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ABSTRACT

Residue coevolution refers to a biological assumption that residue pairs covary during evolution

if they form a contact within a protein or across a protein-protein interface. Under this assumption,

such covariance can be used to predict residue contacts within or between protein sequences. The

increasing availability of protein sequence data allows for wider applicability and also demand

more accurate approaches.

Current methods are modeling sequence data in Markov random fields and use maximum like-

lihood estimations to infer residue contacts. They mainly target the accuracy of contact prediction

under the promise that more accurate 2D contact prediction helps to get a better 3D structure. This

is correct but not the whole picture since patterns of predicted 2D contacts also play a signifi-

cant impact on 3D structure reconstruction. For example, contacts between long-distance residue

pairs in general help more than adjacent residue pairs do. Moreover, current methods always get

predictions that focus on certain area.

To directly target 3D structure predictions, we introduce a new method which exploits more

types of data, such as secondary structure data and folds type information, to characterize the de-

sired sparsity patterns of contact prediction in a biologically meaningful way. It then uses multiple

structured sparsity regularization models, including group LASSO and group dispersive sparsity,

to enforce such sparsity patterns. This method benefits from the consideration and promotion of

structured sparsity, which contributes to improvement of 3D structure prediction.
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1. INTRODUCTION

1.1 Background

Protein is an important component of every cell in the body and support large range of function

as enzyme, antibody and etc. It is made up of smaller units, the amino acids, which are attached

to one another to form a long chain. There are 20 different types of standard amino acids and they

can be combined in a linear polypeptide chain to make a protein.

A long protein chain can be described using three levels of structures: primary, secondary,

and tertiary structures. The simplest level of protein structure is the primary structure, which

can be simply regraded as the sequence of amino acids[1][2]. Those amino acids assemble in

particular order to make up of polypeptide chains. The sequence of a protein is determined by

DNA of the gene that encodes the protein. Secondary structure refers to regions in which protein

chains are organized into local 3D structures such as alpha-helices, beta-pleated sheets and random

coil[3], shown as Figure 1.1. Those secondary structures are stabilized by hydrogen bonds within

individual structures. In an alpha-helix, the protein chain is coiled like a spring and each turn of

this loose spring always has 3 complete amino acid residues and also two atoms from above and

below. For a beta sheet, the chains are folded as parallel lines alongside each other. There are

more detailed classification methods for secondary structures but we can just focus on this simple

one. No matter in any methods, random coil is always used to present secondary structures which

are not in any of the above conformations. Based on the secondary structure, protein folds itself

into a 3D shape and holds this connection between side chains by several types of interactions,

such as ionic interaction, hydrogen bond, sulphur bridge and van der Waals dispersion forces. The

unique 3-dimensional structure and its specific function are determined by its amino acid sequence.

Distant relationships between proteins sometimes can be revealed by the secondary structure[4].
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Figure 1.1: A cartoon representation of a 3D protein structure (Protein Data Bank ID: 1MSK) that
contains alpha-helices (in cyan), beta-sheets (in red) and coils (in magenta)

Therefore, learning structures of proteins is an important way to understand their functions but

structure detection is so time-consuming and it’s hard to imply it extensively. The protein structure

prediction technique rises in response to that demand. With the growth of the sequence databases,

comparative modeling methods which are based on homologs of known structures have become

increasingly powerful compared to de novo models[5]. However, with few protein families which

can not be gotten homologs accurately, it will lead to a predicament for many methods.

Formation of 3D structure in proteins is dependent on the establishment of close through space

contacts and inter residue interactions impose constrains on evolutionary dynamics. Therefore,

mutations at contact pairs are expected to be coupled in evolutionary procedure. For this rea-

son, there has been long-standing interest in the prediction of residue-residue contacts based on

residue coevolution that can be inferred from multiple sequence alignment (MSA). With the in-

crease of known protein sequences in recent years, such approaches have demonstrated consid-

erable promise, for example, Direct Coupling Analysis[6] and Protein Sparse InverseCOVariance

(PSICOV)[7]. GREMLIN gets a further step achievement of better predictions robustness by in-

corporating prior information on pairs likely to be in contact[5]. Recent studies[8][9] also have
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shown that the predicted contacts are sufficiently accurate to predict the 3D structures of proteins

with deep alignments.

1.2 Challenge and Idea

Even with high accuracy of contact prediction, accurate 3D structure prediction is not always

guaranteed when the data is limited. As we known, short-range residue pairs, close neighbors in 1D

sequence, are more likely to form contacts since they are closely separated by a few covalent bonds,

and they indeed get higher scores in the final result. Moreover, it can not avoid a situation that a

lot of predictions huddle in several areas, which does not help global structure prediction. Those

predictions provides more information about intra instead of inter secondary structure elements,

but the latter ones are more important when we build 3D global structures. Furthermore, we are

also interested in how the changes of pattern and contact prediction accuracy affect building 3D

structure. In addition, we try to compare the effect of sparsity within and cross groups for 3D

structure reconstruction. Based on the correlation of sparsity and 3D structure result, we want

to understand if and how sparsity affects the final structure. However, the method of sparsity

measurement is also hard to determine. We need first understand what is ideal distribution and

then Figure out which one is deterministic between the group level sparsity and the whole matrix

sparsity.

In this study, we propose a method which focuses on integrating structural data with sequence

information to enforce predictions to possess 2D contact patterns that can improve 3D structure

reconstruction by providing more contact information across secondary structures. By embedding

with distance information, our method shows that how the sparsity level will change in different

areas. The secondary structures data helps to further spread predictions toward desired sparsity pat-

tern and we will use cross validation to train the hyper-parameters to balance various patterns and

improve 3D structure prediction. Importantly, we would like to answer three significant questions:

• Do we improve dispersion of prediciton result by introducing various structured sparsity

regularization model?

3



• Does 2D contact prediction with improved dispersion patterns help improve 3D structure

reconstruction?

• What kind of sparsity pattern and corresponding regularization models for 2D contacts can

optimize 3D structure reconstruction?

1.3 Organization of Thesis

• Section I Introduction: This section introduces background knowledge about protein and

its different levels of structures. Then it states what problems we are facing, where these

problems come from and why it is worthwhile putting more efforts on. Moreover, a detailed

discussion about the current research on this field is presented in this section.

• Section II Methods: This section focuses more on the detailed methodologies and utilized

materials. It includes the motivation and path of developing our methods.

• Section III Result and Analysis: We include results from each step of the methods here. Then

based on all those results, we will provide the corresponding answers to questions proposed

in the first section.

• Section IV Conclusion and Future Directions: We will conclude what we have found derived

from the results and discussion above and also propose some points for the next step research.

4



2. METHODS

2.1 Contact definitions

Residue-residue contacts (or simply "contacts") in protein 3D structures are pairs of spatially

close residues. A 3D structure of a protein is expressed as three dimensions coordinates of amino

acid atoms in the form of PDB (Protein Data Bank) file[10]. Contact is always defined by a

threshold based on its physical distance. Realizing that the contacting residues which are far apart

in the protein sequence but close together in the 3-D space are important for protein folding[11].

Generally, we will say that a pair of amino acids are in contact if the distance between specific

atoms, mostly using alpha carbon or beta carbon, is less than than 8Å apart[12]. Also, a short-

range contact is defined between residues i and j with 5 ≤ |i − j| ≤ 23 where i and j are their

sequence indices, respectively. If the index difference is less than 5, the corresponding contact is

regraded trivial thus ignored. There are three main types of secondary structure as α-helix, β-sheet

and Coil. By combining with those data, we define six groups of inter-SSE contacts: three of them

formed between residue pairs from the same type of SSE and another three residue pairs from two

different types of SSE’s. Protein contacts contain key information for the understanding of protein

structure and function, so contact prediction is an important problem[13].

2.2 Generation of MSA and secondary structures

Generating input alignments and secondary structure data is a crucial step for further statistical

inference. To ensure the consistency with CCMpred, we generate multiple aligned sequences by

HHBlits according to following parameters[14][15]:

• HHBlits version: 3.0-beta.3 (14-07-2017)

• Database: Uniprot20_2016_02

• Iterations: 3

• E-Value cutoff: 10−3
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• Minimum Coverage with master sequence: 60%

• Maximum Pairwise Sequence Identity: 90%

• Maxfilt: 100000

Secondary structure prediction usually has two different types, Q3 or Q8, which refers to 3-state

or 8-state secondary structure.[16]. For our case, the 3-state definition is better for further grouping

since its prediction has a higher accuracy and it is also enough for structured contact patterns.

We generate secondary structure data by SSpro, which combines machine learning methods with

evolutionary information and fragment libraries extracted from the Protein Data Band (PDB) and

maintain a high accuracy around 80% [17].

2.3 Dataset

To test our method and compare it with a state-of-the-art method (CCMPred), we use a data

set comprised of 41 proteins[14] which are selected from Astral 2.05 database (PDB SCOPe 40%

ID)[18]. This dataset contains at least one member of 1,668 distinct SCOP folds. To eliminate the

redundancy and ensure the diversity of our test set, we distribute selected cases to four different

classes of folds which are all α, all β, α + β and α/β. In addition, those sequences are also

evenly spread in terms of length ranging from 54 to 504 residues. Care was also taken to select

proteins with single-chain, well resolved (resolution less than 2.5 Å) and belonging to different

Pfam families[14].

In addition, we should notice that this dataset does not provide the whole sequence for each

protein. Instead, it uses domain segment of the sequence to replace the original one as a protein

chain can have multiple spatially-separated and functionally-independent domains that could adopt

different folds.

2.4 Machine Learning Model

The objective function to optimize parameters of our machine learning model is comprised of

two parts: pseudo log-likelihood pll(v, w|D) modeled by a Markov random field and regularization

6



R(v, w):

O(v, w) = pll(v, w|D)−R(v, w)

By maximizing the objective function, we can determine the parameters v andw and then to predict

the probability of contact for each pair of positions. More details are discussed below.

2.4.1 Overview of Computational Method

Our method uses a generative model based on GREMLIN[5] with the following function form:

P (X = x) =
1

Z
exp(

L∑
i=1

[vi(xi) +
L∑
j>i

wi,j(xi, xj)])

Learned from MSA of proteins, the variables Xi represent the amino acid composition at index i,

vi is a set of parameters of individual propensity at position i for each amino acid, and wi,j means

21*21 parameter matrix modeling the statistical coupling between position i and j. The Z is parti-

tion function to normalize the sum of probabilities to 1. Given a set of aligned protein sequences, if

we can match the distribution of this model to observation exactly, the learned parameters tend to

give the true result. However, it’s computationally intractable to get the exact solution. GREMLIN

uses log-pseudo-likelihood to get an approximation of v, w, which is expressed below:

pll(v, w|D) =
N∑
n=1

L∑
i=1

logP (xni |xn−i, v, w)

xni is the probability of observed amino acid at position i in the nth sequence in the context of

amino acid at other positions xn−i and it depends on parameters v, w as following:

P (xni |xn−i, v, w) =
1

Zi
exp(vi(x

n
i ) +

L∑
j=1,j 6=i

wi,j(x
n
i , x

n
j ))

The pseudo-likelihood model uses the local partition function Zi which is trivial and makes the

function computationally tractable. Moreover, it’s easy to optimize due to its concavity in v, w.

7



2.4.2 Group LASSO

Our final target is pursuing a sparsity across the whole matrix instead of just part of groups.

However,group lasso achieves group sparsity which is opposite to our rationale. This part will show

how the group LASSO method controls the pattern and how its pattern affect the 3D reconstruction

as is a comparative study. It is not a method we propose for the desired dispersion.

Regularization helps to avoid over-fitting of model parameters. Originally, GREMLIN uses

l2-norm for parameters w[5], but later in CCMpred paper, they modified it to l2-square since it

will make no significant difference in the results and is easier to optimize[19]. The corresponding

regularization function is shown as:

R(v, w) = λv||v||22 +
∑
i,j

λw||wi,j||22

LASSO, which is short for least absolute shrinkage and selection operator, is a regression

analysis method for variable selection and regularization in order to promote prediction accuracy

and interpretability of statistical models. It was developed by Robert Tibshirani in 1996 [20]. The

basic LASSO was shown below:

(α̂, β̂) = arg min


N∑
i=1

(
yi − α−

∑
j

βjxij

)2
 , subject to

∑
j

|βj| ≤ t.

in which β is parameters to be estimated and t is a prespecified free parameter to restrain the

amount of regularization. Due to the l1-norm restraint above, LASSO can help to find solution with

few nonzero entries in β, which can not be done by ridge regression. We are able to apply sparse

structure to our method by simple LASSO, but this kind of sparsity will be forced ’randomly’.

In our case, short distance residue pairs are more likely to have contact and they will force more

coefficients of long distance area to be zeros. However, we hope that each area has similar level of

sparsity.

Then we introduce group LASSO to apply sparsity in group level[21]:

8



minβ
1

2

∥∥∥∥∥y −
m∑
l=1

X(l)β(l)

∥∥∥∥∥
2

2

+ λ
m∑
l=1

√
pl‖β(l)‖2

where X(l) is the submatrix of X with columns corresponding to the predictors in group l, β(l) the

coefficient vector of that group. For our case, the matrix can be grouped by SSE prior since each

type of secondary structure can be regarded as a unity to interact with other parts. To spread the

contact prediction distribution, we apply mixed group LASSO to the regularization part as:

R(v, w) = λv||v||22 + λw[
K∑
k=1

αk(

Gk∑
gk=1

βgk
√
ρgk ||w(gk)||2)]

∑
k

αk = 1,
∑
gk

βgk = 1

where k means the kth grouping strategy (k=1,2, · · · , K) and gk indicates group index in the k-th

grouping strategy. Since a larger group is regularized less to be sparse, we use ρgk , which is the

size of group, to balance this effect so that each group will have similar probability to maintain a

same sparsity level. The hyper parameters αk and βgk are also used to balance the relative weight

for different grouping strategies and different groups defined by the same grouping strategy. The

sum of each equal to one maintain the convexity of function. They can be determined from prior

knowledge or trained through data.

2.4.3 Group-Dispersive Sparsity

As we discussed above, group LASSO does provide some sparsity on group level, but it also

treated a whole group as a variable and used only a few of them. It means that we may loss the

information for the whole group. In certain cases, some of groups are supposed to be no contact.

This situation is seldom for real protein but always happens for group LASSO. In our application,

it is desirable to also enforce sparsity within groups and select at least one variable per group. We

thus consider an extension of group LASSO, dispersive sparsity models[22]:
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β̂ = argmin‖y −Xβ‖22 +
λ

2

∑
g∈G

‖βg‖21

For each group g, the penalty takes l1-norm of parameters, βg, and then take square for the

vector of norms. If all coefficients are in the same group, the group-dispersive sparsity method is

actually equal to squaring the l1-norm. In contract, if each coefficient is grouped by itself, this

formula will turn to be ridge regression. Generally speaking, it performs selection within groups

by applying LASSO selection to each group separately and it also protects the whole group from

going to exact zero as ridge regression. In other words, it uses l1-norm within groups to enforce

sparsity and uses l2-norm between groups to make sure the density, which is opposite with group

LASSO.

In our case, the formula is:

R(v, w) = λv||v||22 + λw

[
K∑
k=1

αk

(
Gk∑
gk=1

βgk
√
ρgk ||w(gk)||21

)]

If we only introduce secondary structure as the grouping criteria and treat interactions within one

type of structure and between two types of structures separately, then our matrix can be grouped

based on secondary structure and classified into 9 different types of group:

R(v, w) = λv||v||22 + λw

(
(1 + αk)

3∑
g1=1

βg1
√
ρg1||w(g1)||21 + (1− αk)

6∑
g2=1

βg2
√
ρg2||w(g2)||21

)

where g1 means intra groups which are for interactions within each type of secondary structure

and g2 means inter groups which contain interactions between two types of structures. Moreover,

we use 1 ± αk instead of just αk, which αk ranges from -1 to 1, to enhance or recede one side of

groups not just balance them. To be noticed, l1-norm is a non-smooth function so the optimization

problem has no closed form solution. Therefore, when we try to solve it by modifying a conjugate

gradient method, we use subgradient instead of gradient to calculate in each step.
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2.5 Evaluation Method

To judge the quality of our result, we need to use some criterion for each step.

2.5.1 Dispersion Level

Before assessing dispersion level, it is important to define the ideal dispersion pattern. As our

discussion above, our focus is not limited to the accuracy for the intermediate result. Instead, we

want to analyze the relation of dispersion and final result. Therefore, as a stepping stone, we can

set the uniform distribution as the reference. As we known, uniform distribution has equal possi-

bility for each position, which means it spreads the "predictions" randomly. A more informative

prior distribution of contact dispersion pattern than uniform distribution can be introduced later by

learning from known structure data.

Now we have the reference for our 2D result and then we need to determine how to judge

its difference. The simplest way is Manhattan distance. The problem is that the range of Man-

hattan distance is uncertain, so the value will be affected by the size of matrix and number of

samples. We can’t compare the similarity over difference cases. Therefore, we introduce Jensen-

Shannon Divergence (JSD). The JSD is a symmetrized and smoothed measurement and it utilizes

the Kullback-Leibler Divergence D(P ||D) to calculate the similarity. It is defined as below:

JSD(P‖Q) = 1

2
D(P‖M) +

1

2
D(Q‖M)

whereM = 1
2
(P+Q). The Jensen-Shannon divergence score ranges from 0 to 1 for two probability

distributions if we use the base 2 logarithm[23].

0 ≤ JSD(P,Q) ≤ 1

Then we use Jensen-Shannon distance, which is defined by the square root of the JSD, and it

provides a legitimate distance metric. We will use it as the criteria of dispersion level.
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2.5.2 3D Structure Reconstruction and Assessment

For 3D structure assessment, the reference is easy to determine, which is the PDB file. Protein

Data Bank (PDB) format is a standard for files to contain atomic coordinates. It is generated based

on experiment result so that it can be regarded as the ground truth.

From the 2D contact to 3D structure, we use CoinFold as the predictor[24]. It is original a

web server for protein contact prediction and contact-assisted de novo structure prediction. They

use Group Graphical Lasso (GGL) to predict contacts by joint EC analysis[25] and improve the

accuracy by implementing consistency of co-evolution pattern . Then the CoinFold also generates

the secondary structure by DeepCNF[26] and then 3D structure by feeding those two to Crystal-

lography & NMR System (CNS) package without the template[27][28]. For our case, we only

need use the last step of it to predict the 3D structure. Also, to maintain the consistency, we will

provide our 2D structure result to CoinFold for reconstruction.

To compare two protein structures, Template Modeling Score (TM-score) is a good measure-

ment of similarity. It is more accurate than RMSD and GDT when we are trying to measure the

protein structures quality. The TM-score indicates the difference by score between (0,1], where 1

means full accord. Generally, we take score less than 0.2 as a randomly chosen unrelated proteins

and larger than 0.5 as a much the same structure. Proteins with TM-score equal to 0.5 have a 37%

posterior probability in the same CATH topology family and 13% in the same SCOP fold family

according to a quantitative study. [29].

The TM-score is calculated as below:

TM-score = max

 1

Ltarget

Laligned∑
i

1

1 +
(

di
d0(Ltarget)

)2


where Ltarget is the length of target protein and Laligned means the aligned region. di is the distance

between the ith residue pair and also is used to normalize distance is:

d0(Ltarget) = 1.24 3
√
Ltarget − 15− 1.8
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2.6 Pipeline

As shown in Figure 2.1, the main idea is to train hyper-parameters first by training set and then

use test set to assess the model.

In the beginning, based on the dataset, we select 2 cases from each all α, α + β, all β and

α/β type and make sure that two cases in one type have divergent sequence length to compose the

test set. Before training and testing, we use HHBlits and SSpro to generate MSA and SSE data

respectively. Then we set αk as hyper-parameter and train it from -1 to 1. Later, we also try to train

λw since this hyper-parameter is optimized by CCMpred but may be not suitable for our model.

In terms of generating 3D structure from contact prediction, we use the CoinFold as standard

generation approach for both baseline method and our algorithm. To evaluate and compare results,

we need to define an assessment metric. Since the 3D structure is our target, all of our validation

process will base on the dissimilarity between predicted 3D structure and ground truth PDB file.

Specifically, we use TM-score as the metric to measure the quality of the 3D structure prediction.

It belongs to [0,1], which indicates from the worst similarity to the best respectively.

Figure 2.1: Pipeline
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3. RESULT AND ANALYSIS

3.1 Contact Prediction of Group LASSO

To balance the weight across groups and make them have equal chance of prediction, we use
√
ρg/
√
wsize to replace √ρg, where wsize is the size of whole group. Then our group LASSO

formula is:

R(v, w) = λv||v||22+λw

(
(1 + αk)

3∑
g1=1

βg1

√
ρg1√
wsize

||w(g1)||21 + (1− αk)
6∑

g2=1

βg2

√
ρg1√
wsize

||w(g2)||21

)

3.1.1 Pattern Analysis

Before learning hyper parameters and parameters of our model, we are going to show how our

method will affect the distribution of predictions by applying different grouping strategies.

As we mentioned before, current methods mainly focus on accuracy. Sometimes their results

will ignore some area which may provide contact information across SSEs that can be crucial to

structure predictions. Therefore, we hope that we can enforce predictions to appear in certain area

of matrix. Our first step is to compare contact maps resulting from different models.

Table 3.1 shows how the regularization function will affect the pattern of predictions. All

groups are based on the distance in sequence index for residue pairs. The group LASSO method

uses grouping strategies which divide predictions into short, medium and long-range groups whose

residue pairs’ distances are less than 7, 7 to 12 and larger than 12 respectively. The first three

methods use the same parameters and the fourth one modified the β for medium-range and long-

range group from 1
3

to 5
12

and from 1
3

to 1
4
,respectively. Since the short range is not important for

building 3D global structures, we will only discuss medium and long range groups. As shown in

Table 3.1, result of CCMpred, which uses l2-norm square, is similar with l2-norm CCMpred, just

as what we mentioned before. And for group LASSO method, we notice that a lot of predictions are

"forced" to the medium group and the percentage of predictions in each group are more balanced
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than original method. The fourth row shows that when we modify parameters, we can force the

pattern to change in different directions.

Method Medium Range Prediction Long Range Prediction
CCMpred 33(2.55%) 136(1.09%)
l2-norm CCMpred 35(2.71%) 134(1.08%)
Group LASSO 75(5.80%) 94(0.76%)
Group LASSO with modified parameters 27(2.09%) 142(1.14%)

Table 3.1: Prediction distribution of methods in different ranges (UniProt ID:P0A6A3)

According to Figure 3.1, we see the changes of prediction distribution. Numbers in brackets

are sparsity level of each group (measured by the number of predictions in that group over the

group size). From l2-norm square to l2-norm, they look pretty similar. However, it shows a great

difference when we introduce the group LASSO to our regularization function. It looks like that

some points are pushed into medium groups. After enlargement of medium range, that effect is

weaker than before but it still balance the distribution between groups.

15



Figure 3.1: Contact maps of top L prediction from four methods

3.1.2 Precision Result

Then we train the hyper-parameter β based on our training set with secondary structure prior

and use the best one to run for the test set. The result is shown as Table 3.2. The worst case

means that it got the lowest TM-score for both method. The PDB ID of this protein is 1BMG

and its length is 98. According to the result, we can see that the group LASSO is really bad at

3D structure reconstruction. The reason may be its abandon of certain groups. However, we can

see that the original method also failed to predict the 1BMG. The sequence is not long and also

its structure only contains beta sheet and coils. It may be because of the quality of alignments of
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protein sequence but it also reflects the robustness of methods.

Average TM-score Worst Case TM-score
Group LASSO Method 0.37 0.25
Original Method 0.52 0.31

Table 3.2: Test result for our method and the original method

Then let’s go back to see the contact map result of this case as shown in Figure 3.2. The left

one is reference structure of our method and the right one is for original method. Red nodes mean

false positive matches, black means true positive and grey ones are false negative. In each contact

map, we have already removed short distance results and choose the top 2L results to plot, where

L indicates the length of protein sequence. From the reference map of our method, we notice

that it does well on avoiding mismatches at two corners of diagonal but it still loses more points on

certain areas which are totally missed or too dense. Compared with original pattern, group LASSO

helps to enhance the weight on certain groups so that we get pattern there. However, it is too hard

to control and determine where should have contacts. Even though we know which group should

be chosen, density in few groups does not help to construct 3D structure of whole protein.

From Figure 3.3, we can see that the original method keeps a relatively higher precision from

the beginning to the end. Group LASSO does a fine job at beginning but drops too fast from L/2.
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Figure 3.2: Reference contact map of group LASSO method and the original method

Figure 3.3: Precision score of group LASSO method and the original method

Then we try to modify the λw to test if it will affect the accuracy of final TM-score. Previously,
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the CCMpred uses default λw as:

λw = factor ∗ (ncol − 1)

where factor is 0.2 and ncol means the length of protein sequence. As Table 3.3 shown, we tried

the factor of λw as 0.2, 2 and 20. We only choose one direction since the normalization term
√
wsize enforces each group to lower weight. Through the increasing of λw, we want to balance

this effect. It does help a little bit, but the result is still awful.

factor of λw Average TM-score of Training Set
0.2 0.29
2 0.33
20 0.35

Table 3.3: Train result for our method with different factors of λw

3.2 Contact Prediction of Group-Dispersive Sparsity

Based on the formula discussed in section II, we still first train through the training set. In

addition, we also treat lambda as hyper-parameter. This time, we choose the factor as 0.02, 0.1,

0.2, 2, 20 to see which direction will benefit our dispersion level and the final result.

3.2.1 Pattern Analysis

In this part, we still use the 1BMG as an example. To analyze the pattern change across groups,

we add grid lines, which is drawn based on secondary structure group, to t,he original reference

contact map. As shown in Figure 3.4, left figure is our method result and right one is the original

one. In this case, we can see that there are 8 blocks without predictions in our method result and

only 2 of them has true contact. In contract, the original method has 12 empty clocks and 5 of

them has true contact. Roughly speaking, our method does provide a better dispersion level than

the original method.
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Figure 3.4: Reference contact map of our method and original method with grid lines

To be more specific, we can use Jensen-Shannon distance as a measurement to test if our

method does promote the dispersion in general.
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3.2.2 Precision Result

Let’s still use the 1BMG as an example case. According to Figure 3.5, we can see that even

though our method doesn’t reach 100% in the beginning, it keeps a relatively high accuracy than

before and its precision is pretty similar to the original method.

Figure 3.5: Precision score of group-dispersive sparsity method

In general, compared with CCMpred in test set as shown in Table 3.4, our method is a little bit

worse. However, it shows some shining point in some cases like 1VIN. Since the hyper-parameters

of our method are still not optimized, it is very likely to have a better result when we run the training

round more times.

For the test set part, we can see that dispersive LASSO method also improve a lot for each λw

from Table 3.5. Table 3.4 is the result of best combination hyper-parameter and the original method

for training set. According to those two tables, our method roughly reaches the same accuracy level

with the original method. What interesting is that dispersive LASSO reaches its peak when factor

of λw equals to 0.2, but group LASSO reach its peak when factor is 20. It’s easy to understand that

the dispersive LASSO doesn’t use normalization any more and its structure may lead to a situation
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Test Case Name Group-Dispersive Method CCMpred
1CEW 0.44 0.47
1AYE 0.60 0.61
1NAT 0.80 0.78
1WL7 0.31 0.53
2J9V 0.34 0.35
1BMG 0.31 0.31
1VIN 0.64 0.61
1VFF 0.47 0.50

Table 3.4: Test result for our method and CCMpred

that the λw is too large instead of too small. Therefore, we add more value as factor of λw for

further analysis as .

factor of λw Average TM-score of Training Set
20 0.38
2 0.41
0.2 0.45
0.1 0.45
0.02 0.47
0.01 0.48
CCMpred 0.51

Table 3.5: Train results for our method with different factor of λw

3.2.3 Dispersion Level Analysis

In this part, we try to measure the dispersion level by comparing the ’ideal distribution’, uni-

form distribution, with our result and calculate the distance by Jensen-Shannon Distance. Uniform

distribution is sampled by random function and excludes those points which are in the short dis-

tance area.

In case of measurement approach, we don’t use raw points to calculate the distance directly,

since two same distribution may have a big distance because of sampling. For example, if two
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uniform distribution samples like (1,0,1,0) and (0,1,0,1), they are basically the same distribution

but in our case the JSD will be 0.69, which is not a desired measure of “dispersion". Instead,

we group them first based on SSE and then calculate their dispersion level by Jensen-Shannon

Distance. The result is shown as Figure3.6, which uses the distance of CCMpred as the white

color. For JS-Distance, value is the lower the better. In this figure, the color is lighter the better. As

we can see, the best combination of parameters is one the upper left corner. However, CCMpred is

better than our case. There are three possible reasons for that:

• The current optimization method may be not adequate for this high-dimensional and non-

smooth problem.

• CCMpred has trained their hyper-parameters to be the optimal. In contrast, our models may

not have done so given limited hyper-parameter space explored in limited time.

• The way dispersion is measured is not accurate. For example, the ideal dispersive distribu-

tion can be non-uniform. And a better “prior" can be learned from existing data.
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Figure 3.6: Dispersion level distribution

Then we want to answer if the dispersion level is correlated with accuracy of 3D structure

reconstruction. Therefore, we introduce the Spearman Correlation, which is a nonparametric mea-

sure of rank correlation, to measure the relation between dispersion level vs. TM-score as shown in

Figure 3.7. Spearman correlation ranges from -1 to 1. Negative value means negatively correlated

and the larger the value is, the stronger the correlation is. In this figure, each block presents the

Spearman correlation coefficient of all training set with one pair of hyper-parameter. Still, we use

the CCMpred correlation coefficient as the baseline. As we can see, most of blocks are in light blue

or red, which means dispersion level does help to promote the 3D structure reconstruction. Also,

our method shows a stronger correlation. Therefore, improving the dispersive level, which is a 2D

data, may be another path to help to promote or assess the accuracy of 3D structure prediction.
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Figure 3.7: Dispersion level vs. TM-score

Taking the best result combination as an example, we draw the scatter and linear regression

line as Figure 3.8. Each point represents one case of this hyper-parameter pair and the p-value of

T-test is 0.002, which is less than 0.05. Therefore, we can say that dispersion level and 3D structure

accuracy are significant linear correlated.
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Figure 3.8: Scatter and linear regression for hyper-parameter combination with λw=0.01 and β=-
0.9999
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4. CONCLUSION AND FUTURE DIRECTIONS

In this study, we investigate protein contact prediction at two levels: dispersion of 2D contact

map and accuracy of 3D structure. At dispersion level, we are eager to obtain a more dispersive

structure, which means high sparsity within groups and high density between groups. After com-

bination with the ideas of LASSO and ridge regression, we apply group-dispersive LASSO on

CCMpred framework to predict protein contacts. Given secondary structure, our method shows

a higher dispersion level than group LASSO and original method. The performance on test set

indicates that dispersion level can help to promote the final result in certain area, but it still needs

more trains for hyper-parameter and larger test set to assess its robustness.

At the 3D structure level, we also use two steps to show the effect of structured sparsity pattern.

Group LASSO shows that such pattern can be controlled and different patterns help to reconstruct

3D structures in different area. However, since group LASSO always loses information in its empty

groups, it can not provide a good result for 3D structure. Then we promote the pattern from density

in certain groups to sparsity in each group. Because a higher level dispersion is more likely to help

3D structure reconstruction, especially for long distance contacts, the group-dispersive LASSO

does a good job in contact prediction. Even though it has not universally outperformed a state-of-

the-art method (CCMPred) in 3D structure reconstruction, its ability of pattern control has shown a

great potential and will provide more possibility with more prior knowledge added. Furthermore, it

still has space to improve. For example, we can treat different types of groups differently, optimize

their hyper-parameters, and promote finer patterns.
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