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ABSTRACT 

 

Zebra chip (ZC) disease, caused by the bacteria ‘Candidatus Liberibacter 

solanacearum’ (Lso), and vectored by the potato psyllid (Bactericera cockerelli Šulc.) 

causes significant yield and quality losses in potatoes. Potatoes infected with the Lso 

bacteria make chips with zebra-like patterns that are unacceptable for consumers. 

Currently, insecticides are applied to minimize plant contact with the potato psyllids. 

The use of tolerant potato cultivars is being considered as an important part of an 

integrated approach to manage the disease and reduce insecticide use. Comprehensive 

screening of commercial and breeding clones over multiple years indicated that very 

little resistance was available in chipping clones. The objective was to screen additional 

tetraploid clones containing introgressions from crop wild relatives and also a collection 

of diploid clones derived from recurrent selection to identify tolerance to Lso that could 

be incorporated in potato breeding programs. Artificial infestation with Lso-infected 

psyllids was conducted in greenhouse controlled and field experiments isolated from 

natural insect presence. Tubers were chipped and evaluated for chip quality and ZC 

score. Insect mortality and egg numbers were counted to characterize insect response. 

Among diploids with good chipping quality and low ZC score, one highly tolerant 

diploid clone (DD853-02) and two tolerant clones (CC831-03 and DD812-02) were 

identified. Among tetraploid potatoes with good chipping quality and low ZC score, 

some members of the A07781 and TX12484 families showed promising tolerance in the 
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field and greenhouse. The findings indicate that genetic tolerance to ZC is available in 

potatoes with high chip quality and could be used for future breeding work.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

The cultivated potato (Solanum tuberosum L.) is the third most important food 

crop for human consumption after rice and wheat. Potatoes are cultivated in more than 

150 countries world-wide, representing diverse climatic zones. In 2016, the total global 

production was 376.8 106 t. Potato yield (production per unit of land) is very high 

(195,790 hgha-1) (FAOSTAT, 2018). Its versatility for food is indicated by the distinct 

market classes including chip processing, French fry processing, dehydrated, yellows, 

round whites, reds with white flesh, other pigmented, and fresh market russets (Hirsch et 

al., 2013; International Potato Center, 2018) 

In 2017, the U.S. produced 20 106 t of potatoes on 407.8 103 ha of land with 

average yield of 490.2 103 hgha3  (FAOSTAT, 2018) and Texas produced 385 103  t or 

2% of the total national production of potatoes. This production (in the USA) was 

consumed as 35.6% frozen fries, 25.7% fresh potatoes, 13.7% potato chips and 

shoestrings, 10.9% dehydrated, and the remaining 14.1% in other uses (National Potato 

Council, 2018). 

Sustaining and increasing potato production around the world is essential to food 

security, especially since its projected growth rate of production in developing countries 

(2.7% per year compared to maize the second highest at 1.9%) (CGIAR and Scott, 

2000). Per 100 g, a potato with skin contains high amounts of energy in the form of 

starch (17.3 g) and high-quality protein (2.5 g) with a total of 93 kcal. It is high in 

1
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vitamin C (9.6 mg), fiber (2.2 g), and potassium (535 mg). Some other nutrients include, 

B6 (0.6 mg), thiamine (60 mcg), folate (28 mcg), phosphorus (70 mg), calcium (15 mg), 

magnesium (28 mg), iron (1.1 mg), zinc (0.4 mg), and antioxidants. Although potato is 

not considered a good protein source, lysine is higher compared with cereal proteins 

(Camire et al., 2009). However, only soybean produced more protein on a per hectare 

basis (Kaldy, 1972). Potato can be produced in many diverse soils and climate regions, 

has very high yield per unit area, a low cost of production, and can be produced in stress 

or short cropping conditions.  This role of the potato in the world as a key food source is 

very important (CGIAR and Scott, 2000; Lisinska and Leszczynski, 1989). 

1.2 Potato Genetics and Breeding 

From its origins in the Andes Highlands of Peru and Bolivia and the lowlands of 

Southern Chile, potato has spread around the world (Jansky and Spooner, 2017). The 

species was domesticated over 8,000 years ago in Bolivia and was transported to Mexico 

and Central America (Bradshaw and Mackay, 1994b). From there, it was taken to 

Europe in 1570 and later introduced in North America, Africa, and Asia. Cultivated 

potatoes consist of eight cultivar groups of S. tuberosum (Huamán and Spooner, 2002). 

Due to autopolyploidy, wild species introgression, and other reasons potato has the 

highest genetic diversity of all crops that have been currently sequenced (Hardigan et al., 

2017) 

Potatoes and their wild relatives are classified as a subset of Solanum in the 

section Petota. This group contains a large wealth of genetic resources available to 

breeders with relative ease of introgression into cultivars. Potato is clonally and 
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sometimes sexually propagated, highly heterozygous, and can be diploid (2n = 2x = 24), 

triploid (3x), tetraploid (4x), and pentaploid (5x). Triploids and pentaploids are sterile 

and can only be vegetatively propagated. Potatoes can sometimes be propagated from 

true potato seed (TPS) although almost 100% of commercial production today starts 

from tubers.  Some research efforts to use TPS are ongoing in tropical climates where 

tuber vigor is low and long-term storage of tubers is difficult (Jansky and Spooner, 

2017). 

Most of the commercial varieties found in production are tetraploids; however, 

some diploids which equal about 75% of the total number of potato species can produce 

equivalent yield. S. tuberosum which makes up the majority of cultivated potato was 

formed from a hybrid of S. stenotomum and S. sparsipilum (Hawkes, 1990; Jansky and 

Spooner, 2017) A significant portion of the genetic background in S. tuberosum 

commercial cultivars was from the coastal Chile long-day adapted S. tuberosum 

subgroup, Chilotanum (Hardigan et al., 2017). 

Yield, tuber quality, pest and disease resistance, maturity, and adaptation are 

important in the breeding selection process. Since the end use of the specific market 

class of potato determines the type of quality characteristics required by the market, 

appearance and starch composition are also very important. Cultivated potato has a 

narrow genetic base relative to the diversity of traits in South American cultivars and 

wild species (Bradshaw and Mackay, 1994a). However, extensive potato germplasm 

resources are available from genebanks (Jansky et al., 2013). 
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The first potato breeders in the Andes developed landraces that were selected for 

specific environments and uses (Jansky and Spooner, 2017). After the potato was 

introduced in Europe and North America, serious breeding efforts in the modern sense 

started in England in 1907 and began to flourish by the 2nd half of the 19th century. By 

1900, U.S. private breeders had released over 350 cultivars. Potato breeding became a 

public endeavor in the 1910 when the USDA began to work on virus resistance and was 

expanded after 1929 when the U.S. established a National Potato Breeding Program. The 

International Potato Center (CIP) was founded in 1971 and began working on 

broadening the genetic base of potato which had up to this point remained mostly 

derived from similar germplasm. Today, germplasm banks around the world comprise 

the Association for Potato Intergenebank Collaboration which contains more than 7,000 

accessions of 188 potato taxa (Bradshaw et al., 2006).  

Conventional potato breeding generally starts by crossing tetraploid parents with 

complementary traits of interest. The genotype used as female is emasculated and pollen 

from the other parent (male) is used to pollinate. The fruit produced is a berry and 

contains true potato seed (TPS) that correspond to full-sib families. Then tubers 

produced from the TPS of these crosses are planted in the field for evaluation. Typically, 

breeding programs test 50,000-200,000 seedling tubers each year. A subset of these (1 – 

2%) will be evaluated for desirable traits the following year, with a few of those 

continuing on to larger field plots in subsequent years until a cultivar is released (Jansky 

and Spooner, 2017). In this recurrent selection breeding scheme, replicated trials and 
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detailed phenotyping begin several years after the initial cross was made and new 

parents are selected to continue the cycle.  

In order to cross with tetraploids, the wild diploid species can be doubled using 

somatic or sexual polyploidization or can be crossed with haploids of tetraploids. The 

breeding scheme used to integrate alleles from wild species involves reducing the ploidy 

by generating dihaploids, hybridizing them with exotic diploids, and finally 

polyploidization to tetraploids by either somatic doubling of diploids or by sexual 

polyploidization using 2n gametes. Breeding at the diploid level can also be done using 

an inbred-line based strategy to create high yielding diploid hybrids using breeding 

techniques currently used in other diploid crops (Jansky et al., 2016). Diploid breeding 

using inbred lines has been recently emphasized as the new potato breeding method of 

the future because its’ use of modern genetic tools that are utilized in crops like corn. It 

is seen as an important breeding strategy for its advantage of being able to select 

desirable combinations of alleles and discard deleterious ones (Jansky and Spooner, 

2017). In addition, higher variance occurring in diploid populations should result in 

higher gains when selecting at the extremes. 

Potato breeding clones with introgressions from germplasm derived from wild 

Solanum are important for breeders as a source of resistance to many insect and disease 

pests. Two-hundred and nineteen wild potato tuber bearing species are recognized 

(Bradshaw et al., 2006) but only a small proportion has been used in breeding programs. 

This wild germplasm is typically used to bring in a specific gene to provide host plant 

resistance (Jansky and Spooner, 2017) for a specific disease or pest. Notable successes 
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from introgression of wild relatives has been resistance to late blight, viruses, and 

nematodes (Bradshaw et al., 2006).  

Crossing between different ploidy levels and linkage drag are among the 

difficulties in using wild relatives as sources of useful genes. Interspecific crosses 

usually have to have the same endosperm balance number (EBN) so that there is a 2:1 

ratio of maternal to paternal endosperm. For tetraploids, EBN is not a concern because 

tetraploids will cross with other tetraploids. For diploids, there are both 1 EBN and 2 

EBN types. For 2 EBN, the chromosome can be artificially doubled to cross with 

tetraploids or fusion can be used to create somatic hybrids. For 1 EBN, they can 

sometimes be crossed with a bridge species or via somatic hybrids. Many crossing 

attempts may be needed to achieve a single success (Ortiz and Ehlenfeldt, 1992). 

Embryo rescue techniques are another way to enable the breeding of potato species that 

do not naturally cross (Simko et al., 2007). 

Linkage drag of inferior alleles is a major difficulty during introgression with wild 

species. Many backcrosses are needed and still the desired result may not be realized. 

Molecular marker assisted selection is a tool to confirm the successful introgression of 

pest-resistance genes from wild species and reduce the number of backcrosses necessary 

to achieve successful introgression of the desired trait (Barone, 2004). Transformation 

using cisgenes (genes from the same species) in place of crossing has the potential to 

make wild species more accessible in potato breeding programs (Jacobsen and Schouten, 

2007) 
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Because vegetative reproduction by cloning spreads diseases, including viruses 

and bacteria, limited-generation certification programs in potato are important to start 

with disease-free tissue culture materials. Agencies that certify potato seed require 

extensive documentation, isolation, variety purity, monitoring of disease levels, 

assessment of tuber physical quality, visual inspection, and post-harvest tests. In North 

America, all certified potatoes start from disease-free stocks in the lab, followed by 

seedling tuber production. The limited generation procedure usually limits certification 

to five years of field increase of clonal selection seed depeding on the State. Only 

approved varieties recognized by breeding programs, experiment stations, or other 

recognized institutions can be certified. Tubers from disease-free stocks are planted in 

the field to produce the generation 1 stocks which will be used to produce generation 2 

stocks and so on to a maximum of generation 5 after which only commerical production 

for consumption in allowed. When marketed, seeds must be labeled for lot identification, 

variety, quality of tubers, class of seed, country, and certification authority (Gutbrod and 

Mosley, 2001). 

1.3 Potato Pests and Diseases 

Potato succumbs to a wide variety of pests and diseases as well as abiotic 

physiological disorders such as internal heat necrosis. Successful production requires 

management on all levels to achieve profitability. Variety selection, fertility 

management, chemical application, irrigation, timing of the crop are some of the many 

tools used to maximize production and minimize losses from pests. Breeding has been 

an integral part of management for controlling several serious diseases of potato. Crop 
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wild relatives have provided resistance to ring rot, potato cyst nematode, root knot 

nematode, potato virus X, potato virus Y, Colorado potato beetle, green peach aphid, 

potato tuber worm, late blight, Verticillium wilt, silver scurf, thrips, tobacco etch virus, 

soft rot, and others. There is diversity both within wild species and within individual 

accessions. S. berthaultii, S. chacoense, S. sparsipilum, S. tarijense are wild species that 

are especially abundant sources of resistance (Hiller et al., 1985; Rich, 2013; Simko et 

al., 2007; Wale et al., 2008). 

1.4 Zebra Chip 

‘Candidatus Liberibacter solanacearum’ (Lso) is a bacterial organism responsible 

for a disease in potato known as zebra chip (ZC). This term indicates the symptoms 

(dark and light pattern) caused by this organism which is especially damaging to potato 

chip products. ZC was first reported in Saltillo, Mexico with sporadic outbreaks in 

Mexico from 1994 – 2004. ZC was first detected in south Texas in 2000 and has since 

spread to the western U.S., Central America, and New Zealand (Munyaneza, 2015; 

Nelson et al., 2012; Secor and Rivera-Varas, 2004). ZC disease was reported extensively 

in the U.S. starting in 2004 when millions of dollars of losses started to occur 

(Munyaneza, 2012; Secor et al., 2006). In 2008, this disease was first reported outside 

the Americas in New Zealand and by 2011, ZC had spread to Oregon, Washington, and 

Idaho causing severe losses in this major world potato growing region (Liefting et al., 

2008; Lin and Gudmestad, 2013). Greater than 50% loss is possible from this disease 

(Buchman et al., 2012; Munyaneza et al., 2007). Estimates of yield loss in 2011 ranged 

from 0.5 to 75% with an average of 18% (Guenthner et al., 2012). The complex nature 



9 

 

of ZC comes from its transmission by the insect vector potato psyllid (Bactericera 

cockerelli), (Munyaneza et al., 2007; Munyaneza, 2012) which feeds on potato in the 

same areas where ZC is a significant disease. 

Lso was first identified to be the specific causal agent of ZC disease in potato in 

2008 (Hansen et al., 2008). Although this disease had been reported in Mexico as early 

as 1994 and in the U.S. (Texas) in 2000 (Munyaneza et al., 2007), the specific pathogen 

causing the disease was not identified until 2008. This plant pathogen has been 

determined to be a nonculturable, gram-negative, phloem-limited, bacterium in the 

Alphaproteobacteria group that is spread from infected to healthy plants by psyllid 

vectors (Munyaneza, 2012). It is closely related to (‘Candidatus Liberibacter asiaticus’) 

that is associated with citrus greening (Huanglongbing, HLB). Lso, via the potato psyllid 

vector, infects tomato, pepper, eggplant, tomatillo, tamarillo, and several solanaceous 

weeds including silverleaf nightshade, bittersweet nightshade, and Lycium spp., which 

can serve as the primary inoculum for transmission via psyllids to a potato field 

(Munyaneza, 2012; Swisher et al., 2013; Thinakaran et al., 2017; Thinakaran et al., 

2015). In Europe, Africa, and the Middle East Lso infects multiple crops such as carrot, 

celery, parsley, and parsnips via the psyllid Trioza apicalis and Bactericera trigonica, 

(Munyaneza, 2012; Munyaneza, 2015). Lso haplotypes that are present in the insects or 

plants are characterized based on SNPs and categorized based on haplotype analysis 

using SSR markers (Lin et al., 2011).Haplotypes A and B are associated with the disease 

in solanaceous plants, haplotype C with carrots and the vector Trioza apicalis, and 

haplotypes D and E also with carrots and the vector Bactericera trigonica  (Munyaneza, 
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2015). Recently, haplotype U vectored by Trioza urticae was identified to affect stinging 

nettle (Haapalainen et al., 2018) Only one infected psyllid is needed to transmit the 

disease to the potato (Buchman et al., 2012; Buchman et al., 2011), but plants with 

multiple vectors have higher inoculation rate (85.2%) compared to a single vector 

(46.0%) (Rashed et al., 2012). 

From the site of infection, Lso seems to follow a source to sink movement of 

carbohydrates in the phloem (Levy et al., 2011). Like HLB, infection causes blocking of 

sieve tubes and disruption of flow from source to sink. This apparently benefits the 

bacteria and signals starvation to the plant causing starch accumulation in the leaf tissue 

(Kim et al., 2009; Nwugo et al., 2017). The pathogen can translocate from an infected 

leaf to a tuber tissue in four to seven days (Rush et al., 2015). The timing and rate of 

symptom development is variable, but the first symptoms, which include purpling or 

yellow leaves, were observed at three to four weeks after infestation for susceptible 

cultivars such as Atlantic. At this time following infection, qPCR can be first used to 

detect the presence of the bacteria. 

After infection of the potato plant with Lso by the potato psyllid, the above-

ground symptoms may show yellow or purplish discoloration, upward rolling and 

cupping of the leaves, stunting, chlorosis, swollen nodes, shortened internodes, 

proliferation of auxiliary buds, aerial tubers, browning of vascular system, leaf 

scorching, and early plant death (Munyaneza, 2012).  

The progression of ZC disease from infection of the above ground plant until the 

darkening symptoms in the tubers can happen as rapidly as two weeks (Rashed et al., 
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2014). Tubers that have been infected usually will not produce sprouts because the 

disease dissociates the mobilization of carbohydrate and protein reserves (Munyaneza et 

al., 2008). Those that do sprout have very low vigor and will likely die after a few weeks 

(Rashed et al., 2015). The infected tuber symptoms include enlarged lenticels, collapsed 

stolons, browning of the vascular tissue, striping, necrotic flecking, and streaking of 

medullary ray tissue. When freshly cut, rapid browning from ZC occurs in tubers 

exposed to the air from enzymatic oxidation of phenolic compounds. Frying intensifies 

the internal streaking and blotches to very dark brown consequently leading to large 

losses for the potato chip industry (Munyaneza, 2012). 

Tuber biochemical changes also occur, including increased free amino acids, 

phenolic compounds, salicylic acid, ion leakage, and changes in mineral and reducing 

sugar content (sucrose, glucose, and fructose). Thirteen free amino acids were higher 

with some of the highest increases in proline, tyrosine, histidine, tryptophan, isoleucine, 

and leucine. (Rashed et al., 2013; Rubio-Covarrubias et al., 2017; Wallis et al., 2012). A 

reduction in protein was caused by protein catabolism possibly caused by a loss of 

protease inhibitors (Kumar et al., 2015). Phenolic compounds increased in the tubers 

include the precursors of lignin and tannins which are part of the plants defense 

pathways (Wallis et al., 2015b). Other enzymes and compounds were increased that 

indicated high oxidative stress in diseased tubers causing Lso infected tubers to consume 

more metabolic energy. These changes included enhanced dehydrogenase, changes in 

cellular redox, and two - four times increased respiration. Higher glutathione reductase, 
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ascorbate free radical reductase, and a sustained increase in oxidase (NOX) were among 

many enzymes that were increased indicated high stress.  

An analysis of gene expression, showed that there was a net increase but a 

downregulation of photosynthesis related genes suggesting that Lso reduced resource 

efficiency. Protease inhibitors which are known to inhibit microbe proteases were 

upregulated in the leaves and downregulated in the roots indicated apparent weakness in 

the root system to overcome the infection. In addition, K is greatly increased in diseased 

leaf and root tissues. Other minerals also changed when infested, with ZC, Ca and Mg 

decrease in the leaf and increase in the root. Fe, Mn, Zn, and Cu were increased in the 

root, but only Fe was increased in the leaf. The increase in K likely corresponds with an 

increase of starch since accumulated K results in a co-regulated expression of starch 

synthase from Lso (Nwugo et al., 2017). Another study identified that ZC caused cell 

death in tubers resulting in many small irregularly shaped lesions in the tuber with 

compounds such as lignin surrounding the lesions. This suggests that ZC induces a 

hypersensitive response leading to programmed cell death (Miles et al., 2010). 

Transcriptomic sequencing has identified genes that Lso caused to be 

differentially expressed, supporting the hypothesis that Lso reduces metabolism, 

signaling, and plant defenses. Photosynthesis and phytohormone regulation genes were 

downregulated and metabolic pathways related to cell wall synthesis, metabolism, and 

phenolic compounds were altered. Two similar chip varieties, Atlantic and Waneta 

showed significant differences in differentially expressed genes. Some of the reduced 
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degree of susceptibility on Waneta may be the reason for these differences (Levy et al., 

2017).   

The control of this disease with insecticides (Butler et al., 2011) is essential to 

the potato chipping industry. It is successfully controlled with early detection and careful 

timing of products such as Admire (imidacloprid) and Movento (spirotetramat) to 

control the potato psyllid. (Goolsby et al., 2007; Levy et al., 2011). The cost to the 

grower is high, with one grower study in 2009 – 2011 documenting an average cost in 

Texas of $740 per hectare and an average of 7.9 applications of insecticide (Guenthner et 

al., 2012). It is estimated that production costs would increase by 17% in Idaho if ZC 

were to become a problem in that area (Guenthner et al., 2012). Since even one psyllid 

can infect the plant these methods are costly, with variable effectiveness, and rely on 

application of toxic chemistries. Recently, resistance to neonicotinoid-based insecticides 

such as imidacloprid has been found in Texas psyllids leaving the future control of 

psyllids by current insecticides in doubt (Hawkes, 2016; Prager et al., 2013). 

Development of new cultivars that contain resistance or tolerance to ZC would be a 

substantial contribution to the potato industry.  

In the last decade, as ZC disease has become more widespread, efforts have been 

increased to select for resistance or tolerance to either the psyllid or the bacteria. What 

has confounded the results to date is that tolerance/resistance mechanisms may be to the 

insect, the pathogen, or a combination of them.  Selected cultivated varieties for ZC 

yield loss were tested and it was found that while there was some degree of variability in 

susceptibility to ZC, all varieties tested had yield losses ranging from 49.9% to 87.2%. 
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(Munyaneza et al., 2011). It was determined that there is an urgent need to develop 

varieties with resistance/tolerance to this disease. Based on results of several years of 

research, it was suggested that Lso tolerance and possible resistance exists in wild 

species (Wallis et al., 2015a). This research found five tolerant clones out of 283 clones 

and advanced selections tested, and indicated that these five had some wild species 

material in their parentage. Data from the Toluca Valley, Mexico (Rubio-Covarrubias, 

2016) indicated a significant reduction in the percentage of tubers with ZC symptoms, 

progression of the disease curve, and the severity of the internal tuber discoloration in 

some selected clones that were tested. Results by (Lévy et al., 2015) showed differences 

in susceptibility to Lso among clones. This indicates that some level of tolerance to the 

pathogen can occur and selection for tolerance/resistance to ZC could provide beneficial 

breeding clones for the potato industry. Researchers have looked at psyllid development 

from eggs on no-choice feeding assays and found that some potato genotypes produced 

significantly fewer psyllids from the eggs from a strong antibiotic effect (Diaz-Montano 

et al., 2013). However, it should be noted that infection by Lso happens very soon after 

contact with the first psyllids, so these genotypes still have infection by the pathogen 

regardless of eventual psyllid development from hatched eggs. 

Not finding good resistance in commercial varieties tested in field trials, work 

has been continued to screen wild species for potential resistance. While the number 

continues to be updated, there are at least 219 species of wild potatoes. With such a vast 

pool of potential genetic resources, it is a largely unknown and untapped genetic 

reservoir. In the limited wild material that has been screened (Cooper and Bamberg, 
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2014; Cooper and Bamberg, 2016) found that some S. verrucosum and S. bulbocastanum 

accessions in the US potato germplasm bank were resistant to the psyllid. Tri-species 

potato material derived from S. tuberosum, S. etuberosum, and S. berthaultii had 

significantly reduced feeding by psyllids in feeding tests (Novy et al., 2010b). S. 

raphanifolium, S. tarijense, and S. chacoense were used in ARS breeding clones that 

were bred for resistance to cold induced sweetening and were indicated to have ZC 

tolerance (Wallis et al., 2015a). The US Potato Genebank mini-core collection was 

screened for resistance to the psyllid as well as tolerance to ZC indicated by lowest yield 

reductions on infested plants compared to the control. PI 310927 S. berthaultii and PI 

558050 S. commersonii were found to be tolerant to ZC as indicated by tuber production 

level and resistant to the psyllid. PI 458425 S. jamesii and PI 592422 S. jamesii were 

found to have high insect mortality and low oviposition (Levy et al., 2018). 

Evaluation of commercial potato chip varieties has shown susceptibility to ZC 

(Anderson et al., 2012; Lévy et al., 2015; Munyaneza et al., 2011). Although the degree 

of susceptibility varies, existing studies have shown susceptibility across a broad range 

of commercial cultivars in all market classes. Low discoloration in some experimental 

tolerant lines associated with low phenolic content indicates that tolerance can occur 

without the extra production of phenolic compounds (Rubio-Covarrubias et al., 2017). 

Breeding clones A07781-3lb, A07781-4lb and A07781-10lb are full sibs derived from S. 

chacoense had lower Lso titer and tuber symptom expression. S. chacoense, S. 

etuberosum, and S. berthaultii are likely to have the highest potential to find reduced 

susceptibility to ZC (Rashidi et al., 2017),  
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1.5 Potato Psyllid 

Potato psyllid Bactericera cockerelli (Sulc), has been known as a destructive pest 

of potato even when it does not contain ‘Candidatus Liberibacter solanacearum’. 

Outbreaks of psyllid yellows disease (caused by the feeding behavior of the psyllid) 

were described in 1927 and 1938 (Butler and Trumble, 2012). Although it remains a 

serious economic pest of solanaceous crops, the insect is controlled by insecticides such 

as Admire (imidacloprid) and Movento (spirotetramat) which are the most commonly 

used. Its role as the vector of Lso makes understanding its movement, abundance, and 

control methods very important to limiting the spread of ZC disease. For this reason, 

monitoring psyllids using yellow sticky cards is an important management portion of a 

ZC integrated pest management (IPM) program, (Goolsby et al., 2007; Goolsby et al., 

2012). However, since even one psyllid can destructively infect the plant, a low-input 

IPM method is likely not practical for chipping or French fry processing potatoes 

because of ZC (Trumble et al., 2016)  

The optimum temperature for development of the psyllid is at 27 °C and they 

will not survive above 35 °C (Munyaneza et al., 2012). If climate conditions are ideal, 

three to seven generations of psyllids are likely completed in one year. When the 

temperatures increase in late spring, the potato psyllid migrates from the Southwest U.S. 

and Mexico northward into the Western Rocky Mountain states and Canadian provinces. 

In cooler regions of Mexico and Central America, psyllids are able to reproduce and 

develop throughout the year without migration (Munyaneza, 2012).  
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Lso concentrations in the plant tissue (titer) is related to the initial inoculum 

injected into the plant by the psyllid (Rashed et al., 2016). Additionally, variation in 

psyllid feeding and numbers of psyllids may result in different levels and rates of 

symptom development. These variations are compounded by the environment and potato 

variety which makes analysis of Lso symptoms very challenging. This is confounded by 

the fact that climate factors also affect vectoring efficacy, disease progression, and tuber 

development (Wallis et al., 2015a). 

1.6 Chip Quality  

Chip processing potatoes are likely to be later maturing potato varieties with high 

starch content (Lisinska and Leszczynski, 1989). To be desirable for processing, potato 

tubers must be mature, low in reducing sugars, high yielding, high in dry matter, high in 

specific gravity, and uniform in size and shape. The producer controls these qualities by 

optimizing genetic, cultural, and environmental factors. Frying duration, oil temperature, 

oil type, pre-treatment of the potato, and tuber itself all effect the final quality of the chip 

(Santis et al., 2007). Potato tubers are tested for quality and visual appearance before and 

after chipping and chip color is evaluated by the consumer which prefers a light colored 

chip without dark imperfections (Pedreschi et al., 2016). When fried, the potato chip has 

specific marketing requirements which include a reducing sugar content of < 2.5 – 3 

mg/gram and a glucose level less than 0.35 mg/g for chips and less than 1.2 mg/g for 

French fries to prevent browning during the frying process (Buchman et al., 2012; 

Lisinska and Leszczynski, 1989). Starch content based on specific gravity is also 
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important. Most processed potato products need a specific gravity of 1,080 or higher for 

ideal absorption of the oil used in preparation (Wallis et al., 2012). 

Potatoes used for chips are stored at a minimum of 10 °C and above 90% relative 

humidity because cooler temperatures can cause the starch to be converted to sucrose 

reducing sugars (Marwaha, 1997). This conversion of starch in cold storage is known as 

cold induced sweetening, which is also enhanced by the length of storage and the free 

amino acid content in the tuber. When cold induced sweetening occurs it results in 

browning of potato chips during frying (Blenkinsop et al., 2004). 

Conditions in the field may also affect potato chip quality. Internal brown spot, 

heart necrosis, corky ringspot, and canker internal rust spot are all disorders that result in 

browning in chips. These are physiological disorders caused by photoperiod response 

along with genetic, fluctuating temperature, fluctuating moisture, and nutrition factors 

(Wolcott and Ellis, 1959). 

The biochemical processes of browning in the potato chips are also associated 

with ZC and have been analyzed and likely caused by a combination of reducing sugars, 

polymeric polyphenolic compounds, and cell death (Miles et al., 2010). The analysis of 

tubers has also shown that ZC positive tubers have higher phenolic content (Navarre et 

al., 2009) causing enzymatic oxidation and higher reducing sugars which combine with 

free amino acids in the Maillard reaction (non-enzymatic browning). This reaction is 

determined by the reducing sugar content based on the reaction between amine groups 

and free amino acids and the reducing sugars (Miles et al., 2010). These symptoms are 

most visible after frying causing the burnt and striping pattern (Wallis et al., 2012). Lso 



19 

 

infected tubers had specific gravity values lower than the minimum 1,080 four weeks 

after psyllid infestation. Chips infested with ZC also contain higher than ideal levels of 

glucose, which also contributes to poor chip quality (Buchman et al., 2012).  

Lso titer increases during the storage process of the tuber and tubers previously 

determined to be Lso negative can begin to show symptoms not shown at harvest. The 

pathogen can translocate from an infected leaf to a tuber tissue in four to seven days. 

This means that it is necessary to monitor and control late-season psyllid infestation until 

four days before harvest because of the potential of symptom development in storage 

even though there were no symptoms detected at harvest (Rashed et al., 2018; Rashed et 

al., 2015).  

1.7 DNA Extraction and PCR 

Detection of Lso in the plant is performed by polymerase chain reaction (using 

conventional polymerase chain reaction (cPCR) and quantitative polymerase chain 

reaction (qPCR) using primers from a region between the 16S and 23S rDNA and/or 

adenylate kinase (adk) genes. Primers sets Lso TX 16/23 F/R and Lso adk F/R 

(Ravindran et al., 2011) and Lso-931F/LsoLSS (Fujiwara and Fujikawa, 2016) have 

been developed from this region in the pathogen and selected from a group of possible 

primers tested for reliable diagnosis at different levels of Lso infection. Leaf, stem, and 

tuber tissue can all be used to extract DNA for cPCR and qPCR. Using qPCR is more 

useful than cPCR because detection of Lso is higher with qPCR. Up to 47% and 53% 

detection was found in symptomatic tubers for two types of cPCR used, 88% with 

TaqMan qPCR, and 94% with SYBR Green qPCR (Beard et al., 2012). SYBR Green 
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qPCR was specific, accurate, and cost effective method for detection. It was found that 

unacceptable browning can occur at titers below the limit of cPCR detection assays and 

also Lso may be detected in tubers that do not show any symptoms when fried (Beard et 

al., 2012). Pathogen detection using qPCR is detectable starting in the 2nd week using 

qPCR on the upper and middle-tier leaves, and through the rest of the plant by week 

eight. Several studies indicated that cPCR is unreliable for indicating presence on the 

bacteria (Beard et al., 2012; Levy et al., 2011; Li et al., 2009).  

1.8 Tolerance and Resistance 

Resistance is used to refer to the plant’s ability to reduce infection level and 

tolerance means the extent a plant can maintain low ZC symptom expression (Agrios, 

1988; Rashidi et al., 2017). It is important to specifically define tolerance and resistance 

because these terms are sometimes defined differently by different researchers. In ZC, a 

decrease of infection is measured by quantifying the bacteria titer of Lso in the plant. 

Since this was not done it cannot be specifically stated that resistance has been found 

based on this definition. The definition of tolerance is relative based on the degree of 

symptoms on the check clones that were used. If fewer symptoms (in fried chips) of ZC 

disease were observed in a clone compared to the untreated tubers of that clone and to 

both Atlantic and Waneta checks these were declared as tolerant and also suggested that 

resistance may exist and would need to be confirmed using qPCR to detect the level of 

bacteria present. 
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1.9 Project Objectives  

More comprehensive screening is needed to determine if tolerance is available 

and the potential of this tolerance to be used in future breeding.  The most efficient and 

reliable way to do this must be found, so that breeding programs can readily assess the 

clones in their breeding program. Phenotypic traits needed to indicate ZC tolerance, 

quality level of each clone, and the standards best able to describe. The objectives of this 

project were:  

 

 To identify potato clones (tetraploid and diploid) with both high processing 

quality and tolerance to ZC disease. 

 To compare greenhouse and field ZC screening methods to assess advantages 

and disadvantages of each. 

 To evaluate the tuber and yield characteristics of ZC tolerant germplasm. 

 To validate a final set of ZC tolerant and susceptible clones in a controlled field 

study to check for consistency. 
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Germplasm Used in Greenhouse and Field 

 Twelve tetraploid clones that had shown reduced susceptibility to ZC in previous 

screening tests (average ZC score lower than four on a 0 – 5 scale) conduction by 

the Texas breeding program. 

 Three tetraploid clones from the (NCPT) 2017 National Chip Processing Trial 

(only in greenhouse experiment).  

 Nine tetraploid clones with introgressions from crop wild relatives with known 

pest and disease resistance in their pedigrees from USDA ARS in Aberdeen, 

Idaho. 

 Twenty-one diploid clones from a recurrent selection program of S. tuberosum 

Grp. Phureja, S. microdontum, and S. berthaultii, S. chacoense from Michigan 

State University. 

 Four diploid accessions from the potato mini-core collection (only in greenhouse 

experiment) (Levy et al., 2018).  

 Four check varieties Atlantic and Waneta chippers; Russet Norkotah and 

Reveille Russet fresh market russets. (All four were included in the greenhouse. 

Atlantic and Waneta were included in the field.) 
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2.2 Germplasm Used in Validation Study  

 Five tetraploids from the Texas breeding program  

 Three tetraploids with introgressions from crop wild relatives 

 One tetraploid from the NCPT trial 

 Three diploids from the recurrent selection clones 

 Three of the most susceptible clones from the greenhouse screening 

 Atlantic and Waneta as checks 

Tetraploid clones with reduced susceptibility to ZC disease were identified from 

four (2013 – 2016) years of screening by the Texas Potato Breeding program under field 

conditions. During this period, if a clone had a ZC chip score of 4 or 5 it was dropped, 

but if not it was kept to screen again the next year. Twelve clones had average ZC chip 

scores below 4 and were included in our study. 

Tetraploid clones were selected from the 2017 NCPT field study that had good 

chip quality and had 0% ZC infestation in the field. Since, they likely missed infection in 

the field they were included in the greenhouse screening. 

Tetraploid clones from the USDA breeding program in Aberdeen, ID obtained 

from Richard Novy were included in the field and greenhouse because these all 

contained introgressions from wild potato species in their pedigrees. Since some of these 

wild potato species may have tolerance to ZC, it was thought that it would be useful to 

test advanced tetraploid clones from crop wild relatives that had already been developed 

and would be closer to the production pipeline than materials collected directly from the 

wild. 
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Diploid potato selections provided by David Douches at Michigan State 

University to screen for ZC tolerance were generated by crossing five diploid species (S. 

tuberosum Grp. Tuberosum, S. tuberosum Grp. Phureja, S. microdontum, and S. 

berthaultii, S. chacoense as source of self-compatibility for the germplasm pool) in a 

recurrent selection (RS) breeding method (Douches, D., Personal Communication).  

PI 310927, PI 558050, PI 592422, and PI 458425 were obtained from John 

Bamberg (USDA-ARS, United States Potato Genebank, Sturgeon Bay, WI). These four 

accessions were identified out of a greenhouse screen of a mini-core collection of 80 

accessions. Individual clones of accessions PI 310927 and PI 558050 were included 

because they were identified as having the strongest insect resistance and low yield 

reduction in infected plants compared to control plants. PI 592422 and PI 458425 were 

included because they had high insect mortality and low oviposition (Levy et al., 2018). 

Atlantic, Waneta, Russet Norkotah, and Reveille Russet were included as checks. 

Atlantic is the standard for chipping and has been thoroughly studied and found to be 

susceptible to ZC. Waneta is also a commercial chipping variety and has shown a 

reduction in susceptibility compared to Atlantic (Levy et al., 2017). Russet Norkotah 

was included to represent the russet market class of potato. Reveille Russet (also a fresh 

market russet) was included because it was selected in Texas during years with high 

psyllid populations. 

2.3 Insect Vector 

Potato psyllids from an Lso infected colony were used as the inoculation source 

for the greenhouse and field experiments. Potato psyllids were raised in the 



25 

 

Tamborindeguy laboratory in the Department of Entomology at Texas A&M University. 

The psyllids were Northwestern haplotype. An Lso-uninfected colony was obtained from 

Dr. Henne, AgriLife Wesalco, TX. Infected psyllids were obtained by rearing insects on 

Lso-infected plants (Yao et al., 2016). The Lso-infected psyllid colonies, maintained on 

tomato plants in the Tamborindeguy lab, have been tested with diagnostic PCR for Lso 

infection, and have an average 80 – 100% infection rate with Lso. (Huot et al., 2018; 

Lévy et al., 2013). 

2.4 Field Screening 

The field trial screening plots were planted near Springlake, TX (34°11N, 

102°30W, altitude of 1,115 m) in April 2017. The plots were on center pivot irrigation 

with Tivoli fine sand soil type. N-P-K fertilizer (121.1-28-28 kg/ha) was applied to the 

plots. No seed treatment was applied to the potato tubers. Chemicals applied during the 

growing season included Movento, Minecto Pro, Transform WG, and Sivanto 

insecticides; Scala, Luna Tranquility, and NUCOP fungicides; and Roundup, Dual 

Magnum, Matrix, Stealth, Makaze, Brawl, Gly Star Original, and Metribuzin 75 CA 

herbicides. These trials experienced above average precipitation in the last week of June, 

first and last week of July, and second week of August. Temperatures were recorded by 

Easy Log USD (Lascar Electronics, Whiteparish, UK) sensors from May 14 – Aug 21, 

2017 both inside and outside the cage. Inside cage temperatures (Figure 1) averaged 24.3 

°C, minimum of 7.2 °C, and maximum of 47.2 °C. Outside cage temperature averaged 

24.5 °C, minimum of 4.5 °C, and maximum of 45 °C. 
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The field trial was planted on 4 April 2017 for all clones except MRS 127-2, MSV 

313-2, MSW 044-1, MSW 075-2, MSZ 219-1, and MSZ 219-14 planted on 11 April 

2017.  Seventy total clones included 21 diploid clones from the Michigan State 

University Potato Breeding and Genetics Program, 9 tetraploid clones with wild 

introgressions from USDA Potato Germplasm Research Aberdeen, ID, 12 tetraploid 

chipping clones from Texas A&M Potato Breeding Program, 26 tetraploid chipping 

clones selected by National Chip Processing Trial (NCPT) breeding programs, and 

Atlantic and Waneta tetraploid chipping clones for the standard check. 1.83 m width x 

7.32 m length x 0.91 m height enclosed cages covered with white LS Econet 4045 (AB 

Ludvig Svensson, Kinna, Sweden) mesh insect screen (0.40 x 0.45 mm) over 2.54 cm 

diameter PVC poles were used as enclosures to keep out all flying insects from the field 

trial (Figure 2). Cages were designated as infested and non-infested to ensure 100% 

isolation from potential psyllid escapes. The non-infested cages were planted with two 

plants per clone and the treatment cages were planted with four plants per clone. These 

were spaced at 22.86 cm between plants and 30.48 cm between clones at a depth of 15.2 

cm.  

Insects were placed on the plant at the time when tubers where beginning to 

develop, but still had six more weeks to develop symptoms after infection, (Rashed et 

al., 2013). Approximately 70 days after planting psyllids were placed on the plants on 

June 6th. Three psyllids were placed into a plastic Eppendorf (Eppendorf, Hauppauge, 

NY) tube that was placed into an organza mesh bag and tied onto a leaf and removed on 
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June 12th (Figure 3).  Tubers were harvested on Aug. 21st, stored at 18.3°C until chipped 

on Aug. 24th 2017. 

2.5 Greenhouse Screening 

The greenhouse screening experiment was planted on September 5th, 2017 in 

Snook, TX (30°31’N 96°26’W, altitude of 67 m) about 10 miles from College Station, 

TX. Temperatures were recorded by Easy Log USD (Lascar Electronics, Whiteparish, 

UK) sensors in both non-infested and infested greenhouses. The infested greenhouse 

temperature averaged 20.2°C, minimum of 13.9 °C, and maximum of 31.1°C (Figure 4). 

The non-infested greenhouse temperature averaged 23.2 °C, minimum of 16.7 °C, 

maximum of 33.9 °C (Figure 5). 

Fifty-two total clones included 21 diploid clones from Michigan State University 

Potato Breeding and Genetics Program, nine tetraploid clones with wild introgressions 

from USDA Potato Germplasm Research Aberdeen, ID, ten tetraploid chipping clones 

from Texas A&M Potato Breeding Program, three tetraploid chipping clones from the 

National Chip Processing Trial (NCPT) breeding programs, four of the most tolerant to 

Lso wild diploid accessions from the potato mini-core collection from a previous 

greenhouse screen completed at Texas A&M (Levy et al., 2018), Russet Norkotah and 

Reveille Russet tetraploid russet clones for the standard check for russets, and Atlantic 

and Waneta tetraploid for chipping clones. One tuber was planted 5.1 cm deep in 3.79 

liter plastic nursery pots filled with Sunshine Mix #1 (Sungro, Agawam, MA) with 

starter fertilizer Osmocote (Scotts Miracle-Gro, Marysville, OH) on steel benches in a 

climate controlled polycarbonate greenhouse with natural lighting (Figure 6). Two non-



28 

 

infested pots and four infested pots were planted per clone. Non-infested pots were 

placed in a separate greenhouse of the same type and the infested pots to ensure 100% 

isolation from possible psyllid escapes during infestation. The pots were initially placed 

0.3 m apart and later moved to 0.6 m apart when the plants became over 0.3 m tall. A 

bamboo stake was placed into each pot and the plant was tied to the stake to keep it from 

falling over. Plants were fertilized with 4.93 mL Peters (J.R. Peters, Allentown PA) 20-

10-20 N-P-K fertilizer per 3.79 L of water approximately every other week starting in 

mid-October.  

Approximately six weeks after planting, psyllids were placed on the plants on Oct. 

27th. This was at the time when tubers where beginning to develop, but still had six more 

weeks to develop symptoms after infection, (Rashed et al., 2013). Three psyllids were 

placed into a plastic Eppendorf (Eppendorf, Hauppauge, NY) tube that was placed into 

an organza mesh bag and tied onto a leaf and removed Nov. 3rd (Figure 3). Four clones 

had plants that died shortly after the insects were removed and ZC score and chip quality 

was not reported for these clones. Tubers were harvested on Dec. 15th and chipped on 

Dec 20th. 

2.6 Data Collected 

The number of live and number of dead psyllids were counted and expressed in 

percentage. Leaves were inspected for psyllid eggs and designated as a number code for 

no eggs (0), few eggs approximately less than 15 (1), and many eggs approximately 

more than 15 (2). Insect mortality and egg presence were recorded 6 days after placing 
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them on the plants. Data was taken on total tuber weight and total tubers per plant. 

Average tuber weight (yield) per plant was also calculated. 

All tubers were chipped three days after harvest. Eight chips per plant (unless a 

fewer number of tubers were available) were sliced using an industrial meat slicer 

(Figure 7) at 1.3 mm thickness and fried for 1 minute 25 seconds in vegetable oil at 

182.2 °C (Figure 8). The chips were rated for ZC score (0 – 5) with 5 the highest level of 

ZC browning (Figure 9), the number of chips showing ZC symptoms expressed as 

percentage (percent ZC), chip quality rating (1 – 5) with 5 the lowest chip quality (based 

on browning) (Figure 10), number of good chips (absence of any defects), and number 

of bad chips not suitable for the chipping industry. Good and bad chips were expressed 

in percentage of total chips for each plant since the total number of fried chips was not 

equal for each plant. Least square means and standard errors were calculated for each 

clone using JMP statistical software.  

2.7 Designation of Tolerance and High Tolerance of Clones 

Tolerance with high chip quality was declared if average ZC score per clone < 

2.5 and average chip quality score was < 3.0 because chip quality above 3.0 is not 

acceptable for chips (Snack Food Association, 1995). The difference between average 

chip quality ratings of infested and non-infested < 1 to indicate minimal change due to 

ZC tuber symptoms based on the average for the clone.  

High tolerance was declared if no incidence of ZC symptoms was observed on 

the chips or the average ZC score was very low (< 1.5).  
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2.8 Statistical Analysis 

All statistical analyses were performed using JMP Pro 13 edition (SAS Institute 

Inc., Cary, NC). The traits analyzed were ZC chip score, percent good chips, percent ZC, 

chip color, percent insects alive, insect eggs, total tuber weight per plant, tuber number, 

and average weight per tuber. Since the traits were not normally distributed (Shapiro-

Wilk test for normality) mixed models that do not require normality were used. For 

statistical calculations, each plant was considered to be a replication within a split plot 

design (infested and non-infested sub-plots), non-randomized experimental design. For 

traits comparing infested and non-infested, a nested model was used to separate clones 

into infested and non-infested groups. Clones and test (non-infested and infested) were 

considered as fixed effects, whereas reps and the interactions involving reps were 

considered random. Comparison of infested and non-infested was performed using 

Student’s t-test for each trait. Least square means were used to approximate the means 

because the data set had missing data. JMP was used to generate least square (LS) 

means. LS means were compared using Student’s t test. The effect tests in the analysis of 

variance model were used to determine if there were significant differences between 

clones and between tests (non-infested and infested). Multivariate methods analysis 

using pairwise correlations in JMP were used to calculate correlations for each trait 

separately for infested and non-infested and for comparing greenhouse and field. A 

correlation estimate ≥0.65 was considered strong, and 0.50 and 0.64 was considered 

moderately strong, and < 0.49 was considered weak.  The level of significance used in 

all comparisons was α = 0.05.  
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2.9 Field Validation Study 

Eighteen potato accessions were planted by hand near Bushland, TX (35°12’N 

101°54’W, altitude of 1132 m) on May 16th 2018. FL 1867 was planted as a positive and 

negative check. They were covered with cages (4 tubers of the same cultivar/cage) 

before emergence in two replications which were setup in a randomized complete-block 

design spaced 30 inches apart. Plants in the cages were infested at flowering with 

psyllids carrying ‘Candidatus Liberibacter solanacearum’ (Lso). Six psyllids from an 

Lso infected colony of the Central haplotype were placed at the base (leaned against the 

base) of each plant in a 50-ml tube on June 20, 2018. Individual psyllids carried both 

Lso A and B haplotypes. The psyllids were left to feed for a week after which they were 

sprayed with pesticides. Plants were harvested on August 7, 2018. Immediately after 

harvest, the tubers were taken to the laboratory where three tubers/plant (whenever 

possible) were randomly selected, sliced at proximal end, and evaluated for ZC severity 

on 0 (healthy) to 3 (severe browning or necrosis) scale (Figure 12) (Rashed et al., 2013) 

and sampled for qPCR analysis to determine Lso titer level of the tuber.  A protocol 

from (DNeasy® Plant Mini Kit (Qiagen, Valencia, CA, USA) was modified and used for 

DNA extraction (Rashed et al., 2015).  

Lso was quantified using a ViiA7 Real-Time PCR System (Applied Biosystems, 

Carlsbad, CA.) and comparative Ct method (∆∆Ct) with Eukaryotic 18S rRNA 

(VIC/MGB probe, primer limited, Applied Biosystems) for an endogenous control 

(Rashed et al., 2015)  TaqMan Universal Master Mix (Applied Biosystems), 0.3 µM 

forward primer LsoF (Li et al., 2009) 0.3 µM reverse primer HLBr (Li et al., 2006) and 
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0.25 µM HLBp TaqMan probe (Li et al., 2006)) was used for the reaction mix. Relative 

quantity (RQ) of Lso in each sample was normalized to the control and calculated based 

on 6,250 genome copies per RQ value (Rashed et al., 2015). RQ of uninfected tubers is 

zero (Paetzold, L., Personal Communication, 2018). Tubers were shipped to College 

Station and six tubers were evaluated for ZC symptoms as fresh and chipped (Figure 11). 

The tubers were sliced at 1.3 mm thickness and fried for 1 minute 25 seconds in 

vegetable oil. Before frying, the fresh chips were rated for ZC symptoms of the fresh 

tubers on a 0 – 3 scale (Figure 12). After frying, the chips were rated for ZC score (0 – 

5) with 5 the highest discoloration of ZC, the number of chips showing ZC symptoms 

expressed as percentage, chip quality rating (1 – 5) with 5 the lowest chip quality (based 

on browning). Least square means and standard errors were calculated for each clone 

using JMP statistical software. 
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Figure 1. Temperatures in Celsius recorded inside the cage in the field near Springlake, 

TX during the growing season. 
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Figure 2. Field cages near Springlake, TX during the growing season 
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Figure 3. Tube with psyllid insects placed onto the potato plant leaf 
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Figure 4. Temperatures in Celsius recorded in the infested greenhouse near Snook, TX.  
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Figure 5. Temperatures in Celsius recorded in the non-infested greenhouse near Snook, 

TX. 
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Figure 6. Potato plants in the greenhouse 
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Figure 7. Industrial slicer used to precisely cut tubers to 1.3 mm thickness.
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Figure 8. Chip fryer used to test fry potato chips for analysis. 
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Figure 9. Zebra chip score (0 – 5) scale left to right used to indicate severity of 

symptoms on potato chips. 
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Figure 10. Chip quality score (1 – 5) scale left to right used to indicate the level of chip 

browning. 
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Figure 11. Zebra chip symptoms in fresh compared to chipped tubers 
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Figure 12. ZC symptoms in fresh tubers from (‘FL 1867’), with 0 representing no 

disease and 3 representing severe ZC symptoms 
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CHAPTER III 

RESULTS 

 

3.1 Greenhouse Results 

3.1.1 Tetraploid 

Twenty-six tetraploid clones were screened in the greenhouse. Waneta and three 

other tetraploid clones died and this data was excluded from chip quality and ZC score 

analysis, but were included for all the other traits since tubers were produced. Chip 

quality on these twenty-two clones (including Atlantic, Reveille Russet, and Russet 

Norkotah as checks) averaged 2.6, ranging from 1.1 to 4.3 for infested clones and 

averaged 1.3, ranging from 1.0 to 2.8 for the non-infested clones (Table 1, Figure 23). 

Five of the infested clones (TX12484-2W, AOR07781-2, A07781-10lb, MSV 358-3, 

TX05249-10W) had infested chip quality scores <2.0 indicating these as the best overall 

for chip quality. Ten clones had a difference in chip quality (infested – non-infested) of 

≤ 1.0 (Figure 23).  The clones ranked from most to least tolerant were TX12484-2W, 

AOR07781-2, A07781-10lb, MSV 358-3, TX05249-10W, A05379-211, Atlantic, 

A10667-3, POR06V12-3, and TX14710-7W. Out of these tolerant clones AOR07781-2, 

A07781-10lb, and A05379-211 had percentage of good chips higher than 80% and 

POR06V12-3 and TX14710-7W had the lowest percentage of good chips (Figure 23). 

The ZC chip score was evaluated for fried tubers for 22 tetraploid clones 

screened in the greenhouse. The average ZC chip score for each clone was 2.2, ranging 

from 0.3 to 3.8 (Table 2 and Figure 24). Eleven clones (AOR07781-2, TX12484-2W, 
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MSV 385-3, A07781-10lb, TX14710-7W, TX05249-10W, Atlantic, A07781-4lb, 

A05379-211, A10667-3, POR06V12-3) had ZC scores <2.5 which is potentially tolerant. 

These 22 clones had average percent ZC symptoms of 32.4% on fried chips, ranging 

from 8.3% to 64.6% (Table 2 and Figure 24). The 11 potentially tolerant clones ranged 

from 8.3% to 37.5% ZC on chips (Figure 24). 

The mean percent live insects at seven days after placing on the plants was 

34.0% and ranged from 8.3% to 66.7% on all clones (Table 2 and Figure 25). A07781-

10lb had the highest percentage of live insects. Four clones had no insect eggs at the end 

of seven days (Figure 25). 

Average tuber number per plant averaged 9.4, ranging from 3.8 to 23.8 in the 

infested and averaged 10.5, ranging from 3.0 to 25.0 in the non-infested (Table 1, Figure 

26). There were no significant differences between infested and non-infested clones for 

tuber number per plant. Average weight per tuber for each clone was 9.7 g, ranging from 

2.2 g to 25.9 g in the infested and was 21.3 g, ranging from 3.2 g to 57.5 g in the non-

infested (Table 1, Figure 26). The non-infested tetraploid clones had significantly higher 

average tuber weights than the infested ones. Average yield was 76.1 g, ranging from 

12.5 g to 197.5 g per plant for the infested and was 155.4 g, ranging from 80.0 g to 220.0 

g for the non-infested plants (Table 1, Figure 26). 

  



47 

 

3.1.2 Diploid 

Twenty-five diploid clones were screened in the greenhouse. Two diploid clones 

were excluded because they did not produce tubers that could be chipped. Atlantic, 

Reveille Russet, and Russet Norkotah were included as checks. Waneta was planting as 

an additional check but this clone died and this data was excluded from chip quality and 

ZC score analysis, but were included for all the other traits since tubers were produced. 

Chip quality scores of the 23 diploid clones averaged 2.8, ranging from 1.0 to 4.5 in the 

infested clones and a mean of 1.6, ranging from 1.0 to 4.0 in the non-infested clones 

(Table 1 and Figure 27). Six of the infested diploid clones (DD853-02, DD851-07, 

CC831-03, DD847-06, and PI 558050 S. commersonii) had chip quality scores ≤ 2.0 and 

these were indicated as the best overall chipping quality, (Figure 27). Eighteen non-

infested diploid clones had chip quality scores ≤ 2.0 indicating that many of the diploids 

tested were potentially suitable for chipping. Eleven diploid clones had a difference in 

chip quality (infested – non-infested) of ≤ 1.0 (Figure 27) indicating low effect from ZC 

infestation. These clones ranked from most to least tolerant were DD805-05, DD853-02, 

PI 558050 S. commersonii, DD851-07, CC806-02, PI 310927 S. berthaultii, CC831-03, 

DD847-06, DD812-02, CC805-01, and DD849-08. Out of these tolerant clones DD853-

02, DD851-07, PI 558050 S. commersonii, and CC807-01 had percentage of good chips 

for infested at 80% or higher and PI 310927 S. berthaultii and DD805-05 had very low 

percentage of good chips (Figure 27).  

ZC chip score was evaluated for fried tubers of the 23 diploid clones screened in 

the greenhouse. The mean ZC chip score was 2.1 and ranged from 0.0 – 4.5 (Table 2 and 
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Figure 28). Twelve clones (DD851-07, CC831-03, DD847-06, DD812-02, CC806-02, 

CC809-02, Atlantic, PI 558050 S. commersonii, CC811-03, DD805-08, CC807-01, 

DD805-05, and CC805-01) had ZC chip score <2.5 but >0 and these were designated as 

potentially tolerant, (Figure 28). Two clones (DD853-02 and PI 310927 S. berthaultii) 

had ZC chip scores = 0 and these were considered to have very high tolerance. These 23 

clones had an average percent ZC symptoms of 37.5% ranging from 0% to 92.7%. The 

12 potentially tolerant clones ranged from 8.3% to 37.5% ZC discolored chips (Figure 

28). 

Mean percent insects alive at seven days after placing the insects was 38% and 

ranged from 0.0% to 66.7% on all clones. Three clones had no insect eggs at the end of 

seven days (Table 2 and Figure 29). 

Average tuber number per plant was 19.1, ranging from 3.8 to 50.0 in the 

infested and a mean of 20.5, ranging from 3.0 to 74.5 in the non-infested (Table 1 and 

Figure 30). There were no significant differences between infested and non-infested 

clones for tuber number per plant. Average weight per tuber for each clone was 7.3 g, 

ranging from 1.4 g to 18.2 g in the infested and was 9.6 g, ranging from 1.4 g to 57.5 g 

in the non-infested. The non-infested diploid clones had significantly higher average 

tuber weights than the infested ones. Average yield was 116.6 g, ranging from 20.0 g to 

232.5 g per plant for the infested and was 146.0 g, ranging from 20.0 g to 300.0 g for the 

non-infested plants (Figure 30) 
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3.1.3 Greenhouse Summary 

Among tetraploids, clones TX12484-2W (Figure 15), MSV 385-3, (Figure 18) 

A07781-10lb, TX05249-10W, and AOR07781-2 (Figure 14) had the best characteristics 

combining both ZC chip score < 2.5, chip quality score < 2.5, chip difference (infested – 

non-infested < 1), and better chip quality score than the best check variety which was 

Atlantic. The mean ZC score for the experiment was 2.2 and the mean percentage of ZC 

was 32.4% for all the clones. (Table 2). 

Among diploids, clones DD853-02, DD851-07, CC831-03 (Figure 18), DD847-

06, PI 558050 S. commersonii (Figure 21), DD812-02 (Figure 19), and CC806-02 had 

the best characteristics combining both ZC chip score < 2.5, chip quality score < 2.5, 

chip difference (infested – non-infested < 1), and better chip quality score than the best 

check variety which was Atlantic. The mean ZC score for the experiment was 2.1 and 

the mean percentage of ZC was 37.5% for all the clones (Table 2). 

Overall incidence of ZC (percentage of tubers with ZC in the whole experiment) 

was 32.9% (diploids 38.7% and tetraploids 28.0%). Mixed model comparisons for 

infested and non-infested traits indicated significant differences in good chips 

percentage, chip quality, average yield g, and average weight per tuber. No significant 

differences were observed between infested and non-infested for tuber number (Table 1). 
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3.2 Field Results 

3.2.1 Tetraploid 

Twenty-three tetraploid clones were screened in the field including Atlantic and 

Waneta as checks. Nine of the tetraploid clones screened in the field did not show any 

ZC symptoms in fresh or chipped tubers. Since other field and greenhouse screens with 

these same clones did show symptoms, these clones were considered not infected with 

ZC even though the insects were placed on the plant. Chip quality scores of 23 tetraploid 

clones (including Atlantic and Waneta as checks) screened in the field averaged 2.5, 

ranging from 1.9 to 4.6 for the infested clones and averaged 1.9, ranging from 1.0 to 4.8 

for the non-infested clones (Table 3 and Figure 31). Two of the infested clones (A07781-

10lb and TX12484-3W) had both infested and non-infested chip quality scores <2.5 

indicating them as the best overall for chip quality. Clone TX12484-2W had a chip 

quality score of 2.5 for the infested which was the same as the Waneta check. Seven 

clones had a difference in chip quality (infested – non-infested) of ≤ 1.0 (Figure 31). The 

clones ranked from most to least tolerant were A10667-3, A05379-211, A07781-10lb, 

PALB03035-7, TX12484-3W, A10667-2, and Atlantic. Of these most tolerant clones, 

none of them had good chip percentage above 80%. The lowest percentage good chips 

were A10667-2 with 0% good chips and A10667-3 with < 12.5% good chips (Table 3 

and Figure 31). 

The ZC chip score was evaluated for fried tubers for the 23 tetraploid clones. The 

mean rating for these clones was 0.9 (Table 4 and Figure 32). Nine clones had a ZC 

score of 0 and these were considered non-infested. The remaining 14 clones had a ZC 
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chip score range from 0.3 to 2.5 (Figure 32). Seven clones (A07781-10lb, A10667-2, 

A10667-3, AOR07781-2, PALB03035-7, TX12484-3W, A07781-3lb, and TX14710-

7W) had ZC scores <2.0 which is potentially tolerant (Figure 32). Atlantic, TX12484-

2W, and Waneta had ZC chip scores of 2.0 which is really close to tolerant. The 

percentage of ZC averaged 12.2%, ranging from 0% to 40% (Table 4). The 14 clones 

with greater than 0% had percent ZC symptoms on individual fried chips that ranged 

from 2.1% to 40%. The potential tolerant clones ranged from 2.1% to 23.3% ZC 

discolored chips (Figure 32). 

Mean percent insects alive at seven days after placing on the plants was 18.7% 

and the range was 0.0% to 88.3% on all clones (Table 4 and Figure 33). Ten clones had 

no alive insects at the end of seven days. Fifteen clones had no insect eggs at the end of 

seven days (Figure 33). 

Average tuber number per plant was 10.2, ranging from 1.0 to 21.5 in the 

infested and was 12.0, ranging from 7.5 to 28.0 in the non-infested (Table 3 and Figure 

34). There were no significant differences between infested and non-infested clones for 

tuber number per plant. Average weight per tuber for each clone was 53.4 g, ranging 

from 35.3 g to 81.2 g in the infested and was 55.7 g, ranging from 18.1 g to 99.8 g in the 

non-infested (Figure 34). The non-infested tetraploid clones did not have significantly 

higher average tuber weights than the infested ones. Average yield was 532.4 g, ranging 

from 45.4 g to 982.0 g per plant for the infested and was 669.4 g, ranging from 36.3 g to 

1782.6 g for the non-infested plants (Figure 34). 
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3.2.2 Diploid 

Twenty-one diploid clones were screened in the field including Atlantic and 

Waneta as checks. One of the diploid clones did not produce tubers so it was excluded 

from the data. Six of the diploid clones screened in the field did not show any ZC 

symptoms in fresh or chipped tubers. Since the greenhouse screen with these same 

clones did show symptoms, it is considered that these clones were not infected with ZC 

even though the insects were placed on the plant. Chip quality scores of 20 diploid 

clones screened in the field averaged 2.8, ranging from 1.1 to 4.7 for the infested clones 

and averaged 2.4, ranging from 1.0 to 5.0 for the non-infested clones (Table 3 and Figure 

35). Seven of the infested clones (DD853-02, CC804-01, CC813-02, CC811-05, DD812-

02, CC805-01, CC831-03) had both infested and non-infested chip quality scores <2.5 

indicating them as the best overall for chip quality, (Figure 35). Eleven clones had a 

difference in chip quality (infested – non-infested) of ≤ 1.0 (Figure 35). The clones 

ranked from most to least tolerant were DD812-02, DD805-08, CC805-01, CC804-01, 

DD853-02, CC831-03, DD805-05, CC807-01, CC813-02, Atlantic, and CC811-05. Of 

the tolerant clones, DD853-02, CC813-02, and DD812-02 had higher than 80% good 

chips. DD805-08 had very low percentage of good chips at 24.4% (Table 3 and Figure 

35). 

The ZC chip score was evaluated for fried tubers for the 20 diploid clones. The 

average percentage of ZC infected tubers was 28.0%. These had an average rating of 0.8 

(Table 4). Six clones had a ZC score of 0 and these were considered non-infested. The 

remaining 16 clones had a ZC chip scores that ranged from 0.3 to 2.5. Ten clones 
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CC804-01, DD853-02, DD812-02, DD805-05, CC813-02, CC805-01, CC831-03, 

CC811-05, CC811-03, CC807-01, and DD851-07 had ZC chip scores <2.0 which is 

potentially tolerant. The lower incidence of ZC in this experiment required us to be 

stricter in the criteria used to declare tolerance. Atlantic and Waneta had ZC chip scores 

of 2.0.  However, Atlantic was used as a susceptible check, thus in order to declare a 

clone as tolerant, the ZC chip scores had to be lower than Atlantic. These 16 clones had 

percent ZC symptoms on individual fried chips with a mean of 13.1 %, ranging from 

1.7% to 43.3%. The potential tolerant clones ranged from 1.7% to 43.3% ZC discolored 

chips (Table 4 and Figure 36). 

Average percent insects alive at seven days after placing on the plants was 9.0% 

and a range from 0.0% to 52.8% on all clones (Table 4 and Figure 37). Nine clones had 

no alive insects. Seventeen out of twenty-two clones had no insect eggs at the end of 

seven days (Figure 37). 

Average tuber number per plant was 24.5, ranging from 4.5 to 57.0 in the 

infested and was 30.2, ranging from 8.0 to 67.0 in the non-infested (Table 3 and Figure 

38). There were significant differences between infested and non-infested clones for 

tuber number per plant. Average weight per tuber for each clone was 20.1 g, ranging 

from 9.7 g to 95.0 g in the infested and was 22.8 g, ranging from 11.1 g to 99.8 g in the 

non-infested (Figure 38). The non-infested diploid clones did not have significantly 

higher average tuber weights than the infested ones. Average yield was 402.9 g, ranging 

from 220.7 g to 898.1 g per plant for the infested and was 581.1 g, ranging from 344.7 g 

to 857.9 g for the non-infested plants (Figure 38). 
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3.2.3 NCPT (National Chip Processing Trial) 

Eleven of the NCPT clones screened in the field did not show any ZC symptoms 

in fresh or chipped. It is considered that these clones were not infected with ZC even 

though the insects were placed on the plant. Chip quality scores of 11 clones screened in 

the field that showed ZC symptoms ranged from 1.6 to 3.5 for the infested clones and 

1.0 to 2.5 for the non-infested clones (Figure 39). Five of the infested clones (AC01151-

5W, MSV030-4, NY 121, W 8822-1, AF 4157-6) had both infested and non-infested 

chip quality scores <2.5 indicating them as the best overall for chip quality, (Figure 39). 

Five clones had a difference in chip quality (infested – non-infested) of ≤ 1.0 (Figure 

39). The clones ranked from most to least tolerant were AC01151-5W, MSV030-4, NY 

121, W 8822-1, and NY 152. Of the most tolerant only AC01151-5W had percentage of 

good chips above 80% and NY 152 had the lowest percentage of good chips at 40.9% 

(Figure 39). 

The ZC chip score was evaluated for fried tubers for the 22 clones and the mean 

was 0.8 (Table 4). Eleven clones had a ZC score of 0 and these were considered non-

infected. The remaining eleven clones ranged from 0.3 to 3.8 ZC chip score. Ten clones 

NY 121, AF 4157-6, AC01151-5W, W 8822-1, NDTX081648CB-13W, and Snowden 

had ZC chip scores <2.0 which is potentially tolerant. These twenty-two clones had 

average percent ZC symptoms on individual fried chips with a mean of 8.9% and a range 

from 1.7% to 40%. The potential tolerant clones ranged from 1.7% to 20% ZC 

discolored chips (Table 4 and Figure 40). 
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Average percent insects alive at seven days after placing on the plants was 15.7 

with a range from 0.0% to 41.7% on all clones (Table 4). Eight clones had no alive 

insects. Nineteen out of 21 clones had no insect eggs at the end of seven days (Figure 

41). 

Average tuber number per plant was 11.0, ranging from 3.3 to 26.8 in the 

infested and was 9.0, ranging from 1.0 to 24.5 in the non-infested (Table 3 and Figure 

42). There were no significant differences between infested and non-infested clones for 

tuber number per plant. Average weight per tuber for each clone was 69.4 g, ranging 

from 32.7 g to 141.3 g in the infested and was 59.3 g, ranging 30.2 g to 133.1 g in the 

non-infested (Figure 42). The non-infested tetraploid clones had significantly lower 

average tuber weights than the infested ones. Average yield was 697.3 g, ranging from 

232.8 g to 1342.6 g per plant for the infested and was 528.8 g ranging 54.4 g to 1519.5 g 

for the non-infested plants (Figure 42). 

3.2.4 Field Summary 

Among tetraploids, clones A07781-10lb (Figure 13) and TX12484-3W (Figure 

16) had the best characteristics combining both ZC chip score < 2.0, chip quality score < 

2.5, chip difference (infested – non-infested < 1), and better chip quality score than the 

best check variety which was Waneta. Clone TX12484-2W (Figure 15) had similar chip 

quality score, ZC chip score, and chip difference as the Waneta check. The mean ZC 

score for the experiment was 0.9 and the mean percentage of ZC was 12.2% for all the 

clones (Table 4). 
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Among diploids, clones CC804-01, CC805-01, CC813-02, CC831-03 (Figure 

18), DD812-02 (Figure 19), DD853-02 (Figure 20) had the best characteristics 

combining both ZC chip score < 2.0, chip quality score < 2.5, chip difference (infested – 

non-infested < 1), and better chip quality score than the best check variety which was 

Waneta. The mean ZC score for the experiment was 0.8 and the mean percentage of ZC 

was 13.1% for all the clones. (Table 4). 

In the NCPT, three clones AC01151-5W, NY 121, and W 8822-1 had the best 

characteristics combining both ZC chip score < 2.0, chip quality score < 2.5, chip 

difference (infested – non-infested < 1). The mean ZC score for the experiment was 0.8 

and the mean percentage of ZC was 8.9% for all the clones (Table 4). 

Incidence of ZC (percentage of tubers with ZC in the whole experiment) was 

18.3% (diploids 19.9%, tetraploids 21.5%, and NCPT 14.0%). Mixed model 

comparisons for infested and non-infested traits indicated significant differences in good 

chips percentage and chip quality. No significant differences were observed between 

infested and non-infested for average yield g average weight per tuber, or tuber number 

(Table 3). 

3.3 Clones Tolerant in Both the Greenhouse and Field 

Fourteen of the tolerant clones in the greenhouse were also tested under field 

conditions with 71% of those clones tolerant in both field and greenhouse. 

Diploid clones: CC831-03 (Figure 18), DD812-02 (Figure 19), DD853-02 

(Figure 20) were identified as tolerant in both the greenhouse and field. Diploid clone 

DD853-02 was identified as highly tolerant because no incidence of ZC symptoms were 
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observed on the plant or chip in the greenhouse, and chip quality for the infested tubers 

was close to 1.0 in both the greenhouse and field. Four additional diploid clones 

(DD851-07, DD847-06, PI 558050 S. commersonii, and CC806-02) were identified as 

tolerant with low ZC score and with good chip quality in the greenhouse. However these 

clones did not have good chipping quality in the field. Tetraploid clones: A07781-10lb 

(Figure 13) was the only clone identified as tolerant in both the field and greenhouse. 

Clone TX12484-2W (Figure 15) was tolerant in the greenhouse and had a similar ZC 

quality score, ZC chip score, and chip difference as Waneta in the field. 

3.4 Correlation of Traits 

In the greenhouse, there were strong positive correlations between percentage of 

ZC symptoms with ZC chip score; and chip quality with ZC chip score, and percent ZC. 

There was a strong negative correlation between percent ZC and percent good chips and 

between chip quality and percent good chips. There was a moderately strong negative 

correlation between percent good chips and ZC chip score. There was a weak correlation 

between tuber number and average yield; average weight per tuber and average yield; 

and between insect eggs and percent alive insects. There was a weak negative correlation 

between average weight per tuber and tuber number (Table 5). 

In the field, there were strong positive correlations between percent ZC with ZC 

chip score. There was strong negative correlation between chip quality and percent good 

chips. There was moderately strong correlation between chip quality and ZC chip score 

and percent ZC. There was moderately strong negative correlation between average 

weight per tuber and tuber number. There was weak correlation between average weight 
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per tuber and average yield per plant. There was weak negative correlation between 

percent good chips and ZC chip score and also with percent ZC and percent good chips 

(Table 6). 

Comparing the field and greenhouse, there was a moderately strong correlation 

between tuber number in the field and greenhouse. There were no other correlations 

between the field and greenhouse traits for the clones (Table 7).  

3.5 Field Validation Study 

Chip quality scores of three diploid clones and 13 tetraploids clones including 

Atlantic and Waneta as checks in the field validation study averaged 3.81 and ranged 

from 2.31 to 5.0 for all clones. No clones had chip quality scores < 2.0. TX12484-3W 

had a chip quality score < 2.5 which is considered acceptable chip quality. ZC chip score 

averaged 3.5, ranging from 1.9 to 5.0. TX12484-3W, CC825-06, and DD853-02 had ZC 

chip scores < 2.5 which is potentially tolerant (Figure 43). The ZC symptoms on fried 

tubers were more noticeable than in fresh tubers (Figure 11). These 16 clones had 

percent ZC on fried tubers with a mean of 87.3% and a range of 50% to 100%. On fresh 

tubers the percent ZC averaged 51.9% with a range of 0% to 97.9% (Figure 44). RQ 

values indicating Lso titer ranged from 0.4 to 257.4 in the infested tubers and were 0.0 in 

the non-infested tubers. DD853-02, A07781-4lb, and TX14710-7W had RQ values much 

lower than the Atlantic and Waneta checks which may indicated very high tolerance to 

ZC (Figure 45). In summary, only TX12484-3W (Figure 16) had both acceptable chip 

quality and a tolerant ZC chip score. 
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Table 1. Least square means comparisons of chip and yield traits evaluated in infested (psyllids 

from an Lso infected colony) and non-infested clones (tetraploid and diploid) under greenhouse 

conditions near Snook, TX in 2017. 

  
Chip 

Quality 

Good 

Chips 
Tubers 

Tuber 

weight 
Yield 

(1-5) (%) (no/plant) (g/tuber) (g/plant) 

Tetraploid       

Infested  2.6 66.3 9.4z 9.7 76.1 

Non-

infested 
 1.3 88.1 10.5z 21.3 155.4 

Diploid       

Infested  2.8 56.7 19.1z 7.3 116.6 

Non-

infested 
 1.6 78.0 20.5z 9.6 146.0 

All Clones       

Infested  2.7 61.8 14.0z 8.6 95.5 

Non-infested  1.4 83.4 15.3z 15.7 150.9 
zMeans (within font color) were not significantly different at P ≤ 0.05. All other traits were 

significantly different between infested and non-infested clones. 
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Table 2. Summary statistics of ZC and insect related traits evaluated in ZC infested tetraploid 

potato clones and diploid clones screened under greenhouse conditions near Snook, TX in 2017. 

Tetraploids 

ZC 

(%) 

ZC 

score 

(0-5) 

Insects alive 

(%) 

Eggs 

(0-2) 

Mean 32.4 2.2 34.0 0.5 

St. error 3.3 0.2 3.1 0.1 

Min 8.3 0.3 8.3 0.0 

Max 64.6 3.8 66.7 1.5 

Count 22 22 26 26 

        

Diploids 

ZC 

(%) 

ZC 

score 

(0-5) 

Insects alive 

(%) 

Eggs 

(0-2) 

Mean 37.5 2.1 38.0 0.8 

St. error 5.1 0.3 4.2 0.1 

Min 0.0 0.0 0.0 0.0 

Max 92.7 4.5 66.7 2.0 

Count 23 23 24 24 
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Table 3. Least square means comparisons of chip and yield traits evaluated infested (psyllids 

from an Lso infected colony) and non-infested clones (tetraploid, diploid and from the National 

Chip Processing Trails – NCPT) under field conditions near Springlake, TX in 2017. 

  
  

Chip 

Quality 
Good Chips Tubers 

Tuber 

Weight 
Yield 

  (1-5) (%) (no/plant) (g/tuber) (g/plant) 

Tetraploid       

Infested  2.5 48.2 10.2z 53.4z 532.4z 

Non-

infested 
 1.9 76.2 12.0z 55.7z 669.4z 

Diploid       

Infested  2.8 48.1 24.5 20.1z 402.9 

Non-

infested 
 2.4 69.4 30.2 22.8z 581.1 

NCPT       

Infested  2.4 56.0 11.0z 69.4 697.3 

Non-

infested 
 1.9 70.2 9.0z 59.3 528.8 

All Clones       

Infested  2.5 50.8 14.9z 48.5z 548.4z 

Non-

infested 
 2.1 72.0 16.6z 46.8z 592.5z 

zMeans (within font color) were not significantly different at P ≤ 0.05. All other traits were 

significantly different between infested and non-infested clones. 
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Table 4. Summary statistics of ZC and insect related traits evaluated in ZC infested tetraploid, 

diploid, and NCPT potato clones screened under field conditions near Springlake, TX in 2017. 

 

Tetraploids 

ZC 

(%) 

ZC score 

(0-5) 

Insects alive 

(%) 

Eggs 

(0-2) 

Mean 12.2 0.9 18.7 0.1 

St. error 2.8 0.2 5.0 0.0 

Min 0.0 0.0 0.0 0.0 

Max 40.0 2.5 83.3 0.7 

Count 23 23 23 23 

     

Diploids 

ZC  

(%) 

ZC score 

(0-5) 

Insects alive 

(%) 

Eggs 

(0-2) 

Mean 13.1 0.8 9.0 0.1 

St. error 3.1 0.2 2.3 0.0 

Min 0.0 0.0 0.0 0.0 

Max 43.3 2.5 33.3 0.5 

Count 20 20 20 20 

     

NCPT 

ZC  

(%) 

ZC score 

(0-5) 

Insects alive 

(%) 

Eggs 

(0-2) 

Mean 8.9 0.8 15.7 0.0 

St. error 2.8 0.2 3.3 0.0 

Min 0.0 0.0 0.0 0.0 

Max 40.0 3.8 41.7 0.8 

Count 22 22 21 21 
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Table 5. Pearson correlations (r) of chipping traits, insect records and yield parameters of potato clones infested with psyllids from an 

Lso infected colony under greenhouse conditions near Snook, Texas in 2017.  

 Correlations† 

ZC Chip 

Score 

Percent 

Good 

Chips 

Percent 

ZC 

Chip 

Color 

Percent 

Insects 

Alive Insect Eggs 

Total 

Weight (g) 

Tuber 

Number 

Average 

Weight (g) 

Per Tuber 

ZC Number of Chips 0.7188 -0.6281 0.8751 0.6984 0.1054 0.1058 0.4578 0.2682 0.1147 

ZC Chip Score  --- -0.6129 0.8052 0.8948 0.0903 0.0197 0.1935 0.0065 0.1384 

Percent Good Chips   --- -0.7449 -0.762 0.0149 0.0518 -0.1426 0.1095 -0.1947 

Percent ZC    --- 0.7604 0.0803 0.05 0.2057 0.0359 0.1088 

Chip Color     --- 0.0206 0.0047 0.2408 -0.0488 0.2325 

Percent Insects Alive      --- 0.3504 0.1302 0.1565 0.0114 

Insect Eggs       --- 0.0827 0.0582 -0.0076 

Total Weight (g)        --- 0.4663 0.4939 

Tuber Number         --- -0.3718 

†Underlined lines indicate weak (0.3 < r < 0.5), moderately strong (0.5 < r < 0.65), or very strong (r > 0.65) correlations.
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Table 6. Pearson correlations (r) of chipping traits, insect records and yield traits of potato clones infested with psyllids from an Lso 

infected colony under field conditions near Springlake, TX in 2017.  

 Correlations† 

ZC 

Chip 

Score 

Percent 

Good 

Chips 

Percent 

ZC 

Chip 

Color 

Percent 

Insects 

Alive 

Insect 

Eggs 

Total 

Weight (g) 

Tuber 

Number 

Average 

Weight (g) Per 

Tuber 

ZC Number of Chips 0.8723 -0.4325 0.9244 0.6088 0.0649 0.2257 0.0637 0.0464 -0.0008 

ZC Chip Score  --- -0.3945 0.8686 0.6271 0.125 0.1992 0.0588 -0.0317 0.0477 

Percent Good Chips   --- -0.4724 -0.7212 -0.0956 -0.1134 0.0057 0.0319 0.0398 

Percent ZC    --- 0.5696 0.1081 0.2908 -0.037 -0.0514 0.0026 

Chip Color     --- 0.0507 0.1045 0.091 0.0779 -0.0662 

Percent Insects Alive      --- 0.2764 0.1873 0.0719 0.1165 

Insect Eggs       --- 0.0506 0.1032 -0.0822 

Total Weight (g)        --- 0.2962 0.4489 

Tuber Number         --- -0.5052 

†Underlined lines indicate weak (0.3 < r < 0.5), moderately strong (0.5 < r < 0.65), or very strong (r > 0.65) correlations.
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Table 7. Pearson correlations (r) of field and greenhouse chipping traits, insect records and yield traits of potato clones infested with 

psyllids from an Lso infected colony in 2017.  

Field† 

Greenhouse 

ZC Chip 

Score 

Percent 

Good 

Chips  

Percent 

ZC 

Chip 

Color 

Percent 

Insects 

Alive  

Insect 

Eggs  

Total 

Weight 

(g)  

Tuber 

Number 

Average 

Weight (g) 

Per Tuber  

ZC Chip Score  -0.1016 0.0873 -0.1555 -0.1109 0.0241 0.1018 -0.1081 -0.0285 -0.0793 

Percent Good Chips  -0.015 0.0224 0.0451 -0.013 0.1984 0.0592 0.1857 0.1123 0.0855 

Percent ZC -0.1229 0.1416 -0.2006 -0.1379 -0.0163 0.103 -0.1201 0.0155 -0.1002 

Chip Color 0.0179 -0.0975 -0.0079 0.0333 -0.0184 0.0811 -0.1645 -0.0968 -0.1043 

Percent Insects Alive 0.0147 -0.0273 0.0018 0.0361 -0.179 -0.1023 -0.1328 -0.0088 -0.0794 

Insect Eggs  -0.0462 -0.0545 -0.0041 -0.0447 -0.0038 0.0621 -0.1008 0.0344 -0.126 

Total Weight (g)  -0.0334 0.0213 -0.0347 -0.0492 -0.0961 -0.195 -0.0181 -0.0792 0.0261 

Tuber Number  0.1425 -0.1491 0.1496 0.1082 0.0888 0.0356 0.2768 0.5809 -0.2802 

Average Weight (g) 

Per Tuber -0.1237 0.1494 -0.1361 -0.1059 -0.225 -0.2501 -0.1446 -0.349 0.2186 

†Underlined lines indicate weak (0.3 < r < 0.5), moderately strong (0.5 < r < 0.65), or very strong (r > 0.65) correlations. 
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Figure 13. Potato chips of the ZC tolerant tetraploid clone A07781-10lb from non-infested and 

infested tests  
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Figure 14. Potato chips of the ZC tolerant tetraploid clone AOR07781-2 from non-infested and 

infested tests  
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Figure 15. Potato chips of the ZC tolerant tetraploid clone TX12484-2W from non-infested and 

infested tests  
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Figure 16. Potato chips of the ZC tolerant tetraploid clone TX12484-3W from non-infested and 

infested tests 
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Figure 17. Potato chips of the ZC tolerant tetraploid clone MSV 385-3 from non-infested and 

infested tests 
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Figure 18. Potato chips of the ZC tolerant diploid clone CC831-03 from non-infested and 

infested tests 
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Figure 19. Potato chips of the ZC tolerant diploid clone DD812-02 from non-infested and 

infested tests 
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Figure 20. Plants, tubers, and potato chips from non-infested and infested tests of the ZC tolerant 

diploid clone DD853-02 
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Figure 21. Plants, tubers, and potato chips from non-infested and infested tests of the ZC tolerant 

diploid clone S. commersonii 
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Figure 22. Plants, tubers, and potato chips from non-infested and infested tests of the ZC tolerant 

diploid berthaultii 



76 

 

 

Figure 23. Quality of chips for tetraploid potato clones grown under greenhouse conditions near 

Snook, TX in 2017. Average chip quality scores (1 = light chip, 5 = very dark chip) (A), and 

percentage of good chips (no defects) (B) from infested (psyllids from an Lso infected colony) 

and non-infested tubers fried immediately after harvest. Values are least square means ± standard 

error. Clones were sorted from left to right with best chip quality (A) on the left and highest 

percentage of good chips (B) on the left. Atlantic† was used as the standard chipping variety 

check. Russet Norkotah† and Reveille Russet† were used as additional tetraploid checks. 
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Figure 24. Level of ZC damage for tetraploid potato clones grown under greenhouse conditions 

near Snook, TX in 2017. Average ZC chip scores (0 = no symptoms, 5 = severe symptoms) (A) 

and average percentage of chips with zebra symptoms per plant (B) from infested (psyllids from 

an Lso infected colony) tubers fried immediately after harvest. Values are least square means ± 

standard error. Clones were sorted from left to right with lowest ZC score (A) on the left and 

lowest percent ZC (B) on the left. Atlantic† was used as the standard chipping variety check. 

Russet Norkotah† and Reveille Russet† were used as additional tetraploid checks. 
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Figure 25. Survival and oviposition of psyllids on plants of tetraploid potato clones grown under 

greenhouse conditions near Snook, TX in 2017. Average percent insects alive after seven days 

(A) and insect eggs (0 = no eggs, 1 = few eggs, and 2 = many eggs) per plant (B). Values are 

least square means ± standard error. Insect egg numbers are shown based on a number code 

Clones were sorted from left to right for lowest percent insects alive (A) and fewest number of 

eggs (B). Atlantic† was used as the standard chipping variety check. Russet Norkotah† and 

Reveille Russet† were used as additional tetraploid checks. 
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Figure 26. Production and size of tubers of tetraploid potato clones grown under greenhouse conditions near Snook, 

TX in 2017. Average tuber number per plant (A), Average weight per tuber (B), and average yield per plant (C). 

Values are least square means ± standard error. Clones were sorted from left to right for highest average tuber 

number (A), highest average weight per tuber (B), and highest average yield per plant (C). Atlantic† was used as the 

standard chipping variety check. Russet Norkotah† and Reveille Russet† were used as additional tetraploid checks. 
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Figure 27. Quality of chips for diploid potato clones grown under greenhouse conditions near 

Snook, TX in 2017. Average chip quality scores (1 = light chip, 5 = very dark chip) (A) and 

percentage of good chips (B) from infested (psyllids from an Lso infected colony) and non-

infested tubers fried immediately after harvest. Values are least square means ± standard error. 

Clones were sorted from left to right with best chip quality (A) on the left and highest percentage 

of good chips (B) on the left. Atlantic† was used as the standard chipping variety check. Russet 

Norkotah† and Reveille Russet† were used as additional tetraploid checks. 
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Figure 28. Level of ZC damage for diploid potato clones grown under greenhouse conditions 

near Snook, TX in 2017. Average ZC chip scores (A) and average percentage of chips with zebra 

symptoms per plant (B) from infested (psyllids from an Lso infected colony) tubers fried 

immediately after harvest. Values are least square means ± standard error. Clones were sorted 

from left to right with lowest ZC score (A) on the left and lowest percent ZC (B) on the left. 

Atlantic† was used as the standard chipping variety check. Russet Norkotah† and Reveille 

Russet† were used as additional tetraploid checks. 
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Figure 29. Survival and oviposition of psyllids on plants of diploid potato clones grown under 

greenhouse conditions near Snook, TX in 2017. Average percent insects alive (A) after seven 

days and insect eggs per plant (B). Values are least square means ± standard error. Insect egg 

numbers are shown based on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) 

Clones were sorted from left to right for lowest percent insects alive (A) and fewest number of 

eggs (B). Atlantic† was used as the standard chipping variety check. Russet Norkotah† and  

Reveille Russet† were used as additional tetraploid checks 
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Figure 30. Production and size of tubers of diploid potato clones grown under greenhouse 

conditions near Snook, TX in 2017. Average tuber number per plant (A), Average weight per 

tuber (B), and average yield per plant (C). Values are least square means ± standard error. Clones 

were sorted from left to right for highest average tuber number (A), highest average weight per 

tuber (B), and highest average yield per plant (C). Atlantic† was used as the standard chipping 

variety check. Russet Norkotah† and Reveille Russet† were used as additional tetraploid checks. 
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Figure 31. Quality of chips for tetraploid potato clones grown under field conditions near 

Springlake, TX in 2017. Average chip quality scores (1 = light chip, 5 = very dark chip) (A) and 

percentage of good chips (B) from infested (psyllids from an Lso infected colony) and non-

infested tubers fried immediately after harvest. Values are least square means ± standard error. 

Clones were sorted from left to right with best chip quality (A) on the left and highest percentage 

of good chips (B) on the left. Atlantic† was used as the standard chipping variety check. 

Waneta† was used as an additional tetraploid check. 
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Figure 32. Level of ZC damage for tetraploid potato clones grown under field conditions near 

Springlake, TX in 2017. Average ZC chip scores (A) and average percentage of chips with zebra 

symptoms per plant (B) from infested (psyllids from an Lso infected colony) tubers fried 

immediately after harvest. Values are least square means ± standard error. Clones were sorted 

from left to right with lowest ZC score (A) on the left and lowest percent ZC (B) on the left. 

Atlantic† was used as the standard chipping variety check. Waneta† was used as an additional 

tetraploid check. 
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Figure 33. Survival and oviposition of psyllids on plants of tetraploid potato clones grown under 

field conditions near Springlake, TX in 2017. Average percent insects alive (A) after seven days 

and insect eggs per plant (B). Values are least square means ± standard error. Insect egg numbers 

are shown based on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) Clones were 

sorted from left to right for lowest percent insects alive (A) and fewest number of eggs (B). 

Atlantic† was used as the standard chipping variety check. Waneta† was used as an additional 

tetraploid check. 
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Figure 34. Production and size of tubers of tetraploid potato clones grown under field conditions 

near Springlake, TX in 2017. Average tuber number per plant (A), Average weight per tuber (B), 

and average yield per plant (C). Values are least square means ± standard error. Clones were 

sorted from left to right for highest average tuber number (A), highest average weight per tuber 

(B), and highest average yield per plant (C). Atlantic† was used as the standard chipping variety 

check. Waneta† was used as an additional tetraploid check. 
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Figure 35. Quality of chips for diploid potato clones grown under field conditions near 

Springlake, TX in 2017. Average chip quality scores (1 = light chip, 5 = very dark chip) (A) and 

percentage of good chips (B) from infested (psyllids from an Lso infected colony) and non-

infested tubers fried immediately after harvest. Values are least square means ± standard error. 

Clones were sorted from left to right with best chip quality (A) on the left and highest percentage 

of good chips (B) on the left. Atlantic† was used as the standard chipping variety check. 

Waneta† was used as an additional tetraploid check.  

0.0

1.0

2.0

3.0

4.0

5.0

C
h
ip

 Q
u
al

it
y
 S

co
re

 (
1

-5
) 

Chip Quality for Diploid Potato Clones

Under Field Conditions

Infested Non-infested

A

0

20

40

60

80

100

120

140

G
o

o
d

 C
h
ip

s 
P

er
ce

n
ta

g
e

Good Chips for Diploid Potato Clones 

Under Field Conditions

Infested Non-infested

B



89 

 

 

 

Figure 36. Level of ZC damage for diploid potato clones grown under field conditions near 

Springlake, TX in 2017. Average ZC chip scores (A) and average percentage of chips with zebra 

symptoms per plant (B) from infested (psyllids from an Lso infected colony) tubers fried 

immediately after harvest. Values are least square means ± standard error. Clones were sorted 

from left to right with lowest ZC score (A) on the left and lowest percent ZC (B) on the left. 

Atlantic† was used as the standard chipping variety check. Waneta† was used as an additional 

tetraploid check. 
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Figure 37. Survival and oviposition of psyllids on plants of diploid potato clones grown under 

field conditions near Springlake, TX in 2017. Average percent insects alive (A) after seven days 

and insect eggs per plant (B). Values are least square means ± standard error. Insect egg numbers 

are shown based on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) Clones were 

sorted from left to right for lowest percent insects alive (A) and fewest number of eggs (B). 

Atlantic† was used as the standard chipping variety check. Waneta† was used as an additional 

tetraploid check.  

0

10

20

30

40

50

60

70

P
er

ce
n
t 

In
se

ct
s 

A
li

v
e

Percent Insects Alive Diploid Potato Clones

Under Field Conditions
A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
g
g
s 

(0
-2

 s
ca

le
)

Insect Eggs Diploid Potato Clones

Under Field Conditions
B



91 

 

 
Figure 38. Production and size of tubers of diploid potato clones grown under field conditions 

near Springlake, TX in 2017. Average tuber number per plant (A), Average weight per tuber (B), 

and average yield per plant (C). Values are least square means ± standard error. Clones were 

sorted from left to right for highest average tuber number (A), highest average weight per tuber 

(B), and highest average yield per plant (C). Atlantic† was used as the standard chipping variety 

check. Waneta† was used as an additional tetraploid check. 
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Figure 39. Quality of chips for NCPT potato clones grown under field conditions near 

Springlake, TX in 2017. Average chip quality scores (1 = light chip, 5 = very dark chip) (A) and 

percentage of good chips (B) from infested (psyllids from an Lso infected colony) and non-

infested tubers fried immediately after harvest. Values are least square means ± standard error. 

Clones were sorted from left to right with best chip quality (A) on the left and highest percentage 

of good chips (B) on the left. Snowden† was used as the standard chipping variety check.  
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Figure 40. Level of ZC damage for NCPT potato clones grown under field conditions near 

Springlake, TX in 2017. Average ZC chip scores (A) and average percentage of chips with zebra 

symptoms per plant (B) from infested (psyllids from an Lso infected colony) tubers fried 

immediately after harvest. Values are least square means ± standard error. Clones were sorted 

from left to right with lowest ZC score (A) on the left and lowest percent ZC (B) on the left. 

Snowden† was used as the standard chipping variety check.  
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Figure 41. Survival and oviposition of psyllids on plants of NCPT potato clones grown under 

field conditions near Springlake, TX in 2017. Average percent insects alive (A) after seven days 

and insect eggs per plant (B). Values are least square means ± standard error. Insect egg numbers 

are shown based on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) Clones were 

sorted from left to right for lowest percent insects alive (A) and fewest number of eggs (B). 

Snowden† was used as the standard chipping variety check. 
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Figure 42. Production and size of tubers of NCPT potato clones grown under field conditions 

near Springlake, TX in 2017. Average tuber number per plant (A), Average weight per tuber (B), 

and average yield per plant (C). Values are least square means ± standard error. Clones were 

sorted from left to right for highest average tuber number (A), highest average weight per tuber 

(B), and highest average yield per plant (C). Snowden† was used as the standard chipping variety 

check. 
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Figure 43. Quality of chips and ZC score of potato clones grown in the field validation study 

near Bushland, TX in 2018. Average chip quality scores (1 = light chip, 5 = very dark chip). 

Values are least square means ± standard error. Clones were sorted from left to right for lowest 

ZC score. Atlantic† was used as the standard chipping variety check. Waneta† was used as an 

additional tetraploid check. 
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Figure 44. Percent ZC in chipped and fresh potato clones grown in the field validation study near 

Bushland, TX in 2018. Values are least square means ± standard error. Clones were sorted from 

left to right for lowest percent ZC in chipped. Atlantic† was used as the standard chipping 

variety check. Waneta† was used as an additional tetraploid check. 
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Figure 45. RQ values indicating the level of Lso in the tuber using qPCR for the field validation 

study near Bushland, TX in 2018. (RQ) was normalized to the Lso endogenous reference and 

quantified in relation to the calibrator containing 6,250 genome copies. Values are least square 

means ± standard error. Clones were sorted from left to right for lowest RQ value. Atlantic† was 

used as the standard chipping variety check. Waneta† was used as an additional tetraploid check. 
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CHAPTER IV 

DISCUSSION 

 

4.1 Tolerance in the Field and Greenhouse 

Genotypic variability in symptom expression in response to ZC (infested trials) indicated 

that screening for ZC tolerance was a valuable effort to identify sources of tolerance to ZC. 

Clones with no disease symptoms (zero ZC score) were found. From a breeder’s perspective 

those with a very low or no symptoms of ZC are declared resistant. However, very low ZC score 

could represent escapes or non-efficient infection, thus the term highly tolerant is used. It is 

possible that tolerance could be monogenic or polygenic and could explain the reaction to ZC. 

Results indicating tolerance to ZC in the first screening (greenhouse) were followed up with 

additional field experiments. Field studies included artificially infested trials (using cages) at two 

locations, the first near Springlake, TX including many clones and the second was considered as 

a validation experiment near Bushland, TX, with a subset of promising tolerant clones and 

checks. 

ZC tolerance had previously been found using fresh tuber symptoms as the indicator, 

(Rubio-Covarrubias et al., 2015; Rubio-Covarrubias et al., 2017) but the analysis was not 

conducted on fried potato chips. In the present study, ZC symptoms were clearly visible in some 

of the fresh tubers but the ZC symptoms were more evident in chipped tubers (Figure 11). 

Tubers with clear symptoms in the fresh state showed ZC in the chips, but there were instances 

when the symptoms were not easy to see in the fresh state but showed ZC symptoms after frying.  

The same set of clones was used in the greenhouse and first field studies in infested and 

non-infested trials with the same experimental design. This allowed for comparison of 
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consistency of results between greenhouse and field and also comparison of the effect of ZC on a 

number of traits. The greenhouse screening had higher and more consistent infection levels than 

the first field screening. In the field, reduced insect survival, insect eggs, and percentage of ZC 

infection (18.0% field compared to 32.9% for the greenhouse) was observed. The lower ZC 

incidence level under field conditions made results more difficult to interpret compared to the 

greenhouse. Additional browning was observed in fried potato chips from the field study that 

was not related to ZC (browning due to other chip defects) that was not seen under greenhouse 

conditions. Since the artificially-infested field experiment was conducted under insect-proof 

cages, tuber defects were likely not caused by other insects or viruses transmitted by insects in 

season. Since certified seed was not used, it cannot be guaranteed that the tubers were free from 

viruses which could cause tuber defects. However, the same seed source was used for the 

greenhouse and first field experiment. It is possible that some bruising was caused at harvest 

time but all tubers were treated in a similar way thus this should not bias the results. Under 

greenhouse conditions, harvest was gentler to the tubers since the pots were simply turned over 

to harvest instead of digging (by hand using a fork) in the field.  The temperatures were more 

stable under greenhouse conditions with a mean of 20.2°C and range of 13.9 °C to 31.1°C 

compared to a mean 24.3 °C and a range of 7.2 °C to 47.2 °C under field conditions. Thus, it is 

believed that chip defects observed in field-harvested tubers not caused by ZC were likely due to 

internal heat necrosis. Previous research indicated the difficulty of field-testing in finding 

consistent results. Some potato clones would initially show tolerance to ZC but after two years of 

field studies none of the selections could be confirmed as tolerant because of contradicting 

results, (Levy et al., 2018). Several years of field cage screenings of clones at Texas A&M have 

been used to separate potentially tolerant from more susceptible clones. Several of those clones 
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were included along with selected progenies in the field and greenhouse studies. The greenhouse 

screening increase the level of confidence because it allowed assigning each clone a specific 

ranking for ZC tolerance which was not always possible under field conditions, where a zero ZC 

score could represent escape or non-efficient infection.. Non-efficient infection could possibly be 

due to heat sensitivity of Lso to high temperatures. Temperatures above 32 °C were reported to 

affect Lso (Munyaneza, 2015). Soon after placing the insects in the field there were spikes of 

high temperatures that could have affected psyllid survival. Despite the difficulties associated 

with field screening, field evaluation is still an important element of ZC screening, especially if 

used in combination with greenhouse screening. Ideally, two field studies should be conducted to 

validate results in different locations with different levels of disease pressure to be able to see 

variation for disease expression and differentiate tolerant from susceptible. Since, if the 

incidence is very low most of the clones could appear tolerant but if the incidence is very high 

most of the clones could appear susceptible. This was the intent when the second field screening 

was conducted with a subset of clones. Triangulation screening (greenhouse, first field screening 

and second field) would enable better filtering of the clones in order to identify those (very few 

in our case) that can more reliably be declared tolerant to ZC.  

4.2 Tetraploid Clones 

A recent study screened in the greenhouse a few of the same clones (members of the 

A07781 full sib family: A07781-3lb, A07781-4lb, and A07781-10lb) that were included in our 

experiment (Rashidi et al., 2017). These full sibs were derived from S. chacoense and all showed 

some degree of tolerance. In our study, A07781-10lb was found to be more tolerant in both the 

greenhouse and field compared to A07781-4lb; A07781-3lb had inconsistent ZC symptoms 

when greenhouse and field results were compared. The previous study (Rashidi et al., 2017) 
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indicated that A07781-3lb and A07781-4lb were the more tolerant members of the full-sib 

family. This seems to indicate that many factors influence the extent of ZC chip infestation and 

multiple screenings or larger experimental sizes are needed to have a clearer picture. 

Nevertheless, A07781-10lb (although having higher Lso titer) was the most tolerant for this full 

sib family based on greenhouse and field results and focusing on ZC symptoms of chipped 

tubers; however A07781-3lb and A07781-4lb had lower Lso titer (second field study). Another 

member of the same family, AOR07781-2 (same female and male, but selected in Oregon) was 

also screened. This clone was not included in the (Rashidi et al., 2017) study. AOR07781-2 and 

A07781-10lb were among the most ZC tolerant tetraploid clones based on greenhouse 

evaluations. A07781-10lb had lower ZC score than AOR07781-2 in the first field screening, and 

similar in the second field screening (both had very higher percentage of zebra symptoms in the 

tubers (90%) in the second field trial) however the RQ values (the amount of Lso DNA in the 

sample) of AOR07781-2 was lower than that of A07781-10lb. Several members of another 

family segregating for ZC tolerance, TX12484 were screened, and some of its members showed 

tolerance under greenhouse and first field screening. TX12484-2W and TX12484-3W were re-

tested in the second field screening. TX12484-3W had the lowest ZC score indicating tolerance; 

TX12484-2W could also be considered as tolerant, taking into account the very high pressure of 

Lso the plants were subjected to. Lso was present as shown by the RQ scores indicated Lso titer. 

There was no correlation between ZC scores and Lso titer, which contradicts previous research 

that concluded that Lso titers were correlated to both fresh and fried ZC symptoms (Wallis et al., 

2015a). Atlantic had the maximum ZC score in the second field study but the RQ values were 

equivalent to other clones declared tolerant to ZC. It was concluded that evaluating tubers based 
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on visual symptoms after chipping is likely a much better approach to screen for ZC tolerance 

when comparing results from infested and non-infested experiments. 

4.3 Diploid Clones 

This study looked at the potential of diploid clones from a recurrent selection program 

(Michigan State University) for ZC tolerance in respect to each other and to a range of tetraploid 

clones. Improved diploid clones were used in this study in hopes that if tolerance for ZC was 

found it would be easier to incorporate them as parents in breeding programs. Previous studies 

indicated resistance to psyllids in diploids, (Cooper and Bamberg, 2014; Cooper and Bamberg, 

2016; Levy et al., 2018; Novy et al., 2010a); however, data was not collected on ZC chip score 

or chip quality of fried potato chips. The wide ranges of variation for ZC chip scores and chip 

quality observed in the diploid clones that were screened indicated that careful selection would 

be needed to combine ZC tolerance and good chip quality. It was encouraging to find several 

clones with good chip quality that met the criteria outlined herein for ZC tolerance. There were 

some clones, such as DD805-05, tolerant to ZC but produced dark chips. One diploid clone 

(DD853-02) from Michigan State University was declared most tolerant based on ZC score in 

greenhouse and field studies and absence of Lso despite overwhelming infestation (second field 

study).  

Clone DD853-02 and PI 310927 S. berthaultii (Figure 22) (from the Potato Introduction 

Center, WI and included in a previous study screening the potato mini-core collection) (Levy et 

al., 2018) were both potentially tolerant to ZC due to no difference between infested and control 

fried tubers for ZC score and chip quality and had the lowest ZC score in the greenhouse and 

first field study. DD853-2 had among the lowest values for ZC score, good chipping quality in 

the second field study, and low RQ. PI 310927 S. berthaultii was not included in the field 



104 

 

screening because of bad chip quality in the non-infested. S. berthaultii is one of the wild species 

present in the pedigree background all of the diploids developed by recurrent selection at 

Michigan State University of S. tuberosum Grp. Tuberosum, S. tuberosum Grp. Phureja, S. 

microdontum, and S. berthaultii, S. chacoense. In the clone from PI 310927, the fried tubers were 

dark and did not have acceptable chip quality but DD853-02 was among the highest in chip 

quality. DD853-02 had small tuber size of 5.3 g for infested and 4.1 g for non-infested in the 

greenhouse and 13.6 g for infested and 24.9 g for non-infested for the field. This clone had 

evenly round shape and high tuber number per plant at 42 per plant for the non-infested (the 

second highest of all clones) and 18 per plant for the infested. Improving tuber size is a must but 

at least it has good chipping quality and round tubers, which are desirable quality traits for the 

chipping market class.  

4.4 Wild Species  

The diploid accession PI310927 (S. berthaultii) confirmed previous screening showing 

absence of eggs and low percentage of live insects; however, it had had bad chip quality. 

PI558050 (S. commersonii) also confirmed previous screening showing (based on no insects 

alive and few eggs) and it had good chip quality. This validated prior research that showed that 

these two accessions both exhibited the insect resistance and had lower yield reduction than most 

accessions in the mini-core collection (Levy J., Personal Communication, 2018). In the 

greenhouse study, the PI310927 (S. berthaultii) was the healthiest and greenest out of all clones 

tested when the plants were harvested. It was noted that there is likely variation among members 

of PI accessions. Tubers of plants were included that were previously screened and indicated as 

potentially tolerant. Our PI's represent clones within the accession that should be preserved 

individually. Further study is needed to investigate this accession more closely. 
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There were no correlations between insect eggs or insects alive with ZC score or any of 

the other traits measured. There was a weak correlation between alive insects and insect eggs. 

Since there were only three insects, it is possible that more plants are needed to evaluate insects 

and eggs. Interestingly, out of all tolerant diploid clones tested, PI558050 S. commersonii had 

0% insects alive even though there was a moderate level of eggs and S. berthaultii had 0 eggs 

even though there was 16.7 % average alive insects on the plants after seven days. It seems that 

ultimate insect survival has little influence on egg laying, but survival of insects among wild 

species may be from a completely different mechanism. One may target the feeding or survival 

of the insect while the other affects egg laying but not insect survival. Absence of eggs was an 

indication of insect resistance, however, since a small number of insects were used there is no 

guarantee that both males and females were present. It is also possible that some females were 

too old or too young to lay eggs.  All four species clones tested from the mini-core collection (PI 

310927 S. berthaultii, PI 558050 S. commersonii, PI 592422 S. jamesii, and PI 458425 S. 

jamesii) had less insect eggs and live insects than the mean of all the other diploids tested. This 

seems to confirm the data presented previously about insect survival and oviposition on these 

accessions from the mini-core collection, (Levy et al., 2018). Surprisingly, clone DD853-02 that 

is most tolerant had the highest percent of live insects and an average number of insect eggs. 

This indicates that previous work, (Cooper and Bamberg, 2014; Cooper and Bamberg, 2016) 

which found resistance to the psyllid is not in necessarily related to tolerance to ZC as both can 

be separate characteristics. The other diploids that were determined to be tolerant ranged all over 

the spectrum from having few live insects to many live insects and from have few eggs to many 

eggs. Live insects and numbers of eggs do not correlate to ZC tolerance based on our 
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observations. However, lower insect survival could contribute to reduced transmission of the Lso 

to the plant and consequently lower infestation rates in a natural field setting. 

4.5 Evaluating Screening Methods 

Standard methodology to evaluate tolerance to ZC has not been established. The number 

of psyllids (infected with Lso) feeding on the plant with other factors including time and duration 

of infection could influence the degree of infection and intensity of the ZC chip score on the 

fried tubers (Rashed et al., 2013). When 20 psyllids per plant were used in a previous study, all 

clones tested had significant yield loss over 49.9%, with almost 100% of the plants developing 

severe symptoms with a ZC chip score of 4 or higher (Munyaneza et al., 2011). This led to the 

conclusion that all types of tetraploid potatoes were severely affected. Our results indicated that 

using three psyllids per plant, instead of 20, the level of symptoms was not as severe and allowed 

us to see a wide range of symptom expression. Most of the plants did not die from ZC and many 

did not show aboveground symptoms. In the greenhouse, non-infested plants had an average 

yield of 150.9 g/plant, an average weight per tuber of 15.7 g/tuber, and 15.3 tubers/plant. 

Infested plants had an average yield of 95.5 g/plant (36.7% loss in relation to non-infested 

plants), average tuber weight was 8.6 g/tuber (45.2% loss in relation to non-infested) and tuber 

number was 14.0 per plant (10.8% loss in relation to non-infested) (Table 1). The greenhouse 

experiments (infested versus non-infested) were conducted in separate greenhouses. The 

greenhouse where the infested experiment was conducted had occasional problems with thrips 

and one episode of gray mold. Those factors could interfere with yield loss assessments. The 

field study had low ZC incidence rate 18.3% for the field compared to 32.9% for the greenhouse. 

Non-infested plants had an average yield of 592.5 g/plant, an average weight per tuber of 46.8 

g/tuber, and 16.6 tubers/plant. Infested plants had an average yield of 548.4 g (7.4% loss in 
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relation to non-infested plants), average weight per tuber of 48.5 g, (3.6% gain in relation to non-

infested) and tuber number of 14.9 (10.2% loss in relation to non-infested). All of these 

comparisons between infested and non-infested were not significant for the field but were 

significant for average yield and average weight per tuber for the greenhouse. Among previously 

declared susceptible clones such as Atlantic there was a ZC chip score of 1.5 (on a 0 – 5 scale) in 

the greenhouse and a ZC chip score of 2.0 in the first field study (three Lso infected psyllids per 

plant), respectively, but a score of 5.0 for ZC score when six Lso infected psyllids were used per 

plant (second field study). The second field study had much higher incidence of ZC of 87.3% 

and it was more difficult to determine differences between the clones with the average ZC score 

of 3.5 and a range of 1.9 to 5.0. Despite that, some clones had relatively lower ZC score, good 

chip quality and low RQ values. Using a very low number of psyllids (or screening under 

conditions that do not favor psyllid viability – like in the first field study) generally causes low 

levels of ZC infection. However, increasing the number of psyllids is a delicate aspect since the 

plants could be easily overwhelmed and do not allow much variation of ZC symptoms. In the 

second study with six psyllids per plant, most plants had ZC symptoms. Variation was noted, but 

the range of ZC symptom intensity was narrower.  

From this research, it is clear that the collection of traits on chip quality for infested and 

non-infested tubers and ZC score are the key traits valuable for making a decision on a clone 

breeding value for tolerance to ZC. Especially helpful was the difference between trait values of 

the control and the infested chips. Percent of good chips is inversely correlated with the ZC chip 

score (r = -0.61) greenhouse and (r = -0.39) field. Correlation was also observed between ZC 

score and chip quality score (r = 0.89) in the greenhouse and (r = 0.63) in the field (Table 5 and 

6). Scoring for chip quality is easier than providing a ZC score, as sometimes it is difficult to 
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determine if browning is caused by ZC or other causes. Thus, chip quality could be used as an 

indirect trait to evaluate ZC, especially when combined with the difference between chip quality 

of non-infested and infested. 

Insect eggs and numbers do not correlate to the tolerance of susceptibility in the plant to 

ZC. Tuber size, tuber weight, and yield help to determine the potential of the cultivar but are not 

helpful in assessing ZC tolerance.  

The second field study (validation) using higher numbers of psyllids (6 instead of 3) 

resulted in much higher levels of disease symptoms on the chips (percent ZC average 87.3% 

compared to 32.9% in the greenhouse and 18.0% in the field). The Atlantic check variety for 

example had a ZC chip score of 5.0 compared to 2.5 in the greenhouse. Although this is useful to 

see the extent of maximum damage from ZC for all clones, it seems to overwhelm the plants 

causing the tolerant clones to have higher symptoms than the other studies but less than the 

checks. TX12484-3W still had acceptable chip quality and low ZC chip score even at this high 

infestation level. This indicated that intense screening might be useful for indicating which 

clones would still be acceptable in an extreme disease outbreak. Symptoms of ZC in fresh tubers 

were shown to not predict symptoms in fried chips in our second field screening. This confirms 

what was seen in the greenhouse and first field studies as there where very few fresh tuber 

symptoms. This indicates that determination of tolerance needs to be done with frying to 

determine symptoms correctly. Previous studies that only looked at fresh tuber symptoms are 

likely not applicable for chipping tolerance. The RQ values measuring Lso titer were not able to 

predict the ZC score or chip quality as the R2 of the regression value was very low (R2 = 0.007) 

and (R2 = 0.008) respectively. This indicates that for evaluating tolerance, Lso titer cannot be 

used as a primary method. In a recent study it was found that there was no significant correlation 
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between ZC symptom severity and Lso titer for fresh cut tubers (Rashidi et al., 2017). This was 

in contrast to previous research indicating that Lso titer was correlated to fresh and friend ZC 

symptoms (Wallis et al., 2015a). However, since some of the lowest RQ scores were from clones 

with lighter symptoms, it still is useful to look at the values are RQ in combination with the other 

phenotypic traits. 

It is very limiting if the industry has zero tolerance for ZC; however, there are a few 

potential tolerant clones, both diploid and tetraploid, if some level of ZC damage is acceptable. 

The NCPT field trial indicated what a moderate level of ZC incidence (14.0%) may result in 

terms of ZC damage to tubers. It is suggested that in future screenings, a multi-level (greenhouse 

and field) evaluations should be used. The field screen indicates if the clones that performed well 

under greenhouse conditions also hold up in the field environment. The greenhouse gives a more 

consistent data set that allows for ranking and detailed comparison of the clones for ZC score, 

chip quality, and trait difference between infested and non-infested. Under field conditions, 

variable and unpredictable weather conditions, temperature, precipitation, management practices, 

digging individual plants by hand with tools, etc. add possible confounding effects to the 

screening for ZC tolerance. However, evaluation of tuber quality and yield traits under field 

conditions is necessary to select clones and advance them to eventually be released as varieties.  

Chip quality alone is not a direct indicator of ZC tolerance, thus using it as part of a 

filtering system, could eliminate potential ZC tolerant clones. Clones from PI310927 S. 

berthaultii (Figure 22) and DD805-05 are examples of genotypes with low ZC but still very dark 

chips. Potentially tolerant clones could be discarded because of chip quality. Ideally the results 

should be separated into both dark ZC tolerant chips and light ZC tolerant chips and the breeder 

would have to treat those separately in the breeding program. Clones with ZC tolerance 
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producing dark chips would need multiple rounds of recurrent selection in pre-breeding 

programs for light chip color combined with ZC tolerance in order to be useful by main stream 

breeding programs directed to develop varieties for the processing markers (chippers, French 

fries).  
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CHAPTER V 

CONCLUSION 

 

5.1 Summary 

In summary, a few potato clones were found that consistently had tolerance in both 

greenhouse and field infested trials and also had good chipping quality. Diploid and tetraploid 

potato clones with tolerance (and high tolerance) to ZC and good processing quality are potential 

sources of ZC tolerance for future potato breeding efforts, mainly for the chipping and French fry 

market classes. High tolerance in one diploid clone and one wild species accession was found. It 

was determined that greenhouse screening is more consistent than field screening and that chip 

quality, chip quality difference, ZC score, and percentage of ZC are best used in combination to 

determine the associated level of disease symptoms to indicate tolerance. 

5.2 Lessons Learned 

 ZC is a very difficult disease to work with because of environmental effects, genetics, 

and GxE affecting the potato plant, the psyllid, and the Lso bacteria at the same time 

 The most important traits to assess ZC tolerance are ZC chip score (0 – 5 scale), chip 

quality and chip quality difference (chip quality of infested versus non-infested chipped 

tubers)   

 Chip quality score (1 – 5 scale) is needed to assess the relevance of tolerance for practical 

breeding programs for the processing market (chips and French fries) 

 Live insects and number of eggs are not directly associated with ZC tolerance 

 Both diploids and tetraploids evaluated had some level of tolerance 
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 A few diploids with good chip quality and ZC tolerance are available, but most do not 

have both attributes 

 A few tetraploids with good chip quality and ZC tolerance have been found, but most 

tetraploid are susceptible to ZC 

 One diploid clone was highly tolerant but none of the tetraploid clones could be 

considered as highly tolerant 

 Low chip quality (dark chips) interferes with the evaluation of ZC symptoms 

 Clones tolerant to ZC, but producing dark chips would require pre-breeding efforts before 

they can be used by main-stream breeding programs 

 High numbers of psyllids tend to overwhelm the plants and most looked susceptible 

 Intermediate level of psyllids would allow to see a wide range of symptoms and better 

help to identify tolerance  

 Additional screening of wild species is needed 

 Introgressing tolerance from crop wild relatives will require several rounds of recurrent 

selection 

 Greenhouse screening is a lot more reliable than field screening, but the field component 

is useful to confirm greenhouse results and to assess agronomic and quality potential 

 RQ values from qPCR do not predict ZC tolerance but some tolerant clones have a low 

RQ 

5.3 Future Work 

Several of the most tolerant high chip quality clones from both the tetraploid and the 

diploid clones were planted in a crossing block in the greenhouse. The goal is to make crosses 
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and then evaluate the resulting progeny. The identified clones were placed in tissue culture to 

maintain them for future work. One of the most promising diploid clones did not grow well in 

the field validation study so it will be grown again in the greenhouse to verify the previous 

results. 

This ZC evaluation has only scratched the surface of potato diversity since there are at 

least 219 wild species on the planet, and more than 7,000 accessions located in germplasm banks 

around the world, (Bradshaw et al., 2006). Based on the results of this diploid screen, it is 

recommended that clones be screened that are similar to S. chacoense, S. berthaultii, and S. 

commersonii. Also, S. guerroense is present in the background of the 7781 family and should 

also be tested (Brown, C., Personal Communication, 2018). However, it is expected that many 

more species could contain potential tolerance or resistance that have not yet been tested.  

Developing molecular markers to track ZC tolerance could be a valuable next step to 

breeding for tolerance or resistance. However, good phenotyping is essential to link ZC tolerance 

traits with molecular markers. Based on this study, the recommendation is to use chip quality 

(overall quality based on the level of browning) under infested conditions as the key trait to 

evaluate ZC tolerance, ideally in combination with chip quality of the same clones under control 

non-infested conditions. Screening under greenhouse conditions should be the first evaluation 

step. Validation under field conditions will be necessary to confirm results. The number of Lso 

infected psyllids used for infestation studies is also very important, a number between three and 

six seems appropriate to detect differences. It is hoped that the screening guidelines developed in 

the present study will be a valuable tool for phenotyping clones from the breeding program 

derived from crosses involving tolerant/resistant genotypes and for future mapping studies 
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aligned towards the identification of markers and genes responsible for ZC tolerance or 

resistance.
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APPENDIX 

 
Tetraploid Greenhouse 

Table A1. Least square means of chip quality and percentage of good chips of infested (psyllids from an 

Lso infected colony) and non-infested; percentage of zebra chip (ZC) and ZC score from chipped 

tetraploid potato clones grown under greenhouse conditions near Snook, TX in 2017.  

  

Chip Quality 
   Good Chips 

    (1-5) (%) 

Clone Infested Non-infested 
   

Infested Non-infested 

ZC ZC Score 

(%) (0-5) 

AOR07781-2 1.4 1.0   81.7 91.7 13.3 1.0 

A05379-211 2.4 1.8   86.7 100.0 47.5 2.8 

A07781-10lb 1.6 1.0   52.5 100.0 37.5 1.8 

A07781-3lb 3.3 1.0   57.5 100.0 43.6 3.8 

A07781-4lb 2.4 1.0   51.4 0.0 20.8 2.0 

A10667-2 4.1 2.8   72.9 50.0 8.3 0.3 

A10667-3 2.5 1.8   77.1 91.7 15.7 1.5 

MSV 358-3 1.6 1.0   62.5 75.0 54.4 3.8 

MSX 540-4 4.3 1.5   12.5 87.5 37.5 2.5 

NDTX059828-2W 3.5 1.5   43.8 100.0 56.3 3.0 

PA92A08-17 3.6 1.3   29.9 100.0 64.6 3.5 

PALB03035-7 4.0 1.3   60.4 50.0 35.4 2.3 

POR06V12-3 2.6 1.8   50.0 66.7 33.3 2.8 

TX05249-10W 1.9 1.3   54.2 100.0 45.8 2.5 

TX09396-1W 3.0 1.0   75.0 100.0 8.3 0.3 

TX12484-2W  1.1 1.0   91.7 100.0 18.3 2.0 

TX14668-3W  3.5 1.0   70.0 100.0 25.0 3.0 

TX14695-2W  3.3 1.0   68.8 100.0 31.3 3.0 

TX14710-7W 2.0 1.0   66.7 100.0 33.3 1.0 

Reveille Russet† 3.1 1.8   22.5 66.7 32.5 3.8 

Russet Norkotah† 4.1 1.8   70.8 100.0 29.2 1.3 

Atlantic† 2.3 1.5     76.9 100.0 20.0 0.5 

Mean 2.8 1.4   60.7 85.4 32.4 2.2 

St. error 0.2 0.1   4.2 5.3 3.2 0.2 

Min 1.1 1.0   12.5 0.0 8.3 0.3 

Max 4.3 2.8   91.7 100.0 64.6 3.8 

Count 22.0 22.0     22.0 22.0 22.0 22.0 

†Reveille Russet and †Russet Norkotah were used as fresh market checks. 

†Atlantic was used as the standard chipping variety check. 
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Table A2. Survival and oviposition of psyllids on plants of tetraploid potato clones grown under 

greenhouse conditions near Snook, TX in 2017. Least square means of insect egg numbers based 

on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) and average percent insects 

alive after seven days.  

  Oviposition and survival of psyllids 

Clone Eggs (0-2 scale) Insects Alive % 

A05379-211 0.5 58.3 

A07781-10lb 0.3 66.7 

A07781-3lb 1.5 41.7 

A07781-4lb 0.0 33.3 

A10667-2 0.3 50.0 

A10667-3 0.5 25.0 

AOR07781-2 0.5 31.3 

MSV 358-3 0.3 16.7 

MSX 540-4 0.5 25.0 

NDTX059828-2W 0.3 16.7 

PA92A08-17 0.8 50.0 

PALB03035-7 1.0 41.7 

POR06V12-3 0.5 43.8 

TX05249-10W 0.0 16.7 

TX09396-1W 0.5 25.0 

TX12484-2W  0.0 16.7 

TX12484-3W  1.3 58.3 

TX12484-4W 0.8 50.0 

TX14668-3W  1.0 41.7 

TX14695-2W  0.8 25.0 

TX14710-4W  0.5 8.3 

TX14710-7W  0.8 29.2 

Reveille Russet† 0.0 41.7 

Russet Norkotah† 1.0 16.7 

Atlantic† 0.5 37.5 

Waneta† 0.3 16.7 

Mean 0.5 34.0 

Std error 0.1 3.0 

Min 0.0 8.3 

Max 1.5 66.7 

Count 26.0 26.0 

†Reveille Russet and †Russet Norkotah were used as fresh market checks. 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Table A3. Production and size of tubers of tetraploid potato clones grown under greenhouse conditions 

near Snook, TX in 2017. Least square means of average tuber number per plant, average weight per tuber, 

and average yield per plant. 

  Average Tuber Number 

Average Weight per 

Tuber (g) Average Yield (g) 

Clone Infested Non-infested Infested Non-infested Infested Non-infested 

A05379-211 11.3 14.5 4.3 10.0 47.5 145.0 

A07781-10lb 10.3 7.0 9.7 36.3 92.5 220.0 

A07781-3lb 18.3 24.5 9.8 7.4 177.5 175.0 

A07781-4lb 11.5 10.0 11.4 23.0 127.5 195.0 

A10667-2 8.3 16.5 7.2 13.0 52.5 215.0 

A10667-3 10.5 8.0 9.2 19.4 80.0 155.0 

AOR07781-2 11.5 8.0 10.8 29.5 112.5 210.0 

MSV 358-3 7.8 5.5 25.8 35.2 197.5 190.0 

MSX 540-4 7.5 14.5 17.8 10.2 132.5 135.0 

NDTX059828-

2W 4.8 3.5 3.0 27.1 12.5 85.0 

PA92A08-17 9.0 10.0 15.0 17.6 120.0 160.0 

PALB03035-7 10.0 7.0 7.1 16.2 67.5 110.0 

POR06V12-3 7.0 6.5 10.4 28.2 70.0 160.0 

TX05249-10W 8.3 7.5 6.6 28.1 52.5 200.0 

TX09396-1W 6.3 7.0 10.8 33.3 62.5 190.0 

TX12484-2W  11.0 23.0 2.2 8.0 25.0 185.0 

TX12484-3W  10.0 11.5 3.7 8.1 20.0 90.0 

TX12484-4W 23.8 25.0 3.5 3.2 55.0 80.0 

TX14668-3W  4.8 7.5 9.8 18.3 47.5 130.0 

TX14695-2W  10.0 8.5 7.3 20.1 77.5 165.0 

TX14710-4W  14.3 13.5 2.7 12.3 37.5 165.0 

TX14710-7W  7.3 11.0 4.1 7.0 30.0 80.0 

Reveille Russet† 4.3 5.0 13.0 22.5 57.5 105.0 

Russet Norkotah† 4.0 3.5 16.3 45.0 67.5 150.0 

Atlantic† 8.3 15.0 13.3 13.3 100.0 200.0 

Waneta† 3.8 3.0 18.2 57.5 55.0 155.0 

Mean 9.4 10.6 9.7 21.1 76.1 155.8 

Std error 0.8 1.2 1.1 2.5 8.8 8.3 

Min 3.8 3.0 2.2 3.2 12.5 80.0 

Max 23.8 25.0 25.8 57.5 197.5 220.0 

Count 26.0 26.0 26.0 26.0 26.0 26.0 

†Reveille Russet and †Russet Norkotah were used as fresh market checks. 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Diploid Greenhouse 

Table A4. Least square means of chip quality and percentage of good chips of infested (psyllids from an 

Lso infected colony) and non-infested; percentage of zebra chip (ZC) and ZC score from chipped diploid 

potato clones grown under greenhouse conditions near Snook, TX in 2017.  

  Chip Quality (1-5)    Good Chips (%)     

Clone Infested Non-infested 

   

Infested Non-infested 

ZC 

ZC 

Score 

(%) (0-5) 

CC804-01 4.4 1.5   32.3 90.0 92.7 4.3 

CC805-01 2.3 1.5   77.5 80.0 22.5 2.3 

CC806-02 2.1 1.8   67.5 95.0 37.5 1.5 

CC807-01 2.4 1.0   80.0 100.0 15.0 2.0 

CC809-02 2.8 1.0   62.3 100.0 21.9 1.5 

CC811-03 3.3 1.0   25.0 100.0 50.0 1.8 

CC811-05 4.5 2.3   50.7 38.3 69.3 4.5 

CC813-02 3.6 1.0   61.9 100.0 38.1 3.5 

CC825-06 3.6 1.3   39.9 87.5 60.1 3.3 

CC831-03 1.6 1.0   70.0 100.0 30.0 1.0 

CC832-14 3.0 1.0   57.3 100.0 42.7 2.8 

DD803-01 2.9 1.0   53.5 100.0 35.2 2.5 

DD805-05 3.3 4.0   16.7 0.0 50.0 2.0 

DD805-08 2.3 1.0   55.4 100.0 44.6 1.8 

DD812-02 2.0 1.3   71.9 100.0 31.3 1.3 

DD829-09 4.5 2.3   10.0 83.3 85.0 4.5 

DD847-06 1.8 1.0   76.7 100.0 23.3 1.0 

DD849-08 3.3 2.5   66.3 50.0 52.5 2.8 

DD851-07 1.5 1.3   95.8 100.0 4.2 0.5 

DD853-02 1.0 1.0   100.0 100.0 0.0 0.0 

PI 310927 S. 

berthaultii 4.1 3.8   0.0 0.0 0.0 1.5 

PI 558050 S. 

commersonii 2.0 2.0   83.3 50.0 16.7 2.5 

PI 592422 S. 

jamesii 3.3 2.0   50.0 0.0 40.0 2.8 

Reveille Russet† 3.1 1.8   50.0 66.7 33.3 3.8 

Russet Norkotah† 4.1 1.8   22.5 66.7 32.5 1.5 

Atlantic† 2.3 1.5     77.1 91.7 15.7 0.0 

Mean 2.9 1.6   55.9 76.9 36.3 2.2 

St. error 0.2 0.2   5.0 6.5 4.5 0.2 

Min 1.0 1.0   0.0 0.0 0.0 0.0 

Max 4.5 4.0   100.0 100.0 92.7 4.5 

Count 26.0 26.0     26.0 26.0 26.0 26.0 

†Reveille Russet and †Russet Norkotah were used as fresh market checks. 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Table A5. Survival and oviposition of psyllids on plants of diploid potato clones grown under 

greenhouse conditions near Snook, TX in 2017. Least square means of insect egg numbers based 

on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) and average percent insects 

alive after seven days.  

  Oviposition and survival of psyllids 

Clone Eggs (0-2 scale) Insects Alive % 

CC804-01 0.8 47.9 

CC805-01 0.3 16.7 

CC806-02 0.8 45.8 

CC807-01 1.0 62.5 

CC809-02 0.5 47.9 

CC811-03 1.3 54.2 

CC811-05 1.3 58.3 

CC813-02 1.0 39.6 

CC825-06 1.0 41.7 

CC831-03 0.5 16.7 

CC832-14 0.8 50.0 

DD803-01 0.0 50.0 

DD805-05 1.5 33.3 

DD805-08 0.5 45.8 

DD812-02 1.0 66.7 

DD829-09 1.0 43.8 

DD847-06 2.0 25.0 

DD849-08 2.0 58.3 

DD851-07 0.8 8.3 

DD853-02 0.8 66.7 

PI 310927 S. berthaultii 0.0 16.7 

PI 458425 S. jamesii 0.7 8.3 

PI 558050 S. commersonii 0.5 0.0 

PI 592422 S. jamesii 0.0 8.3 

Reveille Russet† 0.0 41.7 

Russet Norkotah† 1.0 16.7 

Atlantic† 0.5 37.5 

Waneta† 0.3 16.7 

Mean 0.8 36.6 

Std error 0.1 3.7 

Min 0.0 0.0 

Max 2.0 66.7 

Count 28.0 28.0 

†Reveille Russet and †Russet Norkotah were used as fresh market checks. 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Table A6. Production and size of tubers of diploid potato clones grown under greenhouse 

conditions near Snook, TX in 2017. Least square means of average tuber number per plant, 

average weight per tuber, and average yield per plant. 

  

Average Tuber 

Number 

Average Tuber 

Weight (g)  Average Yield (g) 

Clone Infested 

Non-

infested Infested 

Non-

infested Infested 

Non-

infested 

CC804-01 50.0 74.5 4.5 3.2 220.0 235.0 

CC805-01 27.5 32.5 7.6 3.9 200.0 130.0 

CC806-02 27.3 29.5 8.0 5.9 212.5 175.0 

CC807-01 38.8 32.0 4.7 4.3 175.0 135.0 

CC809-02 13.5 10.5 17.0 10.3 200.0 110.0 

CC811-03 13.8 8.0 14.0 16.7 170.0 135.0 

CC811-05 20.8 20.5 8.3 7.4 162.5 150.0 

CC813-02 20.0 15.5 9.6 16.3 187.5 250.0 

CC825-06 13.3 16.5 7.4 10.6 95.0 175.0 

CC831-03 15.0 22.5 6.0 7.3 82.5 165.0 

CC832-14 17.8 16.5 6.1 13.3 87.5 220.0 

DD803-01 20.8 30.0 2.8 5.5 60.0 165.0 

DD805-05 6.5 6.0 6.1 5.5 40.0 35.0 

DD805-08 11.8 14.5 5.9 13.5 70.0 185.0 

DD812-02 22.8 20.5 4.7 5.2 107.5 105.0 

DD829-09 16.0 13.5 17.4 22.3 232.5 300.0 

DD847-06 6.8 9.0 5.7 15.6 40.0 140.0 

DD849-08 7.5 12.0 11.7 14.4 82.5 170.0 

DD851-07 28.0 20.5 1.8 5.6 50.0 120.0 

DD853-02 17.5 42.0 5.3 4.1 47.5 170.0 

PI 310927 S. 

berthaultii 11.8 7.0 14.9 22.1 175.0 155.0 

PI 458425 S. jamesii 15.0 15.0 1.4 1.4 20.0 20.0 

PI 558050 S. 

commersonii 26.5 13.0 1.8 13.0 50.0 85.0 

PI 592422 S. jamesii 10.7 22.0 3.5 3.3 30.0 50.0 

Reveille Russet† 4.3 5.0 13.0 22.5 57.5 105.0 

Russet Norkotah† 4.0 3.5 16.3 45.0 67.5 150.0 

Atlantic† 8.3 15.0 13.3 13.3 100.0 200.0 

Waneta† 3.8 3.0 18.2 57.5 55.0 155.0 

Mean 17.1 18.9 8.5 13.2 109.9 149.6 

Std error 2.0 2.7 1.0 2.3 12.6 11.4 

Min 3.8 3.0 1.4 1.4 20.0 20.0 

Max 50.0 74.5 18.2 57.5 232.5 300.0 

Count 28.0 28.0 28.0 28.0 28.0 28.0 

†Reveille Russet and †Russet Norkotah were used as fresh market checks. 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Tetraploid Field 

Table A7. Least square means of chip quality and percentage of good chips of infested 

(psyllids from an Lso infected colony) and non-infested; percentage of zebra chip (ZC) 

and ZC score from chipped tetraploid potato clones grown under field conditions near 

Springlake, TX in 2017.  

Clones in bold were likely not infected with ZC and showed no symptoms. 

†Atlantic and †Waneta were used as the standard chipping variety checks. 

 

Chip Quality 

(1-5) 

  Good Chips 

(%)   

Clone Infested 

Non-

infested 

  

Infested 

Non-

infested 

ZC 

(%) 

ZC 

Score 

(0-5) 

A05379-211 4.4 4.8   33.7 0.0 38.7 2.5 

A07781-10lb 1.9 1.8   75.6 80.0 3.3 0.3 

A07781-3lb 3.6 1.5   37.6 66.7 21.2 1.5 

A07781-4lb 2.0 1.8   66.9 94.4 0.0 0.0 

A10667-2 4.6 4.3   0.0 12.5 2.4 0.3 

A10667-3 2.8 3.5   12.5 60.0 2.1 0.3 

AOR07781-2 2.6 1.5   50.0 100.0 16.7 1.3 

NDTX059828-2W 1.5 1.0   100.0 100.0 0.0 0.0 

PA92A08-17 1.3 2.5   84.9 66.7 0.0 0.0 

PALB03035-7 3.1 3.0   40.8 48.9 16.4 1.3 

POR06V12-3 1.0 2.5   100.0 35.7 0.0 0.0 

TX05249-10W 3.0 1.3   50.0 100.0 25.0 2.5 

TX12484-1W  1.3 1.3   75.0 92.9 0.0 0.0 

TX12484-2W  2.5 1.3   0.0 94.4 23.8 2.0 

TX12484-3W  2.1 1.8   40.0 87.5 40.0 1.3 

TX12484-4W 1.0 1.5   100.0 92.9 0.0 0.0 

TX14668-3W  3.5 1.0   21.4 100.0 25.0 2.5 

TX14681-4W 1.8 1.0   80.8 100.0 0.0 0.0 

TX14695-2W  1.5 1.3   0.0 100.0 0.0 0.0 

TX14710-4W  2.5 1.5   0.0 100.0 0.0 0.0 

TX14710-7W  2.6 1.5   65.0 95.8 18.3 1.5 

Atlantic† 3.2 2.5   25.0 40.0 23.3 2.0 

Waneta† 2.5 1.0   50.0 83.7 25.0 2.0 

Mean 2.5 1.9   48.2 76.2 12.2 0.9 

St. error 0.2 0.2   6.9 6.1 2.7 0.2 

Min 1.0 1.0   0.0 0.0 0.0 0.0 

Max 4.6 4.8   100.0 100.0 40.0 2.5 

Count 23.0 23.0   23.0 23.0 23.0 23.0 
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Table A8. Survival and oviposition of psyllids on plants of tetraploid potato clones 

grown under field conditions near Springlake, TX in 2017. Least square means of insect 

egg numbers based on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) 

and average percent insects alive after seven days.  

  

Oviposition and survival of 

psyllids 

Clone 

Eggs 

(0-2 scale) Insects Alive % 

A05379-211 0.5 0.0 

A07781-10lb 0.0 0.0 

A07781-3lb 0.0 0.0 

A07781-4lb 0.0 0.0 

A10667-2 0.0 8.3 

A10667-3 0.3 33.3 

AOR07781-2 0.0 25.0 

NDTX059828-2W 0.0 0.0 

PA92A08-17 0.0 0.0 

PALB03035-7 0.3 83.3 

POR06V12-3 0.0 16.7 

TX05249-10W 0.0 44.4 

TX12484-1W  0.0 0.0 

TX12484-2W  0.7 0.0 

TX12484-3W  0.5 8.3 

TX12484-4W 0.0 0.0 

TX14668-3W  0.0 33.3 

TX14681-4W 0.3 8.3 

TX14695-2W  0.0 0.0 

TX14710-4W  0.0 66.7 

TX14710-7W  0.3 16.7 

Atlantic† 0.3 52.8 

Waneta† 0.0 33.3 

Mean 0.1 18.7 

St. error 0.0 4.9 

Min 0.0 0.0 

Max 0.7 83.3 

Count 23.0 23.0 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Table A9. Production and size of tubers of tetraploid potato clones grown under field 

conditions near Springlake, TX in 2017. Least square means of average tuber number 

per plant, average weight per tuber, and average yield per plant. 

  

Average Tuber 

Number 

Average Weight per Tuber 

(g) Average Yield (g) 

Clone 

Infeste

d 

Non-

infested Infested Non-infested 

Infeste

d 

Non-

infested 

A05379-211 17.5 28.0 43.2 41.3 784.7 1174.8 

A07781-10lb 12.3 14.5 57.1 62.9 719.7 929.9 

A07781-3lb 15.5 21.5 50.7 40.1 748.4 834.6 

A07781-4lb 20.3 27.0 39.0 42.9 780.2 1170.3 

A10667-2 12.0 12.0 41.2 40.1 469.5 485.3 

A10667-3 17.3 18.5 55.7 62.2 970.7 1097.7 

AOR07781-2 10.5 9.0 74.6 70.6 759.8 635.0 

NDTX059828-

2W 3.0 3.0 42.3 27.2 127.0 81.6 

PA92A08-17 10.8 13.0 56.9 44.0 546.6 571.5 

PALB03035-7 21.5 22.5 45.0 74.3 982.0 1782.6 

POR06V12-3 15.0 4.5 52.2 52.8 757.5 199.6 

TX05249-10W 5.0 8.0 81.2 95.3 612.3 943.5 

TX12484-1W  4.0 6.0 63.3 41.3 229.8 208.7 

TX12484-2W  7.0 9.5 44.1 52.0 308.4 489.9 

TX12484-3W  6.5 9.5 45.9 47.1 326.6 449.1 

TX12484-4W 1.0 7.5 45.4 40.7 45.4 317.5 

TX14668-3W  10.5 11.5 71.6 81.0 780.2 943.5 

TX14681-4W 7.0 6.5 45.1 62.6 299.4 394.6 

TX14695-2W  7.0 7.0 42.2 56.0 258.5 362.9 

TX14710-4W  4.5 2.0 38.6 18.1 145.1 36.3 

TX14710-7W  12.0 18.5 35.3 36.4 406.0 694.9 

Atlantic† 9.3 8.0 95.0 99.8 898.1 798.3 

Waneta† 4.5 9.0 61.7 91.6 290.3 793.8 

Mean 10.2 12.0 53.3 55.7 532.4 669.4 

St. error 1.2 1.5 3.1 4.4 59.1 84.8 

Min 1.0 2.0 35.3 18.1 45.4 36.3 

Max 21.5 28.0 95.0 99.8 982.0 1782.6 

Count 23.0 23.0 23.0 23.0 23.0 23.0 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Diploid Field 

Table A10. Least square means of chip quality and percentage of good chips of infested 

(psyllids from an Lso infected colony) and non-infested; percentage of zebra chip (ZC) 

and ZC score from chipped diploid potato clones grown under field conditions near 

Springlake, TX in 2017.  

 

Chip Quality   Good Chips 

  (1-5) (%) 

Clone Infested Non-infested 
   

Infested Non-infested 

ZC ZC Score 

(%) (0-5) 

CC804-01 1.9 2.0   74.4 79.4 2.1 0.3 

CC805-01 2.3 2.8   39.2 65.9 23.0 1.0 

CC806-02 1.5 3.3   74.7 50.0 0.0 0.0 

CC807-01 2.8 2.3   44.0 76.4 29.4 1.5 

CC809-02 3.5 2.0   78.8 66.4 20.5 2.5 

CC811-03 3.2 1.0   29.2 100.0 22.5 1.3 

CC811-05 1.9 1.0   75.0 95.0 16.7 1.0 

CC813-02 1.9 1.3   88.1 95.0 6.3 0.5 

CC825-06 2.5 1.5   69.4 85.0 0.0 0.0 

CC831-03 2.4 2.3   39.0 59.3 13.3 1.0 

CC832-14 2.5 2.8   37.5 67.8 0.0 0.0 

DD803-01 4.7 5.0   4.8 25.0 0.0 0.0 

DD805-05 2.9 2.5   15.5 70.0 10.0 0.5 

DD805-08 3.3 4.0   24.4 31.7 38.0 2.3 

DD812-02 2.0 4.3   82.7 55.7 5.0 0.5 

DD829-09 3.9 4.3   15.9 29.1 0.0 0.0 

DD847-06 3.8 1.8   44.8 71.4 0.0 0.0 

DD849-08 4.3 2.0   10.4 73.2 29.6 2.5 

DD851-07 3.3 2.3   16.6 75.3 43.3 1.5 

DD853-02 1.1 1.0   97.5 100.0 1.7 0.3 

Atlantic† 3.2 2.5   25.0 40.0 23.3 2.0 

Waneta† 2.5 1.0   50.0 83.7 25.0 2.0 

Mean 2.8 2.4   47.1 68.0 14.1 0.9 

St. error 0.2 0.2   5.9 4.6 2.9 0.2 

Min 1.1 1.0   4.8 25.0 0.0 0.0 

Max 4.7 5.0   97.5 100.0 43.3 2.5 

Count 22.0 22.0   22.0 22.0 22.0 22.0 

Clones in bold were likely not infected with ZC and showed no symptoms. 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Table A11. Survival and oviposition of psyllids on plants of diploid potato clones grown 

under field conditions near Springlake, TX in 2017. Least square means of insect egg 

numbers based on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) and 

average percent insects alive after seven days.  

  

Oviposition and survival of 

psyllids 

Clone 

Eggs 

 (0-2 scale) Insects Alive % 

CC804-01 0.3 25.0 

CC805-01 0.0 12.5 

CC806-02 0.0 0.0 

CC807-01 0.0 8.3 

CC809-02 0.5 8.3 

CC811-03 0.0 16.7 

CC811-05 0.0 33.3 

CC813-02 0.0 0.0 

CC825-06 0.0 0.0 

CC831-03 0.0 0.0 

CC832-14 0.0 8.3 

DD803-01 0.0 22.2 

DD805-05 0.0 12.5 

DD805-08 0.0 0.0 

DD812-02 0.5 8.3 

DD829-09 0.0 0.0 

DD847-06 0.0 0.0 

DD849-08 0.0 0.0 

DD851-07 0.5 25.0 

DD853-02 0.0 0.0 

Atlantic† 0.3 52.8 

Waneta† 0.0 33.3 

Mean 0.1 12.1 

St. error 0.0 3.0 

Min 0.0 0.0 

Max 0.5 52.8 

Count 22.0 22.0 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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Table A12. Production and size of tubers of diploid potato clones grown under field 

conditions near Springlake, TX in 2017. Least square means of average tuber number 

per plant, average weight per tuber, and average yield per plant. 

  

Average Tuber 

Number 

Average Weight per 

Tuber (g) Average Yield (g) 

Clone Infested 

Non-

infested Infested 

Non-

infested Infested 

Non-

infested 

DD812-02 57.0 45.0 71.7 19.7 648.6 467.2 

CC804-01 41.0 42.0 11.3 11.1 554.9 517.1 

CC805-01 13.7 28.5 13.7 12.4 220.7 476.3 

CC806-02 25.3 49.0 16.9 16.9 294.8 585.1 

CC807-01 26.5 25.5 12.0 11.9 458.1 530.7 

CC809-02 21.7 45.5 18.3 22.5 308.4 657.7 

CC811-03 27.3 24.5 13.6 14.8 294.8 453.6 

CC811-05 19.5 22.5 10.2 18.7 433.2 557.9 

CC813-02 24.8 17.5 20.0 25.8 505.8 621.4 

CC825-06 30.5 19.0 22.4 35.3 732.6 635.0 

CC831-03 17.8 22.5 24.6 34.0 358.3 535.2 

CC832-14 34.3 67.0 19.4 22.7 335.7 857.3 

DD803-01 18.3 34.0 9.7 12.9 319.8 696.3 

DD805-05 13.0 24.0 17.5 20.5 296.3 630.5 

DD805-08 27.7 28.5 28.5 52.5 671.3 585.1 

DD829-09 15.8 25.5 22.8 26.9 356.1 716.7 

DD847-06 19.7 26.0 18.6 24.0 371.9 653.2 

DD849-08 15.0 15.0 19.9 23.6 288.0 344.7 

DD851-07 20.3 26.5 16.8 26.2 315.2 684.9 

DD853-02 21.5 27.5 13.6 24.9 292.6 585.1 

Atlantic† 9.3 8.0 95.0 99.8 898.1 798.3 

Waneta† 4.5 9.0 61.7 91.6 290.3 793.8 

Mean 22.9 28.8 25.4 29.5 420.3 608.3 

St. error 2.3 2.9 4.5 4.9 36.8 25.6 

Min 4.5 8.0 9.7 11.1 220.7 344.7 

Max 57.0 67.0 95.0 99.8 898.1 857.3 

Count 22.0 22.0 22.0 22.0 22.0 22.0 

†Atlantic and †Waneta were used as the standard chipping variety checks. 
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NCPT Field 

Table A13. Least square means of chip quality and percentage of good chips of infested 

(psyllids from an Lso infected colony) and non-infested; percentage of zebra chip (ZC) 

and ZC score from chipped NCPT potato clones grown under field conditions near 

Springlake, TX in 2017.  

 

Chip Quality   Good Chips 

  (1-5) (%) 

Clone Infested 

Non-

infested 

   

Infested 

Non-

infested 

ZC 

ZC 

Score 

(%) (0-5) 

AC01151-5W 1.6 1.5   89.7 90.0 1.9 0.5 

AC03433-1W 1.3 1.0   93.3 100.0 0.0 0.0 

AF 4157-6 2.3 1.0   30.6 92.3 20.0 0.3 

AF 5040-8 3.5 1.0   25.0 100.0 20.0 2.5 

B 2727-2 3.0 1.5   22.2 90.0 40.0 2.3 

CO 02321-4W 1.0 2.5   100.0 50.0 0.0 0.0 

Lamoka 2.0 1.8   72.0 81.3 0.0 0.0 

MSV 313-2 2.5 2.0   31.3 0.0 0.0 0.0 

MSV 358-3 2.0 1.5   60.0 50.0 0.0 0.0 

MSV030-4 1.6 1.3   62.0 75.0 27.1 0.0 

MSW 044-1 3.1 4.0   40.6 16.7 0.0 2.5 

MSW 485-2 3.0 2.8   17.3 31.7 0.0 0.0 

MSX 540-4 2.0 1.3   74.1 100.0 0.0 0.0 

NDA081453CAB-2C 2.1 1.5   69.7 90.0 0.0 0.0 

NDTX081648CB-13W 3.5 2.3   23.1 61.8 4.5 1.0 

NY 121 1.9 1.5   79.9 80.0 1.7 0.3 

NY 152 3.3 2.5   40.9 75.7 32.7 3.8 

TX09396-1W 2.7 3.0   48.2 0.0 0.0 0.0 

W 5955-1 3.4 2.3   47.2 70.0 28.5 2.8 

W 8822-1 2.0 1.5   69.0 95.5 6.9 0.8 

W 9968-5 2.4 2.0   63.9 84.5 0.0 0.0 

Snowden† 2.6 1.0   71.3 100.0 11.7 1.5 

Mean 2.4 1.8   56.0 69.7 8.9 0.8 

St. error 0.1 0.2   5.2 6.7 2.7 0.2 

Min 1.0 1.0   17.3 0.0 0.0 0.0 

Max 3.5 4.0   100.0 100.0 40.0 3.8 

Count 22.0 22.0   22.0 22.0 22.0 22.0 

Clones in bold were likely not infected with ZC and showed no symptoms. 

†Snowden was used as the standard chipping variety check. 
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Table A14. Survival and oviposition of psyllids on plants of NCPT potato clones grown 

under field conditions near Springlake, TX in 2017. Least square means of insect egg 

numbers based on a number code (0 = no eggs, 1 = few eggs, and 2 = many eggs) and 

average percent insects alive after seven days.  

  

Oviposition and survival of 

psyllids 

Clone 

Eggs 

(0-2 scale) Insects Alive % 

AC01151-5W 0.8 41.7 

AC03433-1W 0.0 0.0 

AF 4157-6 0.0 0.0 

AF 5040-8 0.0 33.3 

B 2727-2 0.0 22.2 

CO 02321-4W 0.0 33.3 

Lamoka 0.0 0.0 

MSV 313-2 0.0 33.3 

MSV 358-3 0.0 0.0 

MSV030-4 0.0 25.0 

MSW 485-2 0.0 0.0 

MSX 540-4 0.0 16.7 

NDA081453CAB-2C 0.0 0.0 

NDTX081648CB-13W 0.0 8.3 

NY 121 0.0 8.3 

NY 152 0.3 33.3 

TX09396-1W 0.0 11.1 

W 5955-1 0.0 37.5 

W 8822-1 0.0 0.0 

W 9968-5 0.0 0.0 

Snowden† 0.0 25.0 

Mean 0.0 15.7 

St. error 0.0 3.3 

Min 0.0 0.0 

Max 0.8 41.7 

Count 21.0 21.0 

†Snowden was used as the standard chipping variety check. 
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Table A15. Production and size of tubers of NCPT potato clones grown under field 

conditions near Springlake, TX in 2017. Least square means of average tuber number 

per plant, average weight per tuber, and average yield per plant. 

  

Average Tuber 

Number 

Average Weight 

per Tuber (g) Average Yield (g) 

Clone Infested 

Non-

infested Infested 

Non-

infested Infested 

Non-

infested 

AC01151-5W 26.8 23.0 32.7 40.7 848.2 975.2 

AC03433-1W 3.3 3.5 68.8 49.1 232.8 172.4 

AF 4157-6 10.7 13.0 61.1 41.0 595.7 576.1 

AF 5040-8 7.5 4.5 91.9 87.3 694.0 381.0 

B 2727-2 5.7 6.0 68.3 133.1 396.1 798.3 

CO 02321-4W 9.7 4.0 95.9 88.5 889.0 353.8 

Lamoka 9.0 5.5 55.7 45.0 462.7 231.3 

MSV 313-2 7.0 1.0 141.3 54.4 988.8 54.4 

MSV 358-3 6.0 3.0 59.3 99.8 362.9 390.1 

MSV030-4 12.3 9.5 63.3 59.4 759.8 580.6 

MSW 485-2 16.3 23.5 84.9 60.4 1342.6 1428.8 

MSX 540-4 10.0 9.5 79.8 61.0 793.8 576.1 

NDA081453CA

B-2C 17.8 16.0 52.3 55.8 895.8 970.7 

NDTX081648C

B-13W 19.0 24.5 64.4 58.6 1197.5 1519.5 

NY 121 9.5 9.0 33.5 30.2 292.6 272.2 

NY 152 11.5 10.5 63.4 73.4 809.7 762.0 

TX09396-1W 11.7 4.0 98.1 52.2 843.7 208.7 

W 5955-1 9.3 5.0 75.3 94.3 675.9 471.7 

W 8822-1 9.0 11.5 51.0 37.7 444.5 467.2 

W 9968-5 13.0 11.5 60.4 40.0 773.4 476.3 

Snowden† 7.5 10.5 78.3 77.2 587.4 802.9 

Mean 11.1 9.9 70.5 63.8 708.9 593.8 

St. error 1.1 1.5 5.1 5.4 60.7 82.4 

Min 3.3 1.0 32.7 30.2 232.8 54.4 

Max 26.8 24.5 141.3 133.1 1342.6 1519.5 

Count 21.0 21.0 21.0 21.0 21.0 21.0 

†Snowden was used as the standard chipping variety check 

 

 

 




