagp — pr} -2 {pme - beD} .. (E-26)
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For a closed linear reservoir the initial and boundary conditions, in Laplace domain, for

fracture are:

Initial Condition: Drp(VDyS) = O (E-27a)
e dPfp 21
Inner Boundary Condition: —| S e e ———————— (E-27b)
dyp yp=0 s
Outer Boundary Condition: dpi| = 0o (E-27¢)
ayp YD=YDe

Substituting this, eqn.(E-15) and eqn.(E-23) in eqn.(E-26) we have:

d’prp Aa N A
7= ( >{Spr} ( ) T————Psp — Do — A Prbp — Dfbp
dyp (1 (uaq)s+)l (- w)(A)( fb>s+l

d“Dfp

e
dyp <

o, o (1-w))( 2 L
){spr} + (/'hzq) {(1—(:”)51)/1& }{spr} + A (1_10))(1\)(5_};3’3 {SpfbD}

Using eqn.(E-24), converting everything into consistent aquifer-fracture domain, we

have:

(12@ _ (M) ) (1—w)(A)<Kf_b> N (’Lﬂ) {M} {5%}

(1- (D)(A)< >S+A Kf (1-waq)s+Aaq
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This is of the form:

L0/ —— (E-28)
Where,
oy 2
o= (o) a0 oy (i )| e

(1—w)(A)<’Z—fb>s+)l
Which, when combining the first two reservoir terms, can also be also written as:

f

o= (22 (D0 ) | o) (s e

Kf (kTw)(A)CZ_:)S_I_(%) Kf (1-waq)s+2aq

Eqgn.(E-16) is a homogeneous partial differential equation which is the same as

eqn.(A-17). Refer to Appendix A for the rest of the derivation.
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APPENDIX F: TRANSIENT MATRIX FRACTURED DUAL PERMEABILITY
DUAL MOBILITY MODEL - FORMULATION AND LAPLACE DOMAIN

SOLUTION

The governing differential equation for linear fluid flow in limited aquifer (matrix block)

and the fractured reservoir (reservoir fracture block and reservoir matrix block) is given

by:

Fracture: (%)f Vip, = (pfcfhf% — g%(pa —ps) — (H :/Z)m a:—zm v (F-1a)
Matrix (Aquifer): (%)a V2P = @aCoha 22 +a (E)a (Pa = DPf) i (F-1b)
Matrix (Reservoir): (';—h) Vip, = (pmcmhm% ............................................... (F-1c)

m

Since the aquifer is limited, the aquifer height is related to the linear dimension of
reservoir (y is a lateral dimension in the fractured reservoir and y,, is vertical dimension
in the aquifer) by:

Yag =hag = €Y i, (F-1d)
The second term in eqn.(F-1a) is referred to as the source terms, o, and a,,. The
reservoir matrix is in transient but aquifer is in pseudosteady state. Also, all properties

need to be put as bulk properties:
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Aquifer:

kaq haq
(), = () - |
w/aq ta \Vfia kfb"fb | kaq haq
Hfb Haq
(ﬂ) _ kfhf( Vf) _ Kfb
wlg tr \Vita krb"rb | kaqhag
Hfb Haq
V, h
(Ph)gq = < - ) = <M) .......
Vivaq @rbhfp+Paqhag
Vs @rb hsp
o= ()= ()
f+aq (behfb+(Paqhaq
Reservoir:
kmb hmp
(), ~32655) -
w/mp  Hm \Viem Krbfb | Kmb hmp
Hfb Hmb
kfb hfb
() =2e) = s
1/ rp ur \Vrem - kfbhfb_l_kmbhmb
KUfb “mb

Vm ) — ( Pmb Rmb )
Vitm @rbhfpt @mb hmp

(@) mp = (

) ()
Vitm @rb hept ©mp hmp

((ph)fb = (
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Similarly, the aquifer and matrix fracture bulk source terms are, ouq, and op,is

expressed as:

Oaq = Oa (i) =a ﬁ( & )(paq _pfb) =

Vita — Ma \Vf+a

« <kfb b 4 Kag haq) X (ﬂ) (%)aq 2 ) O

Ufb Haq u aq

Vm> ( k ) Pm
0. = 0. =
mf m(Vf+m wh/2) 0z lp=py, /2

<kfbhfb + kmbhmb>x (g) ( 1 ) dPmb
Ufb Hmb U/ mp \h2/2/ 0z

z=hmp/2
where q, is the shape function:
o= Toderg
—_— kaq
ka (T )e
And, Nagr = @ (k—]‘j) A, = (Z—fﬁ) Ay oo
1
(Tb)eff -_ 1 haq ............................
Tp 3kaq
k
Tb = h_l; ....................................
And where a, is the shape function:
4n(n+2)
hZ,
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In terms of bulk properties the governing equations can be recast into:

Fracture:

<kfb hfp n kaq haq) (Q) %psp _
Ufb Kaq w/pp 0¥?

opfp kfp hyp Kag ha kh 1
(¢fb hfb + Paq haq)(¢h)fb Cr ot a ( Wrb + Zaq q) (I)aq (E)aq (paq -

_ (krphep | kmw hmb) kh 1\ P ]
G Lo I ) I F R — (F-52)
Matrix (Aquifer):

i krb hsp kaqhaq ﬂ azpaq . %
(82) < Wb + laq ) (ﬂ )aq 9y? - ((pfb hfb + Paq haq)(‘ﬂh)aq Ca at +
kfphyp kaqhaq kh 1 _ )
g (ke . aahor) (1 GO GRS R— (F-5b)

Matrix (Reservoir):

<kfb hrp + Kmp hmb) (ﬂ) %pmp

IPm
i . W) oz = (‘be htp + Omp hmb)(¢h)mb Cm —I;tb ------ (F-5¢)
m m.

For an matrix block, the initial and boundary conditions are:

Initial Condition: Pag(Zt = 0) = Djceeiiiiiicis (F-6a)
Inner Boundary Condition: % =0 forallt .., (F-6b)
z=0
Outer Boundary Condition:  paq| _ =py forallt (F-6c)
—haq
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For a fracture block, the initial and boundary conditions are:

Initial Condition: Pt =10) =Pj e (F-6d)
Inner Boundary Condition: q = — (M) 9y for all t and const. rate ... (F-6e)
K Ox lx=0
Outer Boundary Condition L3 =0 forallt .o, (F-6f)
X=Xe

If we assume y is the overall linear dimension and define dimensionless variables as:

y

Yp = = for all fracture ............... (F-7a)
£y .
EVp = 5= for all aquifer .............. (F-7b)
Zp = for all matrix  ........... (F-7c¢)
_ pi=p _ 2w (Kfphgp kaqhaq . :
ij - Dch - aqu( Hfb + Haq )(pl pJ)l]:f oraqg T (F 7d)
— pimp _ 21 (Kpphpp | Kb s\ i
pjp= "= a1q8< - )('pl p,)|j=fb0rmb .............. (F-7e)

The derivatives of the above entities will be:

d(yp[Acw) = 0y (yoAw){0(vovAcw)} = 0%y s (F-8a)

a(ZD hrm/z) = 0z a(ZD hrm/z){a(zD hrm/z)} = aZZ --------------- (F'8b)
€ a(YD\/Acw) = dy g* a(yD\/Acw){a(YD\/Acw)} = 0%Y w (F-8¢c)
0PpPch —Pi) = PecrOPp = —0p  Pep0’Pp = 0%P (F-8d)
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Solution of Matrix (Aquifer)

Substituting yp, in eqn.(F-5b), we have:

1 kfp hep kaq hagq @ 62paq _ 0Pagq
(82)< Lfb + Haq ) (M )aq ayg - ((pfb hfb + (paq haq)((ph)aq Ca Acw ot +

kKephep . Kag haq> (kh) (1)
al + — = -
U Aew < Wb laq w/ aq h/aq (paq pfb)

Substituting pp in above, we have:

(l) <kfb hfp n Kaq haq> (ﬂ) 0% (DPagpPch—Di) = (‘be hep + Pag haq) x

g2 rb Haq v/ aq Pen 0yp

a a ch™Pi
((ph)aq Cq Acw (P qDapt np ) +

keph Kag ha
a Aoy ( el ") (%)aq (%)aq {(0PagpPen = pi) = (ProPen — i)}

On cancellation of common terms, results in:

(5) (&) T
g2/ \u g

aq
(91 hrp+Paq hag) Pagp kRY (1
(kfb hep + kaq haq> ((ph)aq Ca Acw ot + QACW (M )aq (h)aq (pan - pr) -------- (F'g)
Hfp Haq
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Reapplying egn.(F-2) to the above we get:

kaq haq

(i) Uaq azpan _
e2) \ krphsb | kaghaq | 8y}
Hfb Haq

(955 hfb+Paq haq) Pagp
((ph)aq kfb hfb N kaq haq Ca cw ot +
Hfb Haq

kaq haq
Haq

QACW m (%)aq (pan — pr) ................................ (F-lO)

Hfb Haq

We also have the following:

— PrbCf -
Waq = (@ Caqepp T (F-11)

Substituting w, in eqn.(F-10) and assuming compressibility is constant, we have:

2
() - Kf)"’;’T%qD =(1- waq)"’%w + Aaq(Pagp — Pp) - (F-12)

Here expression for dimensionless time and dimensionless interporosity flow parameter,
are as:
kfp h
( fbifb +kaq haq) ¢
t

_ Hfp Haq
D ((be hfp+@aq haq) CrAcw
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kaq

Aaq = EACW kfbhfbu_l_% ............................ (F-13b)
Hfb Haq
kfb h’fb
— Kfb
Kf = kfb hfb . Kaq hag | 1 (F'13C)
Hfb Haq
Where: L, (F-13d)
aq
1
Where: (Tp)esr = <—hq> ............................... (F-13e)
Tp " Skaq
and: T, = (’;—Z) ............................................. (F-13f)
_ kiphep | Kaghaq) Pi—Pa
Pagp = 27T( Ly . Lea ‘I) e (F-13g)
_ kfp hyp kaqhaq\ Pi—Df )
pr B 27-[( Ufb + Haq ) 7: S (F l3h)

The final form of the above equation, since the LHS is zero, is:

0 = 82 <1_waq> apan + 82 (Aa

q
1-kf dtp 1-kf

) (pan — pr) .............. (F-14)
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Applying the initial condition of aquifer to the Laplace transform equations results in:

1-wq _ Aa S
0 = &2 ( fq>span + &2 (ﬁ) (pan — pr) ........... (F-15)

Solving eqn.(F-15) for pyqp:

Aa —
Paad = (apg)stiag PID oo (F10)

Solution of Matrix (Reservoir)

Substituting yp in eqn.(F-5b), we have:

(kfbhfb + kmp hmb) x (&) 9% pmp —

Kfb Hmb t)omp 92h
hip) 9Pm
(@5 Py + Qb hanp ) (@) iy €y (Tb) % ---------------------------------------------------- (F-17)

Substituting pp in above, we have:

2
<kfb hsp n kmb hmb) (ﬂ) ha ®mbpcp-py) _
Ufb Umb T 0z}
h12nb) d(PmbPch—Pi)
4 ot

(‘be htp + Omp hmb)(fﬂh)mb Cm (

On cancellation of common terms, results in:

kh 32pmpp _ (@£b hpp+Pmb hinb) (hrznb) DmbD
(u )mb z3 (kfb hep + kb hmb> (@R)mp €m 4 gt T (F-18)
Hfb Hmb
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Reapplying egn.(F-2) to the above we get:

kmb hmb

Hmb 0*DmbD — ( h) ((pfb hfp+omp hmb) (hrznb) 0PmbD (F-19)
Kfbhfb + kmb hmp azg P )mp kep hyp N Kb hmb 4 gt e
Krb Hmb ) Hamb

On simplify the above and putting in additional terms we get:

kmb hmb 2
Hmb 9“PmbD —
Krbheb | kmphmp | 023
Kfp Kmb
kfp kb
Kfp Hmb
Kb Rrb | kmp hmp kb Prb | kmp hmp
2 + +
‘mb ''m, mb cw m m. mbD
(N s (@b hpb+Pmb hmb) . (h ) (A ) | “&m _ tmb | b _ Hmb Pmbp (F-20)
Kro ifb | kmp hmp PVAVEWY “b. | “mb. ot
Kfp Hmb Hfb kh¢
KebPfb | kb hmp b b kmp hmp
Kb Kb kb bmb

Converting this equation into aquifer-fracture domain we get:

kmb hmb 2
Hmb 0“DmbD —
krbhrb | kmphmp | 0z}
Hfb Hmb
("fb "fb | kag haq)
((ph) ((be hfp+ ®mp hmb) Hfb Haq ((be hfp+@aq haq) (hrznb) (Acw) x
"D (@ rp hip+Pag hag) (Kb hrb + fmb hmp | (Krp b | kag hag MmN\ 4 J \dew
Hfb Hmb Hfp Haq
kfp kmb
Kfb “mb
Krbrb | kmb hmb Kfbrb | kmb hmb
Lfp HEmb Lfp Hmb OPmbD (F-21)
kfb kmb at -------------------------------------
) Hmb
Kb hrh komp homp KfbRfb | kmb hmp
Wi T Hmb Krb Hmb
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We also have the following:

_Prbfr F-22a
(@ comppp ( )

— (Lagq) _ (@b hfp+ Pumb hmb) -
A= ( ® ) (075 hrpPaghag) (F-22b)

Substituting w in eqn.(F-9) and assuming compressibility is constant, we have:

azpm _ 3(1—0)) be apm
(1 =) 625“’ == ) (K—f)T;’D ............... (F-23)

Here dimensionless time and dimensionless interporosity flow parameter and others, are:

krbhrb | kaghaq),
_ Hfb Haq _

Xr) (L -
N ((be hep+@aq haq) CrAcw N <be> (A) tD ............ (F 243.)

kmb
Hmb
Kb Prb | kb b
12 Kfp Hmb

A, T (F-24b)
Afb
keb Rfb n kmb hmb

Lfb Emb

thp

/1_

T h:

kfb hfb
Hfb

kep hyp + kaghaq |7 (F-24C)
Kb Haq

be =

— kebheb Kmb hmb \ Pi—Pmb )
e L el (F-24d)

kfp hyp Kmb hmp \ Pi—Pfb
= Zn( L + ) .................... F-24e
Prbp Ufb Hmb qB ( )

The final form of the above equation, is:

1 3(1-w) 0Dm
(&) (1= k) Vo =252 () (L2) 2mn....... (F-25)
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Let us find the solution of eqn.(F-13) for p,4p first. For aquifer block and in Laplace

domain, the initial and boundary conditions are:

Initial Condition: Pmbp(Zp = 1,5 5 0) = 0 (F-26a)

Inner Boundary Condition; ~ 22me2 =0 s (F-26b)
Zp ZD=0

Outer Boundary Condition:  Prmpplzp=1 = Dppp  woeevevereeveeniisniesi, (F-26¢)

Applying the initial condition of aquifer to the Laplace transform equations results in:

1 0%PmbD 3(1-w) K o
(&) (1= ) T2 =2 ) (2] {55 — Py (2,00}

OPmbb _ 2 (@ ) (’%”)) R el S (F-27)

2
0z

The above is a homogeneous partial differential equation with the following general

solution:

Pmpp = A cosh <ZD\/S <3(1;w) n) (’;—’:’)) ) + B sinh <ZD\]S <@ (A) (%)) ) ...(F-28)
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Differentiating with respect to z, and using the inner boundary condition, we have:

% . o= \/s (3(1;&)) (A) (%”)) A sinh ZDJS <¥ A) (i—T)) +
[ ) s [Emm)

Since sinh zp|,,—o = 0, implies:

Using outer boundary condition and substituting egn.(F-26c) in egn.(F-28) we have:

Drpp = A cosh ZDJS <—3(1;w) ) <KK—’;’)>>

Zp=1

A= PIOD e (F-30)
3(1—-w) Kf_b
cosh(\]s(—)L (A)( > )))

Hence the particular solution for constant rate of eqn.(F-27) in Laplace domain is:

i

) 0 ) e
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Solution of Fracture

There are two different dimensionless pressures. The dimensionless pressure which is
reservoir matrix-fracture domain based and dimensionless pressure which is aquifer-
fracture domain based. We know dimensionless time measurement is based on latter and
this is the reason for normalizing everything on that domain. We have the two equations

as:

Ag _
pan = pr ............................... (F'16)

- (1-waq)s+2aq

Pmbp = biet cosh | zp s(gu_‘”) 0 (m)) ..... (F-31)
cosh(\/_(;(M(A)(Kf_b))) A Kr
A Kf

We also know fracture domains are the same:

PfbD _ DfD
(kfb "fb  kmb hmb> (kfb "fb  kaq haq)
Hfp | Hmb Kb Hagq
be -
TR o) S —— (F-32)
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Again, for the fracture we have:

(kfb hfp n Kaq haq> (@) *psp _
Ufb Haq w/pp 0¥?

apfb kep hfp kag ha kh 1
(gofb hfb + Paq haq)(goh)fb Cr ar a ( Kfb + Zaq q) (I)aq (E)aq (paq -

D) — (kfbhfb + kmbhmb) (@) ( 1 ) OPmb
b Hfb Umb ) p \h2/2/ 0z

Substituting yp in eqn.(F-5a), we have:

kfb hfb kaq haq) (kh) azpfb _ apfb
+ = = Rep + @gq R W) fp Cp Apy L2 —
( Kfb Haq P fb 6y12) (gofb fb goaq aq)(§0 )fb f “ew at

kfb hfb kag ha kh 1
aAcqy ( i + Zaq q) (T)aq (Z)aq (paq - pfb) -

(kfbhfb + kmbhmb> (@) (Acw) OPmb
Ufb Hmb i/ mp \h?/2) 0z

z=hmp/2

Substituting pp in eqn.(F-5a), we have:

<kfb hfp n kaq haq) (Q) 0%(pfpPch—Pi) _
Krb Kagq w/ep yp

d(prpPcn—pi)
at

Keph Kaq ha
@ Aoy ( Loth e ") (%)aq (%)aq {(PagoPen — 1) = (ProPen —Pi)} —

<kfb hep n kmp hmb) (ﬂ)
Ufp Hmb u

(‘be hsp + @aq haq) X (@h)¢p cr Acwy

( Acw ) O(PmpPch—Pi)
h2/2 mb 0z

mb z=hmp/2

249



Rearranging and canceling common terms results in:

(kh) %*psp
wley 0yh

1/ aq

(@b hfp+Paq haq) opfp kh 1
((ph)fb (kfb nep . kaZ haZ) Cr Acw ? —a Acw (_) (Z)aq (pan - pr) -

Hfb Haq

(kfb b, Kb hmb)

Kfp Hmb (ﬂ) (Acw ) OPmbD
kephep +kaq haq "/ mb h2/2 mp 9z z=hmp/2
Hfb Haq

Substituting back egns. (F-2a) to eqn.(F-2h) into the above eqn. we get:

z=hmp/2

Kfb 9’pgp _ @b hfp (@fbhfp+®aq haq) c oPfp
kfb hfb +kaq haq 63/[2) Orb hfb"'q)aq haq kfrp hfb+kaq hagq f “iew at
Hfb Kaq Kb Haq
kaq haq
___Hag  |(1 _ _
Hfp Haq
(kfb b Jmb hmb> Ko homb
Kfb HEmb Kb (Acw ) OPmbD
kfp h

krp hfb+kaq haq fb7fb kmb hmp h2/2 mb 92

Hfp Kaq Hfb Hmb

250



Introducing some additional terms, normalizing other terms and hy, = h,,;, We have:

kfb hfb
Efb %psp _ @rphsp (@b hfp+Paq haq) c dvfp
ke Pfp +kl7-fl haq aylz) @rp hptPaq haq kep hrp + kaq haq fZew at
Kb Haq Efb kaq
kaq haq
—__Hag (1 _ _
@ Acw | Targy , Faghag (h)aq (Pagp — Psp)
Hfp Haq
(kfb “rb | kmp hmb> krb rb Kmb Manb
Kfb Hmb Kfp Kb (Acw ) OPmbD
krp hfb+kaqhaq kfb hyp ke Pfp + kmp hmb h3/4 mb dzp zp=1

Kfb Kagq Kfb Kfb Hmb

The resultant form of the governing differential equations is:

2 2
Kf 65,‘0 = waq%_laq(?’aw Prp) — ( )( Kr) I;ZSDL .

The final form of the governing differential equations is:

a 4 a e
() )5

2 _
foD_(Kf

Zp

Taking Laplace transform of the above equation:

%04) {5275~ Pro 0, 0} ~ (52 (Paap ~Pro} = (5) 222 n(F-34)
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For a closed reservoir the initial and boundary conditions, for fracture are:

Initial Condition: Prp(VDyS) = O (F-35a)
Inner Boundary Condition: dW| e (F-35b)
dyp yp=0 s
Outer Boundary Condition: dpi| = 0o (F-35c¢)
ayp YD=YDe
Applying initial condition, we have:
a’Pfp _ (@aq) () _ @) _ = _ (A\9PmbD :
PRl ( Py ){S'pr} (Kf {pan Dsp (3) e joly (F-36)

But from eqn.(F-31) we have

o)
— ( f> sinh| [s 392 (A) (ﬂ) DrbD
zp=1 3(1-w) Kfp A Kf

cosh S T(A)<?>

This derivative will change sign when expressed in terms of pr, , and using eqn.(F-34)

OPmbD
aZD

we have:

©Wag) () 4 (Aaa\ |___ Aag  — ——
( Kf ) {Spr} + (Kf> {(1_waq)s+laq Psp pr} +

(g) js (3(1;0) (A) (%’)) tanh js (3(1;0) ) (%)) Prbp
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Using eqn.(F-32), converting everything into consistent aquifer-fracture domain, we

have:

=)+ o) () )
(a_fq> { % }‘ 77y (F-37)

This is of the form:

LPID S F (Y575 = 0 oot (F-38)

dy3

Where,

£(s) = l(“’x—‘;‘?)+(j—s) Js (@(A) (Lf)) tanh < \/s (@(A) (Lf)>>+(l—f) {%}\ ....(F-392)

-0 [(22)+ )0 [ )0 (2)E) w5 () )

(qu) {%} ........................................................... (F-39b)

Eqgn.(F-38) is a homogeneous partial differential equation which is the same as

eqn.(A-17). Refer to Appendix A for the rest of the derivation.
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APPENDIX G: TRANSIENT AQUIFER FRACTURED DUAL PERMEABILITY
DUAL MOBILITY MODEL - FORMULATION AND LAPLACE DOMAIN

SOLUTION

The governing differential equation for linear fluid flow in limited aquifer (matrix block)

and the fractured reservoir (reservoir fracture block and reservoir matrix block) is given

by:

Fracture: (’;—h)f Vips = (pfcfhfaaitf - (Hk—h) 9pq —a (S)m (pm — py) - (G-1a)

a 9a Yaq=hagq
Matrix (Aquifer): (%) Vip, = %%%%‘1 .................................................. (G-1b)
a
Matrix (Reservoir): ('L—h)m V2P = @mCmhim ‘Z’—;" +a (S)m (Pm = Df) oo (G-1c)

Since the aquifer is limited, the aquifer height is related to the linear dimension of
reservoir (y is a lateral dimension in the fractured reservoir and y,, is vertical dimension
in the aquifer) by:

Yag =hag = €Y (G-1d)
The second term in eqn.(G-1a) is referred to as the source terms, g, and o,,. The
reservoir matrix is in pseudosteady state but aquifer is in transient. Also, all properties

need to be put as bulk properties:
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Aquifer:

kaq hagq
(ﬂ) _ kaha ( Va ) _ Kaq
u aq Ha \Vf+a —kfb "fb + —kaq haq
Hfb Haq
(ﬂ) _ kfhf( Vs ) _ Kfb
Ky tr \Vsta Kb hsb Z "fb , kaqhaq
fb Haq

_f Vaq \ _ Pagq Naq
(@Oh)aq _< )_< .....
Vftaq @b hgpt+Paq haq
Vs @fb hrp
oy = () = (et )
Vftaq @rp hptPaq haq
Reservoir:
kmp hmb
(ﬂ) —km ( Vm ) _ Kb
/oy Hm \Viem Kb "fb | Kmb hmp
Hfp Hmb
Ko hrp
(), =562 =
1/ sp - U \Vrrm - ke Pfp + kmb hmb
Hfb Hmb

Vim ) — ( Pmb hmp )
Vitm Pfb hfb"' ®mb hmb

(@) mp = (

) ()
Viim @b hrpt Omb hmp

((ph)fb = (
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Similarly, the aquifer and matrix fracture bulk source terms are, ouq, and op,is

expressed as:

Va k 9pg kfp hyp kaqhaq\ (kh 1 0paq
an = 0,4 —_— = |— 4+ —4 - =
Vita wh/2/q 9yaly _p. Kfb Haq B/ qq \N?/2/ qq 9Yaq

Omf = Um( o ) kjm (V—m> (Pmp —pp) = @ (M + M) (%)mb (%)mb (Pmo = Prp) eovee (G-3b)

Vitm Viem 1553 Hmb

Yaq=hagq

Il
]

Here, the assumption is, the aquifer transient effect is restricted to the permeable barrier

and:

Kag = w20 (h s By, iy 3 kg ) (G-4)

h
(_b+ h_a)
kp ' ka
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In terms of bulk properties the governing equations can be recast into:

Fracture:
(kfb fpp | kag haq) (@) *prp _
Ufb Kaq w/pp 0¥?

3
(@10 hro + Pag hag) (@) g1 ¢ % -

(l) <kfbhfb + kaqhaq> (ﬂ) ( 1 ) OPagq
€ Kfb Haq B/ qq \W?/2/ qq Oy

Yaq=hagq

a (kfb B 4 Kb hmb) (ﬂ) (%)mb (Db = Drp)oeveeeereemeerseerreeerane (G-5a)

Matrix (Aquifer):

1 kfp hrp kag haq ﬂ 62paq — % -
(8_2)< Hfb + Hagq ) (ﬂ )aq ayz ((pfb hfb T Paq haq)((Ph)aq Ca at T (G-5)

Matrix (Reservoir):

ken h kmb hm kh 92 m 5} m
(fb 2y b b) (_) 2 = (@pp hp + @b Pon) (@R b Cm l;tb-l_

Hfb Hmb wloy 022
kKrbhep | kmp hmb) (kh) (1)
+ m H = Dfp) e G-5¢
< Kfb Hmb w/ oy \Wmp (pmb be) ( )

For an aquifer block, the initial and boundary conditions are:

Initial Condition: Pag(Vag £ = 0) = Dj v (G-6a)

Inner Boundary Condition: % =0 forallt ..., (G-6Db)
ad Yaq=0

Outer Boundary Condition:  pg,| =p; forallt . (G-6¢)

Yaq=hagq
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For a fracture block, the initial and boundary conditions are:

Initial Condition: Pr6t =10) = Di v, (G-6d)
f
Inner Boundary Condition: q = — (M)% for all t and const. rate .. (G-6e)
Outer Boundary Condition L3 =0 forallt .o, (G-6f)
X=Xe

If we assume y is the overall linear dimension and define dimensionless variables as:

yp = == forallfracture ... (G-7a)

£y .
€Yp = = for all aquifer ......ccccoviviennn (G-7b)

aq
Zp = j for all Matrix — ..coccoovevverennn. (G-7c)
__ bi—p _ 2m kep hfp kaq hagq o _
Pjp = Dch B a1q3< 151 + Haq >(pl p])|]=f oraq T (G 7d)
o bitp_ 2m ("fbhfb +kmbhmb>( . — ;)| (G-7e)
Pip = o T @aB\ wp wmy ) PLT Pl pp oy

The derivatives of the above entities will be:

d(yp[Acw) = 0y d(yoAw){0(vovAcw)} = 0%y s (G-8a)
0(zpy/Acw) = 02 0(2p\JA){0(2py/Acw)} = 0°Z i (G-8b)
€9(yp hag) = 0y €2 0(yp hag){0(yp hag)} = 0%y oo, (G-8c)

O(PpPeh — Pi) = Pendpp = — 0p DPen0?pp = 02D e (G-8d)
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Solution of Matrix (Aquifer)

Substituting y,, in eqn.(G-5b), we have:

Ken R Kao hag\ (kh\ 0%Pa OPa
(glz)< fszfb + Zaq q) (T)aq ap L= (@b by + Pag Pag) (@) ag ca(hig) =, o

Substituting pp in above, we have:

1Y (Ekrphsp kaq haq (ﬂ) 0%(DagdPch—Di) _
(82)< Kfb + Hagq ) #/aq Pcn ay3 - (gofb hfb * Pagq haq) X

a a C 2
((Ph)aq Ca(h q) (P qDP h— P)

On cancellation of common terms, results in:

kh azpan ((be hfp+@aq haq) 2 pan
(52) ( u )aq ay3 - (kfb hep N kaq haq) ((ph)aq Ca(haq)

Hfb Haq

Reapplying egn.(G-2) to the above we get:

kaq haq
(i) Uaq 02 PagD ((p ) ((be hfp+®aq haq) (hz ) apan
e2) \ krblsb | kaghaq | ay3 aq (kephyp , kagq hag aq
Hfb Haq i) Hlaq

259



On simplify the above and putting in additional terms we get:

kaq haq

(¢ )aq <kﬂ, Rt  Faq haq) Ca

Hfb Haq

(l) Haq 621’an _
€2/ \ ko hrb | kaghaq | 0y}
Hfp Haq
kfp kaq
/ Kfb \ Kfb
Ktbhfb |, kaghag Ktbhfb | kaqhag
(<be hfp+@aq haq) Acw | Kfb Kaq Hfp Haq (h ) apan
Acw | kfb kagq @

Hfb Hfb
KfbPrb | kaqhaq koMb | kaqhaq
Hfp Haq

Hfp Haq

We also have the following:

Prb Cf

aq = (@ ctdag+rb

Substituting w,q in eqn.(G-9) and assuming compressibility is constant, we have:

( )(1 _ )0 Pagd _ _ 12(1-waq) 0PagDp

Aaq dtp
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Dimensionless time and dimensionless interporosity flow parameter, are given by:

Krbhrb | kaqhaq)),
_ Hfp Haq

lp = T G-12a
D ((be hfp+@aq haq) CrAcw ( )
kaq_
Haq
kfbhfb | kaqhaq
12 u Ha
Aag = nz. Acw = Kb e T (G-12b)
aq 4=
Ufb
<kfb hfb | kag haq)
Hfb Haq
kfb hfb
— Krb
Kf T\ krphsp +kaq L B (G'lZC)
Hfb Haq
Where: a= thz (for a slab draining from single face) .... (G-12d)
aq
— kfp hep kaq haq) Pi—Paq _
Pagp = 2m (L2802 4 KeAlt) PG (6-12¢)
kfp h kag h pi—D
=2m (- 4 “") L, -12
pr T[( Ufb + Haq qB (G g)
The final form of the above equation, is:
1 _ 12(1-waq) OPagD
(3_2) (1 —Kk)V?pagp = ™ 1 6t;l ........................ (G-13)

We will find the solution of eqn.(G-13) for pqp first.
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For aquifer block and in Laplace domain, the initial and boundary conditions are:

Initial Condition: Pagp(EYp =1,5 2 0) = 0.cvevrrirci, (G-14a)

dPaqD

Inner Boundary Condition:
edyp

£yp=0

Outer Boundary Condition:  pgqp SPFD e (G-14c¢)

From the initial condition of aquifer to the Laplace transform equations we have:

25— -
() (1 =) 722 = 22 o — g (. 0}

9*Pagd > <12(1—(uaq)> s
oy} Aaq(1-xy)

The above is a homogeneous partial differential equation with the following general

solution:

Pagp = A cosh <£ Yp [S (M) > + B sinh <£ Yp [S (M) > ..... (G-16)

laq(l—Kf) laq(l—Kf)
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Differentiating with respect to y,, and using the inner boundary condition, we have:

dPagD
dyp

:0:

£yp=0

s (%)A sinh <£ Yp /s (%) > +

o oGz eosn (o0 s G25) )

Since sinh yp |, - = 0, implies:

Using outer boundary condition and substituting eqn.(G-14c) in egn.(G-16) we have:

Prp = A cosh (e Yp [S (M»

Aaq(1-Kf)

£yp=1

A= T (G-18)

i {2z

Hence the particular solution for constant rate of eqn.(G-15) in Laplace domain is:

Dagp = Psp cosh (5 Yp_[S <%) ) ............. (G-19)
b S]]@—wa@> aq f
cos <—Aaq(1—xf)

263



Solution of Matrix (Reservoir)

Substituting zj, in egn.(G-5b), we have:

kb hrb | Kmp hmp | (kh % pmp _ APmb
( Wfb + Lmb >(7)mb azlz) _((pfbhfb-l' (pmbhmb)((ph)mb CmAcw at +

kfp hrp kmpb hm kh 1
aAcy ( e + 5mb b) (T)mb (g)mb (pmb - be)

Substituting pp, in above, we have:

<kfb hrb + kmp hmb) (&) 0*Pmp —
Kb Hmb wlmp 023

(PmbDDch—P)
(‘be hip + Qmp hmb) X (@M mp Cm Acw % +

keph mb Pm
@ Acy ( e s b) X (%)mb (%)mb {(OPmpoPen = ) = (ProPen — i)}

On cancellation of common terms, results in:

kR 9%Pmbp _ (@rb hrpt @mb hmb) 9Pmbp (ﬂ) (1) _ -
(ﬂ)mb Pl CLOY: <kf,,hf,, +kmbhmb) em Aoy =3+ @ haw () (5), Prvn = Pyop ) (G-20)
Hfp Hmb
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Reapplying egn.(G-2) and converting this equation into aquifer-fracture domain we get:

kmb hmb 2
HEmb 0 PmbD —
Ko b | kmbhmp | 9zh
Hfp Hmb
("fb "fb | kag haq)
(oh) (©fbhyp+ @mp hmp) \ Kb waq ) (@b hfp+Paqhaq) c OPmbD +
mb ((be hep+@aq haq) (kfb heb + kmb hmb) (kfb heb + kaq haq) moew s gt
Hfb Hmb Hfb Haq
kmp hmp
Hmb 1
a ACW Krp Rirp . - (E)mb (pme - pfbD) ........................... (G'Zl)
Hfb Hmb
We also have the following:
QP c
W= L e (G-22a)
(@ ct)mb+rb
A= Lo _ (®fb hspt @mb hmb) (G-22b)

w ((be hfp+@aq haq)

Substituting w and A in egn.(G-21) and assuming compressibility is constant, we have:

(1= 1) 222 = (1= ) (1) (*22) 2222 4 2(prui = Pyp) v (G-23)
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Here dimensionless time and dimensionless interporosity flow parameter and others, are

as:

kb hfp + kmpb hmb ¢
_ Hfb Kmb

(X (L -
top = (@b hfb+ ©mbhmp) cf Acw (be> (A) R (G-242)

kmb
— Hmb _
/1 - QACW kfb h’fb + kmb hmb """"""""""""""" (G 24b)
KUfb Wmb
_ Kfb )
be = kfb hfb A Komp o |17 s (G 24C)
Hfp Hmb
kfp h k h i—
Do = 27'[( sohp o Kmb mb) . (G-24d)
Ufp Hmb q
kfb hrp Kmb hmp \ Pi—Psb
= 2n< L 4 SmbImb) TUETD G-24e
pfbD Ufp Hmb qB ( )

The final form of the above equation, since the LHS is zero for pseudosteady state, is:

0= ( 1w )(A) (ﬂ) Pmpp 4 ( A )(pme — Dppp) e (G-25)

1-Kfp Kf dtp 1-Kfp

Applying the initial condition of aquifer to the Laplace transform equations results in:

0 = (1= )W) (L) s Prp + A (P = Bop) v (G-26)

Solving egn.(G-26) the Laplace domain solution, p,,,p, iS:

Pmbp = Dfpp oo, (G-27)

(1—w)(A)<’Z—fb>s+/‘l
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Solution of Fracture

There are two different dimensionless pressures. The dimensionless pressure which is
reservoir matrix-fracture domain based and dimensionless pressure which is aquifer-
fracture domain based. We know dimensionless time measurement is based on latter and
this is the reason for normalizing everything on that domain. We have the two equations

as:

Dagp = PiD cosh (5 Yp |S <M> ) ............ (G-19)
(12(1—waq)> Aaq(1-xf)
cosh| [s|———%
laq(l—lcf)
- y) -
Pmbp = *rb Pfpp e (G-27)
(l—w)(A)(F>s+/’l
We also know fracture domains are the same:
DfbD _ PfD
(kfb b | kmb hmb) B (kfb “sb | kag haq)
Hfp Hmb Hfp Haq
K _
T o) ——— (G-28)
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Again, for the fracture we have:

<kfb hfp n kaq haq) (Q) %psp _
Hfb Hagq w/pp 0¥?

3
(@10 hro + Pag hag) (@) g1 ¢ % -

(l) <kfbhfb + kaqhaq> (@) ( 1 ) OPagq
€ UfD Haq B/ qq \N?/2/gq Oy

kep hfp Kmp hm kh 1
a( o + :mb b) (I)mb (ﬁ)mb (pmb - pfb) ........................... (G'5a)

Yaq=hagq

Substituting yp in eqn.(G-5a), we have:

kfp hyp kaq haq) (kh) azpfb apfb
+ — = hep + h h crAqy, —— —
( Kfb Haq P fb 6y12) (gofb fb goaq aq)(§0 )fb f “ew at
(1) ("fb hpb o kag haq) (ﬂ) (Aﬂ) 6paQ| a A ("fb hip
€ Lfb Haq wlag\n*Jaq 9y Yaq=hagq W\ upp

) (3),, )., G-

Substituting pp in eqn.(G-5a), we have:

(kﬂ, hyp o kag haq> (ﬂ) 0*(PfpPch=PD) _
Kb laq w/p ovh

9(PrpPch—Pi 1\ (ksph Kag ha
((pfbhfb-l_(paqhaq)((Ph)fb CfACWM— (—)( fb /b 4 24 q)X

ot £ 12597°) Hagq
(ﬂ) Acw a(paqpch_pi) —ad krphrp + kmb hmp X
n h? ay - W\ u n
aq aq Yaq=Nhaq fb mb

(%)mb (%)mb {(PmbpPer = P1) = (ProoPen — i)}
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Rearranging and canceling common terms results in:

(kh) %*psp
wley 0yh

((pfb hfp+@aq haq) 6pr
((ph)fb (kfb hfb + kaq haq> Cf cw ot

Hfb Haq
(l) (ﬂ) (Aﬂ) 9Pagp
€ 1/ aq h2 ag 9y

Yaq=Hhagq

(kfb hfp " kmp hmb)

75 Tagher) (i) (1) (o0
a Acy 5 hrs  Fag hag) \ )y W (Pmbp = ProD)
Hfb Haq

Substituting back egns. (G-2a) to egn.(G-2h) into the above egn. we get:

Kfb 9’pgp _ @b hfp (@fbhfp+@aq haq) oPfp
kfb hfb +kaq haq 63/[2) Orb hfb"'q)aq haq kfrp hfb+kaq hagq f “iew ot
Kfb Haq Hfb Haq
kaq haq
O | ot | B, 52 -
kfph kagh 2
£ fb"fb aq aq h dy _
o P "aq aq a =h
Krb Kaq q Yaq=Naq
(kfb "fb  Jmb hmb) Komb hom
Hfb Kmb tomb (1)
ald = —
Efp Uaq Efb Hmbp
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Introducing some additional terms, normalizing other terms and hys, = h,,;, We have:

- beD)

kfb hfb
Efb %*pfp @rphsp (@b hfp+Paq haq) c dvfp
Kb hrp +M aylz) @rp hptPaq haq kfb hfb+kaq haq fiew ot
Hfp Haq Efb Haq
kaq haq
(l) Haq (Acw) OPaqD _
e/ \ Erolsrp | kaghag n®Jaq 0yp lgyp -4
Hfp Haq
(kfb “fb , kmp hmb> krb rb Kmb Manb
Kb Kmbp Bfb Umb (1)
al -
W (krp hrp +kaq haq kb hrb kb hrb + Kmb b ' mp (pme
Kfb Kagq Hfb Kfb Hmb

The resultant form of the governing differential equations are:

Pvp _  9ppp (1) (@) 9bagp
f v} aq ot e/ \12/) ayp

(4 x¢) (Pmobp
yp=1

The final form of the governing differential equations is:

- A ('Pme - ben)

eyp=1

Vpgp = (4o0) 2n _ (1) (ow ) ean
fD Kf at &g/ \12 k¢ 0yp

Taking Laplace transform of the above equation:

d*prp _ (wagq P — (3 (Lo ) Lean
2 __<7;7>{Spfp pr(yD'O)} (g)<12xf) dyp

£yp=1
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For a closed reservoir the initial and boundary conditions, in Laplace domain, for

fracture are:

Initial Condition: Drp(VDrS) = O, (G-31a)
e dPfp 21
Inner Boundary Condition: | S e e ———————— (G-31b)
dyp yp=0 s
Outer Boundary Condition: dpi| = 0 (G-31c)
Yp YD=YDe

Applying initial condition, we have:

d*prp a - Aa 0DaaD .
deZ,D _ (w fq> (51— () (ﬁ) e — A {Pmbp — Prop} oo (G-32)

eyp=1
But from eqn.(G-19) we have
12(1-waq)
— _ £ S(Aaq(1—rcf)> sinh 5(12(1—waq)) 5
9¥p gyp=1 12(1-wqq) Aaq(1-xp) fD
cosh S(Tq))
aq\1—-Kr

This derivative will change sign when expressed in terms of p¢, , and using eqn.(G-30)

we have:

a*prp Waq {——} Aagq 12(1-wqq) tanh 12(1_“’aq)) 4+ 1 (1—m)(A)<%
avh _<Kf) SPrp +<12Kf> S<Aaq(1_’€f) an s Aaq(1-xf) Pro (l—m)(A)<Kﬂ)S+A Prop

*f
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Using eqgn.(G-28), converting everything into consistent aquifer-fracture domain, we

have:

(1—w)(A)("f—”)
f

g o) 1 [t () ) oo D) )| o) 099

This is of the form:

dd? — SF(S)FT5 = 0 e (G-34)
Where,
© (1-w)(A) KKf—b —wg —wq,
o) = [(,%:) H(u_wm é )>) (o) () o () ) . o

...(G-35b)

o @a-ww(L = —~
FO = [(%;%((%§1A)<1;f§§s+f(§))+<éz;) (i) (- (i) )

Eqgn.(G-34) is a homogeneous partial differential equation which is the same as

eqn.(A-17). Refer to Appendix A for the rest of the derivation.
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APPENDIX H: FULL TRANSIENT MATRIX AND AQUIFER FRACTURED DUAL
PERMEABILITY DUAL MOBILITY MODEL - FORMULATION AND LAPLACE

DOMAIN SOLUTION

The governing differential equation for linear fluid flow in limited aquifer (matrix block)

and the fractured reservoir (reservoir fracture block and reservoir matrix block) is given

by:

Fracture: (%)f Vip, = (pfcfhf% - (M—kh)a Z—zz N (M :/Z)m % Zzhm/z(H-la)
Matrix (Aquifer): (%)a V3p, = @ucahy aalt“ .................................. (H-1b)
Matrix (Reservoir): (%)m V2D = @mCmhm ag;;” ............................ (H-1c)

Since the aquifer is limited, the aquifer height is related to the linear dimension of
reservoir (y is a lateral dimension in the fractured reservoir and y,, is vertical dimension
in the aquifer) by:

Yag =hag = €Y i, (H-1d)
The second term in eqn.(H-1a) is referred to as the source terms, g, and o,,. The
reservoir matrix and the aquifer both are in transient state. Also, all properties need to be

put as bulk properties:
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Aquifer:

kaq haq
khY  _ kaf Va \ _[____ #aqg
(0, = i () = | gy | o (H-2a)
Hfb Haq
kh __ ky Ve _ Hfb
() =% I E ol B — (H-2b)
Hfb Haq
Ve Paq ha
h =(“‘1)=( ahaq ) .................................... H-2¢
((p )aq Vftaq @b hfp+@aqhaq ( )
4 Qrphsp
= () = (e ) 20
((p )f Vitaq (behfb+(Paqhaq ( )
Reservoir:
kh k V; Fanp Lot
xn —-m [ _m ) — Emb -
(5) = () = | gy | oo (H-2e)
Hfb Hmb
kfb hfb
kh _kf( Vy _ Efb
(H )fb - Us (Vf+m) - kb b + kmp hmp | 77T (H Zf)
Kfb Emb
Vi Pmb hmb
o = () = (ot ) 2
((p )mb Vitm @rb hfp+ Omb hmp ( g)
|4 @rp hrp
h) sy = (—f) - ( ) ........................... H-2h
((,0 )fb Verm @rbhfp+ ®mb hmp ( )
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Similarly, the aquifer and matrix fracture bulk source terms are, ouq, and op,is

expressed as:

_ Va \ _ k 9pg _ (krphsp kaqhaq\ (kh 1 0paq
Ogq = 04 (V ) = (u h/2> P =T + - w2) el e (H-3a)
f+a a 9Yaly,=h, f aq aq aq “Yadly, =hqq
o =0 (V_m> =(L) o - (M + M) () (Z;) Zme (H-3b)
T MV wh/2/ 0z lz=p,, /2 Htb Hmb B mp \02/2) 0z lg=pyy 2 T

Here, the assumption is, the aquifer transient effect is restricted to the permeable barrier

and:

I (T N T 7 75 T (H-4)

h
(_b+ h_a)
kp ' ka
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In terms of bulk properties the governing equations can be recast into:

Fracture:

(kfb hfp n Kaq haq> (@) *psp _
Ufb Kaq w/pp 0¥?

9
(@50 R + Pag hag) (@) 1 ¢ % -

(l) <kfbhfb + kaqhaq> (ﬂ) ( 1 ) OPagq
€ Ufb Kaq wqq \N?/2/4q 0y

<kfbhfb + kmbhmb) (@) ( 1 ) OPmb
Hfb Hmb /) p \R2/2/ 0y 0z

Yaqg=hagq

z=hmp/2

Matrix (Aquifer):

1 kep hfp kaqhaq (ﬂ) azpaq _ 0Paq
(82)< Kfb + Haq ) P aq dy? _((pfbhfb-l'(paq haq)((ph)aq Ca ot

Matrix (Reservoir):

Kep heb | Kmb R (ﬂ) *Dmp _ Dmb
< Brb + Umb ) uwlop 022 _((pfbhfb-l' (pmbhmb)(goh)mb Cm ot

For an aquifer block, the initial and boundary conditions are:

Initial Condition: Pag(Vag £ = 0) = Pj ceeverererrieererri,
Inner Boundary Condition: OPaq =0 forallt ...
Yaq Yaq=0
Outer Boundary Condition:  pg,| =p; forallt ..

Yaq=hagq
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For a matrix block, the initial and boundary conditions are:

Initial Condition: Pag(Zt = 0) = Djeeieiciccec (H-6d)
Inner Boundary Condition: % =0 forallt . (H-6e)
z=0
Outer Boundary Condition: paq|z_h =pr forallt ... (H-6f)
=haq

For a fracture block, the initial and boundary conditions are:

Initial Condition: Pt =0) =Pj e, (H-69)
Inner Boundary Condition: g = — (kf;jcw) aazf . for all t and const. rate .. (H-6h)
x:
Outer Boundary Condition % =0 forallt .o, (H-61)
X=X,

Yp = = for all fracture .............. (H-7a)
Eyp = :—yq for all aquifer —.............. (H-7b)
Z .
Zp = 5 for all matrix  ........... (H-7c)
_ pi=p _  2m (Kfphgp kaq haq . )
ij - Dch - aqu( Hfb + Haq )(pl p])ljzforaq """""" (H 7d)
A AL L LT F ] (H-7e)
pJD Peh a,qB Kfb Limb Pi P] j=fbormb U
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The derivatives of the above entities will be:

d(yp[Acw) = 0y d(yovAcw){0(yoAcw)} = 3%y e, (H-8a)

0(zp hy/2) = 0z 0(zp hym/2){0(zp by /2)} = 0%z ... (H-8b)
€ a(.'yD haq) = dy g* a(.'yD haq){a(yD haq)} = 0%y s (H-8c)
0(PpPcr —Pi) = PerOPp = —0p  Pepd’pp = 0°p s (H-8d)

Solution of Matrix (Aquifer)

Substituting y,, in eqn.(H-5b), we have:

1\ (keph kKqg ha kh 9%pg 0Pq
(8_2)< f:ifbfb + Zaq q) (T)aq ay2 ((pfb hep + @aq aq)((l’h)aq Ca(h q) Pag

Substituting pp in above, we have:

1Y (Erphsp kaq haq (ﬂ) 0%(DagpPch=Di) _
(82)< Kfb + Hagq ) #/aq Pcn ay3 - (gofb hfb T Paq haq) X

a a C 1
COMACRE D

On cancellation of common terms, results in:

(l) (g) 0?pagp _ (@b hyb+Paq haq) (@R ag calh2 )6pan
g2/ \u/aq ay3 kep hyp . kaq hag aq “a\"*aq
Hfb Haq
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Reapplying egn.(H-2) to the above we get:

kaq haq
(l) Haq 02 PaqD ( ) ((be hfp+@aq haq) (h ) apan
£2 kfb hfb +kaq haq ayD (p aq kfb hfb + kaq haq kaq haq aq
Hfb Haq Hfp Haq

On simplify the above and putting in additional terms we get:

kaq haq

(i) Haq 0°Pagp _
€2/ \ krphsp | kaghaq | ayj

Hfp Haq

i3 kaq
Ufp Ufp
kephyp kaq haq kephyp kaq haq

(¢fb hfp+@aq haq) Acw ”fb Haq Hfb Haq apan
((p )aq kfb hfp R kaq haq (E Kaq (h q) ..... (H'g)
Hfb Haq i‘fb
Kphfp  kaghaq hfb kaq haq KepPsb | kaqhaq
Kfb Haq Hfb Haq
We also have the following:
@QfpC
Wag = =L (H-10)

(@ cag+fp

Substituting w, in eqn.(H-9) and assuming compressibility is constant, we have:

(3) -« )‘”’“‘”’ 120170aq) 9PaaD e (H-11)

dagq atp
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Here expression for dimensionless time and dimensionless interporosity flow parameter,

are as:
kfp h
( fﬁfbfb + kaZ haq) t
aq
b = ———— H-12a
D ((be hfp+@aq haq) CrAcw ( )
kaq
Haq
kfbhfb | kaqhaq
_ 12 Hfp Haq
Aaq - qu Acw 37 A (H-12b)
Hfb
Krbhrb | kag hag
Hfb Haq
kfb hfb
_ Kfb )
Kf - kep hep + kaqhaq |*rrmrrrrrssss e (H 12C)
Hfb Haq
12 .. .
Where: a = —— (for aslab draining from single face).... (H-12d)
= hg,q
ksph Kag h Pi—D
Pagp = 2n< /o fb |y ~od “q) L2, (H-12¢)
Ufp Haq qB
kfp hyp kaqhaq\ Pi—Df
= 2n< L N L I H-12
pr Ufp Haq qB ( g)
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The final form of the above equation, is:

(Elz) (1= 1) Vpuqp = 2@ad)aa> (H-13)

dagq atp

Let us find the solution of eqn.(H-13) for p,q4p first. For aquifer block and in Laplace

domain, the initial and boundary conditions are:

Initial Condition: Pagp(EYp = 1,5 > 0) = 0.ccrrriiciine, (H-14a)

dPaqD

Inner Boundary Condition:
edyp

£yp=0

Outer Boundary Condition:  pggp| DID  coeveeeereemesseneiseesieseisee (H-14c)

eyp=1

From the initial condition of aquifer to the Laplace transform equations we have:

25— _
(&) (1 =) 722 = 22 o — g (v, 0}
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The above is a homogeneous partial differential equation with the following general

solution:

m = A cosh (5 Yp [S (M) ) + B sinh (5 Yp [S (M) ) (H-16)

Aaq(1-kf) Aaq(1-kf)

Differentiating with respect to y, and using the inner boundary condition, we have:

dDagD

=0=
dyp

€yp=0

(i) smn(enn S GIz) )+

12(1-wqq) 12(1—waq))
fy° (‘aaq@—xf)) B cosh (‘9 Ypys (Taq(l—xf)
Since sinh yp|, - = 0, implies:

Using outer boundary condition and substituting egn.(H-14c) in egn.(H-16) we have:

Aaq(1-Kf)

Prp = A cosh (s Yp [S (M»

eyp=1

A= U (H-18)
12(1-wqq)
cosh( S(/'laq(l—rc;)>>
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Hence the particular solution for constant rate of eqn.(H-15) in Laplace domain is:

Pfp

Pagp = - < S (12(1_waq)>> cosh (8 Yp S (%) ) ........... (H-19)

laq(l—lcf)

Solution of Matrix (Reservoir)

Substituting y,, in eqn.(H-5b), we have:

("f bhfb y Kmp hmb) (ﬂ) Tom (@5 hp + @b honp ) (@) iy (#ﬂ)%

Ufb Umb )y 92 4

Substituting pp, in above, we have:

<kfb hsp n kmp hmb) (ﬂ) O*Pmbpp-py _

Ufb Umb J L Pen 0z},

h,zn O(PmpPch— i
(@b Bep + @b hmp) X (@R mp Em (Tb) = bsth =

On cancellation of common terms, results in:

mp 9% KrbRfb | kmp hinb
Hfb Hmb

kh\  8%*pmpp _ (@b hep+@mb hinb) h2,\ 8PmbD
(_) = (Qoh)mb Cm( T )L

u at
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Reapplying egn.(H-2) to the above we get:

kmb hmb

mb 9*Pmbp _ (oh) (@b Prb+@mb hinb) (hrznb) 9PmbD
KfbPsb , kmphmp | 023 mb (ke hp + Kb hmp 4 at
Hfb Hmb 191 Emb

On simplify the above and putting in additional terms we get:

kmb hmb

Hmb 3*pmbp —
KfpPsb | kmphmp | 023
Kb Hmb
kb Kb
/ Krb Hmb
5 KtbRfb | Kmb hmb RfbPfb , kmb hmb
( h) M (hmb> (Acw> I Hfb Umb I Hfb Umb D mbD (H_20)
P )mp <M+ kmb hmb) 4 Acw | ’;fb ’Lml; FYamEIr
K # b _ Hmb
fb " ﬁ Keb Rfb kb P
fb7fb , Kmbhmb +
Hfb Hmb Bfb Hmb

Converting this equation into aquifer-fracture domain we get:

kmb hmb 2
HEmb 0 PmbD —
rolrb | kmbhmp | 028
Hfb Hmb
("fb "fb | kag haq)
(oh) (@fb hfp+ Pmb hmp) \ Hrb #aqg ) (@fbhrp+@aq haq) (haznb) (Acw) %
"D (o ey hip+Pag hag) (Kb hrb + fmb hmp | (Krp b | kaq hag m\ 4 J\aw
Hfb Hmb Hfp Haq
kfp kmb
/ Kfb \ “mb
Krbhrb | kmb hmb KfbMrb | kmb hinb
Lfp HEmb Lfp Hmb OPmbD (H-21)
kfb kmb 6t -------------------------------
) Hmb
K1b P, Kb P KfbRfb |, kmb hmb
Kfb Hmb Krb Hmb
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We also have the following:

— PrbCf )
©= (@ cOmpypp (H-222)

— (%Laq) _ (@b hep+ @mb hinb) i
A= (%) L s (H-22b)

Substituting w in eqn.(H-9) and assuming compressibility is constant, we have:

(1= Kpp) LRmen — 300) (ﬂ)"’”ﬂ .................... (H-23)

G v kg ) otp

Here dimensionless time and dimensionless interporosity flow parameter and others, are:

kfph kag h
(fb fb+ aq aq>t

Hfp Haq Kf 1
tp = . (—) (3) tp o H-24a
b ((be hep+@aq haq) CfAcw Kfp) \A b ( )
kmp
Hmb
Ko Prb | kb b
12 u u
A=t Aoy L T —— (H-24b)
m —_
Kfb
kb Rfb +kmb hmp
) Hmb
kfb hfb
— Kfb _
be T\ krphsp +kaq [ T A (H 24C)
Kb Haq
krph k h i—
Drop = 2n( sohio Kb mb) PicPmy (H-24d)
Hfb Hmb qB
kep hfb Kmb hmb Pi—DPfb
= Zn( [ofb f mbimb) ZE S, H-24e
Prbp Ufb Hmb qB ( )
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The final form of the above equation,is:

() (1= K7) V2P = 29 (p) <ﬂ> mtp ....... (H-25)

Kr dtp

We will find the solution of eqn.(H-13) for p,qp first. For aquifer block and in Laplace

domain, the initial and boundary conditions are:

Initial Condition: Pmop(Zp = 1,5 5 0) = 0.cvvveieieiece (H-26a)

Inner Boundary Condition; ~ 22me2 =0 e, (H-26b)
dZD ZD=0

Outer Boundary Condition:  Prmpplzp=1 = Dfpp  woeevreresereeieenieieiene, (H-26¢)

Applying the initial condition of aquifer to the Laplace transform equations results in:

1 0*Pmpp _ 3(1-w) _
(&) (1 - ) T2z = 2 () (22 (55— Py (2,0))

2
0zp

O*Pmbb _ 2 (3(1;(”) (N) (’;—7’)) SPmbp = 0 eeererereieiane. (H-27)
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The above is a homogeneous partial differential equation with the following general

solution:

Differentiating with respect to z, and using the inner boundary condition, we have:

AdPmbD

dzp ly_g 0= Js <@ ) (%)) A sinh ZDJS (@ () (';_f;’>> +
\/s (@ ) (%)) B cosh ZD\/S (@ (A) (%’))

Since sinh zp |, ,—o = 0, implies:

Using outer boundary condition and substituting eqn.(H-26c) in eqn.(H-28) we have:

Drpp = A cosh ZD\/S (3(1;‘)) (A) (i—’?))

A= PIOD e (H-30)
3(1—w) Xfb
cosh(\]s(—/1 (A)( s >>>

Hence the particular solution for constant rate of eqn.(H-27) in Laplace domain is:

Pmbp = c05h<\/s<$(/\)(m>>> cosh ZDJS (3(1;“’) (An) (i—T)) ..(H-31)

i

287



Solution of Fracture

There are two different dimensionless pressures. The dimensionless pressure which is
reservoir matrix-fracture domain based and dimensionless pressure which is aquifer-
fracture domain based. We know dimensionless time measurement is based on latter and
this is the reason for normalizing everything on that domain. We have the two equations

as:

_ 7)) 12(1-waq) i
Pagp = — S(ﬂ(l_waq)) cosh (5 b /s <—/1aq (1_Kf)) ) ........ (H-19)
laq(l—xf)

R )

i

We also know fracture domains are the same:

DrbD _ PfD

KrbRfb | kmb hmp Krbhrb | kaqhaq
Hfp Hmb Hfp Haq
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Again, for the fracture we have:

(kfb hfp n Kaq haq> (@) *psp _
Ufb Haq w/pp 0¥?

a
(@fb hep + Pag hag) (@R fp Zib —

(l) <kfbhfb + kaqhaq> (@) ( 1 ) OPagq
€ Ufb Haq H/qq \N?/2/qq 0y

<kfbhfb + kmbhmb> (@) ( 1 ) OPmb
Kfb Hmb I h2/2) mp 0z lz=

Yaq=hagq

mb

Substituting yp in eqn.(H-5a), we have:

Bfb Haq w/ey 0vh

(l) <kfbhfb + kaqhaq> (ﬂ) (Acw) apaq| _
e/ \ mpp Hag ) \#/qq \h*Jag Oy 1y —p..

(kfbhfb + kmbhmb) (@) (Acw) OPmb
UfD Hmb /oy \h?/2) 0z

Kfph kaghaq (kh) 9%p :
( sohyp | Kag q) (_)f fb _ (Qofb hsp + @aq haq)((ph)fb Cr Acw%_

z=hmp/2

Substituting pp in eqn.(H-5a), we have:

<kfb hfp n kaq haq) (Q) 0%(pfpPch—Pi) _
Krb Kagq w/ep ayp

9(PrpPch—Pi 1\ (ksph Kag ha
((pfb hfb+(paq haq)x((ph)fb Cr ACWM—(—)( LA L + ! q)X

at £ 12597°) Hagq
(ﬂ) (Acw) a(paqpch_pi) _ (kfb hgp + Kmbp hmb) x
K7 aq h? aq oy Yag=haq Hfp Umb

(ﬂ) ( Acw ) a(pmbpch_pi)
u mb h2/2 mb 0z

z=hmp/2
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Rearranging and canceling common terms results in:

(), 5=

wley 0yh
((pfb hfp+@aq haq) 6pr
h c —_——
((p )fb kfb hfb N kaq haq f cw ot
Hfb Haq
), G, 5, . -
2
€ K7 aq h*/aq oy Yaq=haq
(kfb heb +kmb hmb)
Kfb Hmb (@) (Acw) 9PmbD
kep hfb+kaq haq t)mp \R?/2) 0y 0z lz=p,, /2
Hfb Haq

Substituting back egns. (H-2a) to egn.(H-2h) into the above egn. we get:

Kfb *prp ( @b hsp ) (@b hfp+9aq haq) ovfp
Krphrb | kaghaq | ay3 @b hfp+@aq haq) (Kb Psb |, kaqhag foew g
Hfp Haq Hfb taq
kaq hagq
(l) Haq (Acw) OPaqD | _
keph kag h 2
£ fb"fb , Xaqaq h dy _
L2 70, ~8d 49 a =h
Kfb Haq q Yaq=Naq
(kfb "fb Kb hmb> Komb b,
Hrb Hmb Hmb (Acw ) OPmbD
krbhsb | kaqhaq) \ Kb | Kb tmp | \n2/2) 02 lpap, /2
Hfp Haq Hfb Hmb
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Introducing some additional terms, normalizing other terms and hys, = h,,;, We have:

kfb hfb
Kfb 2*psp _ @fb b (@fb hrb+Paq haq) c dvfp
kephyp +kaq haq ayg ©rb hfp+Paq haq kep hfp +kaq haq f “ew at
Hfp Haq Efb Haq
kaq haq
(l) Haq (Acw) apan _
£ krp hfb+kaq hagq h3 aq dvp e yp=1
Hfp Haq
(kfb “rb Kb hmb> kfphyp kb hmb
Kfb Hmb Kfp Kb (Acw ) OPmbD
kfp hfb+kaqhaq ke Pfp ke Pfp 4 kmp hmb h3/4 mb 97D zp=1
Kfb Kagq Kfb Kfb Hmb

The resultant form of the governing differential equations are:

azpr _ opfp _ (l) (@) OPaqD
f v} aq ot e/ \12/) ayp

A OPmbD
B (g) (Kf) 0z
eyp=1 D Zp=1

The final form of the governing differential equations is:

2 _ (@aa\9Psp _ (1) (_Aag \ 9Pagp _ (%) 9PmbD i
v brp = <Kf> ot (s) <12Kf) dyp £ yp=1 (3) 0zp zp=1 (H 33)
Taking Laplace transform of the above equation:
a’Pfp _ (Waq) fo— _ (1 Aaq) 9PagD _(*\ 9PmbD )
s = () o - P 0w 0} - () (55) o~ ()52 (w9
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For a closed reservoir the initial and boundary conditions, in Laplace domain, for

fracture are:

Initial Condition: Drp(VDrS) = O, (H-35a)
ce dPfp 21
Inner Boundary Condition: —| S e e ———————— (H-35b)
YD lyp=0 s
Outer Boundary Condition: dpi| = 0 (H-35¢)
ayp YD=YDe

Applying initial condition, we have:

dzm — (waq) {Sp_} . (l) < Aaq ) 0PaqD _ (&) ODmbD
dy3 Kf fD e/ \12xg) 0yp lgy -4 3/ 0zp 1, 4

But from eqn.(H-31) we have:

ODmbD
aZD

S<@(A)<Y_fb)> . 301-0) /1~ (%5b
= j ))) sinh \/S<T(A)<_)> Psbp

= - “f
zp=1 cosh(\/s<—3(1/1 w)(A)<Kf—b
Kf

292



And from egn.(H-19) we have

S(1z(1—waq)>
6% _ )laq(l—lcf) Sinh( s (12(1—waq)) >p_
0yp lgyp=1 cosh( S<12(1—waq))) Aaq(1-xf) fD

ﬂ.aq (1—Kif)

This derivative will change sign when expressed in terms of p¢, , and using eqn.(H-34)

we have:

= () o)+ (i) o (g v (s G )+

Kf

O b5 w{ [ (5200(2)

Using eqgn.(H-32), converting everything into consistent aquifer-fracture domain, we

have:

(65 (o) ) o))
(2) Js <3“;“’) ) (Lf)) tanh( Js <3“;“” o (%)) )\ {sPrp} - (H-37)
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This is of the form:

d?p

p S IPD = 0 (H-38)
Where,
f(s) =
I(”’K—f‘?)+(3i) J ) ) (222 >tanh< j (3“ 2 () (<2 )
() o) o () )‘ ......................... (H-350
\

19=4[() QO HE) 0 E)E) ()0 E)6) |+

(1;%) S(ZS(:’;;))) tanh< S(Zf:(;j’;;)))) ..................... (H-39b)

Eqgn.(H-38) is a homogeneous partial differential equation which is the same as

eqn.(A-17). Refer to Appendix A for the rest of the derivation.
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